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FIGURE 4.3: Illustrating the computation of V;

The trick is to leave Ip but to calculate V first at a point P, which lies on the radius
vector of P but outside Sp in such a way that 7' < r is always satisfied (Fig. 4.3).
Thus we compute

oo

V(BN = G/// % dv=>" 1"‘% G/// pr'™ P, (cos )dv (4-9)
Ip I Ip

=0

(the interchange of sum and integral offers no problem because of the absolute con-
vergence of the integrand series). Since V;(P,) is harmonic, the shell between Sp and
S being disregarded for the time being, and because of rotational symmetry, (4-9)
must necessarily have the form (1-37) with zonal harmonics only:

VA2 = io rﬁl P, (cos8)
vi(p) = K00, Ko@) p (o0 g)  FHD p(cas) (+10)

neglecting higher-order terms. Here r, 8, A are the spherical coordinates of P, as
usual; because of rotational symmetry there is no explicit dependence on longitude A
(no tesseral terms); and there are only even-degree zonal terms because of symmetry
with respect to the equatorial plane. The coefficients K,, evidently depend on Sp and
hence on its label gq.

4.1.2 Change of Variable

The equation of any surface of constant density may be written as
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r = (1+Ze,, cosO)

n=1

q (1 + €3 P3(cos 8) + €4 Py(cos b)) (4-11)

Il

again neglecting higher-order terms and taking into account the equatorial symmetry.
This has the general form

it e (R (4-12)
Considering both # and g as variable, this may be regarded as a transformation

equation between the triples (r, 8, A) and (g, 8, A), both triples being viewed as spatial
curvilinear coordinates. The complete transformation equations then are

r = r(q, 0) asgiven by (4-11),
P (4-13)
A

For the volume element in spherical coordinates we have by (2-46)
dv = r’sin §drdfd)\ = r’drdo . (4-14)

The change of volume element in a coordinate transformation is expressed by the
well-known formula

drdfd) = Jdqdfd)\ : (4-15)
with the Jacobian determinant
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in view of (4-13). Working out the determinant gives

= ﬁ 4-17
¥ . dq ) ( B )

8o that (4-14) becomes
dv = r? —8— dqdo . (4-18)

This form is surpnsmgly simple, especially in view of the fact that the coordinate

system g, 6, ) is easily seen to be non-orthogonal. In this transformation we have
followed Kopal (1960, p. 9).
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Now we can transform the integral

[ [ dv (4-19)

as
~(8,))

// / 'zdrda'—// / '2aldq'da' : (4-20)

The integration variables are now 7', 8', X’ or ¢/, ', A’ with
do =sin 0'df'd)' . (4-21)
The variable upper limit 7(€, A) on the left-hand side of (4-20) denotes the equation
of the surfaces Sp bounding Ip, for which ¢ is constant (Fig. 4.2). The advantage
of the transformation (r, 8, A) — (g, 8, A) thus consists in transforming the integral

(4-19) into an integral with constant limits of integration. Then we can also invert
the order of the integrals, writing

// dv—/// dqda . (4-22)

Here, of course, r' = r(¢', 8') as given by (4-11) with primed variables.
Hence the integral in (4-9) becomes

G/// pr'"P,(cos)dv =
=G / dq'p(qd // '"+2 P, (cosv)do

+3/dq P(q)//a - (r'"*3) Py(cos p)do . (4-23)

By raising (4-11) to the appropriate power we get an expression of the form
P8 = ¢34 (¢') + Bn(q')Pa(cos 8') + C,(q')Ps(cos 8')] . (4-24)
This form will be justified and the functions A4,,, B, and C, will be explicitly given

below. Substitute this into (4-23) and integrate over o. Orthogonality will then
remove all terms except certain terms with n = 0, 2, 4 for which

P,(cos ) (4-25)

; o
[ P,(cos 0")P,(cos?p)do = T
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by (1-49). The result is (4-10) with
Ko(q) = % O/q p(q)di [4o(g)e°] dg
Ky(g) = 4WG/ pla) 3 [Bz(q)q‘] dg , (4-26)
Ki(g) = 4WG / p(Q)— [Cu(9)q"] da

Here we have omitted the prime in the integration variable ¢’ as we did before. The

argument ¢ of K;(g), of course, is identical with the upper limit of the integral (but
not with the integration variable!).

4.1.3 Potential of Shell Ep

We now consider the potential of the “shell” Ep bounded by the surfaces Sp and S.
We apply the same trick as before (sec. 4.1.1., Fig. 4.3). We calculate V, first not at

P, but at a point P; situated on the radius vector of P in such a way that » < ' is
always satisfied and the series corresponding to (4-8),

FIGURE 4.4: Illustrating the computation of V,

il =

-
7% 20—7""“ P,(cos®) , (4-27)

always converges (Fig. 4.4). For this “harmless” point we have

V,(P;)=Géf/%dv=gr"-G/E//F'%Pﬂ(cos¢)dv . (4-28)
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