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We further take from (2-57) 

q 

() 47l"G J 1 12d 1 gq =-2- pq q 
q 0 

(3-30) 

and restore the subscript 2 to (. Then the comparison of (3-18) and (2-82), noting 
r = OP = q + ( (Fig. 3.1) and (0 = 0, gives 

Thus (3-27) becomes, on omitting the prime on p so that p = p(q') and similarly for 
f after the integral, 

q q 

2 f J 12d 1 2 1 J ( (6) - - - pq q + - - pd f q + 
3 q 15 q3 

o 0 

R 
2 J w

2q2 + 15 l p df + 127l"G = 0 (3-31) 

which is identical to (2-106) (up to a factor 15q3/2 which cancels), on noting, e.g., 

dlf = df d 1 

dq' q 

Since Clairaut's equation (2-114), plus boundary condition (2-118), was a direct 
consequence of (2-106), it equally follows from (3-31). 

This provides another method for deriving Clairaut's equation, which has the 
advantage of using an integral equation similar to the integral equations customary 
from Molodensky's approach to physical geodesy. 

Therefore it is not surprising after all tha.t even Molodensky (1988) occupied him
self with the integral equation of Lichtenstein! 

3.2 The Geometry of Equilibrium Surfaces 

Clairaut's equation (2-114) for the basic geometrie quantity, the flattening f, is a 
homogeneouJ differential equation. 

Homogeneous differential equations (with right-hand side zero) with independent 
variable t , time, correspond to free motion, as opposed to forced motion. In the present 
case, the independent variable is the radius r rather than time, but the argument may 
indicate that the geometry of the equisurfaces for equilibrium figures seems to have a 
considerable autonomy. 

This idea was thoroughly investigated in the fundamental book (Wavre, 1932). 
Since it is little known in the English-speaking scientific community, we shall outline 
Wavre's theory of stratification of equilibrium figures (which is rigorouJ). 
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3.2.1 Stratification of Equisurfaces 

Let S(t) denote the set of equisurfaees (surfaces of eonstant density and of eonstant 
potential), as a function of a parameter t (there is no danger of eonfusing it with time!). 
The parameter t thus "labels" the individual equisurfaees and eould, in prineiple, be 
seleeted in many ways. Formerly, we have labeled the equisurfaee by its mean radiu3 
q, but in Wavre's theory it is more eonvenient instead to take the parameter t as the 
$emiminor a:ci3 of the spheroidal equisurfaee under eonsideration. (This is weil known 
sinee the ellipsoidal co ordinate 11. also has this eharacter, cf. sec. 5.1. For the limiting 
("free") surfaee S we take t = 1, so that S = S(1). 

We again assurne rotational symmetry about the z -axis, knowing already that the 
stratifieation must also be symmetrie with respeet to the equatorial plane (invarianee 
for z -+ -z). Thus we have no dependenee on longitude .Ai as latitudinal eoordinate 
we take a parameter 0 that labels the plumb lines as indieated in Fig. 3.2. 

z(8=00) 

free surjace S=S(t) 

equisurjace 
xy (8=90°) 

FIGURE 3.2: The geometry of stratifieation 

Sinee the equisurfaees t = const. are not parallel, their infinitesimal distanee dn 
differs, in general, from dt. We put 

dn Ti = N(t, 0) (3-32) 

where the function N is unknown apriori. Note that N is always positive (from 
geometry), dimensionless (by our ehoiee of units) and equals 1 on the rotation axis 
o = O. (The symbol N has also been used for the geoidal height and the ellipsoidal 
normal radius of eurvature!) 

Sinee, by definition, the potential W depends on t only, we have for gravity 

(3-33) 
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Hence 
dW '( ) ----;]t = -gN = W t 

is a function only of t, although 9 and N depend also on 0. In other terms 

(gN)e 1 = (gN)e, 

the product gN is independent of 0 along an equisurface S(t). 
Since (3-35) is an identity in t, it can be differentiated: 

Now by (3-32), 
8g _ 8g dn _ N 8g 
8t-8ndt- 8n' 

and Bruns' formula (1-19) gives 

8g 
8n = -2Jg + 47rGp - 2w 2 = -2Jg - f , 

calling with Wavre 

(3-34) 

(3-35) 

(3-36) 

(3-37) 

(3-38) 

(3-39) 

the "transformed density"; it is nothing else than the result of applying the Laplace 
operator f1 to the gravity potential W, and the reader will recognize Poisson's equa
tion (1-14). In (3-38), J denotes the mean curvature of the equisurfaces. 

