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becomes, using (4-107), 
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To the same order we have, by (2-151) 
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since e = f + O(j2). Thus (4-111) becomes 

from which we eliminate the integral by (4-102). 
Hence 
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For 1]s we have by (4-95) and (4-96) with ß = 1, 
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Eqs. (4-115) and (4-116) provide the exte~sion of (2-153) to second order (Jones, 
1954). 

4.2.4 Darwin's Equation 

It is now not difficult to derive a differential equation for the deviation K. = K.(ß). We 
start from the equilibrium condition (4-70) with (4-68). This gives the identity 
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- 8K.)D - 6eS + 3P + - Q = 0 
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We eliminate S by means of (4-88): 

S = De - ~ Dße + O(e2
) , 

obtaining 
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D, P and Q are given by (4-56). To eliminate P, multiply by ß7 and difIerentiate. 
The result, using (4-81), is 

(2ßee - 4ee + 2ße2 - 8;,,)ß7 D + 
+(2ßee - 3e2 - 8/t)(4ß6 D + 3ß6S) + 

+3S[7ß6(e2+~/t) +ß7(2ee+~;,,)] + 

+~ ß9 6(2ß-s/t - ß-2;,,) + 24ß6Q = 0 . 
3 

(4-120) 

Again we eliminate e by Clairaut's equation (4-83). The rest is elementary but 
cumbersome algebra, leading to the surprisingly simple result 

(4-121) 

which in view of (4-56) gives the beautiful integro-differential equation 0/ Wavre 
(1932, eq. (177)): 

ß2 1 d (/t) 4(4/t + ß;,,) = ße(2e + ße) + 12 D J 6 dß ß2 dß . 
ß 

(4-122) 

This equation is extensively studied in Wavre (1932, pp. 109-113). 
We shall, however, eliminate also Q. For this p=pose we multiply (4-121) by 

ß-2 D and differentiate. Again we take (4-81) into ac count and eliminate e by (4-83) . 
The result is Darwin'~ equation 

ß2K + 6 ~ ß;" + (-20 + 6 ~) /t = 3 (1 - ~) e2 + 

( 9 6) . 1 ( 6) 2.2 + 1 - 2 D ßee - 4 1 + 9 D ß e (4- 123) 

This equation is not unlike the simple Clairaut equation 

ß2 e + 6 ~ ße + (-6 + 6 ~ ) e = 0 , (4- 124) 

but in contrast to (4-124), the right-hand side of (4-123) is not zero: Darwin's 
equation is inhomogeneou~. Using Radau's parameter (4-96), the right-hand side 
of (4-123) takes the slightly simpler form 

e
2 (3 (1 -~ ) + (1 - ~ ~ ) ry - ~ (1 + 9 ~ ) ry2] (4- 125) 

(Bullard, i948j Jones, 1954, p . 12) . 
Boundary condition~. One boundary condition we get from Wavre's equation 

(4-122) with ß = 1: 
. 4 1 . 1'2 

K. = - K. + - ee + - e 
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(4-126) 
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whence by (2-118) with R = 1 and f = e on the surface: 

. 5 25 2 
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The second boundary condition refers to the earth's center ß = 0: 

,,(0) = 0 . 

(4-127) 

( 4-128) 

This is also a result of Wavre's equation (4-122), in which the integral may be written 

1 ß 

Q = ß2 J b d~ (;2) dß = Q1 - ß2 J 6 d~ (;2) dß . 

ß ° 
(4-129) 

Since Q and Q1 are finite by definition, the last integral must also be finite. Assurne 
band", expandable by Taylor's theorem 

Then 

and 
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bo + 61ß + 62ß 2 + 6aß 3 + O(ß4) 

"'0 + "1ß + "'2ß
2 + "'aßa + O(ß4) 

-2"'oboß-a - ("1bO + 2"'061 )ß-2 - ("'161 + 2"'ob2)ß-1 + 

+ ("'abo - "'1b2 - 2"ob~) + O(ß) 

( 4-130) 

J 6 d~ (;2) dß = "oboß-
2 + ("'1 bO + 2"061)ß-

1 
- ("'1 61 + 2"'062) lnß + 

+ ("abo - "1b2 - 2"oba)ß + O(ß2) . (4-131) 

Now the first three terms become infinite at the center ß = 0, which is impossible. 
This gives "'0 = 0 or (4-128) and even 

"1 = 0 , ( 4-132) 

so that the expansion (4-130) must begin with "'2ß2: 

(4-133) 

Note that the boundary conditions for Darwin's equation: ,,(0) and ';;(1), have a 
character different from those for Clairaut's equation: 1(1) and 1(1). 
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Level ellipßoid. If the bounding surface of the equilibrium figure is an ellipsoid of 
revolution, then 

1t(1)=0 

Adding this as a boundary condition would result in three boundary conditions: 1t(0), 
K(l) and k(l), which in general are incompatible for a second-order differential equa­
tion. This gives the 

Theorem of Lederßteger 

A level ellipsoid cannot in general be an equilibrium figure. 

An exception is the Maclaurin ellipsoid (sec. 5.4) which, however, is homogeneous and 
in no way similar to the real earth. 

This theorem was shown in second-order approximation only, but it will hold a 
forteriori for a rigorous ellipsoid. 

The argument is very simple and intuitively convincing, especially in the light of 
later developments (Chapter 5 and sees. 6.2 and 6.4), which show that the earth is 
certainly not another exceptional case. A direct proof, going beyond the second-order 
approximation, would be desirable but seems to be very difficult. 

Note that, as a first-order approximation (Clairaut's theory), heterogeneous el­
lipsoidal earth-like equilibrium figures do exist, but deviations start already in the 
second order. 

4.2.5 Practical Comments and Results 

The most important and recent pre-satellite determination of the flattening f) related 
to the ellipticity e by (4-48): 

5 2 4 
f=e+-e --It 

42 7 
(4-134) 

and of the deviation It by solving Clairaut's and Darwin's equations was made by 
Bullard (1948), with modifications by Jones (1954). 

Bullard gets the value (4-1), and Jones the closely similar value 

r l = 297.300 ± 0.065 

Bullard finds for de Sitter's numerical constants .Al and TJs the values 

0.00016 ± 0.00018 (I) 
0.565 

and for the surface value of K., K.l = K.(1) (not to be confused with (4-132)): 

Itl = 68 X 10-8 

(4-135) 

(4-136) 

(4-137) 

(4-138) 

corresponding to a deviation of the spheroid from the ellipsoid of 4.3 meters at latitude 
45° (see Fig. 4.1) . 
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