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7.3 Unique Solutions

Harmonic densities. Take a general exterior potential V' (i.e., AV = 0 outside S),
then there is a unique continuous density distribution pg producing V outside S and

being harmonic inside S:
Apg =0 insideS . (7-10)

(Obviously, pg must be smooth in the sense mentioned in the beginning: twice diffe-
rentiable in the present case.) Substituting (7-4) we get

A’V = A(AV) =0 (7-11)

i.e., V must satisfy the btharmonic equation, which also occurs in elasticity theory;
cf. sec. 8.1.3. Under certain natural mathematical conditions, the solution of the
biharmonic equation exists and is unique, so that the same holds for pg. This is a
theorem of Lauricella; see sec. 7.7.3. The harmonic density thus provides a uniquely
defined inverse of the Newtonian operator, symbolically

pa = Ng'V . (7-12)

The function p = pg minimizes the integral
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(sec. 7.7.5). This integral obviously defines a “norm in the space of square-integrable
functions” (L,-norm), being the continuous analogue to the vector norm (3 z2)'/.
Other norms are also possible: this is the “problem of choice of norm” (Sanso et
al., 1986; Hein et al., 1988). We shall not pursue this question here, because we
shall concentrate on the set of possible solutions (secs. 7.6 and 7.7) rather than on
singling out special solutions. We should, however, mention some rather sophisticated
approaches and results: (Matyska, 1987; Remmer, 1986a, b; Rubincam, 1982; Sanso,
1980; Sansd and Tscherning, 1989; Skorvanek, 1981; Tscherning, 1974; Tscherning
and Strykowski, 1987; and Tscherning and Siinkel, 1981).

Surface densities. Assume the masses concentrated entirely on the surface S, as
a layer of surface density p, the inside and outside of S being entirely empty. Then,
instead of (7-1), we have

V(P) = G//%?dsq ; (7-13)
S

the notations are obvious; Q now is a point on the surface S. Then V is harmonic
inside and outside S; it is continuous on S but on S has discontinuities of the derivative
0V /0n along the surface normal, so that
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(cf. Kellogg, 1929, p. 164; Heiskanen and Moritz, 1967, p. 6).

Knowing V outside and on S, we can find that harmonic function inside S which
coincides with the given V on S, by solving Dirichlet’s problem for the interior of S.
Then 8V /8n are known both inside and outside S, as well as their limits (8V/8n); if
we approach S from the inside and correspondingly (8V/8n). as we approach S from
the outside. Now (7-14) gives the surface density p, which is thus uniquely defined.

In this way we have found another unique solution of our gravitational inverse
problem, symbolically

p= NGV (7-15)
The winner is unique, but the competition is not quite fair since a surface density p
is not a continuous volume density p (although it may be considered the limit of the
volume density of a shell of finite thickness h and finite density p, with A — 0 and
hp — ).

At any rate, surface densities play a very important role in potential theory. We
may say that the surface layer potential Vs represents that unique solution N~ which
satisfies

AVs =0 inside S (7-16)

(compare to (7-10)!) and which coincides with the given V on S. By Dirichlet’s
principle (Kellogg, 1929, p. 279), Vs minimizes the potential energy (which is another
norm, theoretically fundamental but of little relevance for a realistic terrestrial mass
distribution; cf. also sec. 5.12.1).

Ezample of the sphere. For a homogeneous sphere, the external potential is given
by the same expression as that of a mass point:

it Sl (7-17)

=
where r = /2% + y? + 22. If S is the unit sphere 7 = 1, then the harmonic density is
M  mass

" 4r/3  volume

PH = const. inside S (7-18)

representing a homogeneous sphere of radius 1 whose internal potential, by (2-43), is

1
VH = 21|'GpH (1 = '3'7‘3) . (7—19)

It is trivial that Apg = 0 by (7-18). (For the level ellipsoid, the problem of finding
the harmonic density is not at all trivial!) On the other hand, the surface density is

M mass

== = const. S
# 4w  surface 54

3 (7_20)
so that, by (2-34),

Vs = GM = const. inside S . (7-21)
Fig. 7.2 shows Vg and Vs, as well as Vp, the potential of a mass point. Note that Vg
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FIGURE 7.2: The potentials Vp, Vg and Vp; negative arguments are for the sym-
metry of the figure only (negative r are without geometric meaning!)

is continuous and differentiable everywhere, but it is not an analytic function in R®
because it is represented by two different analytic functions: by (7-19) for » < 1 and
by (7-17) for » > 1; both functions are welded smoothly together at » = 1, so that
their combination forms the nice bell-shaped curve for Vg in Fig. 7.2. On the other
hand, Vg has a discontinuous derivative at S (» = 1), which shows that it cannot be
the potential of a volume distribution. At any rate, Vg and Vs “bridge”, in different
ways, the singularity of Vp at the origin » = 0.

7.4 A “General” Solution

It is well known that the general solution of an inhomogeneous linear equation is
obtained as the sum of one particular solution of the inhomogeneous equation and
the general solution of the corresponding homogeneous equation. In our case, the
particular solution is provided by the harmonic density described in the preceding
section. The general solution of the homogeneous equation (7-7) (homogeneous means
zero right-hand side) is the set of zero-potential densities forming the kernel of the
Newtonian operator N.

Thus we find the general solution of the gravitational inverse problem by deter-
mining the uniquely defined harmonic density that corresponds to the given external
potential, and adding any zero-potential density determined by the continuation me-
thod described in sec. 7.2; cf. also Fig. 7.1.

We may also proceed directly in the following way. We take the given harmo-
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