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and (4-186) becomes 
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Since X 2 , Y2 ~ XI, Yi, we may again expand: 

1 
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( 4-191) 

Now comes the essential reasoning: since this equation is an identity in 0 and since 
the left-hand side is independent of 0, the right-hand side must also be independent 
of O. This requires 

and consequently 
1 Yi -tW(t)=-
2 Xl 

( 4-192) 

(4-193) 

These are the basic equations for our problem: (4-192) will lead to Darwin's equation, 
whereas (4-193) will give Clairaut's equation accurate to second order in f. We 
immediately note that (4-192) corresponds to the condition (3-46) which is "weaker" 
than (3-45) as we have remarked at the end of sec. 3.2.1. Thus (3-46) is sufficient to 
derive Darwin's but not Clairaut's equation. 

4.3.4 Darwin's Equation 

Eq. (4-192) is equivalent to 
( 4-194) 

Xl and X 2 are the terms (truncated series) on the right-hand side of (4-167) multiplied 
by sin2 Band sin4 B, respectively, and sirnilarly for Yi and Y2 with (4-184); cf. (4-187) 
and (4-188). 

We substitute these senes into (4-194), keeping terms of order a 3 but neglecting 
O(a4

). The result is 

(t 2a + ea')E" + (6ta - t3a")E' - (14a + 20ta' + t 2a")E = 

= -21a3 - 14ta2a' - 3t2aa12 + 2ea,3 + 
7 3 +- t 2 a 2a" + 3t3aa'a" + - t4a 12a" (4-195) 
2 2 
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Now we transform to the standard parameters f (flattening) and ~ (deviation), 
contained in eq. (4-3): 

T = a [1 - f cos2 
() - (~ f2 + ~ ) sin 2 2()] (4-196) 

remember that ~ is a second-order quantity which is zero for an exact ellipsoid. 
Since t = b, the semiminor axis of the equisurface under consideration, and since 

b = a(l - 1), it is easy to transform (4-196) into the form 

T = t [1 + (f - ~ f2 - 4~) sin 2 
() + G f2 + 4~ ) sin 

4 
()] (4-197) 

which by comparison with (4-164) shows that 

1 2 
a f - 2" f - 4~ (4-198) 

3 2 f2 + 4~ (4-199) 

confirming the first-order equality 

( 4-200) 

This is now used to transform (4-195). It is readily recognized that for € we need 
(4-199), whereas for a, which is always multiplied by second-order terms, (4-200) is 
sufficient. The result is 

(e f + e !')~/I + (6tf - t 3 f")~1 - (14f + 20t!' + t2 f")~ = 
1 3 1 1 3 3 

= _-tf2!, - -t2fr - -t3ra + -t2 f2f" + -t3 f!'f" + - t4rf"~4-201) 
2 2 4 2 4 8 

This is a second-order linear ordinary differential equation for the deviation 
It= ~(t), which has extraordinary theoretical interest: It shows that, given the flat
tening f = f(t) (which implies knowing the derivatives f' and /"), the quantity ~ is 
fully determined (apart from the usual boundary conditions). The density distribu
tion does not enter here! 

This is fully in the spirit of Wavre's theory which aims at separating the geometry 
from the physics to the largest possible extent. 

Practically it may be preferable to eliminate f" by Clairaut's equation (2-114) or 
(4-124): 

t2 I" = -6 ~ tj' + 6 (1 -%) f ( 4-202) 

In the linear approximation we have t == ß, e == f; this linear approximation is, of 
course, sufficient since f" is multiplied by terms of O(j2). After some straightforward 
calculations we thus obtain, the factor f + tf' canceling "miraculously", 

2 /I 6 1 ( 6) t It + 615 t~ + -20 + 6 D ~ = 

( 6)2 ( 96) 1
1 ( 6)2/2 = 3 1 - D f + 1 - 2 15 tff - 4" 1 + 9 D t f (4-203) 
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Since K, is small of second order, we may again replace the polar radius t by the mean 
radius ß without 1055 of accuracy: 

(4-204) 

This is Darwin's equation which we already know (eq. (4-123)), but which appears in 
a new light by the present derivation; clearly f can be replaced by e in the second
order terms on the right-hand side. To repeat: the differential equations (4-204) 
and (4-201) are equivalent, but (4-204) is practically more useful, whereas (4-201) is 
theoretically particularly interesting. 

4.3.5 Clairaut's Equation 

The derivation of Clairaut's equation accurate to OCr) starts from (4-193). Using 
(4-167) and (4-184), taking into account (4-187) and (4-188), we thus can write 

3a - 1 tla" + 2a2 + 2taal - 8E tW( t) = _~2 __ --:---:--:-__ 

a + tal - 2a2 

From (2-104) we take, to first order, 

W 1 Jß J1 W
2
ß2 

-= - h·ß2dß+ h·ßdß+-- , 
kG ß l~G 

o ß 

where, as usual, 

Pm 

(4-205) 

( 4-206) 

( 4-207) 

denotes the dimensionless "normalized density" and ß the (normalized) mean radius 
of the equisurface passing through the point P at which W is considered (the fact 
that it is also used as an integration variable in our customary way will cause no 
confusion) . 

Differentiation gives 

1 dW 1 Jß 2 w
2ß 

- - = -- h . ß dß + ßh - ßh + -
47rG dß ß2 67rG 

o 

(4-208) 

or, by (4-56), 

(4-209) 

By definition, 

ß = \!t(l + f) . tel + f) . t ( 4-210) 
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