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5.3 Mass Distributions for the Level Ellipsoid 

Consider any rotationally symmetrie mass configuration such as asolid heterogeneous 
ellipsoid of revolution. Its external gravitational potential must have the representa
tion 

V(u, 0) = f: AnQn (ii) Pn(cosO) 
n:=O 

(5-74) 

This is a slightly different form of (5-37): we have put 

(5-75) 

for the coefficients. Furthermore the overbar on 0 will be dropped from now on 
since we are using ellipsoidal coordinates exclusively and no confusion with spherical 
coordinates is likely to arise. Henceforth, 

0= 90° - ß (5-76) 

will denote the complement 0/ the reduced latitude and no longer the spherical distance. 
Thus, our ellipsoidal coordinates will be denoted by u, 0, >.. 

To derive the coefficients An in terms of the density p, we start from the basic 
equation (1-1): 

V(u, B) = G III p(u
l

; (

1

) dv (5-77) 
E 

where the integral is extended over the reference ellipsoid u = b (which need not yet 
be a level surface), denoted by E, and both potential V and density p are functions 
only of u and 0, but not of>' because of rotational symmetry. 

The vqlume element in ellipsoidal coordinates may be found by transforming 

dv = dxdydz = J dudBd>' (5-78) 

with Jacobian determinant 
Eh 8x 8x 

8u 8B 8>' 

J= 
8y 8y 8y 

(5-79) 
8u 8B 8>' 

8z 8z 8z 

8u 8B 8>' 
in analogy.to (4-15) and (4-16). The result is 

dv = (u12 + E 2 cos2 BI) sin BI dul dBI d>.1 (5-80) 

or 

dv = (U12 + E 2 cos2 BI)dul du (5-81) 
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FIGURE 5.3: A co ordinate ellipsoid u = const. and the auxiliary spheres S and u 

with 

du = sin 0' dO' d>" (5-82) 

denoting the element of solid angle as usualj more precisely, it is the surface element of 
the auxiliary unH sphere u on which the point Po in Fig. 5.3 is situated. The primes 
indicate that dv refers to the integration .point (u', 0', >.'). For E --+ 0, eq. (5-80) 
reduces to the usual expression for the volume element in spherical coordinates. 

At this point it is appropriate to use Fig. 5.3 to recall the geometrie situation 
and make it completely dear. Take an arbitrary point P (u, ß, >.) in space and pass 
the appropriate co ordinate ellipsoid u = const. through it. Its semiaxes are u and 
vu2 + E2. The auxiliary "affine" sphere S thus has the radius vu2 + E2. For the 
reduced latitude ß or its complement 0 we have t-he familiar construction P --+ Pi /} 
is the polar distance, not of P, but of the auxiliary point P. As we have seen, we also 
need the concentric unit sphere Ui to P there corresponds the auxiliary point Po on 
u. 

Repeat the same construction for the point Q (u', 0', >.') which carries the volume 
element dv, but note that the co ordinate ellipsoid u' = const. and the auxiliary sphere 
S will be different! The concentric unit sphere u, however, remains of course the 
same. In this way, to Q there corresponds on u the auxiliary point Qo which carries 
the surface element du . The coordinate ellipsoid u' = const . and the details of the 
construction Q --+ Q --+ Qo are not shown in order not to overload the figure . 

Orthogonality relations such as (1-41) will be used lateri the corresponding inte-

o( 
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grals 
2.. .. 

!! du =! ! sinlJ'dlJ'd>.' (5-83) 

).'=08'=0 

ean either be regarded in a purely formal way or else interpreted by means of the 
eonstruction shown in Fig. 5.3, as integrals over the auxiliary unit sphere u. 

