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V(P) = V(q, ()) Ko(q) + Lo(q) + 
r 

+ [K;;q) +r2L2(q)] P2(COS()) + 

+ [K;~q) +r4L4(q)] P4(COS()) (4-53) 

Here rand () denote the spherical coordinates of the internal point Pj the surface of 
constant density passing through P bears the label q (Fig. 4.2). 

This reasoning also holds for n > 4: we are working with convergent &erie& only. 
Thus we have achieved very simply the same result which Wavre has obtained by 
means of his very complicated "procede uniforme". Quite another quest ion is whether 
the re3ulting series is convergent. We have avoided this question by the simple (and 
usual) trick of limiting ourselves to the second-order (in J) approximation only, which 
automatieally disregards higher-order terms. 

Still the question remains open as a theoretical problem: the convergence of a 
spherical harmonic series at the boundary surface Sp. Nowadays we know much more 
ab out the convergence problem of spherical harmonic series than, say, twenty years 
agOj cf. (Moritz, 1980, secs. 6 and 7), especially the Runge-Krarup theorem. There 
may also be a relation to the existence proof by Liapunov and Liehtenstein mentioned 
in sec. 3.1. Another approach due to Trubitsyn is outlined in (Zharkov and Trubitsyn, 
1978, sec. 38) and in (Denis, 1989). 

The correctness of our second-order theory, however, is fully conflrmed also by its 
derivation from Wavre's geometrie theory to be treated in sec. 4.3, which is based on 
a completely different approach independent of any spherical-harmonic expansions. 

4.2 Clairaut's and Darwin's Equations 

4.2.1 Internal Gravity Potential 

Following de Sitter (1924) we normalize the mean radius q and the density P by 
introducing the dimensionless quantities 

and 

ß = !l = mean radiusofSp 

R mean radius of earth 

b = J!-.- = density 
Pm mean density of earth 

The standard auxiliary expressions 

(4-54) 

( 4-55) 

~! 

is 

1'1 

4\ 
Ilsi: 



4.2 CLAIRAUT'S AND DARWIN'S EQUATIONS 91 

ß 

D ß-
3 J c d~ [(1 + 1: e2

) ß3] dß 
0 

ß 

S ß-
6 J c d~ [( e + ~ e2

) ß6] dß 
0 

1 d 16 
T J c dß [e + 21 e2

] dß , (4-56) 

ß 
ß 

P ß-
7 J c d~ [(e2 + ~,,) ß7] dß 

0 

1 

Q = ß2 J c d~ ["ß-
2
] dß 

ß 

will then be very convenient. The symbol D = D(ß) now denotes the mean density 
(divided by Pm, dimensionless!) of the masses enclosed by the equidensity surface 
labeled by ßi by definition 

D(I) = 1 ( 4-57) 

(trus ia easily verified by specializing eq. (4-58) below for ß = 1). GeneraJly, the 
quantities (4-56) are identical to (4-52), up to conventional factors (Lo is equivalent 
to E given below). 

Using these expressions, we may write (4-53) in the form 

V(P) = 

( 4-58) 

where, of course, r is also normalized or dimensionless with R as unit. The quantity 

1 

E = ~ J c~ [(1 + ~ e2
) ß2] dß ß2 dß 45 

ß 

( 4-59) 

is less important and has, therefore, not been included in the standard list (4-56). 
Eq. (4-58) has a nice "pseudo-harmonic" form characterized by the powers 

r -(n+l) and r n , but, of course, V is not harmonic but satisfies Poisson's equation 
6. V = -47fGp. 1t is therefore appropriate, to eliminate r by means of (4-50), also 
using (4-37): 
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1 
ß-1 [1 + ~ e2 + ~ (e + ~ e2

) P2 - ~ (e 2 + 811:)P4] 
45 3 7 35 

ß-1 (1- ~ eP2 ) + O(e
2

) 

ß-1 (1 + 2eP2 ) + O( e2
) 

( 4-60) 

We have given these expressions only to the accuracy to which they are needed: S 
and T are O(e), and P and Q are O(e2

), as (4-56) shows. Eqs. (4-60) are substituted 
into (4-58), after adding the centrifugal potential 

