and (5-199) with (5-200), and with the density constant at the surface of the ellipsoid, generates a zero external potential.

These conditions may be used in many different ways. At any case, three parameters can be determined from them. Since $A(u)$ represents the given density law, the coefficients b_{0} and b_{2} are prescribed.

We may, for instance, specialize the polynomial (5-200) as

$$
\begin{equation*}
F(u)=a_{0}+a_{2} u^{2} \tag{5-220}
\end{equation*}
$$

and determine the coefficients a_{0} and a_{2} and the density constant ρ_{1}.
Or we may wish to prescribe the excentricity e_{0}^{\prime} of the surfaces of constant density at the center of the ellipsoids (considered known from hydrostatic theory, see below). Then a_{0}, being determined by ($5-216$), is to be considered as given, and we may take

$$
\begin{equation*}
F(u)=a_{0}+a_{2} u^{2}+a_{4} u^{4}, \tag{5-221}
\end{equation*}
$$

so that the constants a_{2}, a_{4}, and ρ_{1} are to be determined from (5-217). This possibility seems to be the best.

5.8.1 A Fourth-Degree Polynomial

We shall thus investigate polynomials of the form (5-221), so that

$$
\begin{equation*}
B(u)=\left(a_{0}+a_{2} u^{2}+a_{4} u^{4}\right) A(u) . \tag{5-222}
\end{equation*}
$$

Then the system ($5-217$) may be written

$$
\begin{align*}
a_{2}+a_{4} & =1+e^{\prime 2}-a_{0}, \\
b_{25} a_{2}+b_{45} a_{4}+c_{1} \rho_{1} & =h_{1}-b_{05} a_{0}, \tag{5-223}\\
b_{27} a_{2}+b_{47} a_{4}+c_{2} \rho_{1} & =h_{2}-b_{07} a_{0}
\end{align*}
$$

These are three equations for the three unkowns a_{2}, a_{4}, and ρ_{1}. The coefficient a_{0}, which is related to the flattening at the center of the ellipsoid by ($5-216$), is assumed to be known. It will, however, be desirable to vary it, corresponding to different assumptions as to the central flattening, so that we shall substitute

$$
\begin{equation*}
a_{0}=1+e_{0}^{\prime 2} \tag{5-224}
\end{equation*}
$$

into the above system, whence

$$
\begin{align*}
a_{2}+a_{4} & =e^{\prime 2}-e_{0}^{\prime 2} \\
b_{25} a_{2}+b_{45} a_{4}+c_{1} \rho_{1} & =h_{1}-b_{05}-b_{05} e_{0}^{\prime 2} \tag{5-225}\\
b_{27} a_{2}+b_{47} a_{4}+c_{2} \rho_{1} & =h_{2}-b_{07}-b_{07} e_{0}^{\prime 2}
\end{align*},
$$

The elimination of a_{4} by

$$
\begin{equation*}
a_{4}=-a_{2}+e^{\prime 2}-e_{0}^{\prime 2} \tag{5-226}
\end{equation*}
$$

reduces this system to

$$
\begin{align*}
& \left(b_{25}-b_{45}\right) a_{2}+c_{1} \rho_{1}=h_{1}-b_{05}-e^{\prime 2} b_{45}+\left(b_{45}-b_{05}\right) e_{0}^{\prime 2} \\
& \left(b_{27}-b_{47}\right) a_{2}+c_{2} \rho_{1}=h_{2}-b_{07}-e^{\prime 2} b_{47}+\left(b_{47}-b_{07}\right) e_{0}^{\prime 2} \tag{5-227}
\end{align*}
$$

Further investigations require numerical studies. We shall use Bullard's density law (1-109) (with R as unit):

$$
\begin{equation*}
\rho=12.19-16.71 r^{2}+7.82 r^{4} \tag{5-228}
\end{equation*}
$$

To identify coefficients, we note that with $B(u) \doteq A(u)$ eq. (5-184) becomes approximately

$$
\begin{equation*}
\bar{\rho} \doteq \rho_{1}-r^{2} A(u) \quad\left(r^{2}=x^{2}+y^{2}+z^{2}\right) \tag{5-229}
\end{equation*}
$$

so that, with (5-203) and $u \doteq r$,

$$
\begin{equation*}
\bar{\rho} \doteq \rho_{1}-b_{0} r^{2}-b_{2} r^{4} \tag{5-230}
\end{equation*}
$$

and, by (5-183),

$$
\begin{equation*}
\rho \doteq \rho_{0}+\rho_{1}-b_{0} r^{2}-b_{2} r^{4} \tag{5-231}
\end{equation*}
$$

This expression is directly comparable to (5-228). We shall thus throughout use the values

$$
\begin{align*}
& b_{0}=16.71 \tag{5-232}\\
& b_{2}=-7.82
\end{align*}
$$

assumed as exact.
All ellipsoidal constants will be taken from sec. 1.5 (Geodetic Reference System 1980).

