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Eq. (4-63) will not be required later, but we shall need (4-64) . For future reference 
we also calculate 

24 8 [(3 2) 3 4] A4(ß) + - eA2 (ß) = - - e - 411: D - 3eS + - P + - Q 
35 35 2 2 3 

( 4-68) 

For hydro&tatic equilibrium, W must be a function of ß only, since the surfaces 
of constant potential are also surfaces of constant density (equisurfaces, cf. sec. 2.5). 
Thus the identities 

and hence also 
24 

A4(ß) + 35 eA2(ß) = 0 

must hold for equilibrium figures. 

4.2.2 Clairaut's Equation to Second Order 

The condition A 2 (ß) = 0 with (4-64) gives immediately 

D (e + ~ e2
) - ~S (1 + ~ e) - ~T (1 - ~ e) = ~DJ.L (1 + 20 e) 

7 5 7 5 21 2 21 

( 4-69) 

(4-70) 

(4-71) 

Now there comes a trick which will be used several times and which should be kept 
in mind. To first order (4-71) becomes 

3 3 1 2 
De - - S - - T = - DJ.L + O(e ) 

5 5 2 
( 4-72) 

We multiply this expression by (-4e/7) (this is why we need it only to first order!) 
and add it to (4-71), obtaining 

( 
2 2) 1 3 4 D e + - e - - m - - (S + T) = - e( m - 3T) 
7 2 5 21 

(4-73) 

where 
m = J.LD = const . (4-74) 

is the constant (4-67). 
Now we must eliminate the two integrals Sand T defined by (4- 56). This is done 

by two differentiations, similar but not identical to the procedure in sec. 2.5. 
Differentiating (4-56) we easily find 

dD 1 ( 2) dß = -3ß- (D - .5) + 0 e , 

similar to (2-113) but with a different normalization (our present D lS 

sec. 2.5), as weil as 

dS 

dß 
dT 
dß 

(4-75) 

D / Pm in 

( 4-76) 

( 4-77) 
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the dot denoting differentiation: 
. de 
e = dß (4-78) 

Trus is substituted into the differentiated equation (4-73), noting that many terms 
cancel, and multiplied by ß. The result is 

D ( -3e - * e2 + ße + ~ ßee) + 3S = 2~ ße(m - 3T) (4-79) 

We multiply by ß6 (to eliminate the integral ß5 S by differentiation!) and differentiate. 
After division by ß4 and simplification we thus get 

In the process of simplification, the relation (4-75) 

or equivalently, 
1 . 

D-5=--ßD, 
3 

1 . 
D+ 3ßD = 5 , 

( 4-80) 

( 4-81) 

(4-82) 

have played an essential role. The first-order approximation is sufficient since D is 
always multiplied by O(e). 

Now comes a variant of the trick applied at the very beginning of the present 
section: to first order, (4-80) reduces to 

( 4-83) 

which, of course, is notrung else than the first-order Clairaut equation (2-114); note 
(4-82)! The first order is sufficient here for the same reason as above. 

We write (4-80) in the form 

C(ß) + K(ß) = 0 , (4-84) 

C (ß) denoting Clairaut 's equation (4-83) and K (ß) the remaining second-order terms 
in (4-80). By (4-83) we get 

(4-85) 

which permits us to eliminate e in the second-order K(ß). The result is 

4 . 2 iJ . (4 4) 4 3·.2 
K(ß)=-7 ßDe -2ßn(e+ ße) -21 m +7 T -21 ßDe . ( 4-86) 
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To eliminate T, we apply our trick again: (4-72) gives 

(4-87) 
5 5 

T = -De-S--m 
3 6' 

and (4-79) red uces to first order to 

- 3De + Dße + 3S = 0 , (4-88) 

which we solve for S and substitute in (4-87), obtaining 

2 1 . 5 
T = - De + - Dße - - m 

3 3 6 
( 4-89) 

to first order, which is sufficient for substitution in (4-86). Thus, after some laborious 
but straightforward computations we find simply 

K(ß) = ~ (D - ö) [7e2 + 6ßee + 3ß2e2 - 7J.L(e + ße)] 

so that (4-84), with (4-83) and (4-81), becomes 

2 - ö. ( ö) 4 ( ö) ß e + 6ß D e - 6 1 - D e ="7 1 - D ee 

where, following (Jones, 1954),we have put 

( 4-90) 

(4-91 ) 

(4-92) 

Eq. (4-91) is the desired Clairaut equation to second order. It is solved iterative­
ly, first solving Clairaut's equation (4-91) with right-hand side zero and then using 
e(ß) == f(ß) so obtained to compute the correction term (4-92) and hence the right­
hand side of (4-91). Then the full equation (4-91) can be solved. Numerical methods 
for solving differential equations (Runge-Kutta etc.) are standard. 

Boundary conditionJ. Two are needed. One is obtained by putting ß = 1, D = 1, 
T = 0 in (4-79): 

6 2 ,4, S 4 , 
- 3e - - e + e + - ee + 3 1 - - e m = 0 

7 7 21 
t 4-93) 

Now S1 = S(l) is found from (4-71) with ß = 1: 

e + ~ e2 
- ~ S1 (1 + ~ e) = ~ m (1 + 20 e) 

7 5 7 2 21 

We multiply by (1- ~ e) to obtain (S = O(e)!) 

2 2 3 1( 8) 
e + '7 e - 5' S1 = "2 m 1 + 21 e ( 4-94) 
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Eliminating SI between (4-93) and (4-94) yields 

e (1 + i e - ~ m) = ~ m (1 + ~ e) - 2e (1 + ~ e) 
7 21 2 21 7 

wruch on multiplication by (1 - ~ e + 11 m) gives the desired boundary (or initial) 
condition 

. 5 4 2 6 10 2 
e = - m - 2e + - e - - em + - m 

2 7 7 21 
( 4-95) 

Trus is the second-order equivalent of (2-118). 
As the second boundary condition we may regard the surface flattening / = /(1) 

as given. Furthermore, the ellipticity e must be finite at the earth's center, for ß = o. 

4.2.3 Radau's Transformation 

Following sec. 2.6, we introduce Radau's parameter TJ by 

ß de ß. 
TJ=--=-e . 

e dß e 
(4-96) 

Substituting 
. TJ e =-e 

ß ' 
( 4-97) 

(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation 

dTJ 2 6 4 ( 6) 
ß dß + TJ - TJ - 6 + 6 D (1 + TJ) ="1 1- D e , (4-98) 

where (4-92) takes the simpler form 

(4-99) 

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get n 
(2-134): 

( 4-100) 

where now 

1/J(TJ) = (1 + TJt1/2 [1 + ~ TJ - ~ TJ2 + ~ (1 - ~) e] 
2 10 35 D 

( 4-101) 

which is (2-132) with a small second-order correction. If 1 + >'1 denotes an average 
value of 1/J(TJ) over the range 0 ::; ß ::; 1, then the integration of (4-100) gives 

( 4-102) 

TI 
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