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Eliminating S; between (4-93) and (4-94) yields

@ 5 8 2
(1+7e-gm)=gm(irge)-2(1+3e) .
which on multiplication by (1 — % e + & m) gives the desired boundary (or initial)
condition
. 5 4, 6 10 ,
€= Em 2e+?e —?em%—ﬁm
This is the second-order equivalent of (2-118).
As the second boundary condition we may regard the surface flattening f = f(1)
as given. Furthermore, the ellipticity e must be finite at the earth’s center, for g = 0.

(4-95)

4.2.3 Radau’s Transformation

Following sec. 2.6, we introduce Radau’s parameter n by

N deR NG,
=——==¢ . 4-96
edf e ¢ ( )
Substituting
. LT LR s 77)
e—"le E=|=-—+ e 4-97
g (5377 Ko
(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation
dn 4 )
S bl 4-98
pap+nt—n-eroptn =1 (1-5)¢ | (4-9)

where (4-92) takes the simpler form
€="Tu(1+n) - 3e(l +n)* —4de (4-99)

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get

(2-134): 5
45 (D81 n) = SDBY() (4-100)
where now
Y(n) =1 +n)” 1/2[1+ "_11_0" +£( —%)5] , (4-101)

which is (2-132) with a small second-order correction. If 1 + A; denotes an average
value of () over the range 0 < 8 < 1, then the integration of (4-100) gives

5 §
4 i 1+775
= = 4-102
O/Dﬁdﬂ e (4-102)
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since D(1) = 1.
Moments of inertia. The sum of the three principal moments of inertia 4, A, and
C is, by (2-138) and (4-14)

2A+C’=2///(:c2+y2+zz)pdv=2///r4pdrda' . (4-103)

We perform the change of variables discussed in sec. 4.1.2 to get constant limits of
integration, using (4-18):

24+ C = z/// r‘g—; o(q)dgda . (4-104)

If we expand r by (4-50), we immediately see that the first—order terms are removed
in view of (2-5), and there remains

1
94 +C =8 f §-B4dB + O(e?) (4-105)
0
in our usual new units. This may be written
8 | 2
T
=?/6-ﬂ‘dﬁ+§(C—A) . (4-106)
0

The integral has form (2-141) and may be brought by integration by parts into the
form (2-147), so that

(S=

WIN

/ 2
M- / DB +35(C—4) ; (4-107)

note that we are using units in which, so to speak, R =1 and p,, = 1. In these units
the semimajor axis a is given by (4-46) for ¢ = 1 as
a=1+ %e—{-O(ez) : (4-108)
Thus ? & 3
Ma? = M R? (1 +§e) = ?mes (1+ ge) :

which in our units reduces to

4m 2
2 =
e [ .
Hence the ratio (2-152),

-G - st 0205 0-3) o
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becomes, using (4-107),

1
5 @ 2% 4 2 AR e ;
H_3(1 3e) 3(1 3e)!Dﬂdﬂ+§J2+0(e) , (4-111)
noting that in our units,
4 . 4
M= -aRppi=— (4-112)
3 3
and
C’—A_C’—A___C—A_J
M ~— MR Ma ?
To the same order we have, by (2-151)
= ge - %m (4-113)
since e = f + O(f?). Thus (4-111) becomes
r 1
J, 2 1 2 4 0
Z=Z|1-3m 2(1 3e)o/Dﬂdﬂ] ) (4-114)
from which we eliminate the integral by (4-102).
Hence P !
w2 1 2 ( 2 ) Vv1+1s
ot P - PO . 4-115
R 3l 3% = e M T (4118
For ns we have by (4-95) and (4-96) with 8 =1,
6 10 m?

5 4
RN S, T (4-116)

Brgor I B S Blzes
Egs. (4-115) and (4-116) provide the extension of (2-153) to second order (Jones,
1954).

4.2.4 Darwin’s Equation

It is now not difficult to derive a differential equation for the deviation x = x(3). We
start from the equilibrium condition (4-70) with (4-68). This gives the identity

(3¢* — 8x)D — 6eS + 3P + g Q@ —0N (4-117)
We eliminate S by means of (4-88):
§& B %Dﬂé +o() (4-118)

obtaining

(—3€® + 2Beé¢ — 8x)D + 3P + gQ =i (4-119)
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