by $(1-49)$. The result is $(4-10)$ with

$$
\begin{align*}
& K_{0}(q)=\frac{4 \pi G}{3} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[A_{0}(q) q^{3}\right] d q \\
& K_{2}(q)=\frac{4 \pi G}{25} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[B_{2}(q) q^{5}\right] d q \tag{4-26}\\
& K_{4}(q)=\frac{4 \pi G}{63} \int_{0}^{q} \rho(q) \frac{d}{d q}\left[C_{4}(q) q^{7}\right] d q
\end{align*}
$$

Here we have omitted the prime in the integration variable q^{\prime} as we did before. The argument q of $K_{i}(q)$, of course, is identical with the upper limit of the integral (but not with the integration variable!).

4.1.3 Potential of Shell E_{P}

We now consider the potential of the "shell" E_{P} bounded by the surfaces S_{P} and S. We apply the same trick as before (sec. 4.1.1., Fig. 4.3). We calculate V_{e} first not at P, but at a point P_{i} situated on the radius vector of P in such a way that $r<r^{\prime}$ is always satisfied and the series corresponding to (4-8),

FIGURE 4.4: Illustrating the computation of V_{e}

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{n}}{r^{\prime n+1}} P_{n}(\cos \psi) \tag{4-27}
\end{equation*}
$$

always converges (Fig. 4.4). For this "harmless" point we have

$$
\begin{equation*}
V_{e}\left(P_{i}\right)=G \iiint_{E_{P}} \frac{\rho}{l} d v=\sum_{n=0}^{\infty} r^{n} \cdot G \iint_{E_{P}} \frac{\rho}{r^{n+1}} P_{n}(\cos \psi) d v \tag{4-28}
\end{equation*}
$$

in analogy to (4-9). We again perform the change of variable of sec. 4.1.2, so that the integral in (4-28) becomes

$$
\begin{align*}
& G \iiint_{E_{P}} \frac{\rho}{r^{\prime n+1}} P_{n}(\cos \psi) d v= \\
& \quad=G \int_{q^{\prime}=q}^{R} d q^{\prime} \rho\left(q^{\prime}\right) \iint_{\sigma} \frac{1}{r^{\prime n-1}} \frac{\partial r^{\prime}}{\partial q^{\prime}} P_{n}(\cos \psi) d \sigma \\
& \quad=\frac{G}{2-n} \int_{q}^{R} d q^{\prime} \rho\left(q^{\prime}\right) \iint_{\sigma} \frac{\partial}{\partial q^{\prime}}\left(r^{\prime 2-n}\right) P_{n}(\cos \psi) d \sigma . \tag{4-29}
\end{align*}
$$

In analogy to (4-24) we put

$$
\begin{equation*}
r^{\prime 2-n}=q^{\prime 2-n}\left[D_{n}\left(q^{\prime}\right)+E_{n}\left(q^{\prime}\right) P_{2}\left(\cos \theta^{\prime}\right)+F_{n}\left(q^{\prime}\right) P_{4}\left(\cos \theta^{\prime}\right)\right] \tag{4-30}
\end{equation*}
$$

and substitute. Orthogonality will again remove most terms, and using (4-25) we get

$$
\begin{equation*}
V_{e}\left(P_{i}\right)=L_{0}(q)+L_{2}(q) r^{2} P_{2}(\cos \theta)+L_{4}(q) r^{4} P_{4}(\cos \theta) \tag{4-31}
\end{equation*}
$$

with

$$
\begin{align*}
& L_{0}(q)=2 \pi G \int_{q}^{R} \rho(q) \frac{d}{d q}\left[D_{0}(q) q^{2}\right] d q \\
& L_{4}(q)=-\frac{2 \pi G}{9} \int_{q}^{R} \rho(q) \frac{d}{d q}\left[F_{4}(q) q^{-2}\right] d q \tag{4-32}
\end{align*}
$$

in perfect analogy to (4-26).
The case $n=2$ requires special treatment: we cannot use the third line of (4-29) because then $2-n=0$, but we can use the second line, where $n-1=1$ and

$$
\begin{equation*}
\frac{1}{r} \frac{\partial r}{\partial q}=\frac{\partial \ln r}{\partial q} \tag{4-33}
\end{equation*}
$$