Now we express I/I by (5-32) whieh is permissible sinee for an external point there 
is u > u'. Interehanging integration and summation we get 

(XI n 2"" 1f b 

V(u, lJ) = G I: I:! ! ! p(U', lJ') . 
n=O m=O>.,=O 8'=0 u'=O 

. CnmQnm (ii) Pnm (i~) Pnm( eos lJ)Pnm(eos lJ') 

. (eos m>. eos m>" + sin m>. sin m>.')( u/2 + E 2 eos2 lJ')dudu' (5-84) 

ll.S eos m( >. - N) = eos m). eos mN + sin m>. sin mA'. Sinee p does not depend on N, 
orthogonality (as explained above) is immediately seen to remove all nonzonal terms 
(m =I 0), and there remains (5-74) with 

G 2.. .. b 

i:E(2n+l)! ! ! p(u, lJ)Pn(ii) Pn(eoslJ) 
).=0 8=0 u=o 

.( u 2 + E 2 eos2 lJ) sin lJdudlJd>' (5-85) 

here CnO as given by (5-33) has been taken into aeeount, and the primes have been 
omitted for simplieity, whieh obviously is possible sinee An are eonstants. 

It is appropriate to expand p as aseries in the following way: 

(5-86) 

cf. also (Reine, 1961, vol. II, p. 107). By taking only even harmonies (subseript 21/) 
we restriet ourselves to density distributions that are symmetrie with respect to the 
equatorj for the ellipsoid of revolution this is as natural as rotational symmetry. The 
funetions Ct2V( u) are to subject to the eondition that the mass distribution produees 
a given external potential. 

On substituting (5-86), the expression (5-85) ean readily be integrated. Beeause 
of orthogonality, only the term with 21/ = n survives, and (1-42) applies. The result 
is 

G b 

An = i:E J Ctn(u)Pn (ii) du (5-87) 
o 

Given An, this is the only eondition whieh the function Ctn(u) for the density must 
satisfy. Obviously An = 0 for odd n. 
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For the level ellipsoid we get by (5-75) and (5-45) 

Ao 
Uo - ~w2a2 

Qo (i~) 

A 2 
w2a2 

3Q2 (i~) 
An 0 otherwise 

By (5-20) and (5-57) we have 

Q (
. b) . , o t E = -t arctan e 

By (5-21) and (5-48) there is 

which can be expressed by (5-71) with (5-72): 

:0 = w~:;E C25 - ~5 ~n 
Finally, 

1 2 2 GM , 
Uo - -w a = -- arctane 

3 E 
by (5-60). Combining all these relations we find simply 

.GM 
t E ' 
Aa = ... = 0 ; Al = Aa = A 6 = ... = 0 

(5-88) 

(5-89) 

(5-90) 

(5-91) 

(5-92) 

(5-93) 

(5-94) 

(5-95) 

(5-96) 

Thus the functions an with n = 21/ must satisfy the conditions (5-87) with the 
constants An given by (5-95) and (5-96). 

Since only Ao and A 2 are different from zero, it is convenient to split off the terms 
of degrees zero and two in the expansion (5-86), obtaining 

where 

(u 2 + E 2 cos2 {})p(u, (}) = R(u, (}) + S(u, (}) , 

R(u, (}) 

S(u, (}) 

(5-97) 

(5-98) 

(5-99) 

~I 

~I 
Ihe 
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Let us first consider the function R(u, 0). By a simple transformation we get 

R(u,O) 4~ [Qo(u)-2~2 (u2+~E2)Q2(U)+ 

+ 2~2 Q2(U)(U2 + E 2 cos2 0)] 

It will be convenient to introduce new Iunctions G(u) and H(u) by 

G(u) 

H(u) 

in terms oI which (5-100) becomes 

R( 0) = H() u
2 + E 2 

cos
2 

0 G( ) 
u, u + u2 + 1 E2 U 

3 

Since by (5-101) and (5-102) we have 

and since by (1-33) 

47r [G(u) + H(u)] 
87r E 2 

3 u2+ 1 E2 G(U) 
3 

P2 t- = -- U + - E (. U) 3 (2 1 2) 
E 2E2 3 

we obtain from (5-87) the simple expressions 

G b 

A o = 47ri E5 ![G(u)+H(u)]du , 
o 

G b 

A2 = -47ri E5 ! G(u)du . 
o 

(5-100) 

(5-101) 

