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A final word on the determination of the flattening may be in order. For conceptual 
clarity we base our discussion on the first-order theory of sec. 2.7, but the more precise 
second-order theory of sec. 4.2.3 may also be considered. 

In the pre-satellite era, J2 was unknown, so the derivation had to be based on the 
known dynamical ellipticity H, solving (2-154) for the surface value of f. 

From satellite determinations we now know J2 very accurately and can use it 
directly, only applying the theory of the external field (of the equipotential ellipsoid, 
say), to determine the flattening 

( 4-139) 

cf. (1-77) and (1-79). This value of f = f(l) may now be used as a boundary condition 
for the determination of the function f = f(ß) by Clairaut's equation (4-91), at the 
risk that the value of H calculated on the basis of the distributions p(ß), f(ß), and 
K.(ß): 

H = H [p(ß), f(ß), K.(ß)] ( 4-140) 

differs from a measured value such as (1-85); this discrepancy will then indicate a 
deviation of the earth from hydrostatic equilibrium. There is an enormous literature 
on this subject; as examples we mention (Caputo, 1965), (Khan, 1968, 1969), and 
(N akiboglu, 1979), with references to earlier work. 

Since the surface f is precisely known if J2 is given, it would, in the author's 
opinion, be inappropriate not to take it into account. Thus, deliberately ignoring this 
value and using (2-153), with J2 and H given (knowing that they may be incompatible 
in the case of hydrostatic equilibrium!) to calculate a "hydrostatic flattening" fH (on 
the order of 1/299 or 1/300), seems to be somewhat artificial. 

Recent computations show that the results significantly depend on the choice 
of density distribution, decreasing the discrepancy between "real" and "hydrostatic" 
flattening. For a detailed discussion we refe~ again to (Denis, 1989); from the preprint 
(Denis, 1985) we quote the final statement: "All in all, it may b e worthwhile to study 
the possibility of deriving a model with a physically plausible density distribution 
which satisfies the supplementary astrogeodetic constraint that its hydrostatic surface 
flattening is about 1/ 298.25, thus agreeing with one of the recommendations issued 
by the Standard Earth Committee (see Lapwood and Usami, 1981, p. 213)." 

4.3 Derivation from Wavre's Theory 

The basic differential equations of Clairaut, to a second-order approximation, and of ~l 
Darwin can also be derived , in an elegant and instructive way, from Wavre's geometrie 
theory described in sec. 3.2. 

We start from eq. (3-45) with (3-47): a.s 

ßY/ ße 
W(t ) = ßX/ ße (4-141) 
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where 
w(t) = f(t) = 47rGp - 2w

2 

W'(t) gp(t) 
(4-142) 

depends only on the parameter t labeling the equisurfaces and contains the phY3ic3 
of the problem: the density p, the rotational velo city w, the potential Wand gravity 
g: we recall that 

, dW(t) 
gp(t) = -W (t) = --­

dt 
represents gravity along the rotation axis (0 = 0). 

(4-143) 

On the right-hand side of (4-141) we have quantities characterizing the geometry 
of the stratification: 

where 

x = [N(t, 0)]2 

N= dn 
dt 

is a measure of the distance between neighboring equisurfaces, and 

Y = Y(t, 0) = 2JN - alnN/ßt 

J denoting the mean curvature of the equisurfaces. 

4.3.1 General Formulas for X and Y 

(4-144) 

( 4-145) 

(4-146) 

We shall first derive formulas for the quantity N, the mean curvature J, and hence 
of X and Y, for a general surface of revolution. We use spherical coordinates r, e, .A. 
Because of rotational symmetry, there is no dependence on longitude .A, and please 
distinguish the spherical distance e from the parameter 0 labeling the plumb lines 
(sec. 3.2.1). 

Let the meridian section (.A = const.) of the surface of revolution have the equation 

r = r(e) (4-147) 

By a standard formula which can be found in any text on elementary calculus, the 
radius of curvature of the meridian in plane polar coordinates r, e is given by 

where 

r 2 + 2ri - rr88 

(r 2 + r:)3/2 

ar 
r8 = ae' 

a.s usual. This is already one principal radius of curvature for our surface. 

