This expression is directly comparable to (4-58), written for a point outside the ellipsoid for which

$$
\int_{\beta}^{1}=\int_{1}^{1}=0
$$

so that E, T, and Q vanish, and $D=D(1)=1$ as above:

$$
\begin{equation*}
V=\frac{G M}{r}\left[1-\frac{2}{5} \frac{R^{2}}{r^{2}} S_{1} P_{2}(\cos \theta)+\frac{12}{35} \frac{R^{4}}{r^{4}} P_{1} P_{4}(\cos \theta)\right] . \tag{6-14}
\end{equation*}
$$

Here we have introduced $G M / r$ in a similar way as in (6-1) and expressed r in metric units, which explains the occurrence of R to make dimensions right. Comparing the coefficients of $P_{4}(\cos \theta)$ in $(6-13)$ and $(6-14)$ thus yields

$$
-\frac{a^{4}}{r^{4}} J_{4}=\frac{12}{35} \frac{R^{4}}{r^{4}} P_{1}
$$

or

$$
P_{1}=-\frac{35}{12}\left(\frac{a}{R}\right)^{4} J_{4} .
$$

Since $J_{4}=O\left(f^{2}\right)$, we may put $(a / R)^{4}=1$ without losing accuracy, obtaining

$$
\begin{equation*}
P_{1}=-\frac{35}{12} J_{4} . \tag{6-15}
\end{equation*}
$$

By means of (6-12) and (6-15) we are thus able to express J_{4} as follows:

$$
\begin{equation*}
J_{4}=-\frac{4}{5} f^{2}+\frac{4}{7} f m-\frac{32}{35} \kappa_{1} . \tag{6-16}
\end{equation*}
$$

This fundamental equation links the spherical-harmonic coefficient J_{4} with the geometric parameters f and κ_{1} and with m. A useful check is provided by the fact that for the ellipsoid with $\kappa_{1}=0,(6-16)$ reduces to eq. (2-119) of (Heiskanen and Moritz, 1967).

In fact, for the level ellipsoid, $\kappa_{1}=0$ by (6-6), but we have retained $\kappa_{1} \neq 0$ because we shall consider, besides the level ellipsoid, also the case of the real earth.

6.2 Level Ellipsoid and Equilibrium Figures

As we have remarked, the basic spheroidal equations such as $(6-1),(6-3)$, or ($6-16$) hold for the level ellipsoid (and the real earth) as well as for equilibrium figures, since they have been derived without presupposing hydrostatic equilibrium.

Now there comes a surprise: it is possible to find two corresponding mass distributions, one for equilibrium and the other for the level ellipsoid, for which the values of the ellipticity ($4-48$),

$$
\begin{equation*}
e=f-\frac{5}{42} f^{2}+\frac{4}{7} \kappa \tag{6-17}
\end{equation*}
$$

are equal for each β. This is possible because the coefficients $A_{0}(\beta)$ and $A_{2}(\beta)$ in $(6-1)$, as given by (4-63) and (4-64), do not depend on the deviation κ, provided they are expressed in terms of e instead of f; compare also (4-56) and (4-59)! This is an essential advantage of describing the elliptical shape of the internal surfaces of constant density by the "artificial" parameter (6-17) instead of the flattening f itself.

In other terms, we may take

$$
\begin{gather*}
A_{0}^{E}(\beta) \equiv A_{0}^{H}(\beta) \tag{6-18}\\
A_{2}^{E}(\beta) \equiv A_{2}^{H}(\beta) \tag{6-19}
\end{gather*}
$$

the superscript E denoting the ellipsoid. Of course, A_{4}^{E} will be different from $A_{4}^{H}=0$, and ($6-19$) vanishes because of the equilibrium conditions (4-69).

