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FIGURE 7.2: The potentials Vp, Vg and Vp; negative arguments are for the sym-
metry of the figure only (negative r are without geometric meaning!)

is continuous and differentiable everywhere, but it is not an analytic function in R®
because it is represented by two different analytic functions: by (7-19) for » < 1 and
by (7-17) for » > 1; both functions are welded smoothly together at » = 1, so that
their combination forms the nice bell-shaped curve for Vg in Fig. 7.2. On the other
hand, Vg has a discontinuous derivative at S (» = 1), which shows that it cannot be
the potential of a volume distribution. At any rate, Vg and Vs “bridge”, in different
ways, the singularity of Vp at the origin » = 0.

7.4 A “General” Solution

It is well known that the general solution of an inhomogeneous linear equation is
obtained as the sum of one particular solution of the inhomogeneous equation and
the general solution of the corresponding homogeneous equation. In our case, the
particular solution is provided by the harmonic density described in the preceding
section. The general solution of the homogeneous equation (7-7) (homogeneous means
zero right-hand side) is the set of zero-potential densities forming the kernel of the
Newtonian operator N.

Thus we find the general solution of the gravitational inverse problem by deter-
mining the uniquely defined harmonic density that corresponds to the given external
potential, and adding any zero-potential density determined by the continuation me-
thod described in sec. 7.2; cf. also Fig. 7.1.

We may also proceed directly in the following way. We take the given harmo-
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nic function V outside S and continue it into the interior of S in such a way that
V (including its continuation) is continuous and continuously differentiable throug-
hout R® and that AV is piecewise continuous inside S. This is illustrated, for one
dimension, in Fig. 7.3.
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FIGURE 7.3: Two possible functions V' in one dimension

There is no doubt, however, that although we continue the external V in the way
described (V; or V; in Fig. 7.3), not only the external potential, but also the mass
M and other “Stokes constants” (e.g., the spherical-harmonic coefficients) remain the
same, because they are fully determined by the external potential (outside any sphere
enclosing the body, cf. sec. 7.7.5). This is also expressed by the fact, mentioned in
sec. 7.2, that the total mass of any zero-potential density is zero.

This is easy to understand in principle, but it is difficult to really compute or
“construct” an smooth continuation in the way described. Therefore we have put the
word “general” in the title of this section between quotation marks.

A constructive method can be obtained by superimposing the uniquely defined
harmonic density py and any zero-potential density p, according to Lauricella’s in-
tegral (7-9); there follows the theorem, also due to Lauricella: the Laplacian of the
density of a body producing a given ezternal potential can be arbitrarily assigned, cf.
gec. 7.7.3.

A general solution without smoothness assumptions can probably be found by the
methods of modern potential theory, as a linear combination of “extremal measures”,
cf. (Anger; 1981, 1990), which make essential use of surface distributions Vs and point
masses Vp. However, this approach is mathematically very difficult, and solutions
have been found so far for the simplest cases only.

We shall, therefore, try in sec. 7.6 a rather general and entirely elementary ap-

proach. It is limited to the sphere, but this anyway is the most interesting case for
global geodesy and geophysics.
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