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where r T Pt

f(t) _ 4nGp—2w (4-142)
wi(t) gp(t)

depends only on the parameter ¢ labeling the equisurfaces and contains the physics

of the problem: the density p, the rotational velocity w, the potential W and gravity
g: we recall that

¥(t) =

dw (t
or(t) = —wi(e) = 20 (+-143)
represents gravity along the rotation axis (© = 0).
On the right-hand side of (4-141) we have quantities characterizing the geometry
of the stratification:

X =[Nt 8) | (4-144)
where i
n
N=— (4-145)

is a measure of the distance between neighboring equisurfaces, and
Y =Y(t, 0)=2JN - 8lnN/8 (4-146)

J denoting the mean curvature of the equisurfaces.

4.3.1 General Formulas for X and Y

We shall first derive formulas for the quantity N, the mean curvature J, and hence
of X and Y, for a general surface of revolution. We use spherical coordinates r, 6, A.
Because of rotational symmetry, there is no dependence on longitude A, and please
distinguish the spherical distance 6 from the parameter © labeling the plumb lines
(sec. 3.2.1).

Let the meridian section (A = const.) of the surface of revolution have the equation

r=r(0)" . (4-147)

By a standard formula which can be found in any text on elementary calculus, the
radius of curvature of the meridian in plane polar coordinates 7, 8 is given by

i r? 4+ 21'3 — TTgg

R~ (P tnpr ks
where
or 9ty

9 = % b Tgg = ﬁ (4_149)

as usual. This is already one principal radius of curvature for our surface.
The other principal radius is the normal radius of curvature R, well-known from
ellipsoidal geometry. It is the length of the surface normal from a surface point to
its intersection with the rotation axis which for the time being, we take as z-axis (in
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FIGURE 4.7: The normal radius of curvature

order to have z = rcos @, y = r sin 8 as usual for plane polar coordinates). This holds
not only for the ellipsoid, but also for an arbitrary surface of revolution; cf. sec. 1.4.
From Fig. 4.7 we read

y=rsind = Rysind’

whence
_ _sinf

= sing
The elementary triangle at P, shown in a magnified manner next to the main diagram
(Fig. 4.7), gives

(4-150)

dz

sinf' = —— (4-151)
ds
Differentiating ¢ = r cos § we have
dz = drcosf —rsinfdf . (4-152)
Furthermore,
ds® = dr® +r%d6* . (4-153)
In both formulas we put
dr = redf (4-154)
by (4-149); in fact, by (4-147), r depends on @ only, so that here
or dr

il 155
i TR ) (4-155)
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(for the sake of generality, we keep the notation 9r/80 because later on r will depend
on t as well).

In view of (4-154) we may write (4-152) and (4-153) as

=doi o= 'rsin0(1—ﬁcot9)d0 ;
r

(4-156)
ds = y/r2+r3do ,
and substitute into (4-151) and then into (4-150). The result is
1 i ( Te )
— =——— (1= — coth : 4-157
R, [r2 + 2 T ( )

Combining (4-148) and (4-157) we thus have for the mean curvature (1-20)

1974 1 1 ) TS — TTgs
I=3(gtg) == (2-Zeto+ T2 158
2 R1+Rz 2 7‘2+1‘3( Tco + T2+1'3) (4 15)
Consider now Wavre’s function (4-145),
woin

dt
using Fig. 4.8. Along the straight line O P’ we obviously have 6§ = const., so that
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FIGURE 4.8: The distance between two neighboring equisurfaces

or
dry = rdt = Edt g

which is the change of r because of ¢ only. From the enlarged part of Fig. 4.8 we read

dn = drycos§ = rdtcosé
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whence P
Ne= 5 74 €08 §
On the other hand the enlarged figure shows that
o 4, o e i
ds [r2 & r2
by (4-156). Thus we find
T

N = (4-159)

\/r? + rk
Egs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146)
finally gives

2,.2

2 T
X = N?= = +tr§ ; (4-160)
= A-B-C , (4-161)

—PTT9a
A = ZJN— P g e 4-162
Thr ( i +r: ) ’ e
OInN 7, 7y T+ TeTe:

B o= S e (TR R E 4-163
ot R T r2 4 77 ( )

So far, everything has been quite straightforward. A fine point must be made,
however. In (4-146), 0/t means the derivative with respect to ¢ for constant O, i.e.,
along the plumb line, whereas in (4-163), 8/8t denotes the derivative also with respect
to t but for constant 0, i.e., along the radius vector. This fact must be taken into
account by adding in (4—161) a correction C'. This “6-correction” will be considered
in the next section.

4.3.2 Series Expansions

Let us now represent the equation of the set of equisurfaces in the form
=r(t, 8) = t(1 + asin®§ + esin*f) , (4-164)

a = oft) being a first-order term approximately equal to the ﬂattening f
(= f+ O(f?)), and e = €(t) being a second-order term of order f? = a?. Terms of
order higher than two will consistently be neglected. If ¢ = const., then we get the
equation of an equisurface, which plainly is of form (4-147).

The above representation is equivalent to a spherical-harmonic expansion to n = 4,
containing P, and P, such as (4-11), but it is easier to manipulate for our present
purpose. For later reference we form the partial derivatives:
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