We find

$$
\begin{array}{ll}
b_{05}=2.2411, & b_{07}=1.5290 \\
b_{25}=1.5273, & b_{27}=1.1531 \tag{5-233}\\
b_{45}=1.1519, & b_{47}=0.9231
\end{array}
$$

and

$$
\begin{array}{ll}
c_{1}=-1.0067, & h_{1}=-4.5148 \tag{5-234}\\
c_{2}=+0.0010, & h_{2}=+1.5506
\end{array}
$$

The system (5-227) may now be solved for a_{2} and ρ_{1}. Then ($5-226$) gives a_{4}, and (5-224) expresses a_{0}. The result is

$$
\begin{align*}
& a_{0}=1+e_{0}^{\prime 2} \\
& a_{2}=0.0387-2.63 e_{0}^{\prime 2} \tag{5-235}\\
& a_{4}=-0.0320+1.63 e_{0}^{\prime 2} \\
& \rho_{1}=6.7328+0.10 e_{0}^{\prime 2}
\end{align*}
$$

Thus the result depends on the central excentricity. E.g., assume an $e_{0}^{\prime 2}$ that corresponds to Bullen's (1975, p. 58 , correcting an obvious printing error) central flattening

$$
\begin{equation*}
f_{0}=0.00242 \quad(\doteq 1 / 413) \tag{5-236}
\end{equation*}
$$

which is in agreement with (Denis and Ibrahim, 1981, p. 189). Then

$$
\begin{equation*}
e_{0}^{\prime 2}=0.00486 \tag{5-237}
\end{equation*}
$$

For this we find

$$
\begin{align*}
& \rho_{1}=6.7332 \\
& a_{0}=1.0049, \tag{5-238}\\
& a_{2}=0.0259, \\
& a_{4}=-0.0241,
\end{align*}
$$

Other values of f_{0} such as $1 / 469$ (Bullard, 1954, p. 96) will slightly change these values.

At any rate, the values (5-238) show that $F(u)$ as given by $(5-221)$ is indeed close to unity.

5.9 Combined Density Models

According to the discussions of secs. 5.5 and 5.6 , the density $\rho(u, \theta)$ of a mass distribution for the equipotential ellipsoid has been represented as follows

$$
\begin{equation*}
\rho(u, \theta)=\rho_{0}+\bar{\rho}(u, \theta)+\Delta \rho(u, \theta) . \tag{5-239}
\end{equation*}
$$

The constant ρ_{0} is the constant density of the homogeneous Maclaurin ellipsoid that corresponds to the given equipotential ellipsoid, the function $\bar{\rho}(u, \theta)$ is the "zeropotential density" that introduces the desired heterogeneity without changing the external gravity field of the Maclaurin ellipsoid, and $\Delta \rho(u, \theta)$ is the "deviatoric density" that changes the external field of the Maclaurin ellipsoid to the prescribed field of the original equipotential ellipsoid without changing appreciably (that is, by more than about $0.028 \mathrm{~g} / \mathrm{cm}^{3}$) the density distribution.

To present an example of a density distribution that arises in this way, we use a function $\Delta \rho(u, \theta)$ according to (5-156) and (5-165), and a function $\bar{\rho}(u, \theta)$ according to (5-184), the functions $A(u)$ and $B(u)$ being given by (5-203) and (5-222). We thus have

$$
\begin{align*}
\rho(u, \theta) & =\rho_{0}+\rho_{1}-\left[b_{0}+b_{2}\left(\frac{u}{b}\right)^{2}\right]\left(x^{2}+y^{2}\right)- \\
& -\left[b_{0}+b_{2}\left(\frac{u}{b}\right)^{2}\right]\left[a_{0}+a_{2}\left(\frac{u}{b}\right)^{2}+a_{4}\left(\frac{u}{b}\right)^{4}\right] z^{2}+ \\
& +C\left(\frac{u}{b}\right)^{4}\left[1-\left(\frac{u}{b}\right)^{2}\right]\left(-1+\frac{u^{2}+E^{2}}{u^{2}+E^{2} \cos ^{2} \theta}\right) \tag{5-240}
\end{align*}
$$

The replacement of u by u / b in the polynomials representing $A(u)$ and $B(u)$ expresses the fact that we are no longer using b as a unit, but have returned to metric units.

