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using (1-49) with f(O', ).1) = Ynm(O', >.'), so that 

R 

V. = 47!"G ! f (rl)rln+2dr' 
nm 2n + 1 nm 

o 

(7-34) 

The substitution of the polynomial (7-27) finally yields on integration 

(7-35) 

Now the coefficie.nts Vnm are not hing else than the spherical-harmonic coefficients of 
the external gravitational potential, which are well-known on a smoothed global scale; 
cf. (Rapp, 1986). 

Assuming them given, we thus have the system of equations 

N 

L anmkXnmk = Vnm 
10=0 

for the unknown coefficients :l:nmlo' 

7.6.2 A Very General Solution 

(7-36) 

The system (7-36) is much less formidable than it looks. First of all, all degrees n and 
orders m are separated! Thü mean~ that we ean treat eaeh term (m, n) individually. 
(This seems to be an essential advantage as compared to the approach of Dufour to 
be treated in sec. 7.6.7.) We thus omit the symbols n, m as we already did in (7-28) 
to get, instead of (7-36), a linear equation of form 

(7-37) 

where, of course, b represents Vnm . 
Given b and the coefficients alo (by (7-35)), we can satisfy (7-37) by infinitely many 

(N + 1)-tuples :1:/0. Geometrically speaking, (7-37) is the equation of a (hyper )plane in 
(N + 1)-dimensional space, and the only condition that the vector:l: = [:1:0, :1:1, ••• , :l:N) 
must satisfy is that it must lead to a point in the plane (7-37), cf. Fig. 7.5. 

A very general solution of (7-37) is 

(7- 38) 

as one immediately sees on substituting into (7-37). The matrix [eii) ean be cho­
sen symmetrie and positive definite and is otherwise arbitrary. The set of all these 
matrices (for all n) characterizes the set of possible solutions! 
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FIGURE 7.5: Possible choices of the vector :c 

plane defined 
by (7-37) 

The form (7-38) is motivated by the theory of generalized matrix inverses: if 

A:c = b (7-39) 

is an underdetermined system of equations, the solution is formally given by 

(7-40) 

where the generalized inverse has the form (T denotes the transpose) 

(7-41) 

with any positive-definite symmetrie square matrix 0 of appropriate dimension (cf. 
Bjerhammar, 1973, p. 110; Moritz, 1980, p. 164). Clearly (7-37) and (7-38) are 
special cases of (7-39) and (7-40) with (7-41). 

The solution (7-38) satisfies the minimum condition 

:cT P:c = minimum , (7-42) 

where P = 0- 1
• This means that x represents the "shortest" distance of the plane 

(7-37) from the origin, but of course in a non-orthogonal coordinate system whose 
metric tensor is P. That any point in the plane can be reached by a suitable choice 
of P can be seen in the following way (Krarup, 1972). 

As we have mentioned, eq. (7-37) defines an N -dimensional hyperplane in our 
(N + 1 )-dimensional space (Fig. 7.5). Choose, for the first N base vectors, any set of 
N mutually orthogonal unit vectors (in the Euclidean sense) spanning the hyperplane. 
For the remaining (N + 1 )st base vector simply take the vector :c leading from the origin 
to the desired point Q in the plane (Fig. 7.5). It is "orthogonal" to the hyperplane 
in the sense of the metric tensor P (though not in the Euclidean sense!) by the very 
condition (7-42), and its length is arbitrarily taken as unity. 

Now we have found a set of N + llinearly independent non-orthogonal vectors, and 
we must determine the metric tensor P for which they constitute an "orthonormal" set 
of base vectors. Let A now be the (N + 1) x (N + 1) matrix having as column vectors the 

a· 
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components of these N + 1 base vectors in our original Cartesian co ordinate system. 
Then A is not singular, and the condition that the given vectors be orthonormal with 
respect to P can be expressed as follows: 

(7-43) 

(I denotes the unit matrix), whence 

(7-44) 

is determined. Clearly, P and hence C are sy=etric and positive definite matrices . 
If one takes care of convergence, one may even let N -t 00, but this is not really 

necessary because of Weierstrass' theorem mentioned above. 
A minor point is that the degree n = 1 is usually missing: it can be made zero 

by a suitable choice of origin (Heiskanen and Moritz, 1967, p. 62). Also in order to 
have a well-defined density at the origin, it is necessary, except for n = 0, to start 
the summation in equations such as (7-27) or (7-37) with k = 1 rather than k = 0 
(which reduces the dimension of our base space from N + 1 to N) . 

7.6.3 Harmonie Densities 

A possible solution of (7-36) is, of course, obtained by putting anmk = 0 except for 
k = n, which gives 

:z: = Vnm = (2n + 1)(2n + 3) V. 
nm anmn 47rG R2n+3 nm 

(7-45) 

by (7-35); this solution is unique. Thus 

(7-46) 

and (7-26) gives 
n 

per, B, >') = 2: 2: :IlnmrnYnm(B, >') (7-47) 
n=Om=-n 

which is aseries of (internal) spherical harmonics; cf. sec. 1.3. Thus (7-47) repre­
sents the harmonie den3ity for the spherical case. It is uniquely defined as we have 
announced in sec. 7.3 (theorem of Laurieella). 

Considering the behavior of the powers r n (Fig. 7.6; we have put R = 1), we 
see that °the higher the degree n, the more concentrated towards the earth's surface 
will be the corresponding contribution of the density. This ab out corresponds to the 
physical feeling that higher-frequency density anomalies should be situated in the 

~d earth's upper erust and mantle, but otherwise the harmonic densities do not have 
se( any meaningful physical interpretation. Their main usefulness is mathematical, as a 
be uniquely defined continuous solution of the inverse problem; cf. sec. 7.3 . 
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