Substituting (3-38) into (3-37), and the result into (3-36), we obtain after some 
elementary computations, also using (3-33), Wavr~'s fundamental formula 

f(t) 

W'(t) 
(2J N - 8In N/8t)e, - (2J N - 8In N/8t)e 1 

(N2)e, .- (N2)e 1 

(3-4Ö) 

This equation is remarkable in that it provides a neat separation of the geometry and 
the physics of equilibrium surfaces: the left-hand side, containing physical quantities 
such as density p and potential W, depends only on t, whereas the right-hand side 
depend3 only on the geometry of 3tratification (J, N) and is independent of the density 
distribution! 

Putting 

x X(t, 0) = N 2 

Y 
aInN 1 aN 

Y(t, 0) = 2JN - -----at = 2JN - N 8t 

we may write (3-40) briefly as 

J.J.!l_ Y(t, O2 ) - Y(t, 0 1 ) 

W'(t) - X(t, O2 ) - X(t, 0 1 ) 

(3-41) 

(3-42) 

(3-43) 
p 
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which holds for arbitrary 0 1 and O2 , These equations are due to Wavre. Going one 
atep further, we may put 

so that (3-43) may be written as 

f(t) 
W'(t) 

o , 
0+h 

Y(t, 0 + h) - Y(t, 0) 
h 

X(t, 0 + h) - X(t, 0) 
h 

Now, however, we may let h --+ 0, obtaining according to the definition of the partial 
derivative 

8X = lim X(t, 0 + h) - X(t, 0) 
80 h~O h 

(3-44) 

the form 
f(t) 8Y/80 . 

W'(t) = 8X/80 = funct10n of t only (3-45) 

This is an identity in t and 0, which will be useful in sec. 4.3. Another elegant formula 
is obtained by differentiating this identity with respect to 0: 

8 (8Y/80) 
80 8X/80 =0, (3-46) 

which is another expression of the fact that the quotient (8Y/80)/(8X/80) does not 
explicitly depend on 0, being a function of t only. Since by differentiation we lose 
f(t)/W'(t), eq. (3-46) contains less information than (3-45), however. 

3.2.2 Wavre's Theorem 

Put for the left-hand side of (3-40) or (3-45): 

'l1(t) = f(t) 
W'(t) 

Then (3-37), using (3-33), (3-38) and (3-47), can be brought into the form 

18g 2 
--=-2JN+'l1N , 
gat 

(3-47) 

(3-48) 

which again is a function of the geometrical stratification only and does not depend on 
the density! This is a direct consequence of the definition (3-47) and of the remarkable 
properties of (3-40) just pointed out. 
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Eq. (3-48) holds for any 0, and in particular for 0 = 0, on the rotation axis. 
Thus we may integrate it along this axis from PN to Po (Fig. 3.2): 

Po a t 

J 1 9 J 2 -at dt= (-2JN+'I!N )dt=lngo-lngN 
PN 9 1 

so that 

go = gNexp [i(-2JN + 'I!N 2 )dt] = g(t, 0) 

where gN = g(l, 0) denotes gravity at the pole. 
Now (3-35), with 0 1 = 0 and O2 = 0, together with (3-50), gives 

g(t, 0) = N(t~ 0) g(t, 0) = N(~~ 0) exp [i(-2JN + 'I!N 2
)dt] 

(3-49) 

(3-50) 

