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For equilibrium figures, the surfaces SI and S2 are identical. In the case of ellip­
soidal mass distributions, they will be slightly different, and we shall now determine 
their deviation (. The idea is the same as that used in determining the height N of 
the geoid above the reference ellipsoid (cf. Heiskanen and Moritz, 1967, p. 84). 

At P we have Wp = Wl , so that at Q 

(6-32) 

Here 8/ 8n denotes the derivative along the normal n to the equidensity surface SI 
(Fig. 6.1), which can practically be identified with the plumb line; hence -8W /8n = 9 
is gravity inside the earth, for which the spherical approximation (2-62) is sufficient. 
On the other hand, since Q lies on the surface P = PI> we can apply (6-23) to get 

WO(ßl) + W4(ßl)P4( cos 0) 

W j + W4(ßl)P4( cos 0) (6-33) 

in view of (6-31). By comparing the right-hand sides of (6-32) and (6-33) we see 
that 

(6-34) 

(since ßl may be replaced by a general ß) is the desired result for the height of S~ 
above SI. The reader will recognize the analogy of this result with the standard Bruns 
formula (1-25). 

6.4 The Deviation K, 

The deviation", = "'(ß) for any second-order spheroid must satisfy the integral con­
dition (6-15), where PI is given by (4-56) with ß = 1: 

(6-35) 

For the value "'1 = 11:(1) be have the boundary condition (6-16): 

4 2 4 32 
- 5 I +;:; Im - 35 "'1 = J4 (6-36) 

For the level ellipsoid there is "'1 = 0, whence 

4 2 4 E - 5 I +;:; Im = J4 
(6-37) 

The difference of the last two equations gives 

(6-38) 
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Now, for the Geodetic Reference System 1980 (cf. Moritz, 1984) we have 

Jf = -0.00000237 . 

For hydrostatic equilibrium, we take Bullard's value 

K,~ = 0.00000068 , 

whence (6-38) gives 
Jf = -0.00000299 . 

For the actual earth we have from satellite observations 

Jt = -0.00000162 

(lAG, 1980, p. 379). Hence, from (6-38), 

s __ 35 (Js _ JE) 
11:1 - 32 4 4 

since for the ellipsoid 
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(6-39) 

(6-40) 

(6-41 ) 

(6-42) 

(6-43) 

(6-44) 

and p and Im are the same in all three cases: ellipsoid, equilibrium spheroid, and 
real earth regarded as a spheroid. From (6-39), (6-42), and (6-43) we compute 

K,i = -0.00000082 (6-45) 

for the real earth spheroid (defined by (6-13) with the observed values J2 and Ji) . 
Let us now turn to the functions K,E(ß), K,H(ß), and K,s(ß), which represent the 

deviation K, inside the body in our three cases. From (6-35) we immediately get the 
conditions 

_ 105 (JE _ JH) 
32 4 4 

(6-46) 

(6-47) 

Fitting a simple polynomial to the result of Bullard (1948) as shown in Fig. 4.5, 
We find an approximate smoothed representation of K,H(ß): 

II:H = 0.00000047 ß2 + 0.000 00021 ~ (6-48) 

Let us try a polynomial approximation also for II:E and K,s: 

(6-49) 
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ho must be zero, otherwise Q as defined by (4-56) would not eonverge as ß -+ O. 
Letting ß = 1 in (6-49) immediately gives the boundary eondition 

(6-50) 

The integrals (6-46) and (6-47) mayeasily be evaluated if we use a polynomial 
representation also for the density P and henee for 6 = pi Pm' Dividing Bullard's 
polynomial (1-109) by Pm we thus find the expression 

6 = 2.21 - 3.03 ß2 + 1.42 ß4 (6-51) 

whieh eontains only dimensionless quantities. 
Using all these polynomials, the integrals (6-46) and (6-47) ean be evaluated, K. 

denoting ""E or ""5: 

("" - ""H )ß7 h2ß9 + h4 ßll 

6 d~ [(K. - ""H)ß7] h2(19.89ß8 
- 27.27 ßIO + 12.78ß12) + 

+ h4(24.31 ßIO - 33.33 ß12 + 15.62 ß14) , 

0.7140 h2 + 0.6875 h4 

With (6-46) and (6-50) this gives for ""E: 

0.7140 hf + 0.6875 hf 

hf + 

and similarly for "'5: 

0.7140 hf + 0.6875 h: 
hf + 

with the solutions 

-0.00000203 

-0.00000068 

-0.00000450 

-0.00000150 

-0.000 0590ß2 + 0.000 0583 ~ 

-0.000 1309ß2 + 0.000 1294~ 

We see that "'H ~ "'E, so that to an aeeeptable aeeuraey we may put 

and similarly for "'5 . 