(4-148) 

( 4-149) 

The other principal radius is the normal radius of curvature R 2 well-known from 
ellipsoidal geometry. It is the length of the surface normal from a surface point to 
its intersection with the rotation axis which for the time being, we take as x-axis (in 
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order to have :z: = r cos 0, y = r sin 0 as usual for plane polar coordinates). This holds 
not only for the ellipsoid, but also for an arbitrary surface of revolution; cf. sec. 1.4. 

From Fig. 4.7 we read 

y = r sin 0 = R 2 sin 0' 

whence 

(4-150) 

The elementary tri angle at P, shown in a magnified manner next to the main diagram 
(Fig. 4.7), gives 

. 0' d:z: 
Sin =---

ds 
(4-151) 

Differentiating :z: = r cos 0 we have 

d:z: = dr cos () - r sin OdO (4-152) 

Furthermore, 
(4-153) 

In both formulas we put 
dr = redO (4-154) 

by (4-149); in fact, by (4-147), r depends on 0 only, so that here 

8r dr 
re = 80 = dO (4-155) 

~h 
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(for the sake of generality, we keep the notation 8r / 88 because later on r will depend 
on t as weil). 

In view of (4-154) we may write (4-152) and (4-153) as 

-dx . ( r8 ) r sm 8 1 - -; cot 8 d8 

Jr 2 + d d8 
(4-156) 

ds 

and substitute into (4-151) and then into (4-150). The result is 

- = 1- - cotB 1 1 ( ~ ) 
R2 Jr2 + r; r 

(4-157) 

Combining (4-148) and (4-157) we thus have for the mean curvature (1-20) 

J = ! (~+ ~) = 1 (2 _ ~ cot B + r~ - rr88 ) 

2 R1 R2 2Jr2 + r; r r2 + r; 
(4-158) 

Consider now Wavre's function (4-145), 

N= dn 
dt 

using Fig. 4.8. Along the straight line opt we obviously have () = const., so that 
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FIGURE 4.8: The distance between two neighboring equisurfaces 
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which is the change of r because of t only. From the enlarged part of Fig. 4.8 we read 

dn = drj cos 0 = r,dt cos 0 
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whence 
dn 

N = - = rtcos5 
dt 

On the other hand the enlarged figure shows that 

by (4-156). Thus we find 

rdB r 
cos 5 = - = --==== 

ds Jr 2 + ri 

N = rrt 

Jr 2 + ri 
(4-159) 

Eqs. (4-158) and (4-159) are basic. Their substitution into (4-144) and (4-146) 
finally gives 

x 

Y 

A 

B = 

2 2 

N2=~ 
r 2 + ri 

A-B-C 

= --- 2 - - cot + ~--=--2JN rrt ( rs B ri - rrss ) 
r 2 + r~ r r 2 + ri 

8In N rt rtt rrt + rSrSt 
--= -+------"---'-0-:.:-

8t r rt r 2 + r~ 

( 4-160) 

( 4-161) 

( 4-162) 

( 4-163) 

So far, everything has been quite straightforward. A fine point must be made, 
however. In (4-146), 8/8t means the derivative with respect to t for conatant e, i.e., 
along the plumb line, whereas in (4-163),8/ 8t denotes the derivative also with respect 
to t but for constant B, i.e., along the radius vector. This fact must be taken inta 
ac count by adding in (4-161) a correction C. This "B-correction" will be considered 
in the next section. . 

4.3.2 Series Expansions 

Let us now represent the equation of the set of equisurfaces in the form 

(4-164) 

a = a(t) being a first-order term approximately equal to the fiattening f 
(a = f + O(j2)), and f = f(t) being a second-order term of order p == a 2

• Terms of 
order higher than two will consistently be neglected. If t = const., then we get the 
equation of an equisurface, which plainly is of form (4-147). 

