4.1 INTERNAL POTENTIAL

85
by (1-49). The result is (4-10) with
Ko(q) = % O/q p(q)di [4o(g)e°] dg
Ky(g) = 4WG/ pla) 3 [Bz(q)q‘] dg , (4-26)
Ki(g) = 4WG / p(Q)— [Cu(9)q"] da

Here we have omitted the prime in the integration variable ¢’ as we did before. The

argument ¢ of K;(g), of course, is identical with the upper limit of the integral (but
not with the integration variable!).

4.1.3 Potential of Shell Ep

We now consider the potential of the “shell” Ep bounded by the surfaces Sp and S.
We apply the same trick as before (sec. 4.1.1., Fig. 4.3). We calculate V, first not at

P, but at a point P; situated on the radius vector of P in such a way that » < ' is
always satisfied and the series corresponding to (4-8),

FIGURE 4.4: Illustrating the computation of V,

il =

-
7% 20—7""“ P,(cos®) , (4-27)

always converges (Fig. 4.4). For this “harmless” point we have

V,(P;)=Géf/%dv=gr"-G/E//F'%Pﬂ(cos¢)dv . (4-28)
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in analogy to (4-9). We again perform the change of variable of sec. 4.1.2, so that
the integral in (4-28) becomes

G/// r’f"'l P,(costp)dv =
Ep
R

- f dq'p(g) [/ 57 () Palcos p)do (429)

In analogy to (4-24) we put

727" = ¢'*"" [D,(q') + En(g')Pz(cos 8') + F,(q')Ps(cos 8)] (4-30)
and substitute. Orthogonality will again remove most terms, and using (4-25) we get
Ve(P:) = Lo(q) + L2(q)r” Pa(cos 8) + La(g)r* Py(cos 6) (4-31)
with
7o
Lo(q) = 2nG .,/ P(‘I)d—q [Do(9)e?] dg
. (4-32)
L) = ~22 / o5 [Fa)a? da

in perfect analogy to (4-26).
The case n = 2 requires special treatment: we cannot use the third line of (4-29)
because then 2 —n = 0, but we can use the second line, where n — 1 =1 and

T 0 (4-33)
r Oq dq
From (4-11) we get
1117‘ = ].11 q + ln(l + ézpz + €4P4) 5 (4“34)
Applying the well-known series
il
In(1 +2) =2 - ;% (4-35)
we thus have 1
1117' =l.nq+ezP2 +€4P4'— EegP; 8 (4'—36)

Here we note that e; = O(f), €& = O(f?), e = O(f?) where f is the flattening
(this will be confirmed below). Hence €2 would already be O(f*) and thus is to be

neglected.
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For P} we have the formula

PO = £ + 2 P + 32 Plt) (4-37)

which expresses the square of the Legendre polynomial P, as a linear combination
of P, and P;. This formula, which can be verified immediately by substituting the
defining expressions (1-33), will play a basic role in our second-order theory.

Since we are considering L;(g), we need only the coefficient of P, (all other terms
are removed by orthogonality), so that (4-36) gives

lnr =+ (6 = 7 )Pa(cosd) + (- )Palcosd) (4-38)

(—=1/7) in (4-38) results as the product of (—1/2) in (4-36) and (2/7) in (4-37).
We take into account (4-38) and substitute (4-33) in the second line of (4-29).
Orthogonality and (4-25) with n = 2 then give immediately

Litg) = =2 / o) g (o= 7 g . (4-39)

4.1.4 Computation of K,(q) and L,(q)

For this purpose we need (4-24) and (4-30). For n = 0 we have by raising (4-11) to
the third power:
1‘3 = qs(l + 363P) B 364P4 + 36;}):)

b

to O(f?) and omitting the primes. For P? we use (4-37) to get

] 3
Aolg) =1+3g- L =1+7€q ; (4-40)

:: and A, are removed by orthogonality, so that we do not need them. For n = 2 we
ave

r® = ¢*(1 + 56, P; + 5e, P + 1062 P2)
so the only required term in (4-24) is

2 -4
B;=563+10€;-?=5(62+;6;) A (4-41)
For n = 4 we similarly find

o7

Cy

q'(1 + Tea Py + Teg Py + 21EP2)

1

18 54
Teq + 2162 g =T (Cq g — 35 ) . (4—42)
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