(4-61) 

by (2-101), with Rr instead of r because of normalization. 
The result, after simplification, may be written as 

( 4-62) 

where 

Ao(ß) 

( 4-63) 

(4-64) 

( 4-65) 

Here J.L denotes 
w 2 R 3 m 

J.L=GMD=I5 ' 
( 4-66) 

where 

(4-67) 

is the constant (1-83) since, by definition, R = M, and D = D(ß) is the normalized 
mean density given by the system (4- 56) which also furnishes S, T, P, and Q. 
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Eq. (4-63) will not be required later, but we shall need (4-64) . For future reference 
we also calculate 

24 8 [(3 2) 3 4] A4(ß) + - eA2 (ß) = - - e - 411: D - 3eS + - P + - Q 
35 35 2 2 3 

( 4-68) 

For hydro&tatic equilibrium, W must be a function of ß only, since the surfaces 
of constant potential are also surfaces of constant density (equisurfaces, cf. sec. 2.5). 
Thus the identities 

and hence also 
24 

A4(ß) + 35 eA2(ß) = 0 

must hold for equilibrium figures. 

4.2.2 Clairaut's Equation to Second Order 

The condition A 2 (ß) = 0 with (4-64) gives immediately 

D (e + ~ e2
) - ~S (1 + ~ e) - ~T (1 - ~ e) = ~DJ.L (1 + 20 e) 

7 5 7 5 21 2 21 

( 4-69) 

(4-70) 

(4-71) 

Now there comes a trick which will be used several times and which should be kept 
in mind. To first order (4-71) becomes 

3 3 1 2 
De - - S - - T = - DJ.L + O(e ) 

5 5 2 
( 4-72) 

We multiply this expression by (-4e/7) (this is why we need it only to first order!) 
and add it to (4-71), obtaining 

( 
2 2) 1 3 4 D e + - e - - m - - (S + T) = - e( m - 3T) 
7 2 5 21 

(4-73) 

where 
m = J.LD = const . (4-74) 

is the constant (4-67). 
Now we must eliminate the two integrals Sand T defined by (4- 56). This is done 

by two differentiations, similar but not identical to the procedure in sec. 2.5. 
Differentiating (4-56) we easily find 

dD 1 ( 2) dß = -3ß- (D - .5) + 0 e , 

similar to (2-113) but with a different normalization (our present D lS 

sec. 2.5), as weil as 

dS 

dß 
dT 
dß 

(4-75) 

D / Pm in 

( 4-76) 

( 4-77) 
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the dot denoting differentiation: 
. de 
e = dß (4-78) 

Trus is substituted into the differentiated equation (4-73), noting that many terms 
cancel, and multiplied by ß. The result is 

D ( -3e - * e2 + ße + ~ ßee) + 3S = 2~ ße(m - 3T) (4-79) 

We multiply by ß6 (to eliminate the integral ß5 S by differentiation!) and differentiate. 
After division by ß4 and simplification we thus get 

In the process of simplification, the relation (4-75) 

or equivalently, 
1 . 

D-5=--ßD, 
3 

1 . 
D+ 3ßD = 5 , 

( 4-80) 

( 4-81) 

(4-82) 

have played an essential role. The first-order approximation is sufficient since D is 
always multiplied by O(e). 

Now comes a variant of the trick applied at the very beginning of the present 
section: to first order, (4-80) reduces to 

( 4-83) 

which, of course, is notrung else than the first-order Clairaut equation (2-114); note 
(4-82)! The first order is sufficient here for the same reason as above. 

We write (4-80) in the form 

C(ß) + K(ß) = 0 , (4-84) 

C (ß) denoting Clairaut 's equation (4-83) and K (ß) the remaining second-order terms 
in (4-80). By (4-83) we get 

(4-85) 

which permits us to eliminate e in the second-order K(ß). The result is 

4 . 2 iJ . (4 4) 4 3·.2 
K(ß)=-7 ßDe -2ßn(e+ ße) -21 m +7 T -21 ßDe . ( 4-86) 
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To eliminate T, we apply our trick again: (4-72) gives 

