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o 

FIGURE 4.3: lliustrating the computation of V; 

The trick is to leave Ip but to calculate V first at a point p. which lies on the radius 
vector of P but outside Sp in such a way that r ' < r is always satisfied (Fig. 4.3). 
Thus we compute 

( 4-9) 

(the interchange of sum and integral oifers no problem because of the absolute con­
vergence of the integrand series). Since V;(P.) is harmonie, the shell between Sp and 
S being disregarded for the time being, and because of rotational symmetry, (4-9) 
must necessarily have the form (1-37) with zonal harmonies only: 

or 
V;(P.) = Ko(q) + K 2 (q) P

2
(cos(J) + K4 (q) P

4
(cos(J) 

r r 3 r 6 
( 4-10) 

neglecting higher-order terms. Here r, (J, ). are the spherical coordinates of p. as 
usual; because of rotational symmetry there is no explicit dependence on longitude >­
(no tesseral terms) ; and there are only even-degree zonal terms because of symmetry 
with respect to the equatorial plane. The coefficients K n evidently depend on Sp and 
hence on its label q. 

4.1.2 Change of Variable 

The equation of any surface of constant density may be written as 

T 
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r q (1 + ~ EnPn( cos 0)) = 

q(l + E2P2(COSO) + E4P4(COSO)) (4-11) 

again neglecting higher-order terms and taking into account the equatorial symmetry. 
This has the general form 

r=r(q,O) (4-12) 

Considering both 0 and q as variable, this may be regarded as a transformation 
equation between the triples (r, 0, >') and (q, 0, >'), both triples being viewed as &patial 
curvilinear coordinates. The complete transformation equations then are 

r 

o 
>. 

r(q,O) as given by (4-11), 
o 
>. 

For the volume element in spherical coordinates we have by (2-46) 

(4-13) 

( 4-14) 

The change of volume element in a co ordinate transformation is expressed by the 
well-known formula 

drdOd>' = J dqdOd)" 

with the Jacobian determinant 

8r 8r 8r 
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8q 80 8>' 0 

8>' 8>' 8)" 0 

8q 80 8)" 

in view of (4-13). Working out the determinant gives 

so that (4-14) b ecomes 

J = 8r 
8q 

8r 
dv = r 2 8q dqdu 

(4-15) 

8r 

80 
0 

1 0 
(4-16) 

0 1 

( 4-17) 

(4-18) 

This form is surprisingly simple, especially in view of the fact that the co ordinate 
system q, 0, ).. is easily seen to be non-orthogonal. In this transformation we have 
followed Kopal (1960, p. 9). 
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N ow we can transform the integral 

III dv 
Ip 

as 
r(8,>.) q 

II I r,2dr'der = II I 
CF r'=O U q'=O 

,2
Br' d 'd r - q er 
Bq' 

The integration variables are now r', fJ', >..' or q', fJ', >..' with 

der = sin fJ' dfJ' d>..' 

(4-19) 

(4-20) 

(4-21) 

The variable upper limit r(fJ, >..) on the left-hand side of (4-20) denotes the equation 
of the surfaces Sp bounding Ip , for which q is constant (Fig. 4.2). The advantage 
of the transformation (r, fJ, >..) --+ (q, fJ, >..) thus consists in transforming the integral 
(4-19) into an integral with con3tant limits of integration. Then we can also invert 
the order of the integrals, writing 

III dv = j II r,2 ::: dq' der 
Ip q'=O U 

(4-22) 

Here, of course, r' = r( q', fJ') as given by (4-11) with primed variables. 
Hence the integral in (4-9) becomes 

G III pr,npn(cos'lj;)dv = 
Ip 

( 4-23) 

By raising (4-11) to the appropriate power we get an expression of the form 

( 4-24) 

This form will be justified and the functions An, Bn and Cn will be explicitly given 
below. Substitute this into (4-23) and integrate over er. Orthogonality will then 
remove all terms except certain terms with n = 0, 2, 4 for which 

( 4-25) 
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by (1-49). The result is (4-10) with 

q 

Ko(q) = 4~G J p(q): [Ao(q)q3] dq , 
o q 

4 G q d 
K 2(q) ;5 J P(q)d [B2(q)q5] dq 

o q 
(4-26) 

4 G q d 
K4 (q) = ;3 J P(q)d [c4 (q)l] dq 

o q 

Here we have omitted the prime in the integration variable ql as we did before. The 
argument q of Ki ( q), of course, is identical with the upper limit of the integral (but 
not with the integration variable!). 

4.1.3 Potential of Shell E p 

We now consider the potential of the "shell" E p bounded by the surfaces Sp and s. 
We apply the 6ame trick as before (sec. 4.1.1., Fig. 4.3). We calculate V. first not at 
P, but at a point Pi situated on the radius vector of P in such a way that r < r l is 
always satisfied and the series corresponding to (4-8), 

I p 

empty 0 

FIGURE 4.4: lliustrating the computation of V. 

1 00 r" 
-/ = '" -lP,,(cos'!fJ) L.., r,n+ 

n=O 

always converges (Fig. 4.4). For trus "harmless" point we have 

V.(P;) = G III ydv = fr".G III r l :+1 P,,(cos'!fJ)dv , 
Ep n=O Ep 

( 4-27) 

(4-28) 
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