The above representation is equivalent to a spherical-harmonic expansion to n = 4, 
containing P2 and P4 such as (4-11), but it is easier to manipulate for our present 
purpose. For later reference we form the partial derivatives: 
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1 + (a + tal) sin2 8 + (e + tel) sin4 8 

t cos 8 sin 8(2a + 4e sin2 8) 

(2a' + ta") sin2 8 + (2e' + te") sin4 8 

2( a + tal) cos 8 sin 8 + 4( e + tE') cos 8 sin3 8 

2ta + (-4ta + 12te) sin2 8 - 16te sin4 8 

The prime denotes differentiation with respect to t: 

, da 
a =­

dt ' 
etc. 
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(4-165) 

(4-166) 

Now it is straightforward though somewhat laborious to substitute the series 
(4-165) into (4-160), (4-162), and (4-163), consistently neglecting terms of order 
higher than two. The result is 

X 1 + (2a + 2ta' - 4(2) Si1l
2 8 + 

+ (5a2 + 2taa' + t 2a'2 + 2e + 2te') sin4 8 , (4-167) 

A ~ [1 - 2a + (3a + tal - 2taa' - 8e) sin2 8 + 

+ (_a2 + 2taa' + 10e + tel) sin4 8] (4-168) 

B 2 [( , 1 2 11 ') • 2 8 - ta + - t a - 2taa Sill + 
t 2 

+ (taa' - t2a12 
- i t2aa" - i ea'a" + tel + i t2e") sin4 8] ( 4-169) 

The 8-correction. There remains the term ein (4-161), which arises (rom the 
difference between Wavre's parameter 0, which is constant along any specific plumb 
line, and the spherical polar distance 8 which slightly varies along the plumb line. 

Consider an arbitrary smooth function 

F = r(t, 0) (4-170) 

expressed in terms of Wavre's parameters t, 0 . On the other hand, our functions 
have the form 

F = F(t, 0) (4-171 ) 

expressed in terms of the polar distance (note that the parameters t, 0 form an 
orthogonal system whereas t, 0 don't). Regarding the system (t , 0) as functions of 
(t,0): . 

we have 

t 
o 

t , 
8(0, t) 

F = F(t , 0) = F(t, 0(0, t)) = r(t, 0) , 

( 4-172) 

(4-173) 
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and hence 
8FO 8F 8F 80 
fit = &t + 7ii 8t 

8F) = 8F) + FB 80 
8t 0=const . 8t B=const. 8t 

(4-174) 

(4-175) 

in an obvious notation. Thus, in order to get 8F / 8t in Wavre's sense, we have to add 
to 8F / 8t in our present sense a "O-correction" . 

The factor 80/ 8t is the change of 0 along the normal to the equisurface passing 
through the point (t, 0) under consideration. It is easily found as follows (Fig. 4.9). 
The infinitesimal distance P F can be expressed in two ways: 

- rdO = 6dr (4-176) 

(we have put the minus sign since in Fig. 4.8 we had taken r = OPl , whereas now 
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FIGURE 4.9: The O-correction 

r = OPi so to speak, in Fig. 4.8 we went from pi to P, whereas in Fig. 4.9 we go 
from P to Pi). Thus 

80 
r 8r 

(4-177) 

where the very small angle S is not hing else than the difference between the geographie 
latitude <p and the geocentric latitude 'IjJ (Fig. 4.9), whieh is given by (1-76): 

S = <p - 'IjJ = 2/ eos 0 sin 0 ( 4-178) 

neglecting higher-order terms. (This is a standard formula from ellipsoidal geometry: 
to this accuracy, the level surfaces can be considered ellipsoids of revolution.) To the 
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same accuracy, we may in (4-178) replace r by t, obtaining 

: = -2C l 
/ cos(}sin(} + 0(12) . ( 4-179) 

Comparing (4-175) with (4-163), we see that in our case 

F = lnN , (4-180) 

50 that C represents the (}-correction for Bj cf. (4-161) and (4-163). Thus 

ßlnN ß() 1 ßlnN2 ß(} 1 ßN2 ß(} 
C = ----aB ßt = 2 ae ßt = 2N2 8e ßt 

(4-181) 

and finally, by (4-144), 

(4-182) 

By (4-167), ßX/ß(} will be of order a ~ /, and 50 is (4-179). So, C will be of order 
r, 50 that we may put / = a and X = 1 without loss of accuracy, obtaining simply 

(4-183) 

Combining (4-168), (4-169) and (4-183) according to (4-161), we finally get 

Y ~ [1-2a+(3a+2a2+2taa'-~t2all-8f)sin2(}+ 

+ (-3a2 - taa' + t2a,2 + ~ eaa" + ~ ea'a" + 
2 2 

+ 10f - ~ t2f ll) sin4 
()] 