(4-87) 
5 5 

T = -De-S--m 
3 6' 

and (4-79) red uces to first order to 

- 3De + Dße + 3S = 0 , (4-88) 

which we solve for S and substitute in (4-87), obtaining 

2 1 . 5 
T = - De + - Dße - - m 

3 3 6 
( 4-89) 

to first order, which is sufficient for substitution in (4-86). Thus, after some laborious 
but straightforward computations we find simply 

K(ß) = ~ (D - ö) [7e2 + 6ßee + 3ß2e2 - 7J.L(e + ße)] 

so that (4-84), with (4-83) and (4-81), becomes 

2 - ö. ( ö) 4 ( ö) ß e + 6ß D e - 6 1 - D e ="7 1 - D ee 

where, following (Jones, 1954),we have put 

( 4-90) 

(4-91 ) 

(4-92) 

Eq. (4-91) is the desired Clairaut equation to second order. It is solved iterative­
ly, first solving Clairaut's equation (4-91) with right-hand side zero and then using 
e(ß) == f(ß) so obtained to compute the correction term (4-92) and hence the right­
hand side of (4-91). Then the full equation (4-91) can be solved. Numerical methods 
for solving differential equations (Runge-Kutta etc.) are standard. 

Boundary conditionJ. Two are needed. One is obtained by putting ß = 1, D = 1, 
T = 0 in (4-79): 

6 2 ,4, S 4 , 
- 3e - - e + e + - ee + 3 1 - - e m = 0 

7 7 21 
t 4-93) 

Now S1 = S(l) is found from (4-71) with ß = 1: 

e + ~ e2 
- ~ S1 (1 + ~ e) = ~ m (1 + 20 e) 

7 5 7 2 21 

We multiply by (1- ~ e) to obtain (S = O(e)!) 

2 2 3 1( 8) 
e + '7 e - 5' S1 = "2 m 1 + 21 e ( 4-94) 
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Eliminating SI between (4-93) and (4-94) yields 

e (1 + i e - ~ m) = ~ m (1 + ~ e) - 2e (1 + ~ e) 
7 21 2 21 7 

wruch on multiplication by (1 - ~ e + 11 m) gives the desired boundary (or initial) 
condition 

. 5 4 2 6 10 2 
e = - m - 2e + - e - - em + - m 

2 7 7 21 
( 4-95) 

Trus is the second-order equivalent of (2-118). 
As the second boundary condition we may regard the surface flattening / = /(1) 

as given. Furthermore, the ellipticity e must be finite at the earth's center, for ß = o. 

4.2.3 Radau's Transformation 

Following sec. 2.6, we introduce Radau's parameter TJ by 

ß de ß. 
TJ=--=-e . 

e dß e 
(4-96) 

Substituting 
. TJ e =-e 

ß ' 
( 4-97) 

(by (2-123)) into (4-91) and dividing by e gives the second-order Radau equation 

dTJ 2 6 4 ( 6) 
ß dß + TJ - TJ - 6 + 6 D (1 + TJ) ="1 1- D e , (4-98) 

where (4-92) takes the simpler form 

(4-99) 

in view of (4-97). Following the derivation of sec. 2.6 formula by formula, we get n 
(2-134): 

( 4-100) 

where now 

1/J(TJ) = (1 + TJt1/2 [1 + ~ TJ - ~ TJ2 + ~ (1 - ~) e] 
2 10 35 D 

( 4-101) 

which is (2-132) with a small second-order correction. If 1 + >'1 denotes an average 
value of 1/J(TJ) over the range 0 ::; ß ::; 1, then the integration of (4-100) gives 

( 4-102) 

TI 
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since D(l) = 1. 
MomentJ 0/ inertia. The sum of the three principal moments of inertia A, A, and 

Cis, by (2-138) and (4-14) 

(4-103) 

We perform the change of variables discussed in sec. 4.1.2 to get constant limits of 
integration, using (4-18): 

2A + C = 2 III r4
:: p(q)dqdu (4-104) 

If we expand r by (4-50), we immediately see that the first-order terms are removed 
in view of (2-5), and there remains 

1 

2A + C = 87r J S· ß 4 dß + O(e2
) (4-105) 

o 

in our usual new units. This may be written 

1 

87r J 4 2 ( C = - S . ß dß + - C - A) 
3 3 

(4-106) 
o 

The integral has form (2-141) and may be brought by integration by parts into the 
form (2-147), so that 

