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or 

(3-88) 

Corresponding to our approximation, we neglect the product of fw 2 (this removes w2 

from our further considerations), and take gp(t) spherical, using (2-62): 

47rG 
gp(t) = -3- tD(t) (3-89) 

Thus (3-88) reduces to 

(3-90) 

from which Clairaut's formula (2-114) follows immediately (with t == q in our appro
ximation). 

Note that Wavre's theory gives only Clairaut's differential equation, but not the 
boundary condition (2-118)! 

The corresponding second-order theory is considerably more involved and will be 
treated in sec. 4.3. 

3.2.6 Concluding Remarks 

Wavre's theory is very beautiful and deep. Its true significance lies below the relati
vely simple mathematical formulism and is not so easily understood as the formulas 
themselves. We shall, therefore, try now to put Wavre's results into a proper per
spective. 

Equilibrium figures may be fully characterized by three conditions: 
(A) The surfaces of constant potential coincide with the surfaces of constant den

sity (sec. 2.5). Mathematically this means that the density p is only a function of the 
potential W or, in view of (3-39), 

/::,.W = F(W) (3-91) 

the Laplacian of W is a function only of W! This condition clearly has a differential 
and hence loeal character. 

(E) The density p is positive and does not decrease towards the center. This is a 
natural condition, as the density models of sec. 1.5 show. 

(C) The boundary surface So of the equilibrium figure is an equipotential surface 
W = const.j outside So there are no masses, so that the corresponding external 
potential V is harmonie everywhere outside So and goes to zero as GM/r for r --> 00. 

This may be considered aglobai condition. 
In addition, we have the Jymmetry conditions: 
(D) There is symmetry with respect to the equatorial plane, and rotational sym

metry, the first being necessary, the second being a natural assumption. 
Now it is basic that Wavre only uses the loco.l condition (A) and the symmetry 

(D). The global eondition (C) iJ not taken into aecount at all! Thus Wavre's theory 
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is essentially incomplete. His results continue to hold if the equilibrium figure were 
surrounded by a rotationally symmetrie mass configuration, such as an equatorial ring 
of Saturn type. Then, however, we can no longer speak of free equilibrium figures. 

The basic Poisson equation (3-91) is equivalent both to Wavre's fundamental 
equation (3-40) - Bruns' formula (3-38) is nothing else than a sophisticated form 
of Poisson's equation as we have remarked after eq. (1-19) - and to the auxiliary 
equation (3-66). It is truly remarkable that one is able to prove such important 
results as Wavre's theorem (sec. 3.2.2) and the impossibility of a strictly ellipsoidal 
stratification (sec. 3.2.4) on the basis of this local theory only. The global condition 
(C) is not even necessary for these purposes! 

Thus Wavre's equation (3-40), leading to his theorem (sec. 3.2.2) is a necessary 
but by no means sufficient condition for a free equilibrium figure since the global 
condition (C) is not taken into account. 

It might now be tempting to reason in the foilowing way. Eq. (3-40) holds for 
arbitrary 0 1 and O2 , If we replace O2 by 0 3 , we get the purely geometrical relation 

(2JN - 8lnN/8t)0, - (2JN - 8lnN/8t)0, 
(N2)0. - (N2)0, 

(2JN - 8lnN/8t)0, - (2JN - 8lnN/8t)e, 
(N2)0, - (N2)0, 

(3-92) 

which is a necessary condition for all stratifications of equilibrium figures. An equiv
alent form of this condition, with differences replaced by derivatives, is (3-46). 

Assume now that this condition were also sufficient. Then we could remove the 
layer above any internal equisurface S(t), cf. Fig. 3.2. For the remaining "reduced" 
figure bounded by S(t), eq. (3-92) continues to hold for any ofits intern al equisurfaces, 
and the reduced figure would also be a possible figure of equilibrium. 

This is Ledersteger's (1969, p. 536) "Prinzip der Entblätterung" (principle of re
moving shells bounded by two equisurfaces). For homogeneous ellipsoidal equilibrium 
figures (Maclaurin ellipsoids), this principle indeed holds since in this case, such sheils 
are bounded by geometrically similar ellipsoids, and it is weil known (Newton's theo
rem) that such an "ellipsoidal homoeoid" exerts no attraction in its interiorj cf. (Kel
logg, 1929, p. 22) or (Chandrasekhar, 1969, p. 39). Furthermore, the centrifugal force 
re duces proportionally. 

For heterogeneous ellipsoidal figures, however, this principle does not hold (Voss, 
1965), not even in the linear approximation . In fact, if it holds, we could remove 
~he layer above the equisurface labeled by q, so that p = 0 above it and the second 
Integral in (2-109) would vanish. Thus the term 

R 

J df d ' 
q P dq' q 

would have to vanish identically, which only holds jf f = const., for a homothetic 
(geometrically similar) stratification, and this is only possible for homogeneous figures, 
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as we have seen in sec. 3.2.4. (In fact, the layer between S(t) and S(l) = So in Fig. 3.2 
has the function of an external mass, not unlike to Saturn's ring mentioned above, 
for the "reduced" equilibrium figure bounded by S(t)!) 