4.3.3 Basic Equations 

From (4-173) we find 
ßF ßF ß(} 
ß0 = ß(} ß0 

(4-184) 

(4-185) 

For t = const., the factor ßB I ß0 cancels in the numerator and the denominator on 
the right-hand side of (4-141) , so that we also have 

ßY/ßB 
'l1(t) = ßX/ßB . ( 4- 186) 

The functions X and Y are given by (4-167) and (4-184), which we write in the form 

X 1 + Xl sin2 B + X 2 sin4 B , 

Y = ~ (Yo + Y1 sin2 B + Y2 sin4 B) , 
t 

where the functions Xi and Y; are series depending on t only. Thus 

( 4-187) 

(4- 188) 
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8X 
80 
8Y 
80 

and (4-186) becomes 

2 sin 0 cos O(XI + 2X2 sin2 0) 

2 
- 2 sin 0 cos O(YI + 2Y2 sin2 0) 
t 

~ i'I1(t) = YI + 2Y2 sin
2 

0 
2 XI + 2X2 sin2 0 

Since X 2 , Y2 ~ XI, Yi, we may again expand: 

1 
"2 tW(t) = Yi ( Y2 • 2 ) ( X 2 • 2 )-1 

Xl 1 + 2 Yi sm 0 1 + 2 Xl sm 0 

YI 
[ (Y2 X 2

). 2 n ( )' 4 n ] Xl 1 + 2 Yi - Xl sm u + ... sm u + ... 

(4-189) 

( 4-190) 

( 4-191) 

Now comes the essential reasoning: since this equation is an identity in 0 and since 
the left-hand side is independent of 0, the right-hand side must also be independent 
of O. This requires 

and consequently 
1 Yi -tW(t)=-
2 Xl 

( 4-192) 

(4-193) 

These are the basic equations for our problem: (4-192) will lead to Darwin's equation, 
whereas (4-193) will give Clairaut's equation accurate to second order in f. We 
immediately note that (4-192) corresponds to the condition (3-46) which is "weaker" 
than (3-45) as we have remarked at the end of sec. 3.2.1. Thus (3-46) is sufficient to 
derive Darwin's but not Clairaut's equation. 

4.3.4 Darwin's Equation 

Eq. (4-192) is equivalent to 
( 4-194) 

Xl and X 2 are the terms (truncated series) on the right-hand side of (4-167) multiplied 
by sin2 Band sin4 B, respectively, and sirnilarly for Yi and Y2 with (4-184); cf. (4-187) 
and (4-188). 

We substitute these senes into (4-194), keeping terms of order a 3 but neglecting 
O(a4

). The result is 

(t 2a + ea')E" + (6ta - t3a")E' - (14a + 20ta' + t 2a")E = 

= -21a3 - 14ta2a' - 3t2aa12 + 2ea,3 + 
7 3 +- t 2 a 2a" + 3t3aa'a" + - t4a 12a" (4-195) 
2 2 
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Now we transform to the standard parameters f (flattening) and ~ (deviation), 
contained in eq. (4-3): 

T = a [1 - f cos2 
() - (~ f2 + ~ ) sin 2 2()] (4-196) 

remember that ~ is a second-order quantity which is zero for an exact ellipsoid. 
Since t = b, the semiminor axis of the equisurface under consideration, and since 

b = a(l - 1), it is easy to transform (4-196) into the form 

T = t [1 + (f - ~ f2 - 4~) sin 2 
() + G f2 + 4~ ) sin 

4 
()] (4-197) 

which by comparison with (4-164) shows that 

1 2 
a f - 2" f - 4~ (4-198) 

3 2 f2 + 4~ (4-199) 

confirming the first-order equality 

( 4-200) 

This is now used to transform (4-195). It is readily recognized that for € we need 
(4-199), whereas for a, which is always multiplied by second-order terms, (4-200) is 
sufficient. The result is 

(e f + e !')~/I + (6tf - t 3 f")~1 - (14f + 20t!' + t2 f")~ = 
1 3 1 1 3 3 

= _-tf2!, - -t2fr - -t3ra + -t2 f2f" + -t3 f!'f" + - t4rf"~4-201) 
2 2 4 2 4 8 

This is a second-order linear ordinary differential equation for the deviation 
It= ~(t), which has extraordinary theoretical interest: It shows that, given the flat­
tening f = f(t) (which implies knowing the derivatives f' and /"), the quantity ~ is 
fully determined (apart from the usual boundary conditions). The density distribu­
tion does not enter here! 