1 

2 167r J 4 2 
C = 3M - 9 Dß dß + 3 (C - A) ; (4-107) 

o 

note that we are using units in which, so to speak, R = 1 and Pm = 1. In these units 
the semimajor axis a is given by (4-46) for q = 1 as 

(4-108) 

Thus 

M a2 
= M R 2 (1 + ~ e) = 4; PmR6 (1 + ~ e) 

which in our units reduces to 

( 4-109) 

Hence the ratio (2-152), 

(4-110) 
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becomes, using (4-107), 

1 

J2 2 ( 2) 4 ( 2) J 4 2 ( 2) - = - 1 - - e - - 1 - - e Dß dß + - J2 + 0 e 
H 3333 3 ' 

o 

noting that in our units, 
4 3 41T 

M = -1TR Pm =-
3 3 

and 
C-A C-A C-A 
~= MR2 ~ Ma2 =J2 

To the same order we have, by (2-151) 

2 1 
J2 = - e --m 

3 3 

since e = f + O(j2). Thus (4-111) becomes 

from which we eliminate the integral by (4-102). 
Hence 

J2 = ~ [1 _ ! m _ ~ (1 _ ~ e) v'f+71S] 
H 3 3 5 3 1 +).1 

For 1]s we have by (4-95) and (4-96) with ß = 1, 

5 m 4 6 10 m 2 

1 + 1]s = - - - 1 + - e - - m + - -
2 e 7 7 21 e 

(4-111) 

(4-112) 

(4-113) 

(4-114) 

(4-115) 

(4-116) 

Eqs. (4-115) and (4-116) provide the exte~sion of (2-153) to second order (Jones, 
1954). 

4.2.4 Darwin's Equation 

It is now not difficult to derive a differential equation for the deviation K. = K.(ß). We 
start from the equilibrium condition (4-70) with (4-68). This gives the identity 

8 
(3e 2 

- 8K.)D - 6eS + 3P + - Q = 0 
3 

We eliminate S by means of (4-88): 

S = De - ~ Dße + O(e2
) , 

obtaining 

( 4-117) 

(4-118) 

(4-119) 

p 
T: 
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D, P and Q are given by (4-56). To eliminate P, multiply by ß7 and difIerentiate. 
The result, using (4-81), is 

(2ßee - 4ee + 2ße2 - 8;,,)ß7 D + 
+(2ßee - 3e2 - 8/t)(4ß6 D + 3ß6S) + 

+3S[7ß6(e2+~/t) +ß7(2ee+~;,,)] + 

+~ ß9 6(2ß-s/t - ß-2;,,) + 24ß6Q = 0 . 
3 

(4-120) 

Again we eliminate e by Clairaut's equation (4-83). The rest is elementary but 
cumbersome algebra, leading to the surprisingly simple result 

(4-121) 

which in view of (4-56) gives the beautiful integro-differential equation 0/ Wavre 
(1932, eq. (177)): 

ß2 1 d (/t) 4(4/t + ß;,,) = ße(2e + ße) + 12 D J 6 dß ß2 dß . 
ß 

(4-122) 

This equation is extensively studied in Wavre (1932, pp. 109-113). 
We shall, however, eliminate also Q. For this p=pose we multiply (4-121) by 

ß-2 D and differentiate. Again we take (4-81) into ac count and eliminate e by (4-83) . 
The result is Darwin'~ equation 

ß2K + 6 ~ ß;" + (-20 + 6 ~) /t = 3 (1 - ~) e2 + 

( 9 6) . 1 ( 6) 2.2 + 1 - 2 D ßee - 4 1 + 9 D ß e (4- 123) 

This equation is not unlike the simple Clairaut equation 

ß2 e + 6 ~ ße + (-6 + 6 ~ ) e = 0 , (4- 124) 

but in contrast to (4-124), the right-hand side of (4-123) is not zero: Darwin's 
equation is inhomogeneou~. Using Radau's parameter (4-96), the right-hand side 
of (4-123) takes the slightly simpler form 

e
2 (3 (1 -~ ) + (1 - ~ ~ ) ry - ~ (1 + 9 ~ ) ry2] (4- 125) 

(Bullard, i948j Jones, 1954, p . 12) . 
Boundary condition~. One boundary condition we get from Wavre's equation 

(4-122) with ß = 1: 
. 4 1 . 1'2 

K. = - K. + - ee + - e 
2 4 

(4-126) 
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whence by (2-118) with R = 1 and f = e on the surface: 

. 5 25 2 
'" = -4", - - e m + - m 

4 16 

The second boundary condition refers to the earth's center ß = 0: 

,,(0) = 0 . 