Thus using now subscripts to denote the ellipsoidal and the hydrostatic cases,

$$
\begin{equation*}
e_{E}(\beta)=e_{H}(\beta) \tag{6-20}
\end{equation*}
$$

but since

$$
\begin{equation*}
\kappa_{E} \neq \kappa_{H} \tag{6-21}
\end{equation*}
$$

also

$$
\begin{equation*}
f_{E} \neq f_{H} \tag{6-22}
\end{equation*}
$$

except in second-order terms.
Thus we have (Moritz, 1973, p. 31) the
Theorem
To each mass distribution in hydrostatic equilibrium there corresponds a mass distribution for the equipotential ellipsoid in such a way that the density ρ is the same function of β and. that the values of the ellipticity e are the same for any two surfaces corresponding to the same value of β.

In the sequel we shall always assume that $e=e_{E}$ is selected in this way. We then obtain an ellipsoidal mass configuration which deviates very little from an equilibrium configuration.

We shall also omit the index E for ellipsoidal quantities.
On this assumption, (6-19) vanishes as we have seen, and (6-1) reduces to

$$
\begin{equation*}
W(\beta, \theta)=W_{0}(\beta)+W_{4}(\beta) P_{4}(\cos \theta) \tag{6-23}
\end{equation*}
$$

where, by (4-63) and (4-68) with $A_{2}=0$:

$$
\begin{align*}
W_{0}(\beta) & =\frac{G M}{R} \beta^{2}\left[D\left(1+\frac{1}{3} \mu+\frac{4}{45} e^{2}+\frac{4}{45} e \mu\right)+\frac{3}{2} E-\right. \\
& \left.-\frac{4}{25} e S+\frac{8}{75} e T\right], \tag{6-24}\\
W_{4}(\beta) & =\frac{G M}{R} \beta^{2} \cdot \frac{8}{35}\left[\left(\frac{3}{2} e^{2}-4 \kappa\right) D-3 e S+\frac{3}{2} P+\frac{4}{3} Q\right] \tag{6-25}
\end{align*}
$$

A further simplification of W_{4} is obtained by subtracting the hydrostatic value

$$
\begin{equation*}
W_{4}^{H}(\beta)=\frac{G M}{R} \beta^{2} \cdot \frac{8}{35}\left[\left(\frac{3}{2} e^{2}-4 \kappa_{H}\right) D-3 e S+\frac{3}{2} P_{H}+\frac{4}{3} Q_{H}\right] \equiv 0, \tag{6-26}
\end{equation*}
$$

noting that D and S are equal in both cases. Thus we get

$$
\begin{equation*}
W_{4}(\beta)=\frac{G M}{R} \beta^{2} \cdot \frac{32}{105}\left[-3\left(\kappa-\kappa_{H}\right) D+\frac{9}{8}\left(P-P_{H}\right)+\left(Q-Q_{H}\right)\right], \tag{6-27}
\end{equation*}
$$

where, by (4-56),

$$
\begin{align*}
\frac{9}{8}\left(P-P_{H}\right) & =\beta^{-7} \int_{0}^{\beta} \delta \frac{d}{d \beta}\left[\left(\kappa-\kappa_{H}\right) \beta^{7}\right] d \beta \tag{6-28}\\
Q-Q_{H} & =\beta^{2} \int_{\beta}^{1} \delta \frac{d}{d \beta}\left[\left(\kappa-\kappa_{H}\right) \beta^{-2}\right] d \beta \tag{6-29}
\end{align*}
$$

6.3 Equipotential Surfaces and Surfaces of Constant Density

Denote a surface of constant density, $\rho=\rho_{1}$, by S_{1} and a corresponding surface of constant potential, $W=W_{1}$, by S_{2}. Let the surface S_{1} be characterized by a value β_{1} such that

$$
\begin{equation*}
\rho\left(\beta_{1}\right)=\rho_{1} ; \tag{6-30}
\end{equation*}
$$

then the constant W_{1} will be determined by

$$
\begin{equation*}
W_{0}\left(\beta_{1}\right)=W_{1}, \tag{6-31}
\end{equation*}
$$

the function $W_{0}(\beta)$ being expressed by $(6-24)$. Thus a surface S_{2} is made to correspond to each surface S_{1} (Fig. 6.1).

FIGURE 6.1: A surface of constant density, S_{1}, and the corresponding surface of constant potential, S_{2}