This is fully in the spirit of Wavre's theory which aims at separating the geometry 
from the physics to the largest possible extent. 

Practically it may be preferable to eliminate f" by Clairaut's equation (2-114) or 
(4-124): 

t2 I" = -6 ~ tj' + 6 (1 -%) f ( 4-202) 

In the linear approximation we have t == ß, e == f; this linear approximation is, of 
course, sufficient since f" is multiplied by terms of O(j2). After some straightforward 
calculations we thus obtain, the factor f + tf' canceling "miraculously", 

2 /I 6 1 ( 6) t It + 615 t~ + -20 + 6 D ~ = 

( 6)2 ( 96) 1
1 ( 6)2/2 = 3 1 - D f + 1 - 2 15 tff - 4" 1 + 9 D t f (4-203) 
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Since K, is small of second order, we may again replace the polar radius t by the mean 
radius ß without 1055 of accuracy: 

(4-204) 

This is Darwin's equation which we already know (eq. (4-123)), but which appears in 
a new light by the present derivation; clearly f can be replaced by e in the second­
order terms on the right-hand side. To repeat: the differential equations (4-204) 
and (4-201) are equivalent, but (4-204) is practically more useful, whereas (4-201) is 
theoretically particularly interesting. 

4.3.5 Clairaut's Equation 

The derivation of Clairaut's equation accurate to OCr) starts from (4-193). Using 
(4-167) and (4-184), taking into account (4-187) and (4-188), we thus can write 

3a - 1 tla" + 2a2 + 2taal - 8E tW( t) = _~2 __ --:---:--:-__ 

a + tal - 2a2 

From (2-104) we take, to first order, 

W 1 Jß J1 W
2
ß2 

-= - h·ß2dß+ h·ßdß+-- , 
kG ß l~G 

o ß 

where, as usual, 

Pm 

(4-205) 

( 4-206) 

( 4-207) 

denotes the dimensionless "normalized density" and ß the (normalized) mean radius 
of the equisurface passing through the point P at which W is considered (the fact 
that it is also used as an integration variable in our customary way will cause no 
confusion) . 

Differentiation gives 

1 dW 1 Jß 2 w
2ß 

- - = -- h . ß dß + ßh - ßh + -
47rG dß ß2 67rG 

o 

(4-208) 

or, by (4-56), 

(4-209) 

By definition, 

ß = \!t(l + f) . tel + f) . t ( 4-210) 
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FIGURE 4.10: Polar radius t and mean radius ß 

is the geometrie mean of all three axes (Fig. 4.10). (In a more familiar notation trus 
is R = M, the sphere being defined as having the same volume as the ellipsoid.) 
In view of the smallness of I, (4-210) reduees in the linear approximation to 

Henee, 

ß t(1+~I) 
ß(1-~I) 

W'(t) = dW = dW dß = dW (1 + ~ 1 + ~ tf') 
dt dß dt dß 3 3 

Using (4-209) with (4-211), trus gives 

'( ) 47rG ( 2) ( 2 2 ,) 2 2 W t =--3- Dt 1+ 3 1 1+31+3tl +3wt 

(4-211) 

( 4-212) 

( 4-213) 

( 4-214) 

(sinee w 2 = OU), we have been able simply to replaee ß by t in the last term). 
Introdueing the dimensionless quantity (4-66), in the present units 

3 w2 

J.L = 47rG D ' ( 4-215) 

whieh is Oe!), we thus have to OU) 

'() 47rG ( 4 2 1 2) gp = -W t = - Dt 1 + - 1 + - tl - - J.L 
3 3 3 3 

(4-216) 

Now 
47rGp - 2w 2 3 0 2 

1f GtD = t D - t J.L 
( 4-217) 
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(we have P = 6 if we use the earth's mean density Pm as a unit), so that by (4-142) 
and (4-216) 

t'l1(t) = 3~ - 4~ f - 2~ tf' - 2 (1 - ~) J.L 
D D D D 

Then (4-205) gives 

3a - ~ t 2a" + 2a2 + 2taa' - 8c - t'l1(t)(a + ta' - 2(2) = 0 
2 

( 4-218) 

( 4-219) 

with t'l1(t) expressed by (4-218) which, being multiplied by O(a), is indeed seen to 
be needed to first order only, so that we can put f = a in (4-218). 