(4-127) 

( 4-128) 

This is also a result of Wavre's equation (4-122), in which the integral may be written 

1 ß 

Q = ß2 J b d~ (;2) dß = Q1 - ß2 J 6 d~ (;2) dß . 

ß ° 
(4-129) 

Since Q and Q1 are finite by definition, the last integral must also be finite. Assurne 
band", expandable by Taylor's theorem 

Then 

and 

ß2 

d~ (;2) 
(;2 ) d 

b dß 

bo + 61ß + 62ß 2 + 6aß 3 + O(ß4) 

"'0 + "1ß + "'2ß
2 + "'aßa + O(ß4) 

-2"'oboß-a - ("1bO + 2"'061 )ß-2 - ("'161 + 2"'ob2)ß-1 + 

+ ("'abo - "'1b2 - 2"ob~) + O(ß) 

( 4-130) 

J 6 d~ (;2) dß = "oboß-
2 + ("'1 bO + 2"061)ß-

1 
- ("'1 61 + 2"'062) lnß + 

+ ("abo - "1b2 - 2"oba)ß + O(ß2) . (4-131) 

Now the first three terms become infinite at the center ß = 0, which is impossible. 
This gives "'0 = 0 or (4-128) and even 

"1 = 0 , ( 4-132) 

so that the expansion (4-130) must begin with "'2ß2: 

(4-133) 

Note that the boundary conditions for Darwin's equation: ,,(0) and ';;(1), have a 
character different from those for Clairaut's equation: 1(1) and 1(1). 

T 
10 

Bu 
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Level ellipßoid. If the bounding surface of the equilibrium figure is an ellipsoid of 
revolution, then 

1t(1)=0 

Adding this as a boundary condition would result in three boundary conditions: 1t(0), 
K(l) and k(l), which in general are incompatible for a second-order differential equa­
tion. This gives the 

Theorem of Lederßteger 

A level ellipsoid cannot in general be an equilibrium figure. 

An exception is the Maclaurin ellipsoid (sec. 5.4) which, however, is homogeneous and 
in no way similar to the real earth. 

This theorem was shown in second-order approximation only, but it will hold a 
forteriori for a rigorous ellipsoid. 

The argument is very simple and intuitively convincing, especially in the light of 
later developments (Chapter 5 and sees. 6.2 and 6.4), which show that the earth is 
certainly not another exceptional case. A direct proof, going beyond the second-order 
approximation, would be desirable but seems to be very difficult. 

Note that, as a first-order approximation (Clairaut's theory), heterogeneous el­
lipsoidal earth-like equilibrium figures do exist, but deviations start already in the 
second order. 

4.2.5 Practical Comments and Results 

The most important and recent pre-satellite determination of the flattening f) related 
to the ellipticity e by (4-48): 

5 2 4 
f=e+-e --It 

42 7 
(4-134) 

and of the deviation It by solving Clairaut's and Darwin's equations was made by 
Bullard (1948), with modifications by Jones (1954). 

Bullard gets the value (4-1), and Jones the closely similar value 

r l = 297.300 ± 0.065 

Bullard finds for de Sitter's numerical constants .Al and TJs the values 

0.00016 ± 0.00018 (I) 
0.565 

and for the surface value of K., K.l = K.(1) (not to be confused with (4-132)): 

Itl = 68 X 10-8 

(4-135) 

(4-136) 

(4-137) 

(4-138) 

corresponding to a deviation of the spheroid from the ellipsoid of 4.3 meters at latitude 
45° (see Fig. 4.1) . 
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density p (g/ cm 3 ) TI 
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FIGURE 4.5: Density p, mean density PmD, and TJ (above) and flattening fand 
deviation K, (below) as a function of the average radius q = Rß (in 
kilometers) 
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Fig. 4.5 shows the distribution of density p, mean density PmD, Radau's parameter 
TI, flattening /, and deviation K, in the earth's interior, foilowing Bullard (1948) and 
Jones (1954). The density model ia now obsolete, cf. Fig. 1.7, as weil as the surface 
value for f, but the diagrams are nevertheless extremely instructive. 

