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V(P) = V(q, ()) Ko(q) + Lo(q) + 
r 

+ [K;;q) +r2L2(q)] P2(COS()) + 

+ [K;~q) +r4L4(q)] P4(COS()) (4-53) 

Here rand () denote the spherical coordinates of the internal point Pj the surface of 
constant density passing through P bears the label q (Fig. 4.2). 

This reasoning also holds for n > 4: we are working with convergent &erie& only. 
Thus we have achieved very simply the same result which Wavre has obtained by 
means of his very complicated "procede uniforme". Quite another quest ion is whether 
the re3ulting series is convergent. We have avoided this question by the simple (and 
usual) trick of limiting ourselves to the second-order (in J) approximation only, which 
automatieally disregards higher-order terms. 

Still the question remains open as a theoretical problem: the convergence of a 
spherical harmonic series at the boundary surface Sp. Nowadays we know much more 
ab out the convergence problem of spherical harmonic series than, say, twenty years 
agOj cf. (Moritz, 1980, secs. 6 and 7), especially the Runge-Krarup theorem. There 
may also be a relation to the existence proof by Liapunov and Liehtenstein mentioned 
in sec. 3.1. Another approach due to Trubitsyn is outlined in (Zharkov and Trubitsyn, 
1978, sec. 38) and in (Denis, 1989). 

The correctness of our second-order theory, however, is fully conflrmed also by its 
derivation from Wavre's geometrie theory to be treated in sec. 4.3, which is based on 
a completely different approach independent of any spherical-harmonic expansions. 

4.2 Clairaut's and Darwin's Equations 

4.2.1 Internal Gravity Potential 

Following de Sitter (1924) we normalize the mean radius q and the density P by 
introducing the dimensionless quantities 

and 

ß = !l = mean radiusofSp 

R mean radius of earth 

b = J!-.- = density 
Pm mean density of earth 

The standard auxiliary expressions 

(4-54) 

( 4-55) 

~! 

is 
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ß 

D ß-
3 J c d~ [(1 + 1: e2

) ß3] dß 
0 

ß 

S ß-
6 J c d~ [( e + ~ e2

) ß6] dß 
0 

1 d 16 
T J c dß [e + 21 e2

] dß , (4-56) 

ß 
ß 

P ß-
7 J c d~ [(e2 + ~,,) ß7] dß 

0 

1 

Q = ß2 J c d~ ["ß-
2
] dß 

ß 

will then be very convenient. The symbol D = D(ß) now denotes the mean density 
(divided by Pm, dimensionless!) of the masses enclosed by the equidensity surface 
labeled by ßi by definition 

D(I) = 1 ( 4-57) 

(trus ia easily verified by specializing eq. (4-58) below for ß = 1). GeneraJly, the 
quantities (4-56) are identical to (4-52), up to conventional factors (Lo is equivalent 
to E given below). 

Using these expressions, we may write (4-53) in the form 

V(P) = 

( 4-58) 

where, of course, r is also normalized or dimensionless with R as unit. The quantity 

1 

E = ~ J c~ [(1 + ~ e2
) ß2] dß ß2 dß 45 

ß 

( 4-59) 

is less important and has, therefore, not been included in the standard list (4-56). 
Eq. (4-58) has a nice "pseudo-harmonic" form characterized by the powers 

r -(n+l) and r n , but, of course, V is not harmonic but satisfies Poisson's equation 
6. V = -47fGp. 1t is therefore appropriate, to eliminate r by means of (4-50), also 
using (4-37): 
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1 
ß-1 [1 + ~ e2 + ~ (e + ~ e2

) P2 - ~ (e 2 + 811:)P4] 
45 3 7 35 

ß-1 (1- ~ eP2 ) + O(e
2

) 

ß-1 (1 + 2eP2 ) + O( e2
) 

( 4-60) 

We have given these expressions only to the accuracy to which they are needed: S 
and T are O(e), and P and Q are O(e2

), as (4-56) shows. Eqs. (4-60) are substituted 
into (4-58), after adding the centrifugal potential 

(4-61) 

by (2-101), with Rr instead of r because of normalization. 
The result, after simplification, may be written as 

( 4-62) 

where 

Ao(ß) 

( 4-63) 

(4-64) 

( 4-65) 

Here J.L denotes 
w 2 R 3 m 

J.L=GMD=I5 ' 
( 4-66) 

where 

(4-67) 

is the constant (1-83) since, by definition, R = M, and D = D(ß) is the normalized 
mean density given by the system (4- 56) which also furnishes S, T, P, and Q. 
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Eq. (4-63) will not be required later, but we shall need (4-64) . For future reference 
we also calculate 

24 8 [(3 2) 3 4] A4(ß) + - eA2 (ß) = - - e - 411: D - 3eS + - P + - Q 
35 35 2 2 3 

( 4-68) 

For hydro&tatic equilibrium, W must be a function of ß only, since the surfaces 
of constant potential are also surfaces of constant density (equisurfaces, cf. sec. 2.5). 
Thus the identities 

and hence also 
24 

A4(ß) + 35 eA2(ß) = 0 

must hold for equilibrium figures. 

4.2.2 Clairaut's Equation to Second Order 

The condition A 2 (ß) = 0 with (4-64) gives immediately 

D (e + ~ e2
) - ~S (1 + ~ e) - ~T (1 - ~ e) = ~DJ.L (1 + 20 e) 

7 5 7 5 21 2 21 

( 4-69) 

(4-70) 

(4-71) 

Now there comes a trick which will be used several times and which should be kept 
in mind. To first order (4-71) becomes 

3 3 1 2 
De - - S - - T = - DJ.L + O(e ) 

5 5 2 
( 4-72) 

We multiply this expression by (-4e/7) (this is why we need it only to first order!) 
and add it to (4-71), obtaining 

( 
2 2) 1 3 4 D e + - e - - m - - (S + T) = - e( m - 3T) 
7 2 5 21 

(4-73) 

where 
m = J.LD = const . (4-74) 

is the constant (4-67). 
Now we must eliminate the two integrals Sand T defined by (4- 56). This is done 

by two differentiations, similar but not identical to the procedure in sec. 2.5. 
Differentiating (4-56) we easily find 

dD 1 ( 2) dß = -3ß- (D - .5) + 0 e , 

similar to (2-113) but with a different normalization (our present D lS 

sec. 2.5), as weil as 

dS 

dß 
dT 
dß 

(4-75) 

D / Pm in 

( 4-76) 

( 4-77) 
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