(3-51) 

noting that N(t, 0) = 1 as we have already remarked. Final1y (3-47) and (3-34) yield 

f(t) = -'I!(t)N(t, 0)g(t, 0) (3-52) 

and hence the density p(t) by (3-39). 
Note the truly remarkable logical structure of these formulas: the phYJicJ, eJpeci

ally the denJity diJtribution p(t), iJ uniquely determined by the geometrical Jtratijica
tion. In fact, given the geometry (J, N), we can compute 'I!(t) by (3-40) or (3-45), 
and (3-47). Then gravity g(t, 0) is obtained by (3-51), and final1y the density p 
by (3-52) and (3-39). The only constants that must be given in addition to the 
set of surfaces S(t), are the angular velo city wand polar gravity gN, which, howe
ver, are uniquely determined by wand the total mass M ("Stokes constants"), using, 
the theory of the external gravity fieldj cf. sec. 2.1 for a first-order approximation, 
sec. 5.2 for the (nonequilibrium case of the) level ellipsoid, and sec. 7.7 .5 for a general 
definition of Stokes' constants. Thus we have 

Wavre'J Theorem 

The physics of equilibrium figures (density p, gravity g) is completely 
determined by the geometrical stratification, i.e., the set of equisurfaces 
S(t) (O:S t :S 1), together with the totalmass M and the angular 
velocity w. 

3.2.3 Spherical Stratification as an Exception 

For a spherical stratification, Wavre's theorem does not apply since the right-hand 
side of (3-40) becomes % here, so that 'I!(t) is not defined. 

In fact, we have seen that a nonrotating spherical equilibrium configuration ad
mits arbitrary density laws (p positive and nondecreasing towards the center). The 
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actual earth is elose to a spherical stratification, so that Wavre's theorem, although 
theoretically applicable, is not "stable": a large change of the density law may go 
along with an unmeasurably small variation of the geometrical configuration. 

Thus, of course, the density distribution of the earth can only be determined 
empirically: from seismology, free oscillations, etc. 

3.2.4 Impossibility of a Purely Ellipsoidal Stratification 

Consider the equation of an ellipsoid of revolution 

x 2 + y2 z2 
--+-=1 

a2 b2 
(3-53) 

Putting A = 1/a2 and B = 1/b2 we may write this as 

A(x2 + y2) + Bz2 - 1 = 0 (3- 54) 

To get a family of equisurfaces we must let A and B depend on a parameter, for which 
we may take the potential W: 

(3-55) 

In fact, for any W = const. we get some ellipsoid of the family. 
An auziliary formula. Eq. (3-55) has the form 

F(x, y, z, W) = 0 (3-56) 

If we express W as a function of the coordinates: 

W=W(x,y, z ) (3-57) 

and substitute into (3-56), we get an identity: 

F(x, y, z) = F(x, y, z , W(x , y , z) ) = 0 (3-58) 

which may be differentiated (supposing smoothness) as often as we like. We differen
tiate twice (F" = ßF/ßx, Fw = ßF/ ßW, etc.) 

F"+FwW,, =0 

F"" + 2F"wW" + FwwW; + FwW"" = 0 

Then we express W" from (3-59): 

W _ _ F" 
,,- F

w 

and substitute into (3- 60), obtaining 

11 2 
F"" - 2 F

w 
F"F"w + F~ FwwF" + FwW"" = 0 

(3-59 ) 

(3-60) 

(3- 61) 

(3-62) 
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Now we replace x by y and then by z and add the three equations thus obtained, 
considering the Laplacian 

Fzz + Fl/lI + F .. = D.F . (3-63) 

The result is 

1 8 2 2 2) 1 (2 2 2 ( 
D.F - F

w 
8W(Fz + Fli + F. + F-a, Fww Fz + Fli + F.) + FwD.W = 0 . 3-64) 

Now, by (3-39) 
D. W = -47rGp + 2w2 = f = f(W) (3-65) 

must be a function of the potential W only, if the equilibrium condition (2-100) is to 
hold. Thus (3-64) becomes 

1 [2 8 2 2 2) (2 2 2)] () Fa, -FwD.F + Fw 8W(Fz + Fli + F. - Fww F z + FII + F. = f W , 

(3-66) 
which is our auxiliary equation which any family of equisurfaces must satisfy. 