(5-102) 

(5-103) 

(5-104) 

(5-105) 

(5-106) 

(5-107) 

Now we are in the position to formulate our solution for the problem of density 
distributions for the level ellipsoid. By (5-97), (5-99), and (5-103) we may express 
the density. in the functional form 

p(u,O) G(u) + H(u) + 
u2 + ~ E2 u2 + E2 cos2 0 

1 1 00 

+ 2+E2 20·-4 L:Q2V(U)P2v(cosO) 
u COS 7r v=2 

(5- 108) 
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The conditions to be satisfied by the functions G(u), H(u), and an(u) are as follows. 
From (5-87), (5-95), (5-96), and (5-107) we have the integral conditions 

and 
b 

b 

J G(u)du 
o 
b 

J H(u)du 
o 

(5-109) 

(5-110) 

J an(u)Pn (i~) du = 0 n = 4,6,8,... (5-111) 
o 

In addition, we have certain regularity conditions. The functions G(u), H(u), and 
a2"(u) must be chosen in such a way that by (5-108) the density p is regular, i.e., 
everywhere finite, piecewise continuous, and positive. It is easy to see that this set 
of conditions is necessary and sufficientj that is, any function of the form (5-108) for 
which (5-109), (5-110), (5-111), and the regularity conditions are satisfied, represents 
a possible mass configuration for the level ellipsoid. 

For later application, it will be often convenient to substitute 

G(u) 

H(u) 

(u2+~E2)g(U) 
(u 2 + E 2 )h(u) 

so that the density model (5-108) assumes the form 

p(u,8) 

(5-112) 

(5-113) 

(5-114) 

Thus we have obtained a rather general solution of our problem. It would be 
trivial to generalize our argument so as to obtain solutions that are not symmetrie 
with respect to the ans of rotation and to the equatorial plane but, as we have 
mentioned, such solutions appear to be of no physical significance. 

Numerical values. With the values of sec. 1.5 for the Geodetic Reference System 
1980 (cf. also Moritz, 1984) we have 

a 6378137 m 

b 6356752 m 

E 521854 m 

e2 0.006 694 380 (5-115) 

e/2 0.006 739 497 

GM 3986 005 x 108m 3s-2 

J 2 0.001 08263 

Sir 
15 1 

hOl 

tQn 
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and, with G determined by (1-2) to four significant digits only: 

also 

G = 6.673 x 10-11 m Ss-2kg-1 

M 

Pm 

G: = 5.973 x 1024kg 

5.514g/cm3 

137 

(5-116) 

(5-117) 

(5-118) 

for the earth's mass and mean density are meaningful to four digits only; cf. sec. 1.5. 
Hence the spherical-harmonic coefficients (5-95) are 

Ao = i x 0.76382 x 109m 2s-2 

A2 = -i x 0.98310 x 109m 2s-2 

and the constants on the right-hand side of (5-109) and (5-110) are 

-1.3646 x 1023kg 

5.3.1 A Simple Example 

(5-119) 

(5-120) 

We shall now illustrate the general method by a simple example. Consider the repre
sentation (5-114), with an == 0 (n = 4,6, 8, .. . ); this is obviously consistent with 
(5-111). Thus 

u 2 +E2 

p(u, B) = g(u) + 2 E2 2 B h(u) 
u + cos 

Assume 

g(u) 

h(u) 

so that 

P{l ; c~nst. , 

-P2 = const. 

p(u, 0) = u 2 + E 2 

{ 

Pl 

Pl - u2 + E2 cos2 B P2 , 

0 :; u < 
b -l'..b :; u :; 

0 :; u 

b -l'..b :; u 

(5-121) 

b -l'..b (5-122) 
b , 

< b - l'..b 

:; b 
(5-123) 

Since for l'..b around 1000 km or smaller the expression (u2 + E 2)/(U2 + E 2 cos2 B) 
is elose to unity, this model represents a homogeneous core enclosed by an almost 
homogeneous mantle. 

