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where 
w(t) = f(t) = 47rGp - 2w

2 

W'(t) gp(t) 
(4-142) 

depends only on the parameter t labeling the equisurfaces and contains the phY3ic3 
of the problem: the density p, the rotational velo city w, the potential Wand gravity 
g: we recall that 

, dW(t) 
gp(t) = -W (t) = --­

dt 
represents gravity along the rotation axis (0 = 0). 

(4-143) 

On the right-hand side of (4-141) we have quantities characterizing the geometry 
of the stratification: 

where 

x = [N(t, 0)]2 

N= dn 
dt 

is a measure of the distance between neighboring equisurfaces, and 

Y = Y(t, 0) = 2JN - alnN/ßt 

J denoting the mean curvature of the equisurfaces. 

4.3.1 General Formulas for X and Y 

(4-144) 

( 4-145) 

(4-146) 

We shall first derive formulas for the quantity N, the mean curvature J, and hence 
of X and Y, for a general surface of revolution. We use spherical coordinates r, e, .A. 
Because of rotational symmetry, there is no dependence on longitude .A, and please 
distinguish the spherical distance e from the parameter 0 labeling the plumb lines 
(sec. 3.2.1). 

Let the meridian section (.A = const.) of the surface of revolution have the equation 

r = r(e) (4-147) 

By a standard formula which can be found in any text on elementary calculus, the 
radius of curvature of the meridian in plane polar coordinates r, e is given by 

where 

r 2 + 2ri - rr88 

(r 2 + r:)3/2 

ar 
r8 = ae' 

a.s usual. This is already one principal radius of curvature for our surface. 

(4-148) 

( 4-149) 

The other principal radius is the normal radius of curvature R 2 well-known from 
ellipsoidal geometry. It is the length of the surface normal from a surface point to 
its intersection with the rotation axis which for the time being, we take as x-axis (in 
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FIGURE 4.7: The normal radius of curvature 
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order to have :z: = r cos 0, y = r sin 0 as usual for plane polar coordinates). This holds 
not only for the ellipsoid, but also for an arbitrary surface of revolution; cf. sec. 1.4. 

From Fig. 4.7 we read 

y = r sin 0 = R 2 sin 0' 

whence 

(4-150) 

The elementary tri angle at P, shown in a magnified manner next to the main diagram 
(Fig. 4.7), gives 

. 0' d:z: 
Sin =---

ds 
(4-151) 

Differentiating :z: = r cos 0 we have 

d:z: = dr cos () - r sin OdO (4-152) 

Furthermore, 
(4-153) 

In both formulas we put 
dr = redO (4-154) 

by (4-149); in fact, by (4-147), r depends on 0 only, so that here 

8r dr 
re = 80 = dO (4-155) 

~h 
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(for the sake of generality, we keep the notation 8r / 88 because later on r will depend 
on t as weil). 

In view of (4-154) we may write (4-152) and (4-153) as 

-dx . ( r8 ) r sm 8 1 - -; cot 8 d8 

Jr 2 + d d8 
(4-156) 

ds 

and substitute into (4-151) and then into (4-150). The result is 

- = 1- - cotB 1 1 ( ~ ) 
R2 Jr2 + r; r 

(4-157) 

Combining (4-148) and (4-157) we thus have for the mean curvature (1-20) 

J = ! (~+ ~) = 1 (2 _ ~ cot B + r~ - rr88 ) 

2 R1 R2 2Jr2 + r; r r2 + r; 
(4-158) 

Consider now Wavre's function (4-145), 

N= dn 
dt 

using Fig. 4.8. Along the straight line opt we obviously have () = const., so that 
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FIGURE 4.8: The distance between two neighboring equisurfaces 
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which is the change of r because of t only. From the enlarged part of Fig. 4.8 we read 

dn = drj cos 0 = r,dt cos 0 
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whence 
dn 

N = - = rtcos5 
dt 

On the other hand the enlarged figure shows that 

by (4-156). Thus we find 

rdB r 
cos 5 = - = --==== 

ds Jr 2 + ri 

N = rrt 

Jr 2 + ri 
(4-159) 

Eqs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146) 
finally gives 

x 

Y 

A 

B = 

2 2 

N2=~ 
r 2 + ri 

A-B-C 

= --- 2 - - cot + ~--=--2JN rrt ( rs B ri - rrss ) 
r 2 + r~ r r 2 + ri 

8In N rt rtt rrt + rSrSt 
--= -+------"---'-0-:.:-

8t r rt r 2 + r~ 

( 4-160) 

( 4-161) 

( 4-162) 

( 4-163) 

So far, everything has been quite straightforward. A fine point must be made, 
however. In (4-146), 8/8t means the derivative with respect to t for conatant e, i.e., 
along the plumb line, whereas in (4-163),8/ 8t denotes the derivative also with respect 
to t but for constant B, i.e., along the radius vector. This fact must be taken inta 
ac count by adding in (4-161) a correction C. This "B-correction" will be considered 
in the next section. . 

4.3.2 Series Expansions 

Let us now represent the equation of the set of equisurfaces in the form 

(4-164) 

a = a(t) being a first-order term approximately equal to the fiattening f 
(a = f + O(j2)), and f = f(t) being a second-order term of order p == a 2

• Terms of 
order higher than two will consistently be neglected. If t = const., then we get the 
equation of an equisurface, which plainly is of form (4-147). 

The above representation is equivalent to a spherical-harmonic expansion to n = 4, 
containing P2 and P4 such as (4-11), but it is easier to manipulate for our present 
purpose. For later reference we form the partial derivatives: 
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