3.2.1 Stratification of Equisurfaces

Let $S(t)$ denote the set of equisurfaces (surfaces of constant density and of constant potential), as a function of a parameter t (there is no danger of confusing it with time!). The parameter t thus "labels" the individual equisurfaces and could, in principle, be selected in many ways. Formerly, we have labeled the equisurface by its mean radius q, but in Wavre's theory it is more convenient instead to take the parameter t as the semiminor axis of the spheroidal equisurface under consideration. (This is well known since the ellipsoidal coordinate u also has this character, cf. sec. 5.1. For the limiting ("free") surface S we take $t=1$, so that $S=S(1)$.

We again assume rotational symmetry about the z-axis, knowing already that the stratification must also be symmetric with respect to the equatorial plane (invariance for $z \rightarrow-z$). Thus we have no dependence on longitude λ; as latitudinal coordinate we take a parameter Θ that labels the plumb lines as indicated in Fig. 3.2.

FIGURE 3.2: The geometry of stratification
Since the equisurfaces $t=$ const. are not parallel, their infinitesimal distance $d n$ differs, in general, from $d t$. We put

$$
\begin{equation*}
\frac{d n}{d t}=N(t, \Theta) \tag{3-32}
\end{equation*}
$$

where the function N is unknown a priori. Note that N is always positive (from geometry), dimensionless (by our choice of units) and equals 1 on the rotation axis $\Theta=0$. (The symbol N has also been used for the geoidal height and the ellipsoidal normal radius of curvature!)

Since, by definition, the potential W depends on t only, we have for gravity

$$
\begin{equation*}
g=-\frac{\partial W}{\partial n}=-\frac{d W}{d t} / \frac{d n}{d t}=-\frac{1}{N} \frac{d W}{d t} . \tag{3-33}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{d W}{d t}=-g N=W^{\prime}(t) \tag{3-34}
\end{equation*}
$$

is a function only of t, although g and N depend also on Θ. In other terms

$$
\begin{equation*}
(g N)_{\Theta_{1}}=(g N)_{\Theta_{2}} \tag{3-35}
\end{equation*}
$$

the product $g N$ is independent of Θ along an equisurface $S(t)$.
Since (3-35) is an identity in t, it can be differentiated:

$$
\begin{equation*}
\left(\frac{\partial g}{\partial t} N+g \frac{\partial N}{\partial t}\right)_{\Theta_{1}}=\left(\frac{\partial g}{\partial t} N+g \frac{\partial N}{\partial t}\right)_{\Theta_{2}} \tag{3-36}
\end{equation*}
$$

Now by (3-32),

$$
\begin{equation*}
\frac{\partial g}{\partial t}=\frac{\partial g}{\partial n} \frac{d n}{d t}=N \frac{\partial g}{\partial n} \tag{3-37}
\end{equation*}
$$

and Bruns' formula (1-19) gives

$$
\begin{equation*}
\frac{\partial g}{\partial n}=-2 J g+4 \pi G \rho-2 \omega^{2}=-2 J g-f \tag{3-38}
\end{equation*}
$$

calling with Wavre

$$
\begin{equation*}
f=-4 \pi G \rho+2 \omega^{2} \quad(\equiv \Delta W!) \tag{3-39}
\end{equation*}
$$

the "transformed density"; it is nothing else than the result of applying the Laplace operator Δ to the gravity potential W, and the reader will recognize Poisson's equation $(1-14)$. In (3-38), J denotes the mean curvature of the equisurfaces.

Substituting (3-38) into (3-37), and the result into (3-36), we obtain after some elementary computations, also using (3-33), Wavre's fundamental formula

$$
\begin{equation*}
\frac{f(t)}{W^{\prime}(t)}=\frac{(2 J N-\partial \ln N / \partial t)_{\Theta_{2}}-(2 J N-\partial \ln N / \partial t)_{\Theta_{1}}}{\left(N^{2}\right)_{\Theta_{2}}-\left(N^{2}\right)_{\Theta_{1}}} \tag{3-40}
\end{equation*}
$$

This equation is remarkable in that it provides a neat separation of the geometry and the physics of equilibrium surfaces: the left-hand side, containing physical quantities such as density ρ and potential W, depends only on t, whereas the right-hand side depends only on the geometry of stratification (J, N) and is independent of the density distribution!

Putting

$$
\begin{align*}
& X=X(t, \Theta)=N^{2} \tag{3-41}\\
& Y=Y(t, \Theta)=2 J N-\frac{\partial \ln N}{\partial t}=2 J N-\frac{1}{N} \frac{\partial N}{\partial t} \tag{3-42}
\end{align*}
$$

we may write $(3-40)$ briefly as

$$
\begin{equation*}
\frac{f(t)}{W^{\prime}(t)}=\frac{Y\left(t, \Theta_{2}\right)-Y\left(t, \Theta_{1}\right)}{X\left(t, \Theta_{2}\right)-X\left(t, \Theta_{1}\right)} \tag{3-43}
\end{equation*}
$$

which holds for arbitrary Θ_{1} and Θ_{2}. These equations are due to Wavre. Going one step further, we may put

$$
\begin{aligned}
& \Theta_{1}=\Theta, \\
& \Theta_{2}=\Theta+h,
\end{aligned}
$$

so that (3-43) may be written as

$$
\frac{f(t)}{W^{\prime}(t)}=\frac{\frac{Y(t, \Theta+h)-Y(t, \Theta)}{h}}{\frac{X(t, \Theta+h)-X(t, \Theta)}{h}} .
$$

Now, however, we may let $h \rightarrow 0$, obtaining according to the definition of the partial derivative

$$
\begin{equation*}
\frac{\partial X}{\partial \Theta}=\lim _{h \rightarrow 0} \frac{X(t, \Theta+h)-X(t, \Theta)}{h} \tag{3-44}
\end{equation*}
$$

the form

$$
\begin{equation*}
\frac{f(t)}{W^{\prime}(t)}=\frac{\partial Y / \partial \Theta}{\partial X / \partial \Theta}=\text { function of } t \text { only } \tag{3-45}
\end{equation*}
$$

This is an identity in t and Θ, which will be useful in sec. 4.3. Another elegant formula is obtained by differentiating this identity with respect to Θ :

$$
\begin{equation*}
\frac{\partial}{\partial \Theta}\left(\frac{\partial Y / \partial \Theta}{\partial X / \partial \Theta}\right)=0 \tag{3-46}
\end{equation*}
$$

which is another expression of the fact that the quotient $(\partial Y / \partial \Theta) /(\partial X / \partial \Theta)$ does not explicitly depend on Θ, being a function of t only. Since by differentiation we lose $f(t) / W^{\prime}(t)$, eq. (3-46) contains less information than (3-45), however.

3.2.2 Wavre's Theorem

Put for the left-hand side of $(3-40)$ or (3-45):

$$
\begin{equation*}
\Psi(t)=\frac{f(t)}{W^{\prime}(t)} . \tag{3-47}
\end{equation*}
$$

Then (3-37), using (3-33), (3-38) and (3-47), can be brought into the form

$$
\begin{equation*}
\frac{1}{g} \frac{\partial g}{\partial t}=-2 J N+\Psi N^{2} \tag{3-48}
\end{equation*}
$$

which again is a function of the geometrical stratification only and does not depend on the density! This is a direct consequence of the definition (3-47) and of the remarkable properties of (3-40) just pointed out.

