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One condition to be satisfied by the coefficients of the polynomial (5-181) is obtai-
ned by substituting this polynomial into (5-109) after multiplication by (u? + E?/3)
according to (5-112), and performing the integration:

(5+5) 4+ G+5) o+ GH)o=(G+3)m o e
where pg is the Maclaurin density (5-169). It is readily verified that the coefficients
of (5-180) satisfy this condition to two-place accuracy.

The disadvantage of a density law such as (5-178) is that the surfaces of constant
density are confocal ellipsoids, whose flattening becomes infinite as u — 0. To be sure,
the practical effect of this fact can be made small by selecting a suitable function g(u).
If we select g(u) = const. for 0 < u < uq and decreasing for u > ug, we shall not even
have any singularity at all as u — 0. Still the flattening of the surfaces of constant
density increases with depth, which is not desirable.

More “natural” distributions will obviously have to be somewhat more compli-
cated than (5-178). To keep the matter relatively simple and transparent, it will be
convenient to consider any heterogeneous mass distribution of the Maclaurin ellipsoid
as the superposition of

1. a homogeneous distribution of the usual Maclaurin density p,, which generates
the required external potential, and

2. a heterogeneous distribution p(u, §) whose external potential is zero.

The purpose of such a “zero-potential distribution” of density p(u, 8) is thus to provide
the desired heterogeneity without changing the external potential or the coefficients
AML and AML defined by the Maclaurin density po. In other words, a heterogeneous
distribution for the Maclaurin ellipsoid will be given by

pML(uv 0) =po+ ﬁ(ua 0) (5_183)
as the sum of the (homogeneous) Maclaurin density p, and a zero-potential density
p(u, 0).

The constant po being uniquely defined by (5-164), the following section will study
zero-potential density distributions. 1

5.7 Zero-Potential Densities

We shall thus determine density distributions inside the given ellipsoid that generate a
potential which is everywhere zero outside the ellipsoid. To obtain spheroidal (nearly
ellipsoidal) surfaces of equal density, we consider functions of the form

p(u, 8) = p; — (z® + y*)A(u) — 2*B(u) (5-184)

where p; is a constant and A and B are functions of u to be determined.
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With
z? 442 (u® + E?)sin?0
22 = ulcos?d

Il

by (5-1) and

2 1
cos’d = 3 Py(cosb) + 3

: 2 2
sind = - Py(cos 8) + :
this becomes
L 2 2, 1., 2.2, m 2 ,
B, 0) = p, = [g(u +EYA+3u B] 1 [g(u +ENA-Zu B] Py(cos 6)
(5-185)
Multiplying by
u? + E?cos?§ = (u2 + %E’) + g E?Py(cos §)

gives
(u, 0) (u* + E? cos? §) = So(u) + Sa(u)Py(cos ) + Sa(u) [Py(cos 0))*
where
2 2, 1.3\ 12, 2, s 1,
So(u) = (u + E p1— (u +—E) [—(u +E )A+§u B] :
2
Siw) = 2B - —E’(u +EYA - -E’ 2gy 2 (u2 + %E’) (u? + E*) 4 —
5 z('u, +—E2)B g
: 3
Sy, = 2 S B'(u + E*)A - gEzuzB

Finally we use the formula (4-37),

1 ¥
[Py(cos 8))* = E + v Py(cos 6) + £ Py(cos b)

to obtain the expression

)

A(u, 0) (u? + E? cos? 0) = Ro(u) + Ry(u)Py(cos 8) + Ry(u)Py(cos 6)

¢ (55186)
where

Ll

Ro(w) = Sufu) + £ Sy(u)

Ry(u) = Sy(u)+ %54("')

-
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that is,
Ro(u) = (u2 + 1E") p1+ (——u,'1 s —2—E4) A(u) +
3 3 5 15
1 1
- (_5 ut — E Ezuz) B(u) , (5-187)
Rl i +(2u‘+5E” —E‘)A(u)-}-
. g IR g T 21
2 4
+ (~§ 2 = Ezuz) B(u) (5-188)
Rulw) = % (B + B A(u) - B?B()] (5-189)
Comparing (5-186) with (5-86) we see that for the present case
aq(u) = 4rR,(u) ifin =024 &
=0 if n>4

Since for zero external potential all coefficients of the ellipsoidal harmonics must
vanish, equation (5-87) gives the conditions

/b R.(u)P, (z%) T N P W (5-190)
]

The three conditions (5-190) are, however, not independent. This is seen as
follows. With

u
R(g) =1

i) 3 Sy i 2)

v e st 1, 2 —191
E (’E) 2E2(. G e

35 6 3
2N S EDR (a0 e S 4)
“(’E) 8E (“+7E“+35E
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On adding these three equations we see that

.U .U .U
Ry(u)P, (15) + Ry(u)P, (zf) + Ra(u)Py (zE) =10/ (5-195)
Because of this linear relation, the three conditions (5-192) to (5-194) are in
fact not independent. Therefore, one of these three conditions is superfluous and
can be omitted. We omit the condition corresponding to n = 2 and retain those
corresponding to n = 0 and n = 4. Substituting

Gilu). = Bo)B, (z—) Riw)

E*Ry(w)P, (i—) ,

Gs(u) z

that is

Gi(u) =

1 1
+ (—§u4 —= Ezu2> B(u) , (5-196)
(u fms E2 ‘ + E“u2 b E“) Al) +
6
(—u e Eut — T Equz) Blw) (5-197)

we are thus finally left with the two conditions

1 2 4 2
2, - pe IES SN g 4
(u +3E)p1+( 3% E*u 15E)A(u)+

Gy(u)

o+

b b
/Gl(u)du 2 /Gz(u)du =, (5-198)

The functions A(u) and B(u) and the constant p; must satisfy these two equations;
otherwise they are arbitrary.

5.8 Representation by Polynomials
First we set

B(u) = F(u)A(u) (5-199)
and specify the function F(u) to be a polynomial

N
F(u)=Y au'= > aut (5—200)

1=0

(briefly). Then the functions G, and G, of (5-196) and (5-197) become
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