The ellip30idal ca3e. Comparing (3-56) with (3-55) we have for ellipsoidal equi
surfaces 

F(x, y, z, W) = A(W)(x 2 + y2) + B(W)Z2 - 1 

Putting A' = A'(W) = dA/dW, we find 

and 

so that 

Fw 

Fww 

8F = A'(x2 + y2) + B'Z2 
8W 
A"(x2 + y2) + B"z2 , 

F z = 2Ax, Fu 7= 2A , etc. , 

D.F 

F; +F; +F; 

2(2A + B) , 

4 [A2(X 2 + y2) + B 2z 2] 

8 (2 2 2) 
8W Fz +FII +F. 8 [AA'(x2 + y2) + BB'Z2] 

On expressing x2 + y2 by (3-55): 

2 2 1 B 2 
X +y =A-Az 

all equations (3-68) and (3-69) with the exception of D.F take the form 

(3-67) 

(3-68) 

(3-69) 

(3-70) 
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linear in Z2, with appropriate functions P = P(W) and Q = Q(W). Thus our basic 
equation (3-66) is readily seen to take the form 

polynomial of fourth degree in z = f(W) 
polynomial of sixth degree in z 

where the function f(W) is independent of z. 
This is impossible unless the sixth-degree polynomial 

degenerates, which requires that the coefficient of Z2 vanishes: 

A' 
B'-BA'=O . 

This immediately leads to the differential equation 

which can be directly integrated: 

loB 

B(W) 

dB dA 

B A 

loA+lok 
kA(W) 

k being a constant of integration (independent of W). 
The equation of our equisurface (3-55) thus becomes 

This is an ellipsoid for which the semiaxes have the ratio 

a(W) JkA(W) 
b(W) = A(W) = v'k = const. 

(3-71) 

(3-72) 

(3-73) 

(3-74) 

(3-75) 

(3-76) 

independent of W. This means that all ellip&oid& of our family of equiJurface& are 
geometrically 8imilar (homothetic). This is our first main conclusion. 

Let us now substitute (3-70) and 

B = k A, B' = kA', B" = kAli 

into (3-68) and (3-69), and the result into (3-66). The calculations are direct, and 
we get 

~:3 [_2~2 (2+k)+4(2AI2_AAII)~+4(k2_k)(2AI2_AAII)Z2] =f(W). 

(3-77) 
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Since the right-hand side does not depend on Z2, the left-hand side must be 
independent of Z2 as well: the coefficient of Z2 must be zero. The case 

k=l 

is excluded, since then the ellipsoids would degenerate to spheres. There remains 

2A '2 - AA" = 0 (3-78) 

(remember A' = A'(W) = dA/dW). This is an ordinary differential equation of the 
second order for the unknown function A(W). Its general solution may be found by 
standard methods to be 

A- 1 
- a?(W1 - W) (3-79) 

with two integration constants al and W 1 as customary for second-order differential 
equations. The solution (3-79) is easily verified by substitution into (3-78). 

Then (3-74) gives 

(3-80) 

where 
(3-81) 

denotes another constant. Then our family of equisurfaces (3-55) takes the simple 
form 

X 2 +y2 Z2 
--+ - = W1 - W (3-82) 

a~ b~ 

for which the kind - a family of geometrically similar ellipsoids - and the simple 
dependence on the potential Ware evident; obviously W 1 is the potential at the 
center of the figure. 

Finally we calculate from (3-79) 

A' 

A" 

which, of course, satisfies (3-78), and substitute into (3-77). The function A and its 
derivatives cancel completely, and there remains 

4 + 2k 2 
- -- = f = -47TGp + 2w 

a2 
1 

(3-83) 

Now there comes our second main conclusion. Since the left-hand side of (3-83) is a 
constant, also the density p in this equation must be constant: the ellipsoid al figure of 
equilibrium must be homogeneous. Such ellipsoidal figures of equilibrium exist: they 
are the Maclaurin ellipsoids to be discussed in sec. 5.4, but the earth obviously is not 
homogeneous. 
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Let us repeat our argument. Eq. (3-73) leads neeessarily to (3-76) and thus exelu
des any ellipsoidal stratifieation that is not homothetie, Le., that does not eonsist of 
geometrieally similar ellipsoids. Then (3-83) shows that the density must be homoge
neous, whieh exeludes heterogeneous equilibrium figures with ellipsoidal stratifieation. 
This proves the 

Theorem of Hamy-Pizzetti 

An ellipsoidal stratifieation is impossible for heterogeneous, rotationally 
symmetrie figures of equilibrium. 

