=

5
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Eq. (4-63) will not be required later, but we shall need (4-64). For future reference

we also calculate
A8 +2 8 3, ) 3 4 ]
_1 4.(8) = - .
4( ) 35e 2( ) 35[(2e il 36S+2P+3Q (4 )

For hydrostatic equilibrium, W must be a function of § only, since the surfaces
of constant potential are also surfaces of constant density (equisurfaces, cf. sec. 2.5).
Thus the identities

A(B) =0,  Ayp)=0, (4-69)

and hence also 94
A4(B) + 35 ed;(B) =0 (4-70)
must hold for equilibrium figures.

4.2.2 Clairaut’s Equation to Second Order
The condition A,(8) = 0 with (4-64) gives immediately

6 ,) 3 ( 4 ) 3 ( 8 ) 1 ( 20 )
At TR T e 71
D(e+7e 55 1+7e 5T 1 5" 2D,u, 1+21e (4-71)
Now there comes a trick which will be used several times and which should be kept
in mind. To first order (4-71) becomes

R ]
De—SS—sT—ZD/.L—I—O(e) ; (4-72)

We multiply this expression by (—4e/7) (this is why we need it only to first order!)
and add it to (4-71), obtaining

oy s R 4
D(e—l—?e)—Em—g(S—I—T)—He(m—ST) y (4—73)
where
= pl)= const. (4-74)

is the constant (4-67).
Now we must eliminate the two integrals S and T' defined by (4-56). This is done
by two differentiations, similar but not identical to the procedure in sec. 2.5.
Differentiating (4-56) we easily find

dD oy 2
= —387Y(D — §) + O(e?) (4-75)

similar to (2-113) but with a different normalization (our present D is D/p,, in
sec. 2.5), as well as

s _ = = 2 z) b
T 50 S+6[5ﬂ (e+7e +e+?eejl ; (4-176)
dT

I

a8 =6fes zree) (4-77)
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the dot denoting differentiation:
sal (4-78)
saifh
This is substituted into the differentiated equation (4-73), noting that many terms

cancel, and multiplied by B. The result is
e b R g G e
D (—3e e + Be + Eﬂee) +3S = ﬁﬂe(m — 3T v (4-79)

We multiply by B° (to eliminate the integral 3°S by differentiation!) and differentiate.
After division by 3* and simplification we thus get

ﬂzé[D (1+Ee) —im—}—;T]-}-

(f 21
, 4 4 4 Bk b’
+6ﬂe[6(1+ 78) _ﬁm+7T_63'3 De] 4
+28eD (1 Ee %e) =0 . (4-80)
In the process of simplification, the relation (4-75)
D=-33"Y(D-%6) (4-81)
or equivalently,
D—6=—§ﬂb, D+§ﬁD=6 ; (4-82)

have played an essential role. The first-order approximation is sufficient since D is

always multiplied by O(e).
Now comes a variant of the trick applied at the very beginning of the present
section: to first order, (4-80) reduces to

C(B) = B*6D + 6Pé6 +2BeD =0 (4-83)

which, of course, is nothing else than the first-order Clairaut equation (2-114); note
(4-82)! The first order is sufficient here for the same reason as above.
We write (4-80) in the form

cB)+K@B)=0 , (4-84)

C(B) denoting Clairaut’s equation (4-83) and K (f3) the remaining second-order terms
in (4-80). By (4-83) we get

B%D = —68¢é6 — 2BeD (4-85)

which permits us to eliminate € in the second-order K(3). The result is

K(B) = —éﬁbe’ = 2ﬂ% (e + Bé) (—%m + ér) = %mbe’ . (4-86)

O pmp

R = e
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To eliminate T, we apply our trick again: (4-72) gives

5 5
=§DC_S—6m y (4—87)
and (4-79) reduces to first order to
—3De+DBe+35=0 (4-88)

which we solve for S and substitute in (4-87), obtaining
1 5
T=§De+§Dﬂé—gm (4-89)

to first order, which is sufficient for substitution in (4-86). Thus, after some laborious
but straightforward computations we find simply

K(B) = %(D — §) [1e? + 6Bee + 36%* — Tu(e + B¢)] (4-90)
so that (4-84), with (4-83) and (4-81), becomes

ﬂ‘é+6ﬂ%é—6(1—%)e=%(1—%)e5 (4-91)

where, following (Jones, 1954),we have put

Ee (1+ﬂ5;) =5 (1+ﬂ§>2—4e . (4-92)

Eq. (4-91) is the desired Clairaut equation to second order. It is solved iterative-
ly, first solving Clairaut’s equation (4-91) with right-hand side zero and then using
e(B) = f(B) so obtained to compute the correction term (4-92) and hence the right-
hand side of (4-91). Then the full equation (4-91) can be solved. Numerical methods
for solving differential equations (Runge-Kutta etc.) are standard.

Boundary conditions. Two are needed. One is obtained by putting # =1, D =1,
T = 0in (4-79):

6 A 4
—38—?ez+e+?ee+351—2—1em=0 . (4-93)
Now S; = S(1) is found from (4-71) with 8 = 1:

[ 4 1 20
”76'551(”78)-5 (”—e)

3

We multiply by (1 — 4e) to obtain (S = O(e)!)

2 3 il 8
e+;e2—351=§m(1+-——e) - (4-94)
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Eliminating S; between (4-93) and (4-94) yields

@ 5 8 2
(1+7e-gm)=gm(irge)-2(1+3e) .
which on multiplication by (1 — % e + & m) gives the desired boundary (or initial)
condition
. 5 4, 6 10 ,
€= Em 2e+?e —?em%—ﬁm
This is the second-order equivalent of (2-118).
As the second boundary condition we may regard the surface flattening f = f(1)
as given. Furthermore, the ellipticity e must be finite at the earth’s center, for g = 0.

(4-95)

4.2.3 Radau’s Transformation

Following sec. 2.6, we introduce Radau’s parameter n by

N deR NG,
=——==¢ . 4-96
edf e ¢ ( )
Substituting
. LT LR s 77)
e—"le E=|=-—+ e 4-97
g (5377 Ko
(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation
dn 4 )
S bl 4-98
pap+nt—n-eroptn =1 (1-5)¢ | (4-9)

where (4-92) takes the simpler form
€="Tu(1+n) - 3e(l +n)* —4de (4-99)

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get

(2-134): 5
45 (D81 n) = SDBY() (4-100)
where now
Y(n) =1 +n)” 1/2[1+ "_11_0" +£( —%)5] , (4-101)

which is (2-132) with a small second-order correction. If 1 + A; denotes an average
value of () over the range 0 < 8 < 1, then the integration of (4-100) gives

5 §
4 i 1+775
= = 4-102
O/Dﬁdﬂ e (4-102)
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