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by (1-49). The result is (4-10) with 

q 

Ko(q) = 4~G J p(q): [Ao(q)q3] dq , 
o q 

4 G q d 
K 2(q) ;5 J P(q)d [B2(q)q5] dq 

o q 
(4-26) 

4 G q d 
K4 (q) = ;3 J P(q)d [c4 (q)l] dq 

o q 

Here we have omitted the prime in the integration variable ql as we did before. The 
argument q of Ki ( q), of course, is identical with the upper limit of the integral (but 
not with the integration variable!). 

4.1.3 Potential of Shell E p 

We now consider the potential of the "shell" E p bounded by the surfaces Sp and s. 
We apply the 6ame trick as before (sec. 4.1.1., Fig. 4.3). We calculate V. first not at 
P, but at a point Pi situated on the radius vector of P in such a way that r < r l is 
always satisfied and the series corresponding to (4-8), 

I p 

empty 0 

FIGURE 4.4: lliustrating the computation of V. 

1 00 r" 
-/ = '" -lP,,(cos'!fJ) L.., r,n+ 

n=O 

always converges (Fig. 4.4). For trus "harmless" point we have 

V.(P;) = G III ydv = fr".G III r l :+1 P,,(cos'!fJ)dv , 
Ep n=O Ep 

( 4-27) 

(4-28) 
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in analogy to (4-9). We again perform the change of variable of sec. 4.1.2, so that 
the integral in (4-28) becomes 

G J J J r':+l Pn(cos7f;)dv = 
Ep 

R 8' 
= G J dq'p(q') rr ~l 8r 

Pn(cos7f;)du }} r,n- q' 
q'=q (T 

R 

= ~Jdq'p(q') rr 88 (r'2-n)Pn(cos7f;)du 
2-n )} q' 

q <T 

In analogy to (4-24) we put 

r,2-n = q'2-n [Dn(q') + En(q')P2(cosB') + Fn(q')P4(cos B')J 

( 4-29) 

( 4-30) 

and substitute. Orthogonality will again remove most terms, and using (4-25) we get 

( 4-31) 

with 

( 4-32) 

in perfect analogy to (4-26). 
The case n = 2 requires special treatment: we cannot use the third !ine of (4-29) 

because then 2 _. n = 0, but we can use the ~econd line, where n - 1 = 1 and 

From (4-11) we get 

18r 8lnr 
-; 8q = ----aq 

ln r = ln q + ln(l + €2P2 + €4P4) 

Applying the well-known series 

we thus have 

1 2 ln(l + x) = x - -x ... 
2 

(4-33) 

(4-34) 

(4-35) 

!O 

1 2 2 
ln r = ln q + €2P2 + €4P4 - 2€2 P2 (4-36) POl 

Here we note that €2 = OU), €~ = O(P), €4 = O(P) where f is the flattening 
(this will be confirmed below). Hence €~ would already be O(j4) and thus is to be 
neglected. 
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For P; we have the formula 

( 4-37) 

wruch expresses the square of the Legendre polynomial P2 as a linear combination 
of P, and P4 • Trus formula, wruch can be verified i=ediately by substituting the 
defining expressions (1-33), will playabasic role in our second-order theory. 

Since we are considering L2 ( q), we need only the coefficient of P2 (all other terms 
are removed by orthogonality), so that (4-36) gives 

lnr = ... + (f, - ~ f~)P2(cos9) + ( .. ·)P4 (cos9) ; ( 4-38) 

(-1/7) in (4-38) results as the product of(-1/2) in (4-36) and (2/7) in (4-37). 
We take into account (4-38) and substitute (4-33) in the second line of (4-29). 

Orthogonality and (4-25) with n = 2 then give immediately 

(4-39) 

4.1.4 Computation of Kn(q) and Ln(q) 

For trus purpose we need (4-24) and (4-30). For n = 0 we have by raising (4-11) to 
the trurd power: 

r 3 = q3(1 + 3f,P2 + 3f4P4 + 3f~Pi) , 

to O(P) and omitting the primes. For P; we use (4-37) to get 

() 
21 3, 

Ao q = I + 3f, . - = 1 + -f, ; 
5 5 

(4-40) 

A, and A4 are removed by orthogonality, so that we do not need them. For n = 2 we 
have 

r
6 = q6(1 + 5f,P, + 5f4P4 + 10f~Pi) , 

so the only required term in (4-24) is 

B ' 2 ( 4 2) , = 5f] + IOf2 . "1 = 5 f2 + "1 f 2 

For n = 4 we similarly find 

(4-41) 

( 4-42) 
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