This is an extremely important "no-go theorem". The his tory of the subject 
starts with Hamy in 1887 and eontinues with work by Volterra in 1903 and Veronnet 
in 1912. The present method of proof was glven by Pizzetti (1913, pp. 190- 193) and 
essentially also used by Wavre (1932, pp. 60-61). We have tried to streamline it and 
to make every step explieit . 

Later (sees. 4.2.4 and 6.4) we shall see that the terrestriallevel ellipsoid, even with 
an arbitrary non--ellipsoidal internal stratifieation, eannot be an exact equilibrium 
figure, although it is extremely elose to such a figure (Ledersteger's theorem). 

3.2.5 Another Derivation of Clairaut's Equation 

Although rigorou3ly, the spheroidal equisurfaees are not ellipsoids, they are so in linear 
approzimation (in 1). Thus Wavre has used his equation (3-40) for a very elegant 
derivation of Clairaut' s equation. We put 0 1 = 0 (Pole P), O2 = 90° (Equator E), 
and write, noting N(t, 0) = 1, 

g(t, 0) = gp(t), 
J(t,O) = Jp(t), 

N(t,900) = NE(t), 
J(t, 90°) = JE(t). 

(3-84) 

The equisurfaees are (approximately!) ellipsoids of semiaxes a(t) and b(t) = t, so that 

We further have 

t 
a(t) = 1 _ f = t (1 + f(t)) + 0(12) 

NE(t) = da = 1 + f(t) + tf'(t) 
dt 

(3-85) 

(3-86) 

always disregarding O(P). The ellipsoidal formulas of sec. 1.4 give the mean curva
tures to our linear approximation: 

1 
J p = t(1 - 2f), 

so that (3-40), with (3- 39), readily becomes 

1 
JE = - , 

t 

_ t 2 f" + 6f 

2t2 f' + 2tf 

(3-87) 
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or 

(3-88) 

Corresponding to our approximation, we neglect the product of fw 2 (this removes w2 

from our further considerations), and take gp(t) spherical, using (2-62): 

47rG 
gp(t) = -3- tD(t) (3-89) 

Thus (3-88) reduces to 

(3-90) 

from which Clairaut's formula (2-114) follows immediately (with t == q in our appro
ximation). 

Note that Wavre's theory gives only Clairaut's differential equation, but not the 
boundary condition (2-118)! 

The corresponding second-order theory is considerably more involved and will be 
treated in sec. 4.3. 

3.2.6 Concluding Remarks 

Wavre's theory is very beautiful and deep. Its true significance lies below the relati
vely simple mathematical formulism and is not so easily understood as the formulas 
themselves. We shall, therefore, try now to put Wavre's results into a proper per
spective. 

Equilibrium figures may be fully characterized by three conditions: 
(A) The surfaces of constant potential coincide with the surfaces of constant den

sity (sec. 2.5). Mathematically this means that the density p is only a function of the 
potential W or, in view of (3-39), 

/::,.W = F(W) (3-91) 

the Laplacian of W is a function only of W! This condition clearly has a differential 
and hence loeal character. 

(E) The density p is positive and does not decrease towards the center. This is a 
natural condition, as the density models of sec. 1.5 show. 

(C) The boundary surface So of the equilibrium figure is an equipotential surface 
W = const.j outside So there are no masses, so that the corresponding external 
potential V is harmonie everywhere outside So and goes to zero as GM/r for r --> 00. 

This may be considered aglobai condition. 
In addition, we have the Jymmetry conditions: 
(D) There is symmetry with respect to the equatorial plane, and rotational sym

metry, the first being necessary, the second being a natural assumption. 
Now it is basic that Wavre only uses the loco.l condition (A) and the symmetry 

(D). The global eondition (C) iJ not taken into aecount at all! Thus Wavre's theory 
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is essentially incomplete. His results continue to hold if the equilibrium figure were 
surrounded by a rotationally symmetrie mass configuration, such as an equatorial ring 
of Saturn type. Then, however, we can no longer speak of free equilibrium figures. 

