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On the other hand the enlarged figure shows that
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Egs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146)
finally gives
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So far, everything has been quite straightforward. A fine point must be made,
however. In (4-146), 0/t means the derivative with respect to ¢ for constant O, i.e.,
along the plumb line, whereas in (4-163), 8/8t denotes the derivative also with respect
to t but for constant 0, i.e., along the radius vector. This fact must be taken into
account by adding in (4—161) a correction C'. This “6-correction” will be considered
in the next section.

4.3.2 Series Expansions

Let us now represent the equation of the set of equisurfaces in the form
=r(t, 8) = t(1 + asin®§ + esin*f) , (4-164)

a = oft) being a first-order term approximately equal to the ﬂattening f
(= f+ O(f?)), and e = €(t) being a second-order term of order f? = a?. Terms of
order higher than two will consistently be neglected. If ¢ = const., then we get the
equation of an equisurface, which plainly is of form (4-147).

The above representation is equivalent to a spherical-harmonic expansion to n = 4,
containing P, and P, such as (4-11), but it is easier to manipulate for our present
purpose. For later reference we form the partial derivatives:
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re = 14 (a+ta')sin®0+ (e+te)sin*d

rg = tcosfsinf(2a + 4e sin’? @) ,

(20’ + ta")sin® 6 + (2¢' + te")sin* 6 (4-165)
Teo 2(a + ta') cos Osin 8 + 4(e + te') cosfsin® 0,

rep = 2ta+ (—4ta + 12te)sin® § — 16tesin’ 6
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The prime denotes differentiation with respect to t:
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Now it is straightforward though somewhat laborious to substitute the series

(4-165) into (4-160), (4-162), and (4-163), consistently neglecting terms of order
higher than two. The result is

etc. (4-166)

X = 1+ (2a+2ta’' —40%)sin®0 +

+ (50® + 2tac’ + t*a? + 2¢ + 2te')sin* 6 (4-167)
A = %[1—2a+(3a+ta'—2taa'—86)sin20+

+ (—a® + 2tad’ + 10€ + te') sin* 0] : (4-168)
B = % [(ta' + % t*a" — 2taa’)sin? @ +

+ (tao' —t?a — %tzaa" - %taa'a" +te' + %tze") sin* 0] . (4-169)

The 6-correction. There remains the term C in (4-161), which arises from the
difference between Wavre’s parameter @, which is constant along any specific plumb

line, and the spherical polar distance 6 which slightly varies along the plumb line.
Consider an arbitrary smooth function

F = F*(t, ©) (4-170)

expressed in terms of Wavre’s parameters ¢, ®. On the other hand, our functions
have the form

E=F(t;0)" (4-171)
expressed in terms of the polar distance (note that the parameters ¢, ® form an

orthogonal system whereas ¢, # don’t). Regarding the system (%, ) as functions of
(tr 9)' .

; e ';(9’, 5, (4-172)
we have
F = F(t, 8) = F(t,6(0, t)) = F*(t, ©) , (4-173)
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and hence
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in an obvious notation. Thus, in order to get 8F/8t in Wavre’s sense, we have to add
to OF' /8t in our present sense a “f-correction”.
The factor 86/8t is the change of § along the normal to the equisurface passing
through the point (¢, #) under consideration. It is easily found as follows (Fig. 4.9).

The infinitesimal distance PF' can be expressed in two ways:
—rdf = édr (4-176)

(we have put the minus sign since in Fig. 4.8 we had taken r = OP,, whereas now
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FIGURE 4.9: The 8-correction

r = OP; so to speak, in Fig. 4.8 we went from P to P, whereas in Fig. 4.9 we go

from P to P’'). Thus
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where the very small angle § is nothing else than the difference between the geographic
latitude ¢ and the geocentric latitude 9 (Fig. 4.9), which is given by (1-76):

§=¢—1% =2fcosfsinf |, (4-178)

neglecting higher-order terms. (This is a standard formula from ellipsoidal geometry:
to this accuracy, the level surfaces can be considered ellipsoids of revolution.) To the
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same accuracy, we may in (4-178) replace 7 by ¢, obtaining

% = —2t7! f cos@sin 8 + O(f?) . (4-179)

Comparing (4-175) with (4-163), we see that in our case
F=lN |, (4-180)
so that C represents the 6-correction for Bj cf. (4-161) and (4-163). Thus
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and finally, by (4-144),

O = | (4-182)
By (4-167), 68X /86 will be of order o = f, and so is (4-179). So, C will be of order

f2?, so that we may put f = @ and X = 1 without loss of accuracy, obtaining simply
g

C = —(4t'a® + 4ac')(sin’ § —sin* ) . (4-183)

Combining (4-168), (4-169) and (4-183) according to (4-161), we finally get

2 1
| VA = [1 — 20+ (3a + 202 + 2tac’ — > Pl = 86) sin? 6 +

t
|
1
+ (—3012 —tad + t2a? + %tzaa" it = t3a'a +
1
oy, AR = t’e”) sin* 0] ; (4-184)

4.3.3 Basic Equations

From (4-173) we find

or _ oF 90

80~ 86 66 Gl
For ¢t = const., the factor 89/8© cancels in the numerator and the denominator on
the right-hand side of (4-141), so that we also have

| -2 (o
¢ = Thefunctions X and Y are given by (4-167) and (4-184), which we write in the form

' X = 14 X,sin?04 X,sin*0 (4-187)
) ‘ Y = % (Yo + Yqsin® 0 + Y3 sin®6) (4-188)

N | where the functions X; and Y; are series depending on ¢ only. Thus
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