(6-52) 

(6-53) 

(6-54) 

When i3 '" monotonie r There is a striking eontrast between the behavior of 
the function "'(ß) in the hydrostatie ease ("'H) and in the ease of the real earth 
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spheroid (K,s), based on a satellite-determined J4, although the surface values (6-40) 
and (6-45) have a similar magnitude (the sign is different!). In the first case, K,H 

decreases monotonically from the surface to the center; in the second case it first 
increases considerably in absolute value, reaching a maximum, before it decreases to 
zero at the center. For the ellipsoid, K, also behaves in a way similar to the second 
case. 

Since a monotonie behavior may appear somewhat more "natural", the question 
arises as to when the function K, can be monotonie. 

Any of the two equations (6-46) and (6-47) yields 

1 1 

J öl:... (K,ß7)dß = J öl:... (K, ß7)dß 105 JH _ 105 J 
dß dß H + 32 4 32 4 

o 0 

(6-55) 

(6-56) 

The right-hand side is given by (6-39), (6-41), (6-48), and (6-51) and can easily be 
evaluated, also considering (6-52). The result is 

1 d J ö dß (K,ß7)dß - 3K,l = -0.00000155 
o 

(6-57) 

Using again a polynomial representation 

(6-58) 

we thus get in view of (6-52) 

-2.2860 k:z - 2.3125 k4 = -0.00000155 

or 

k 2 + 1.0116 k4 = 0.00000068 

Since by (6-58) 

we get 

(6- 59) 

Thus we see that k4 will be very large in absolute value as compared to K,l, ezcept in 
the caJe that "'1 iJ very cloJe to the hydroJtatic value (6-40). 

Now what does this mean? If k4 ~ K,l, then, by (6-58) 

(6- 60) 
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A polynomial 

has an extremum at 
_ ( k2 ) 1/2 ß- --

2k4 

(6-61) 

so that in the ease of (6-60), K. will have an extremum around 1/v'2 == 0.7, that is, 
between 0 and I, so that it eannot be monotonie. Even Ü K.1 deviates !rom K.f only 
by 10-8 , 

K.l = 0.00000067 

the function K.(ß) is readily seen to be no longer monotonie. 
In this way we see that a monotonie behavior of K. is possible only for mass confi­

gurations whieh are extremely elose to equilibrium eonfigurations. As (6-53) shows, 
this is not the ease for the equipotential ellipsoid, and for the real earth the situation 
is even "worse" by a factor of more than two! This serves as another eonfirmation of 
the validity of Ledersteger's theorem (sec. 4.2.4) for the ease of the earth. 

6.5 Nurnerical Results and Conclusions 

Using the polynomial representations of sec. 6.4 we ean evaluate the ellipsoidal poten­
tial anomaly W 4 (ß) by (6-27) and gravity g(ß) inside the ellipsoid by (2-62). Then 
Bruns' theorem (6-34) gives the separation ( = W4 P4(eosO)/g between eorrespon­
ding surfaees of equal potential and of equal density. The result, by (Moritz, 1973, 
pp. 44-45), with our present numerieal values, is 

ß4(627 -1072ß2 + 58~ß4 -140ß6) x 10m2s-2 

ß(21. 7 - 17.9 ß2 + 6.0 ß4) ms-2 

The values of Table 6.1 have been eomputed !rom these expressions. 

(6-62) 

(6-63) 

We see that the maximum separation between surfaees of eonstant potential and 
eorresponding surfaees of eonstant density is almost 60 m, oeeurring on a depth of 
about 1400 km. This is on the order of the geoid al heights, whieh is not unplausible. 
It is not to be expected that a more realistie earth ~odel and an expression for K. that 
is more sophistieated than (6-49) will give signifieantly different values. The values 
of ( for the real earth are even larger by a faetor of more than 2, as (6-53) shows! 

By methods deseribed in (Jeffreys, 1976, Chapter VI) or (Moritz, 1973, pp. 35-40) 
we may also eompute eorresponding stress differenees. They are on the order of 
2.107 dyn/em2

, whieh is eonsiderably less than the stress differenees that may oeeur 
in the aetual earth (Jeffreys, 1976, p. 270; we are using the old egs unit here in order 
to facilitate the eomparison). 

Summarizing we may say (Marussi et al. , 1974): To find an earth model eonsi­
stent with an equipotential ellipsoid such as represented by the Geodetie Reference 
System 1980, the following proeedure may be used. From the given value of the 
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