This confirms that (3-92) is only necessary but not sufficient. Hence, before 
applying Wavre's procedure described by (3-51) and (3-52), we must first make sure 
that the given ~tratification corresponds to a pos~ible figure 0/ equilibrium, which is by 
no means a simple matter, as already the counterexample of sec. 3.2.4 (non-homothetic 
ellipsoidal stratification) has shown. 

To find such a possible stratification is a highly nontrivial problem indeed. In fact, 
no rigorous solution for a heterogeneous earthlike figure of equilibrium is known to the 
author. Heterogeneous solutions can only be constructed by a process of successive 
iteration or expansions with respect to powers of the flattening, the convergence for 
"small" values of the flattening / being guaranteed by the theorem of Liapunov
Lichtenstein mentioned at the beginning of sec. 3.l. 

The "local" character of Wavre's theory is also expressed by the fact that it permits 
us to derive Clairaut's differential equation (2-114) but not the boundary condition 
(2-118), as we have pointed out at the end of sec. 3.2.5 and shall see again in more 
detail in sec. 4.3. Boundary conditions are typically global. 

The theory of equilibrium figures is extremely subtle and full of unexpected pit
falls. There are "no-go theorems" such as the impossibility of a purely ellipsoidal 
stratification for heterogeneous equilibrium figures (sec. 3.2.4) and the fact that the 
terrestrial level ellipsoid cannot be an equilibrium figure, as we shall see in sec. 4.2.4 
and later throughout Chapter 5 and then again in sees. 6.2 and 6.4. The latter fact 
was clearly recognized and repeatedly emphasized by Karl Ledersteger. It should be 
noticed here that Ledersteger was the last great geodesist who seriously and deeply 
engaged hirnself in Wavre's theory of equilibrium figures. This should be acknow
ledged even if one is not prepared to follow him all the way (see his "Prinzip der 
Entblätterung" as mentioned above). 

Still, to first order in the flattening /, the level ellipsoid is an equilibrium figure 
with an approximately ellipsoidal stratification: this is Clairaut's theory, cf. sec. 3.2.5. 
Deviations from an ellipsoidal stratification start only in the second-order approxi
mation (sec. 4.2.4) and are thus very small. Hence a very small change is sufficient 
to destroy equilibrium, which means that the property of being an equilibrium figure 
is extremely sensitive with respect to small perturbations: in a very special sense, it 
is an "unstable" property (this has not hing to do with the problem of instability of 
equilibrium figures which is important for stellar figures but not for the figure of the 
earth!). For another such "special instability" cf. sec. 3.2.3. 

A final word on the relationship between Wavre's approach and the approach by 
Clairaut-Liapunov-Lichtenstein described in sec. 3.1. In asense, the two approaches 
are "dialectical opposites". Wavre starts from a given stratification (the geometry) 
and determines the corresponding density distribution (the physics), whereas Lich
tenstein starts from a given density distribution (which is initially spherical) and 
determines the configuration or stratification which results from a "small" rotation 
w. Hence Wavre determines the physics of the problem from its geometry, whereas 
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Lichtenstein determines the geometry from the physics. Also, for Lichtenstein, the 
spherical configuration is the starting point, whereas for Wavre it is a singularity 
(O/O)! 

Wavre's approach is also described in the books (Baeschlin, 1948) and (Leder
steger, 1969), whereas the basic book in English, (Jardetzky, 1958), does not present 
it, although it outlines an approximation method also due to Wavre ("proCf!de uni
forme") which intends, by an ingenious but complicated trick, to circumvent the 
convergence problem of certain series of spherical harmonies. We shall not treat this 
here because the author believes that this problem can be tackled in a much simpler 
way as we shall see in sec. 4.1.5. 

3.3 Stationary Potential Energy 

In various domains of physics, equilibrium is associated with a stationary (maximum 
or minimum, depending on the sign) value of potential energy. Liapunov and Poin
eare have treated homogeneous equilibrium figur es from this point of view; a modern 
approach is found in the book (Macke, 1967, p. 543). Macke's method has been ge
neralized to heterogeneous (terrestrial) equilibrium figures (Macke et al., 1964; Voss, 
1965, 1966). This approach is interesting because it reflects the typical thinking and 
mathematical methods of modern theoretical physics. 

3.3.1 Potential Energy 

The gravitational energy of a material particle of mass m in a field of potential V is 
mV, and that of a system of particles thus 

E = l:miV; (3-93) 

the sign (+ or -) is conventional. 
This holds for an ezternal potential field V. If the field is produced by the mutual 

gravitational attraction of the particles themselves: 

(j i i) (3-94) 

then (3-93) gives 

Gl:
mimj 

'I; lij 

Eaeh term oecurs twice, however (interchange i and j), so that we must divide by 2, 
obtaining 

Ev = ~ G l: l: mimj (j i i) (3-95) 
2 i j lij 

cf. also (Kellogg, 1929, pp. 79-81) or (Poincare, 1902, pp. 7-8). 
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