
5.3 MASS DISTRIBUTIONS FOR LEVEL ELLIPSOID 

and, with G determined by (1-2) to four significant digits only: 

also 

G = 6.673 x 10-11 m Ss-2kg-1 

M 

Pm 

G: = 5.973 x 1024kg 

5.514g/cm3 
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(5-116) 

(5-117) 

(5-118) 

for the earth's mass and mean density are meaningful to four digits only; cf. sec. 1.5. 
Hence the spherical-harmonic coefficients (5-95) are 

Ao = i x 0.76382 x 109m 2s-2 

A2 = -i x 0.98310 x 109m 2s-2 

and the constants on the right-hand side of (5-109) and (5-110) are 

-1.3646 x 1023kg 

5.3.1 A Simple Example 

(5-119) 

(5-120) 

We shall now illustrate the general method by a simple example. Consider the repre­
sentation (5-114), with an == 0 (n = 4,6, 8, .. . ); this is obviously consistent with 
(5-111). Thus 

u 2 +E2 

p(u, B) = g(u) + 2 E2 2 B h(u) 
u + cos 

Assume 

g(u) 

h(u) 

so that 

P{l ; c~nst. , 

-P2 = const. 

p(u, 0) = u 2 + E 2 

{ 

Pl 

Pl - u2 + E2 cos2 B P2 , 

0 :; u < 
b -l'..b :; u :; 

0 :; u 

b -l'..b :; u 

(5-121) 

b -l'..b (5-122) 
b , 

< b - l'..b 

:; b 
(5-123) 

Since for l'..b around 1000 km or smaller the expression (u2 + E 2)/(U2 + E 2 cos2 B) 
is elose to unity, this model represents a homogeneous core enclosed by an almost 
homogeneous mantle. 

The regularity conditions are evidently satisfied here if P > 0, and the integral 
conditions determine the constant Pt and give a relation between the other constants 
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P2 and D.b. We substitute (5-121) with (5-122) into (5-109) and (5-110) and perform 
the elementary integrations. The result is 

As 

47r 
-a2bp 3 1 

47r (2 2) -3 P2D.b 3a - 3Mb + D.b 

47r 2 
-a b=v 
3 

is the volume of the ellipsoid and 
M 
-=Pm 
V 

is the mean density, we obtain from (5-124) 

(~ _ 15 J2 ) P 
2 2 e2 m 

a2b 
(PI - Pm) 6.b(3a2 _ 3bf).b + f).b2) P2 = 

(5-124) 

(5-125) 

The first formula determines PI, which is seen to be independent of the mantle 
thickness 6.b. With the value (5-118) for the earth's mean density we get 

PI = 7.10g/cm3 (5-126) 

The second formula then determines P2 as a function of 6.b. For instance, let 

6.b = 1000 km 

Then P2 = 3.94g/cm\ so that the density at the earth's surface will be approximately 
PI - P2 = 3.16 g/cm3, which is about the value of the density at the base of the 
continentallayers. 

It is evident that such a primitive model does not represent an approximation to Il 
the mass configuration of the real earth. It was ~hosen merely as an illustration of ~ 
the general method. " 

However, this model also has a certain theoretical interest because as 6.b -+ 0, 
we obtain as a limit the well-known singular mass distribution, by means of which ~ 
Pizzetti (1894) has founded the theory of the equipotential ellipsoid. Pizzetti's model ~ 
represents a homogeneous ellipsoid covered by a surface layer of negative density. It 
is, of course, quite unrealistic physically, but it has proved to be a highly successful 
mathematical device for deriving formulas (e.g., Lambert, 1961). As long as only the 
external potential is needed, any mathematical model for the mass distribution will h I 
work provided it pro duces an equipotential surface of the shape of an ellipsoid of rev- PQI 

olution, and Pizzetti's model was constructed precisely so as to fulfil this requirement. Ion 
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The presently preferred approach is the determination of the external potential 
without explicitly using any density model at all, as we did in sec. 5.2, but Pizzetti's 
model remains of historic interest. 

Let us thus investigate the limiting case of (5-122) as tlb -+ O. As a limit, the 
shell enclosed between the confocal ellipsoids u = b - tlb and u = b will reduce to a 
surface layer on the ellipsoid u = b. The surface density will become, by (5-123), the 
negative of 

(5-127) 

where tln is the thickness of the shell measured along the normal to the reference 
ellipsoid. We have 

where by (5-65) we get 

dn 

du 

dn 
tln == du tlu 

(5-128) 

cf. also (Heiskanen and Moritz, 1967, p. 67). On the reference ellipsoid u = b this 
reduces to 

b2 + E2 cos2 () 1 . / --:-:---=-:-- = - V a2 cos2 () + b2 sin2 
() 

b2 + E2 a 

On taking all this into account, the limit (5-127) becomes 

where 

a 
U = Ul Ja2 cos2 () + b2 sin2 () 

Ul = lim (P2tlb) 
AHO 

is a constant, which is determined from (5-125) as 

1 
Ul = 3 b(Pl - Pm) 

(5-129) 

(5-130) 

(5-131) 

In this way we have recovered the singular Pizzetti distribution as a limiting case of 
the regular distribution (5-123), because as the limit we have a homogeneous volume 
distribution of density Pl given by (5-125), combined with a surface layer of density 
-u given by (5-129) and (5-131). 

Finally it should be mentioned that even the singular Pizzetti distribution can be 
expressed in the form (5-121). This is possible through the use of the well-known 
Dirac delta function .5(x), cf. sec. 3.3.2. This expression is 

u 2 + E 2 

p(u,I}) =po- 2+E2 2I} Ul.5(u-b) 
u cos (5-132) 

It shows that the use of the Dirac function makes it possible to treat formally the 
potential of a surface layer as the potential of a volume distribution; trus fact is 
80metimes mathematically convenient. 
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