From (4-11) we get

$$
\begin{equation*}
\ln r=\ln q+\ln \left(1+\epsilon_{2} P_{2}+\epsilon_{4} P_{4}\right) \tag{4-34}
\end{equation*}
$$

Applying the well-known series

$$
\begin{equation*}
\ln (1+x)=x-\frac{1}{2} x^{2} \cdots \tag{4-35}
\end{equation*}
$$

we thus have

$$
\begin{equation*}
\ln r=\ln q+\epsilon_{2} P_{2}+\epsilon_{4} P_{4}-\frac{1}{2} \epsilon_{2}^{2} P_{2}^{2} \tag{4-36}
\end{equation*}
$$

Here we note that $\epsilon_{2}=O(f), \epsilon_{2}^{2}=O\left(f^{2}\right), \epsilon_{4}=O\left(f^{2}\right)$ where f is the flattening (this will be confirmed below). Hence ϵ_{4}^{2} would already be $O\left(f^{4}\right)$ and thus is to be neglected.

For P_{2}^{2} we have the formula

$$
\begin{equation*}
\left[P_{2}(t)\right]^{2}=\frac{1}{5}+\frac{2}{7} P_{2}(t)+\frac{18}{35} P_{4}(t) \tag{4-37}
\end{equation*}
$$

which expresses the square of the Legendre polynomial P_{2} as a linear combination of P_{2} and P_{4}. This formula, which can be verified immediately by substituting the defining expressions ($1-33$), will play a basic role in our second-order theory.

Since we are considering $L_{2}(q)$, we need only the coefficient of P_{2} (all other terms are removed by orthogonality), so that (4-36) gives

$$
\begin{equation*}
\ln r=\cdots+\left(\epsilon_{2}-\frac{1}{7} \epsilon_{2}^{2}\right) P_{2}(\cos \theta)+(\cdots) P_{4}(\cos \theta) \tag{4-38}
\end{equation*}
$$

$(-1 / 7)$ in (4-38) results as the product of $(-1 / 2)$ in $(4-36)$ and $(2 / 7)$ in (4-37).
We take into account ($4-38$) and substitute (4-33) in the second line of (4-29). Orthogonality and ($4-25$) with $n=2$ then give immediately

$$
\begin{equation*}
L_{2}(q)=\frac{4 \pi G}{5} \int_{q}^{R} \rho(q) \frac{d}{d q}\left(\epsilon_{2}-\frac{1}{7} \epsilon_{2}^{2}\right) d q \tag{4-39}
\end{equation*}
$$

4.1.4 Computation of $K_{n}(q)$ and $L_{n}(q)$

For this purpose we need (4-24) and (4-30). For $n=0$ we have by raising (4-11) to the third power:

$$
r^{3}=q^{3}\left(1+3 \epsilon_{2} P_{2}+3 \epsilon_{4} P_{4}+3 \epsilon_{2}^{2} P_{2}^{2}\right),
$$

to $O\left(f^{2}\right)$ and omitting the primes. For P_{2}^{2} we use (4-37) to get

$$
\begin{equation*}
A_{0}(q)=1+3 \epsilon_{2}^{2} \cdot \frac{1}{5}=1+\frac{3}{5} \epsilon_{2}^{2} \tag{4-40}
\end{equation*}
$$

A_{2} and A_{4} are removed by orthogonality, so that we do not need them. For $n=2$ we have

$$
r^{5}=q^{5}\left(1+5 \epsilon_{2} P_{2}+5 \epsilon_{4} P_{4}+10 \epsilon_{2}^{2} P_{2}^{2}\right),
$$

so the only required term in $(4-24)$ is

$$
\begin{equation*}
B_{2}=5 \epsilon_{2}+10 \epsilon_{2}^{2} \cdot \frac{2}{7}=5\left(\epsilon_{2}+\frac{4}{7} \epsilon_{2}^{2}\right) \tag{4-41}
\end{equation*}
$$

For $n=4$ we similarly find

$$
\begin{align*}
& r^{7}=q^{7}\left(1+7 \epsilon_{2} P_{2}+7 \epsilon_{4} P_{4}+21 \epsilon_{2}^{2} P_{2}^{2}\right), \\
& C_{4}=7 \epsilon_{4}+21 \epsilon_{2}^{2} \cdot \frac{18}{35}=7\left(\epsilon_{4}+\frac{54}{35} \epsilon_{2}^{2}\right) \tag{4-42}
\end{align*}
$$

