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For equilibrium figures, the surfaces S, and S, are identical. In the case of ellip-
soidal mass distributions, they will be slightly different, and we shall now determine
their deviation (. The idea is the same as that used in determining the height N of
the geoid above the reference ellipsoid (cf. Heiskanen and Moritz, 1967, p. 84).

At P we have Wp = Wy, so that at @

ow

Here 8/0n denotes the derivative along the normal n to the equidensity surface S;
(Fig. 6.1), which can practically be identified with the plumb line; hence —8W/0n = g
is gravity inside the earth, for which the spherical approximation (2-62) is sufficient.
On the other hand, since @ lies on the surface p = p;, we can apply (6-23) to get

Wo(B1) + Wy(B1)Pa(cos 8)
W1 S W4(ﬂ1)P4(COS 0) (6—'33)
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in view of (6-31). By comparing the right-hand sides of (6-32) and (6-33) we see
that i
= §W4(ﬂ)P4(cos 0) (6-34)

(since B; may be replaced by a general 3) is the desired result for the height of 5
above S;. The reader will recognize the analogy of this result with the standard Bruns
formula (1-25).

6.4 The Deviation «

The deviation & = () for any second-order spheroid must satisfy the integral con-
dition (6-15), where P; is given by (4-56) with g = 1:

firmai

dﬂ

For the value k; = k(1) be have the boundary condition (6-16):

(k87)dB = -g T80 (6-35)
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—gfz f ——"»1—-74 . (6‘36)
For the level ellipsoid there is k; = 0, whence
_éfz_,_gfm:.]f' . (6-37)
5 i
The difference of the last two equations gives
32

J4 e J4E — ‘3_5‘51 . (6-38)
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Now, for the Geodetic Reference System 1980 (cf. Moritz, 1984) we have

JE = —0.00000237 . (6-39)
For hydrostatic equilibrium, we take Bullard’s value

ki = 0.00000068 (6-40)

whence (6-38) gives
JE = —0.00000299 . (6-41)

For the actual earth we have from satellite observations
J? = —0.00000162 (6-42)

(TAG, 1980, p. 379). Hence, from (6-38),

35
W=y (6-43)

since for the ellipsoid
fogl =0 (6-44)

and f2 and fm are the same in all three cases: ellipsoid, equilibrium spheroid, and
real earth regarded as a spheroid. From (6-39), (6-42), and (6-43) we compute

k3 = —0.000 00082 (6-45)

for the real earth spheroid (defined by (6-13) with the observed values J; and J¥).

Let us now turn to the functions kg(8), £r(B), and ks(B), which represent the
deviation « inside the body in our three cases. From (6-35) we immediately get the
conditions

i d 105
0/ 535 (e —rm)e’)dp = —2(E-TF) (6-46)
1
d
[ 535 lixs = s ap = ~ IS (6-47)

Fitting a simple polynomial to the result of Bullard (1948) as shown in Fig. 4.5,
we find an approximate smoothed representation of kg(8):

kg = 0.000 00047 3% + 0.000 00021 B* . (6-48)

Let us try a polynomial approximation also for kg and rg:

K — kg = haB® + hyf* (6-49)
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ho must be zero, otherwise Q) as defined by (4-56) would not converge as f — 0.
Letting # = 1 in (6—49) immediately gives the boundary condition

by + hy = 6 — &7 . (6-50)

The integrals (6—46) and (6—47) may easily be evaluated if we use a polynomial
representation also for the density p and hence for § = p/p,,. Dividing Bullard’s
polynomial (1-109) by p,, we thus find the expression

§=1221-3.036% +1.4245* , (6-51)

which contains only dimensionless quantities.
Using all these polynomials, the integrals (6-46) and (6-47) can be evaluated, &

denoting kg or kg:

(IC — NH)/B’, = hz ﬂa =+ h4ﬂu )
5% [(5— k)87] = ha(19.89 8° — 27.27 ' + 12.78 5'2) +

4+ he(24.31 8" — 33.33 8% + 15.628")

1
d
/ 53 [(x —k&)87)dB = 0.7140h, +0.6875h, . (6-52)
0
With (6-46) and (6-50) this gives for kp:
0.7140R¥ + 0.6875hF = —0.00000203 ,
B ot RE = —0.00000068 ,

and similarly for xg:

0.7140h; + 0.6875h5 —0.000 00450

hy + hi = —0.00000150 |,
with the solutions
kg —kg = —0.00005908% 4 0.00005833* .
ks —kg = —0.00013094% + 0.00012945* <
We see that kg < kg, so that to an acceptable accuracy we may put
KE — KH =Kp (6-54)

and similarly for xgs.
When is k monotonic? There is a striking contrast between the behavior of

the function k(B) in the hydrostatic case (kg) and in the case of the real earth
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spheroid (ks), based on a satellite-determined Jy, although the surface values (6-40)
and (6-45) have a similar magnitude (the sign is different!). In the first case, kg
decreases monotonically from the surface to the center; in the second case it first
increases considerably in absolute value, reaching a maximum, before it decreases to

zero at the center. For the ellipsoid , k also behaves in a way similar to the second
case.

Since a monotonic behavior may appear somewhat more “natural”, the question
arises as to when the function x can be monotonic.

Any of the two equations (6-46) and (6-47) yields

¥ d 105 105
o/ L (xB7)dB = / g dﬂ(ngﬂ")dﬂ e, (6-55)

and on substituting (6-38)

[ 535 (w878 — 3w = [ 6 eV + 2 IF 3B (6-56)

The right-hand side is given by (6-39), (6-41), (6-48), and (6-51) and can easily be
evaluated, also considering (6-52). The result is

1
/ = (x87)dp — 3k, = —0.000 00155 . (6-57)
0

Using again a polynomial representation

w=k B+ k", (6-58)
we thus get in view of (6-52)

—2.2860 k; — 2.3125 k4 = —0.000 00155
or
k, + 1.0116 k4 = 0.000 00068
Since by (6-58)
batka=1r ,

we get

ks = 86(0.000 00068 — k) . (6-59)
Thus we see that k4 will be very large in absolute value as compared to k;, ezcept in

the case that k, is very close to the hydrostatic value (6-40).
Now what does this mean? If k4 > &, then, by (6-58)

kz =3 I k4 = —k| . (6"‘60)
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A polynomial
kaf? + ka3
has an extremum at
ks 1/2
SN .. § 6-6
=(-22) (6-61)

so that in the case of (6-60), x will have an extremum around 1/+/2 = 0.7, that is,
between 0 and 1, so that it cannot be monotonic. Even if k; deviates from k¥ only
by 1078,

k1 = 0.000 00067 ,

the function (/) is readily seen to be no longer monotonic.

In this way we see that a monotonic behavior of x is possible only for mass confi-
gurations which are extremely close to equilibrium configurations. As (6-53) shows,
this is not the case for the equipotential ellipsoid, and for the real earth the situation
is even “worse” by a factor of more than two! This serves as another confirmation of
the validity of Ledersteger’s theorem (sec. 4.2.4) for the case of the earth.

6.5 Numerical Results and Conclusions

Using the polynomial representations of sec. 6.4 we can evaluate the ellipsoidal poten-
tial anomaly Wy(8) by (6-27) and gravity g(f3) inside the ellipsoid by (2-62). Then
Bruns’ theorem (6-34) gives the separation ( = WyPy(cosf)/g between correspon-
ding surfaces of equal potential and of equal density. The result, by (Moritz, 1973,
pp. 44-45), with our present numerical values, is

W, = p*(627 — 10723 + 5854 — 140 8°) x 10m?’s~* , (6-62)
g = B(21.7-17.968%+6.08*)ms™* . (6-63)

The values of Table 6.1 have been computed from these expressions.

We see that the maximum separation between surfaces of constant potential and
corresponding surfaces of constant density is almost 60 m, occurring on a depth of
about 1400 km. This is on the order of the geoidal heights, which is not unplausible.
It is not to be expected that a more realistic earth model and an expression for s that
is more sophisticated than (6-49) will give significantly different values. The values
of ¢ for the real earth are even larger by a factor of more than 2, as (6-53) shows!

By methods described in (Jeffreys, 1976, Chapter VI) or (Moritz, 1973, pp. 35-40)
we may also compute corresponding stress differences. They are on the order of
2.107 dyn/cm?, which is considerably less than the stress differences that may occur
in the actual earth (Jeffreys, 1976, p. 270; we are using the old cgs unit here in order
to facilitate the comparison).

Summarizing we may say (Marussi et al.,, 1974): To find an earth model consi-
stent with an equipotential ellipsoid such as represented by the Geodetic Reference
System 1980, the following procedure may be used. From the given value of the
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