For simplicity we abbreviate 

A = ~ (4-220) 
D 

Substituting (4-218) into (4-219) we get after some simple algebra 

t2a" + 6Ata' + (-6 + 6A)a = (4 + 20A)f2 + (4 + 12A)tff' + üt2r 
- 16c + 4(1 - A)(f + tf')J.L (4-221) 

where, on the right-hand side, we have put f = a because it contains quadratic terms 
only. 

The left-hand side represents the linear Clairaut equation for a, and the right-hand 
side, rather than being zero, is now O(P). Thus (4-221) may already be regarded 
as some second-order generalization of Clairaut's equation, but it is better to change 
from a, t to the flattening fand the mean radius ß by means of (4-198), (4-199), 
and (4-212). 

The final result becomes still simpler if we use, instead of the flattening f, the 
"ellipticity" 

5 2 4 
e = f - 42 f + 7K 

(with e2 ~ P), already introduced in eq. (4-48). 
By (4-198), (4-199), and (4-222) we have 

8 2 32 
e--e --K, 

21 7 
3 
2" e

2 + 4K 

This is inserted into (4-221). Furthermore we substitute, from (4-212), 

(4-222) 

( 4-223) 

(4-224) 

( 4-225) 

Finally we replace all derivatives with respect to t by derivatives with respect to ß, 
denoted by a dot as before, cf. eq. (4-78): 

f' df df dß . ( 2 2.) 
dt = dß dt = f 1 + "?J + "3 ß f ( 4-226) 

f" 
.. 4 ·· . .. 4 · 
f + "3 f f + 2ß f f + "3 f2 ( 4-227) 
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This is straightforward though somewhat laborious algebra; the result is 

ß2 e + 6>'ße - 6(1- >.)e = 4(1 - >')(f + ßj)J.L -

_ 1~6 (1 _ >')f2 + (4 + 1~6 >.) ßf j - ~ ß2 P + ~~ ß2 f j - 2ß3 jj + 

+ 3; [ß2 ~ + 6>'ßk + (-20 + 6>')11:] (4-228) 

which does not look very encouraging. Note, however, that the term between paren­
theses [1 is not hing else than the left-hand side of Darwin's equation (4-204). Re­
placing it by the right-hand side of this equation removes 11: . If we do this and finally 
eliminate j, where multiplied by f or j, by the linear Clairaut equation: 

( 4-229) 

which has the same accuracy as (4-202), we get a surprisingly simple resu1t: 

4 . . -"7 (1- >')(7f2 + 6ßff + 3ß2 f2) + 

+ 4(1 - >')(f + ßj)J.L (4-230) 

which is not hing else than our old friend, the second-order Clairaut equation (4-91) 
with (4-92) or (4-90); note that e = f in second-order terms as usual. 

We thus have derived this equation and also Darwin's equation in an alternative 
geometrie way. This method, proceeding from Wavre's theory, is simple and trans­
parent in principle, though the detailed calculations may be laborious . In principle, 
it is nothing else than an extension of the method of sec. 3.2.5 to second order. It is 
completely different and independent of the method of sec. 4.2; in particular, it does 
not use spherical harmonie series with a somewhat difficult convergence behavior. 

Generally, the present method may be considered more elementary and direct, 
avoiding tricky manipulations with spherical harmonies and equally tricky differen­
tiation of integrals. On the other hand it should be noted that we only get the 
differential equations for fand 11:, but not the boundary conditions. For those people 
who do not appreciate the esthetic appeal of this Wavre-type approach, it will at least 
serve as a very useful independent check. 


	BCS2_0118
	BCS2_0119
	BCS2_0120
	BCS2_0121
	BCS2_0122
	BCS2_0123
	BCS2_0124
	BCS2_0125
	BCS2_0126
	BCS2_0127
	BCS2_0128
	BCS2_0129
	BCS2_0130
	BCS2_0131

