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3.3.3 A Remarkable Expression for the Density

Assume the body to consist of n layers bounded by surfaces S, and Si,; (Fig. 3.3).
The density within each layer is constant, denoted in our case by pjy;.

FIGURE 3.3: A layer of constant density (z denotes x)

Let the surface S, have the equation

fulx)=0 , (3-105)

and let f, be monotonic with

fr(x) >0 inside Sy (3-106)

(otherwise change the sign of f,!).

Then the density everywhere within the stratified body can be described by the
single expression

p(x) = Y (o1 — 1 )OLfu(x)] - (3-107)

k=1
The reader is invited to verify this on the basis of (3-103) and (3-106). Eq. (3-107)

holds with the understanding that p,.; = 0 since the density is zero outside the
boundary surface § = §,,.

3.3.4 Variation of the Potential Energy
Let us find the extremum of the potential energy E = Ey as given by (3-99):
i
E= / (5 v+ q:) pdv (3-108)

where p is expressed by (3-107); since p = 0 outside S, we may extend the integral
formally over the whole space. The side condition is that the volume enclosed by
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any surface S) (Fig. 3.3) remains unchanged during the variation § to be performed

below:
= /dv = const. (3-109)
Sk

This equation continues to hold when multiplied by pr — pg+1, which gives

M, = /(Pk — Pry1)dv = /(Pk — pi+1)0[fr(x)]dv = const. (3-110)
Sk

This expression has the dimension of a mass, but no very direct physical meaning.
Note, however, that the factor [fi(x)] has allowed us to extend the volume integral
formally over the whole space because the integrand vanishes outside Sy since fi(x) <
0 there.

Introducing Lagrangian multipliers A, we thus must minimize (or maximize)

E—3 \M,
k=1

This leads to the variational condition (§ is now the sign for variation and has nothing
to do with the Delta function!):

§ [E— Z,\,,M,,] =0 (3-111)
k=1
or "
/(V +®)6pdv — 3 \ebM, =0 . (3-112)
k=1

Note that we are varying the density p by §p and that, as compared to (3—-108) the
factor 1/2 seems to be missing. However, by (3-96), Ey is a quadratic functional of
p. This introduces the usual factor of 2 on differentiation, which combines with 1/2
to 1. With the gravity potential W = V + & this reduces to

/ Wopdv — S MM =0 . (3-113)
k=1
Now we must express the density variations §p by &fi(x) since ép is caused by a
change in the boundary surfaces only. Now our expression (3-107) comes in handy:
we have :
60 fu(x)] = O'[fu(x)]6fi(x) (3-114)
where 6'(z) = §(z) is the delta function by (3-104); we prefer the notation 8’ to avoid
confusion with the variation 4.
With (3-114) everything is straightforward: (3-107) gives ép, and (3-110) simi-
larly gives § M. Thus (3-113) becomes

n

[ @0 {3200 pr W) - MG 840 =0 (3-115)

k=1




i e T T R R R S s

3.3 STATIONARY POTENTIAL ENERGY 7

The small deformations §fi(x) being arbitrary, the integrand between brackets {}
must vanish: .
2 (P = Pra)(W(x) — M)S[fu(x)] =0 . (3-116)
k=1
Now there is no more danger of confusion, so that now we were able to use the
standard symbol § instead of 6 for the Dirac delta function, but distinguish 6[fi(x)]
from 6 fi(x)!

By the definiton (3-100), the delta function §[fi(x)] vanishes everywhere except
on the surface S, where it is different from zero (that it is even infinite there gives
mathematicians a shudder but leaves physicists entirely cold). Thus since §[f(x)] # 0
on S, we must have W(x) — A\, =0 or

W (x) = Ax = constant on S; , (3-117)

which means that the boundary surfaces S, of regions of constant density must be
equipotential surfaces.

In the limit » — oo of a continuous density we thus have recovered the basic fact
that the surfaces of constant density must be surfaces of constant potential. This is
our well-known condition for equilibrium figures.

What is new? Formerly, in sec. 2.5, we have derived this condition from (2-98)
by means of the pressure p, a quantity which we have not used afterwards any more.
For some people’s taste, it is not very elegant to introduce an auxiliary concept which
plays the role of a deus ez machina and disappears again. Here we have derived our
basic condition p = const. <= W = const. from the principle of stationary energy,
which is logically more satisfactory for many people, especially in view of the fact
that maximum or minimum principles play a fundamental role in physics.

Another beautiful fact: the Lagrange multiplier Ay admits a natural physical in-
terpretation; it is nothing else than the constant value of the potential W on S, cf.

(3-117).
3.3.5 A General Integral Equation

Now we are also in a position to give an explicit representation for the functions fj(x)
which characterize the equisurfaces Si: we may simply put

ful®) = W(x) - M (3-118)

In fact, on S) we have fi(x) = 0 by (3-117), and inside Sy there is fi(x) > 0 since W
Increases monotonically towards the center. Thus (3-105) and (3-106) are satisfied.
Now in

W (x) =G/§d’v+%w2(zz+yz) (=V + o) (3-119)
We may substitute (3-107) together with (3-118), obtaining

W(x) = G/ dTv i:(ﬂk — pr1)0[W(x') — A] + %wz(:c2 + %) (3-120)
k=1
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