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whence 
dn 

N = - = rtcos5 
dt 

On the other hand the enlarged figure shows that 

by (4-156). Thus we find 

rdB r 
cos 5 = - = --==== 

ds Jr 2 + ri 

N = rrt 

Jr 2 + ri 
(4-159) 

Eqs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146) 
finally gives 
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( 4-160) 

( 4-161) 

( 4-162) 

( 4-163) 

So far, everything has been quite straightforward. A fine point must be made, 
however. In (4-146), 8/8t means the derivative with respect to t for conatant e, i.e., 
along the plumb line, whereas in (4-163),8/ 8t denotes the derivative also with respect 
to t but for constant B, i.e., along the radius vector. This fact must be taken inta 
ac count by adding in (4-161) a correction C. This "B-correction" will be considered 
in the next section. . 

4.3.2 Series Expansions 

Let us now represent the equation of the set of equisurfaces in the form 

(4-164) 

a = a(t) being a first-order term approximately equal to the fiattening f 
(a = f + O(j2)), and f = f(t) being a second-order term of order p == a 2

• Terms of 
order higher than two will consistently be neglected. If t = const., then we get the 
equation of an equisurface, which plainly is of form (4-147). 

The above representation is equivalent to a spherical-harmonic expansion to n = 4, 
containing P2 and P4 such as (4-11), but it is easier to manipulate for our present 
purpose. For later reference we form the partial derivatives: 
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1 + (a + tal) sin2 8 + (e + tel) sin4 8 

t cos 8 sin 8(2a + 4e sin2 8) 

(2a' + ta") sin2 8 + (2e' + te") sin4 8 

2( a + tal) cos 8 sin 8 + 4( e + tE') cos 8 sin3 8 

2ta + (-4ta + 12te) sin2 8 - 16te sin4 8 

The prime denotes differentiation with respect to t: 

, da 
a =­

dt ' 
etc. 
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(4-165) 

(4-166) 

Now it is straightforward though somewhat laborious to substitute the series 
(4-165) into (4-160), (4-162), and (4-163), consistently neglecting terms of order 
higher than two. The result is 

X 1 + (2a + 2ta' - 4(2) Si1l
2 8 + 

+ (5a2 + 2taa' + t 2a'2 + 2e + 2te') sin4 8 , (4-167) 

A ~ [1 - 2a + (3a + tal - 2taa' - 8e) sin2 8 + 

+ (_a2 + 2taa' + 10e + tel) sin4 8] (4-168) 

B 2 [( , 1 2 11 ') • 2 8 - ta + - t a - 2taa Sill + 
t 2 

+ (taa' - t2a12 
- i t2aa" - i ea'a" + tel + i t2e") sin4 8] ( 4-169) 

The 8-correction. There remains the term ein (4-161), which arises (rom the 
difference between Wavre's parameter 0, which is constant along any specific plumb 
line, and the spherical polar distance 8 which slightly varies along the plumb line. 

Consider an arbitrary smooth function 

F = r(t, 0) (4-170) 

expressed in terms of Wavre's parameters t, 0 . On the other hand, our functions 
have the form 

F = F(t, 0) (4-171 ) 

expressed in terms of the polar distance (note that the parameters t, 0 form an 
orthogonal system whereas t, 0 don't). Regarding the system (t , 0) as functions of 
(t,0): . 

we have 

t 
o 

t , 
8(0, t) 

F = F(t , 0) = F(t, 0(0, t)) = r(t, 0) , 

( 4-172) 

(4-173) 
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and hence 
8FO 8F 8F 80 
fit = &t + 7ii 8t 

8F) = 8F) + FB 80 
8t 0=const . 8t B=const. 8t 

(4-174) 

(4-175) 

in an obvious notation. Thus, in order to get 8F / 8t in Wavre's sense, we have to add 
to 8F / 8t in our present sense a "O-correction" . 

The factor 80/ 8t is the change of 0 along the normal to the equisurface passing 
through the point (t, 0) under consideration. It is easily found as follows (Fig. 4.9). 
The infinitesimal distance P F can be expressed in two ways: 

- rdO = 6dr (4-176) 

(we have put the minus sign since in Fig. 4.8 we had taken r = OPl , whereas now 
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FIGURE 4.9: The O-correction 

r = OPi so to speak, in Fig. 4.8 we went from pi to P, whereas in Fig. 4.9 we go 
from P to Pi). Thus 

80 
r 8r 

(4-177) 

where the very small angle S is not hing else than the difference between the geographie 
latitude <p and the geocentric latitude 'IjJ (Fig. 4.9), whieh is given by (1-76): 

S = <p - 'IjJ = 2/ eos 0 sin 0 ( 4-178) 

neglecting higher-order terms. (This is a standard formula from ellipsoidal geometry: 
to this accuracy, the level surfaces can be considered ellipsoids of revolution.) To the 
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same accuracy, we may in (4-178) replace r by t, obtaining 

: = -2C l 
/ cos(}sin(} + 0(12) . ( 4-179) 

Comparing (4-175) with (4-163), we see that in our case 

F = lnN , (4-180) 

50 that C represents the (}-correction for Bj cf. (4-161) and (4-163). Thus 

ßlnN ß() 1 ßlnN2 ß(} 1 ßN2 ß(} 
C = ----aB ßt = 2 ae ßt = 2N2 8e ßt 

(4-181) 

and finally, by (4-144), 

(4-182) 

By (4-167), ßX/ß(} will be of order a ~ /, and 50 is (4-179). So, C will be of order 
r, 50 that we may put / = a and X = 1 without loss of accuracy, obtaining simply 

(4-183) 

Combining (4-168), (4-169) and (4-183) according to (4-161), we finally get 

Y ~ [1-2a+(3a+2a2+2taa'-~t2all-8f)sin2(}+ 

+ (-3a2 - taa' + t2a,2 + ~ eaa" + ~ ea'a" + 
2 2 

+ 10f - ~ t2f ll) sin4 
()] 

4.3.3 Basic Equations 

From (4-173) we find 
ßF ßF ß(} 
ß0 = ß(} ß0 

(4-184) 

(4-185) 

For t = const., the factor ßB I ß0 cancels in the numerator and the denominator on 
the right-hand side of (4-141) , so that we also have 

ßY/ßB 
'l1(t) = ßX/ßB . ( 4- 186) 

The functions X and Y are given by (4-167) and (4-184), which we write in the form 

X 1 + Xl sin2 B + X 2 sin4 B , 

Y = ~ (Yo + Y1 sin2 B + Y2 sin4 B) , 
t 

where the functions Xi and Y; are series depending on t only. Thus 

( 4-187) 

(4- 188) 
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