The basic Poisson equation (3-91) is equivalent both to Wavre's fundamental 
equation (3-40) - Bruns' formula (3-38) is nothing else than a sophisticated form 
of Poisson's equation as we have remarked after eq. (1-19) - and to the auxiliary 
equation (3-66). It is truly remarkable that one is able to prove such important 
results as Wavre's theorem (sec. 3.2.2) and the impossibility of a strictly ellipsoidal 
stratification (sec. 3.2.4) on the basis of this local theory only. The global condition 
(C) is not even necessary for these purposes! 

Thus Wavre's equation (3-40), leading to his theorem (sec. 3.2.2) is a necessary 
but by no means sufficient condition for a free equilibrium figure since the global 
condition (C) is not taken into account. 

It might now be tempting to reason in the foilowing way. Eq. (3-40) holds for 
arbitrary 0 1 and O2 , If we replace O2 by 0 3 , we get the purely geometrical relation 

(2JN - 8lnN/8t)0, - (2JN - 8lnN/8t)0, 
(N2)0. - (N2)0, 

(2JN - 8lnN/8t)0, - (2JN - 8lnN/8t)e, 
(N2)0, - (N2)0, 

(3-92) 

which is a necessary condition for all stratifications of equilibrium figures. An equiv
alent form of this condition, with differences replaced by derivatives, is (3-46). 

Assume now that this condition were also sufficient. Then we could remove the 
layer above any internal equisurface S(t), cf. Fig. 3.2. For the remaining "reduced" 
figure bounded by S(t), eq. (3-92) continues to hold for any ofits intern al equisurfaces, 
and the reduced figure would also be a possible figure of equilibrium. 

This is Ledersteger's (1969, p. 536) "Prinzip der Entblätterung" (principle of re
moving shells bounded by two equisurfaces). For homogeneous ellipsoidal equilibrium 
figures (Maclaurin ellipsoids), this principle indeed holds since in this case, such sheils 
are bounded by geometrically similar ellipsoids, and it is weil known (Newton's theo
rem) that such an "ellipsoidal homoeoid" exerts no attraction in its interiorj cf. (Kel
logg, 1929, p. 22) or (Chandrasekhar, 1969, p. 39). Furthermore, the centrifugal force 
re duces proportionally. 

For heterogeneous ellipsoidal figures, however, this principle does not hold (Voss, 
1965), not even in the linear approximation . In fact, if it holds, we could remove 
~he layer above the equisurface labeled by q, so that p = 0 above it and the second 
Integral in (2-109) would vanish. Thus the term 

R 

J df d ' 
q P dq' q 

would have to vanish identically, which only holds jf f = const., for a homothetic 
(geometrically similar) stratification, and this is only possible for homogeneous figures, 
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as we have seen in sec. 3.2.4. (In fact, the layer between S(t) and S(l) = So in Fig. 3.2 
has the function of an external mass, not unlike to Saturn's ring mentioned above, 
for the "reduced" equilibrium figure bounded by S(t)!) 

This confirms that (3-92) is only necessary but not sufficient. Hence, before 
applying Wavre's procedure described by (3-51) and (3-52), we must first make sure 
that the given ~tratification corresponds to a pos~ible figure 0/ equilibrium, which is by 
no means a simple matter, as already the counterexample of sec. 3.2.4 (non-homothetic 
ellipsoidal stratification) has shown. 

To find such a possible stratification is a highly nontrivial problem indeed. In fact, 
no rigorous solution for a heterogeneous earthlike figure of equilibrium is known to the 
author. Heterogeneous solutions can only be constructed by a process of successive 
iteration or expansions with respect to powers of the flattening, the convergence for 
"small" values of the flattening / being guaranteed by the theorem of Liapunov
Lichtenstein mentioned at the beginning of sec. 3.l. 