The regularity conditions are evidently satisfied here if P > 0, and the integral 
conditions determine the constant Pt and give a relation between the other constants 
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P2 and D.b. We substitute (5-121) with (5-122) into (5-109) and (5-110) and perform 
the elementary integrations. The result is 

As 

47r 
-a2bp 3 1 

47r (2 2) -3 P2D.b 3a - 3Mb + D.b 

47r 2 
-a b=v 
3 

is the volume of the ellipsoid and 
M 
-=Pm 
V 

is the mean density, we obtain from (5-124) 

(~ _ 15 J2 ) P 
2 2 e2 m 

a2b 
(PI - Pm) 6.b(3a2 _ 3bf).b + f).b2) P2 = 

(5-124) 

(5-125) 

The first formula determines PI, which is seen to be independent of the mantle 
thickness 6.b. With the value (5-118) for the earth's mean density we get 

PI = 7.10g/cm3 (5-126) 

The second formula then determines P2 as a function of 6.b. For instance, let 

6.b = 1000 km 

Then P2 = 3.94g/cm\ so that the density at the earth's surface will be approximately 
PI - P2 = 3.16 g/cm3, which is about the value of the density at the base of the 
continentallayers. 

It is evident that such a primitive model does not represent an approximation to Il 
the mass configuration of the real earth. It was ~hosen merely as an illustration of ~ 
the general method. " 

However, this model also has a certain theoretical interest because as 6.b -+ 0, 
we obtain as a limit the well-known singular mass distribution, by means of which ~ 
Pizzetti (1894) has founded the theory of the equipotential ellipsoid. Pizzetti's model ~ 
represents a homogeneous ellipsoid covered by a surface layer of negative density. It 
is, of course, quite unrealistic physically, but it has proved to be a highly successful 
mathematical device for deriving formulas (e.g., Lambert, 1961). As long as only the 
external potential is needed, any mathematical model for the mass distribution will h I 
work provided it pro duces an equipotential surface of the shape of an ellipsoid of rev- PQI 

olution, and Pizzetti's model was constructed precisely so as to fulfil this requirement. Ion 
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The presently preferred approach is the determination of the external potential 
without explicitly using any density model at all, as we did in sec. 5.2, but Pizzetti's 
model remains of historic interest. 

Let us thus investigate the limiting case of (5-122) as tlb -+ O. As a limit, the 
shell enclosed between the confocal ellipsoids u = b - tlb and u = b will reduce to a 
surface layer on the ellipsoid u = b. The surface density will become, by (5-123), the 
negative of 

(5-127) 

where tln is the thickness of the shell measured along the normal to the reference 
ellipsoid. We have 

where by (5-65) we get 

dn 

du 

dn 
tln == du tlu 

(5-128) 

cf. also (Heiskanen and Moritz, 1967, p. 67). On the reference ellipsoid u = b this 
reduces to 

b2 + E2 cos2 () 1 . / --:-:---=-:-- = - V a2 cos2 () + b2 sin2 
() 

b2 + E2 a 

On taking all this into account, the limit (5-127) becomes 

where 

a 
U = Ul Ja2 cos2 () + b2 sin2 () 

Ul = lim (P2tlb) 
AHO 

is a constant, which is determined from (5-125) as 

1 
Ul = 3 b(Pl - Pm) 

(5-129) 

(5-130) 

(5-131) 

In this way we have recovered the singular Pizzetti distribution as a limiting case of 
the regular distribution (5-123), because as the limit we have a homogeneous volume 
distribution of density Pl given by (5-125), combined with a surface layer of density 
-u given by (5-129) and (5-131). 

Finally it should be mentioned that even the singular Pizzetti distribution can be 
expressed in the form (5-121). This is possible through the use of the well-known 
Dirac delta function .5(x), cf. sec. 3.3.2. This expression is 

u 2 + E 2 

p(u,I}) =po- 2+E2 2I} Ul.5(u-b) 
u cos (5-132) 

It shows that the use of the Dirac function makes it possible to treat formally the 
potential of a surface layer as the potential of a volume distribution; trus fact is 
80metimes mathematically convenient. 
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