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FIGURE 7.2: The pot ntials Vp , VlI and Vp ; negative arguments are for the sym­
metry of the figure only (negativ rare WitllOut geometrie meaning!) 

is eontinuous anc! diIrCl'Clltiable evcrywhel'c, but H is not an ann.lytie function in R3 

beeause it is rcprescnted by two different n.nalytie funetions: by (7- 19) for r ~ 1 n.nd 
by (7 17) for r > 1; both flluctions are welded smoothly together at r = 1, so that 
tipi!' combim\li n forms the ci e bcll-shaped eurve for VH in Fig. 7.2. On the other 
hand, Vs has 11. discontinllous deriVl\.tive o.t S (,. = 1), wluch shows that it eannot be 
the potential of !\ volume distributi n. At aily rate, VH and Vs "bridge", in different 
ways, the singlllarity of Vp at th origin r = O. 

1.4 A "General" Solution 

H is weLl kn wn that the gene.rlll soluti 11 oI 1\1\ inhomoge.neolls linear equation is 
oblained a.' the stlm 01 onc paI·ticlIlal· Jolution of the inhomogelleotlJ equatioll alld 
fhe gencl'IIl .• 011,fio71 01 the cOI"'c.'polldillg homogeneo'IH equation. In our ease, the 
particnll\f solution is provided by the harmonic density described in the preceding 
seeti n. Thc gcnerlll solution of the h mogeneous equation (7- 7) (homogeneous meal1S 
zero right hn.nd side) is tlle set of zer -potelltilll d nsities forming the kernel of the 
Newt nilm perator N. 

ThllS we find the g uerlll soluti n of the gravitationlll inverse problem by deter-
11Iinillg the llniquely denned llllJ:1l1 nie density that c rresponds to the given extern al 
potentinJ, and adding aIlY zer -potentilll density determined by the continua.tion me­
thad described in sec . 7.2; f. Illso Fig. 7.l. 

Wt" may als pr eed directly in the foUowing way. We take the given harmo-
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nic function V outside Sand continue it into the interior of S in such a way that 
V (including its continuation) is continuous and continuously differentiable throug­
hout R3 and that ßV is piecewise continuous inside S. This is illustrated, for one 

dimension, in Fig. 7.3. 
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FIGURE 7.3: Two possible functions V in one dimension 

There is no doubt, however, that although we continue the external V in the way 
described (VI or V2 in Fig. 7.3), not only the external potential, but also the maaa 
M and other "Stokea conatanü" (e.g., the spherical-harmonic coefficients) remain the 
aame, because they are fu1ly determined by the external potential (outside any sphere 
enclosing the body, cf. sec. 7.7.5). This is also expressed by the fact, mentioned in 
sec. 7.2, that the total mass of any zero-potential density is zero. 

This is easy to understand in principle, but it is difficult to really compute or 
"construct" an smooth continuation in the way described. Therefore we have put the 
word "general" in the title of this section between quotation marks. 

A constructive method can be obtained by superimposing the uniquely def1ned 
harmonic density PH and any zero-potential density Po according to Lauricella's in­
tegral (7-9); there follows the theorem, also due to Lauricella: the Laplacian 01 the 
denaity 01 a body producing a given e:cternal potential can be arbitrarily aaJigned, cf. 
sec. 7.7.3. 

A general solution without smoothness assumptions can probably be found by the 
methods of modern potential theory, as a linear combination of "extremal measures" , 
cf. (Anger; 1981, 1990), which make essential use of surface distributions Vs and point 
masses Vp . However, this approach is mathematically very difficult, and solutions 
have been found so far for the simplest cases only. 

We shall, therefore, try in sec. 7.6 a rather general and entirely elementary ap­
proach. It is limited to the sphere, but this anyway is the most interesting case for 
global geodesy and geophysics. 
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