The "local" character of Wavre's theory is also expressed by the fact that it permits 
us to derive Clairaut's differential equation (2-114) but not the boundary condition 
(2-118), as we have pointed out at the end of sec. 3.2.5 and shall see again in more 
detail in sec. 4.3. Boundary conditions are typically global. 

The theory of equilibrium figures is extremely subtle and full of unexpected pit
falls. There are "no-go theorems" such as the impossibility of a purely ellipsoidal 
stratification for heterogeneous equilibrium figures (sec. 3.2.4) and the fact that the 
terrestrial level ellipsoid cannot be an equilibrium figure, as we shall see in sec. 4.2.4 
and later throughout Chapter 5 and then again in sees. 6.2 and 6.4. The latter fact 
was clearly recognized and repeatedly emphasized by Karl Ledersteger. It should be 
noticed here that Ledersteger was the last great geodesist who seriously and deeply 
engaged hirnself in Wavre's theory of equilibrium figures. This should be acknow
ledged even if one is not prepared to follow him all the way (see his "Prinzip der 
Entblätterung" as mentioned above). 

Still, to first order in the flattening /, the level ellipsoid is an equilibrium figure 
with an approximately ellipsoidal stratification: this is Clairaut's theory, cf. sec. 3.2.5. 
Deviations from an ellipsoidal stratification start only in the second-order approxi
mation (sec. 4.2.4) and are thus very small. Hence a very small change is sufficient 
to destroy equilibrium, which means that the property of being an equilibrium figure 
is extremely sensitive with respect to small perturbations: in a very special sense, it 
is an "unstable" property (this has not hing to do with the problem of instability of 
equilibrium figures which is important for stellar figures but not for the figure of the 
earth!). For another such "special instability" cf. sec. 3.2.3. 

A final word on the relationship between Wavre's approach and the approach by 
Clairaut-Liapunov-Lichtenstein described in sec. 3.1. In asense, the two approaches 
are "dialectical opposites". Wavre starts from a given stratification (the geometry) 
and determines the corresponding density distribution (the physics), whereas Lich
tenstein starts from a given density distribution (which is initially spherical) and 
determines the configuration or stratification which results from a "small" rotation 
w. Hence Wavre determines the physics of the problem from its geometry, whereas 
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Lichtenstein determines the geometry from the physics. Also, for Lichtenstein, the 
spherical configuration is the starting point, whereas for Wavre it is a singularity 
(O/O)! 

Wavre's approach is also described in the books (Baeschlin, 1948) and (Leder
steger, 1969), whereas the basic book in English, (Jardetzky, 1958), does not present 
it, although it outlines an approximation method also due to Wavre ("proCf!de uni
forme") which intends, by an ingenious but complicated trick, to circumvent the 
convergence problem of certain series of spherical harmonies. We shall not treat this 
here because the author believes that this problem can be tackled in a much simpler 
way as we shall see in sec. 4.1.5. 

3.3 Stationary Potential Energy 

In various domains of physics, equilibrium is associated with a stationary (maximum 
or minimum, depending on the sign) value of potential energy. Liapunov and Poin
eare have treated homogeneous equilibrium figur es from this point of view; a modern 
approach is found in the book (Macke, 1967, p. 543). Macke's method has been ge
neralized to heterogeneous (terrestrial) equilibrium figures (Macke et al., 1964; Voss, 
1965, 1966). This approach is interesting because it reflects the typical thinking and 
mathematical methods of modern theoretical physics. 

3.3.1 Potential Energy 

The gravitational energy of a material particle of mass m in a field of potential V is 
mV, and that of a system of particles thus 

E = l:miV; (3-93) 

the sign (+ or -) is conventional. 
This holds for an ezternal potential field V. If the field is produced by the mutual 

gravitational attraction of the particles themselves: 

(j i i) (3-94) 

then (3-93) gives 

Gl:
mimj 

'I; lij 

Eaeh term oecurs twice, however (interchange i and j), so that we must divide by 2, 
obtaining 

Ev = ~ G l: l: mimj (j i i) (3-95) 
2 i j lij 

cf. also (Kellogg, 1929, pp. 79-81) or (Poincare, 1902, pp. 7-8). 
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