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3.3.3 A Remarkable Expression for the Density 

Assume the body to consist of n layers bounded by surfaces Sk and Sk+I (Fig. 3.3). 
The density within each layer is constant, denoted in our case by PHI' 

FIGURE 3.3: A layer of constant density (r!<. denotes x) 

Let the surface Sk have the equation 

(3-105) 

and let fk be monotonie with 

inside Sk (3-106) 

(otherwise change the sign of fk!)' 
Then the density everywhere within the stratified body can be described by the 

single expression 
n 

p(x) = L:(Pk - PHI)O(fk(X)] (3-107) 
k=1 

The reader is invited to verify this on the basis of (3-103) and (3- 106). Eq. (3-107) 
holds with the understanding that Pn+1 = 0 since the density is zero outside the 
boundary surface S = Sn. 

3.3.4 Variation of the Potential Energy 

Let us find the extremum of the potential energy E = Ew as given by (3-99): 

(3-108) 

where p is expressed by (3-107); since p = 0 outside S, we may extend the integral 
formally over the whole space. The side condition is that the volume enclosed by 
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any surface Sie (Fig. 3.3) remains unchanged during the variation 5 to be performed 
below: 

Vle = J dv = const. 
s. 

This equation continues to hold when multiplied by Pie - Pk+l, which gives 

M le = J (Pie - pk+l)dv = J (Pie - pk+l)O[fle(x)]dv = const. 
s. 

(3-109) 

(3-110) 

This expression has the dimension of a mass, but no very direct physical meaning. 
Note, however, that the factor O[fle(x)] has allowed us to extend the volume integral 
formally over the whole space because the integrand vanishes outside Sk since fle(x) < 
o there. 

Introducing Lagrangian multipliers .Ale, we thus must minimize (or maximize) 

This leads to the variational condition (5 is now the sign for variation and has nothing 
to do with the Delta function!): 

(3-111) 

or 

J(V + if!)opdv - t .AleoMIe = 0 
k=l 

(3-112) 

Note that we are varying the density P by op and that, as compared to (3-108) the 
factor 1/2 seems to be missing. However, by (3-96), E v is a quadratic functional of 
p. This intro duces the usual factor of 2 on differentiation, which combines with 1/2 
to 1. With the gravity potential W = V + q; this reduces to 

J Wopdv - t .AleoMIe = 0 
Ie=l 

(3-113) 

Now we must express the density variations op by 5 fk(X) since op is caused by a 
change in the boundary surfaces only. Now oUf expression (3-107) comes in handy: 
we have 

(3-114) 

where O'(:z;) = 5(:z;) is the delta function by (3-104); we prefer the notation 0' to avoid 
confusion with the variation O. 

With (3-114) everything is straightforward: (3-107) gives 5p, and (3-110) simi
larly gives 5Mk • Thus (3-113) becomes 

(3-115) 
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The small deformations 5/k (x) being arbitrary, the integrand between brackets {} 
must vanish: 

n 

L(Pk - PH1)(W(X) - Ak)5[/k(X)] = 0 (3- 116) 
k=l 

Now there is no more danger of confusion, so that now we were able to use the 
standard symbol 5 instead of B' for the Dirac delta function, but distinguish 5[fk(X)] 
!rom 6 fk(X)! 

By the definiton (3-100), the delta function 5[A(x)] vanishes everywhere except 
on the surface Sk, where it is different from zero (that it is even infinite there gives 
mathematicians a shudder but leaves physicists entirely cold) . Thus since 5[A(x)] i= 0 
on Sk, we must have W(x) - Ak = 0 or 

W(X) = Ak = constant on Sk (3-117) 

which means that the boundary surfaces Sk of regions of constant density mUßt be 
equipotential Bur/acea. 

In the limit n --+ 00 of a continuous density we thus have recovered the basic fact 
that the ,ur/aces 0/ conatant denaity muat be aur/aces 0/ constant potential. This is 
our well-known condition for equilibrium figures. 

What is new? Formerly, in sec. 2.5, we have derived this condition !rom (2- 98) 
by means of the pressure p, a quantity which we have not used afterwards any more. 
For some people's taste, it is not very elegant to introduce an auxiliary concept which 
plays the role of a deua ex machina and disappears again. Here we have derived our 
basic condition P = const. <:==> W = const . from the principle of stationary energy, 
which is logically more satisfactory for many people, especially in view of the fact 
that maximum or minimum principles playafundamental role in physics. 

Another beautiful fact: the Lagrange multiplier Ak admits a natural physical in
terpretation; it is not hing else than the constant value of the potential W on Sk, cf. 
(3-117). 

3.3.5 A General Integral Equation 

Now we are also in a position to give an explicit representation for the functions fk(X) 
which characterize the equisurfaces Sk: we may simply put 

(3- 118) 

In fact, on Sk we have /k(X) = 0 by (3- 117) , and inside Sk there is h ex) > 0 since W 
increases monotonically towards the center . Thus (3-105) and (3-106) are satisfied. 

Now in 

(= V + <1» (3- 119) 

we may .substitute (3-107) together with (3- 118), obtaining 

W(x) = G / dZv t(Pk - Pk+l)9[W(x/) - Akl + ~ W2( X
2 + y 2) 

k=l 2 
(3- 120) 
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