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Since K, is small of second order, we may again replace the polar radius t by the mean 
radius ß without 1055 of accuracy: 

(4-204) 

This is Darwin's equation which we already know (eq. (4-123)), but which appears in 
a new light by the present derivation; clearly f can be replaced by e in the second­
order terms on the right-hand side. To repeat: the differential equations (4-204) 
and (4-201) are equivalent, but (4-204) is practically more useful, whereas (4-201) is 
theoretically particularly interesting. 

4.3.5 Clairaut's Equation 

The derivation of Clairaut's equation accurate to OCr) starts from (4-193). Using 
(4-167) and (4-184), taking into account (4-187) and (4-188), we thus can write 

3a - 1 tla" + 2a2 + 2taal - 8E tW( t) = _~2 __ --:---:--:-__ 

a + tal - 2a2 

From (2-104) we take, to first order, 
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where, as usual, 

Pm 

(4-205) 

( 4-206) 

( 4-207) 

denotes the dimensionless "normalized density" and ß the (normalized) mean radius 
of the equisurface passing through the point P at which W is considered (the fact 
that it is also used as an integration variable in our customary way will cause no 
confusion) . 

Differentiation gives 
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(4-208) 

or, by (4-56), 

(4-209) 

By definition, 

ß = \!t(l + f) . tel + f) . t ( 4-210) 
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FIGURE 4.10: Polar radius t and mean radius ß 

is the geometrie mean of all three axes (Fig. 4.10). (In a more familiar notation trus 
is R = M, the sphere being defined as having the same volume as the ellipsoid.) 
In view of the smallness of I, (4-210) reduees in the linear approximation to 

Henee, 

ß t(1+~I) 
ß(1-~I) 

W'(t) = dW = dW dß = dW (1 + ~ 1 + ~ tf') 
dt dß dt dß 3 3 

Using (4-209) with (4-211), trus gives 

'( ) 47rG ( 2) ( 2 2 ,) 2 2 W t =--3- Dt 1+ 3 1 1+31+3tl +3wt 

(4-211) 

( 4-212) 

( 4-213) 

( 4-214) 

(sinee w 2 = OU), we have been able simply to replaee ß by t in the last term). 
Introdueing the dimensionless quantity (4-66), in the present units 

3 w2 

J.L = 47rG D ' ( 4-215) 

whieh is Oe!), we thus have to OU) 

'() 47rG ( 4 2 1 2) gp = -W t = - Dt 1 + - 1 + - tl - - J.L 
3 3 3 3 

(4-216) 

Now 
47rGp - 2w 2 3 0 2 

1f GtD = t D - t J.L 
( 4-217) 
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(we have P = 6 if we use the earth's mean density Pm as a unit), so that by (4-142) 
and (4-216) 

t'l1(t) = 3~ - 4~ f - 2~ tf' - 2 (1 - ~) J.L 
D D D D 

Then (4-205) gives 

3a - ~ t 2a" + 2a2 + 2taa' - 8c - t'l1(t)(a + ta' - 2(2) = 0 
2 

( 4-218) 

( 4-219) 

with t'l1(t) expressed by (4-218) which, being multiplied by O(a), is indeed seen to 
be needed to first order only, so that we can put f = a in (4-218). 

For simplicity we abbreviate 

A = ~ (4-220) 
D 

Substituting (4-218) into (4-219) we get after some simple algebra 

t2a" + 6Ata' + (-6 + 6A)a = (4 + 20A)f2 + (4 + 12A)tff' + üt2r 
- 16c + 4(1 - A)(f + tf')J.L (4-221) 

where, on the right-hand side, we have put f = a because it contains quadratic terms 
only. 

The left-hand side represents the linear Clairaut equation for a, and the right-hand 
side, rather than being zero, is now O(P). Thus (4-221) may already be regarded 
as some second-order generalization of Clairaut's equation, but it is better to change 
from a, t to the flattening fand the mean radius ß by means of (4-198), (4-199), 
and (4-212). 

The final result becomes still simpler if we use, instead of the flattening f, the 
"ellipticity" 

5 2 4 
e = f - 42 f + 7K 

(with e2 ~ P), already introduced in eq. (4-48). 
By (4-198), (4-199), and (4-222) we have 
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This is inserted into (4-221). Furthermore we substitute, from (4-212), 

(4-222) 

( 4-223) 

(4-224) 

( 4-225) 

Finally we replace all derivatives with respect to t by derivatives with respect to ß, 
denoted by a dot as before, cf. eq. (4-78): 

f' df df dß . ( 2 2.) 
dt = dß dt = f 1 + "?J + "3 ß f ( 4-226) 

f" 
.. 4 ·· . .. 4 · 
f + "3 f f + 2ß f f + "3 f2 ( 4-227) 
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This is straightforward though somewhat laborious algebra; the result is 

ß2 e + 6>'ße - 6(1- >.)e = 4(1 - >')(f + ßj)J.L -

_ 1~6 (1 _ >')f2 + (4 + 1~6 >.) ßf j - ~ ß2 P + ~~ ß2 f j - 2ß3 jj + 

+ 3; [ß2 ~ + 6>'ßk + (-20 + 6>')11:] (4-228) 

which does not look very encouraging. Note, however, that the term between paren­
theses [1 is not hing else than the left-hand side of Darwin's equation (4-204). Re­
placing it by the right-hand side of this equation removes 11: . If we do this and finally 
eliminate j, where multiplied by f or j, by the linear Clairaut equation: 

( 4-229) 

which has the same accuracy as (4-202), we get a surprisingly simple resu1t: 

4 . . -"7 (1- >')(7f2 + 6ßff + 3ß2 f2) + 

+ 4(1 - >')(f + ßj)J.L (4-230) 

which is not hing else than our old friend, the second-order Clairaut equation (4-91) 
with (4-92) or (4-90); note that e = f in second-order terms as usual. 

We thus have derived this equation and also Darwin's equation in an alternative 
geometrie way. This method, proceeding from Wavre's theory, is simple and trans­
parent in principle, though the detailed calculations may be laborious . In principle, 
it is nothing else than an extension of the method of sec. 3.2.5 to second order. It is 
completely different and independent of the method of sec. 4.2; in particular, it does 
not use spherical harmonie series with a somewhat difficult convergence behavior. 

Generally, the present method may be considered more elementary and direct, 
avoiding tricky manipulations with spherical harmonies and equally tricky differen­
tiation of integrals. On the other hand it should be noted that we only get the 
differential equations for fand 11:, but not the boundary conditions. For those people 
who do not appreciate the esthetic appeal of this Wavre-type approach, it will at least 
serve as a very useful independent check. 
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