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For P} we have the formula

PO = £ + 2 P + 32 Plt) (4-37)

which expresses the square of the Legendre polynomial P, as a linear combination
of P, and P;. This formula, which can be verified immediately by substituting the
defining expressions (1-33), will play a basic role in our second-order theory.

Since we are considering L;(g), we need only the coefficient of P, (all other terms
are removed by orthogonality), so that (4-36) gives

lnr =+ (6 = 7 )Pa(cosd) + (- )Palcosd) (4-38)

(—=1/7) in (4-38) results as the product of (—1/2) in (4-36) and (2/7) in (4-37).
We take into account (4-38) and substitute (4-33) in the second line of (4-29).
Orthogonality and (4-25) with n = 2 then give immediately

Litg) = =2 / o) g (o= 7 g . (4-39)

4.1.4 Computation of K,(q) and L,(q)

For this purpose we need (4-24) and (4-30). For n = 0 we have by raising (4-11) to
the third power:
1‘3 = qs(l + 363P) B 364P4 + 36;}):)

b

to O(f?) and omitting the primes. For P? we use (4-37) to get

] 3
Aolg) =1+3g- L =1+7€q ; (4-40)

:: and A, are removed by orthogonality, so that we do not need them. For n = 2 we
ave

r® = ¢*(1 + 56, P; + 5e, P + 1062 P2)
so the only required term in (4-24) is

2 -4
B;=563+10€;-?=5(62+;6;) A (4-41)
For n = 4 we similarly find

o7

Cy

q'(1 + Tea Py + Teg Py + 21EP2)

1

18 54
Teq + 2162 g =T (Cq g — 35 ) . (4—42)
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In (4-30) we have for n = 0 and 4:

7-2 = q2(1 + 2€2P2 + 254P4 =5 6§P22) )

i
Dy = 1456 ; (e
=2 = q—-2(1 — 26, Py — 2e4Py + 36§P22) ’
27
F, = -2 (64 ~ 35 52) . (=t

Finally we introduce the flattening f. In (4-3) we put

12
cost . = 3 + 5 Py(cosb)
8 8 32
[ | - - s Y
sin®20 = 15 SIS 21 2 35 P4 ) (4—45)

which is directly verified by inserting (1-33).
Substituting into (4-3) and putting P, = P, = 0 (the average of P, is zero!) we
get the mean radius

13 el )
Y - Ta e o B 4-46
P (1 e i o (e
This is solved for a and substituted into (4-3), together with (4-45). The result is
2 25, 4 4, ]
oy o2 o B = 47
r q[l 3(f+42f +7n)Pz+35(3f + 8k)P, (4-47)

with P, = P,(cos#8), up to O(f?).
Following de Sitter, we introduce, instead of f, the auxiliary quantity

Ber i
= 4-48
g =y o

which we shall call ellipticity. (The ellipticity e is not to be confused with the first
excentricity (1-55)!) To our approximation we may put

gt =i (4-49)

note also that x = O(f?) = O(€?).
In terms of e, (4-47) simplifies to

r=gq [1 - g (e -+ § ez) Py(cos 8) + 34—5 (3€* 4 8k)Py(cos 9)] : (4-50)

We notice that the second-order coefficient no longer contains the deviation k: re-
memberthat x represents the deviation of our spheroid from the ellipsoid (cf. Fig. 4.1),
which holds for the internal equidensity surfaces (¢ < R) as well as for the bounding

surface ¢ = R.
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The comparison between (4-11) and (4-50) immediately gives

2 2 4
s fzz—g(e‘*'gez) ) €4=3—(352+8’°) - (4-51)

it This is substituted into the expressions (4-40) through (4-44), whence (4-26) and
- (4-32), as well as (4-39), become

.' 4rG | d 4 5\
o = 2 o2 (11 4) s
i fd S0
Lo(q) = 21rG/p—q[<l+Ee>q]dq ,
q
8rG | d 2
Holy) = —=—+ /PZI [(e+;ez) q‘] dg , (4-52)
(1]
BECL Food 6
L et § e
25 i /pdq(e+215)dq ’

|

0
R
4G d (32
L = — | p— = —2)
4(q) 5 q/pdq (35~q dg
Note that p = p(q), e = e(q), and k = k(q).

4.1.5 Gravitational Potential at P

The potential V consists of V; and V, according to (4-6). The first part of the trick
was to compute V; at a point P, (Fig. 4.3) and the potential V, at a point P; (Fig. 4.4)
for which the critical series (4-8) and (4-27) always converge. Thus we have satisfied
the desideratum of Tisserand (Tisserand, 1891, p. 317; Wavre, 1932, p. 68) of working
with convergent series only.

The result were the finite (truncated!) expressions (4-10) and (4-31); finite be-
cause the terms with n > 4 would already be O(f*) which we have agreed to neglect.
These formulas represent functions which are harmonic and hence analytic in the
“empty” regions Ep for V; and Ip for V,; see Figs. 4.3 and 4.4. Being analytic, these
expressions hold throughout Ep for V; and Ip for V,; in view of the continuity of the
potential they must hold also at the point P itself! This transition P, — P, P; — P
forms the second part of the trick.

This simple argument shows that we may use the expressions (4-10) and (4-31)
also for P, so that the total gravitational potential V is their sum:
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