Recent determinations are extensively and carefully discussed in (Denis, 1989). 
As we have already remarked, instead of solving Clairaut's and Darwin's differen­
tial equations, we may also solve corresponding integro-differential equations such 
as (4-79) and (4-122) by iterative procedures described in (Zharkov and Trubitsyn, 
1978, sees. 36 and 37) and in (Denis, 1989)j the latter work is an exceilent comple­
ment of the present book, especially as regards numerical aspects and resultsj it also 
contains extensive additional references. A modern counterpart of Fig. 4.5 is Fig. 4.6, 
following the preprint (Denis, 1985) which was available when the present book was 
written. The dependence of f on the underlying density model is remarkable. 

density p (g/cm3 ) 1/flattening 
18 

p 
Bullen-A 

16 PREM 480 

460 
14 

440 
12 

420 

10 
400 

8 380 

6 360 

4 340 

320 
2 

300 
0 

0 1000 20003000400050006000 

q(km) 

FIGURE 4.6: Inverse flattening /-1 for two different models of density p 

Modern determinations of K.l, comparable to (4-138), lie between 64 and 78 X 10-8. 

So il may be expected that the plot of K, in Fig. 4.5 is still reasonably representative. 
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A final word on the determination of the flattening may be in order. For conceptual 
clarity we base our discussion on the first-order theory of sec. 2.7, but the more precise 
second-order theory of sec. 4.2.3 may also be considered. 

In the pre-satellite era, J2 was unknown, so the derivation had to be based on the 
known dynamical ellipticity H, solving (2-154) for the surface value of f. 

From satellite determinations we now know J2 very accurately and can use it 
directly, only applying the theory of the external field (of the equipotential ellipsoid, 
say), to determine the flattening 

( 4-139) 

cf. (1-77) and (1-79). This value of f = f(l) may now be used as a boundary condition 
for the determination of the function f = f(ß) by Clairaut's equation (4-91), at the 
risk that the value of H calculated on the basis of the distributions p(ß), f(ß), and 
K.(ß): 

H = H [p(ß), f(ß), K.(ß)] ( 4-140) 

differs from a measured value such as (1-85); this discrepancy will then indicate a 
deviation of the earth from hydrostatic equilibrium. There is an enormous literature 
on this subject; as examples we mention (Caputo, 1965), (Khan, 1968, 1969), and 
(N akiboglu, 1979), with references to earlier work. 

Since the surface f is precisely known if J2 is given, it would, in the author's 
opinion, be inappropriate not to take it into account. Thus, deliberately ignoring this 
value and using (2-153), with J2 and H given (knowing that they may be incompatible 
in the case of hydrostatic equilibrium!) to calculate a "hydrostatic flattening" fH (on 
the order of 1/299 or 1/300), seems to be somewhat artificial. 

Recent computations show that the results significantly depend on the choice 
of density distribution, decreasing the discrepancy between "real" and "hydrostatic" 
flattening. For a detailed discussion we refe~ again to (Denis, 1989); from the preprint 
(Denis, 1985) we quote the final statement: "All in all, it may b e worthwhile to study 
the possibility of deriving a model with a physically plausible density distribution 
which satisfies the supplementary astrogeodetic constraint that its hydrostatic surface 
flattening is about 1/ 298.25, thus agreeing with one of the recommendations issued 
by the Standard Earth Committee (see Lapwood and Usami, 1981, p. 213)." 

4.3 Derivation from Wavre's Theory 

The basic differential equations of Clairaut, to a second-order approximation, and of ~l 
Darwin can also be derived , in an elegant and instructive way, from Wavre's geometrie 
theory described in sec. 3.2. 

We start from eq. (3-45) with (3-47): a.s 

ßY/ ße 
W(t ) = ßX/ ße (4-141) 
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