or

$$
\begin{equation*}
g=\frac{4 \pi G}{r^{2}} \int_{0}^{r} r^{2} \rho(r) d r \tag{2-57}
\end{equation*}
$$

now we may, without danger of confusion, write r instead of r^{\prime} in the integrand, a convenient and customary though somewhat questionable simplification since, after the integral sign, r denotes the integration variable, whereas as the upper limit of integration and before the integral sign, r denotes the radius vector of P at which V and g are considered (Fig. 2.2).

The physical interpretation of $(2-57)$ is very clear. The part of the earth's mass which is enclosed by the surface S_{P} is

$$
\begin{equation*}
M_{P}=\int_{r^{\prime}=0}^{r} \iint_{\sigma} \rho\left(r^{\prime}\right) r^{\prime 2} d r^{\prime} d \sigma=4 \pi \int_{0}^{r} \rho r^{2} d r \tag{2-58}
\end{equation*}
$$

by $(2-52)$, so that $(2-57)$ may be written

$$
\begin{equation*}
g=\frac{G M_{P}}{r^{2}} \tag{2-59}
\end{equation*}
$$

in agreement with $(2-33)$ and (2-37). This is the attraction of the "core" within S_{P}, whereas the attraction of the outer shell is zero, by ($2-36$). This is quite analogous to the homogeneous case (2-37).

Using this analogy, it is also extremely convenient and useful to introduce the mean density D within the sphere S_{P} by

$$
\begin{equation*}
D=\frac{3}{4 \pi r^{3}} M_{P} \tag{2-60}
\end{equation*}
$$

in agreement with (2-38), which is the fictitious constant density producing the same attraction (2-59) on and outside S_{P} as the real density distribution $\rho(r)$ inside S_{P}. By (2-58) we have

$$
\begin{equation*}
D=\frac{3}{r^{3}} \int_{0}^{r} \rho r^{2} d r=D(r) \tag{2-61}
\end{equation*}
$$

(D is constant within S_{P} but, depending on S_{P}, it depends on $r!$). Finally, (2-58), $(2-59)$, and (2-61) give

$$
\begin{equation*}
g(r)=\frac{4 \pi G}{3} r D(r) \tag{2-62}
\end{equation*}
$$

a useful formula which is the analogue of $(2-39)$ for a heterogeneous, spherically symmetric stratification.

2.3 Homogeneous Ellipsoid: First-Order Theory

Since the earth is not homogeneous, the theory of a homogeneous ellipsoid only plays an auxiliary and preparatory role, although an important one.

Consider a homogeneous ellipsoid of revolution, of density

$$
\begin{equation*}
\rho=\text { const. } \tag{2-63}
\end{equation*}
$$

By first-order theory we mean, as usual, that only terms linear in f are considered, $O\left(f^{2}\right)$ being neglected. To this approximation, its surface is given by (2-6),

$$
\begin{equation*}
r=R\left[1-\frac{2}{3} f P_{2}(\cos \theta)\right] \tag{2-64}
\end{equation*}
$$

This equation may be interpreted geometrically as in Fig. 2.3: the ellipsoid consists of

FIGURE 2.3: Ellipsoid and mean sphere
a "basic sphere" of radius R and "extra material" (plus or minus). Thus its potential is given by

$$
\begin{equation*}
V=V_{\text {sphere }}+v . \tag{2-65}
\end{equation*}
$$

Here v denotes the potential due to the "extra material", which to our approximation may be considered compressed into a surface layer on the sphere, of surface density

$$
\begin{equation*}
\mu=\rho h, \tag{2-66}
\end{equation*}
$$

where ρ is the volume density and h the thickness of the layer (Fig. 2.3). The potential of this layer is given by ($1-5$):

$$
\begin{equation*}
v=G \iint_{S} \frac{\mu}{l} d S=G \rho \iint_{S} \frac{h}{l} d S \tag{2-67}
\end{equation*}
$$

in view of (2-63). Putting

$$
\begin{equation*}
d S=R^{2} d \sigma \tag{2-68}
\end{equation*}
$$

we may replace the integration over the sphere S by an integration over the unit sphere σ :

$$
\begin{equation*}
v=G \rho R^{2} \iint_{\sigma} \frac{h}{l} d \sigma \tag{2-69}
\end{equation*}
$$

The deviation h of the ellipsoid from the sphere (Fig. 2.3) is, by (2-64),

$$
\begin{equation*}
h=-\frac{2}{3} f R P_{2}(\cos \theta) \tag{2-70}
\end{equation*}
$$

so that (2-69) becomes, with θ^{\prime} as integration variable,

$$
\begin{equation*}
v=-\frac{2}{3} G \rho f R^{3} \iint_{\sigma} \frac{P_{2}\left(\cos \theta^{\prime}\right)}{l} d \sigma \tag{2-71}
\end{equation*}
$$

Assuming the potential to be calculated at a point with $r>R$ (external potential), we may apply (1-53) with $r^{\prime}=R$ (remember that we have a surface layer on the sphere $r=R$), so that

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{R^{n}}{r^{n+1}} P_{n}(\cos \psi) \tag{2-72}
\end{equation*}
$$

This is substituted into (2-71) and the order of integral and sum is interchanged, obtaining with $v=v_{e}$ (external potential):

$$
\begin{equation*}
v_{e}=-\frac{2}{3} G \rho f R^{3} \sum_{n=0}^{\infty} \frac{R^{n}}{r^{n+1}} \iint_{\sigma} P_{2}\left(\cos \theta^{\prime}\right) P_{n}(\cos \psi) d \sigma \tag{2-73}
\end{equation*}
$$

Now by $(1-51)$ with $Y_{k}\left(\theta^{\prime}, \lambda^{\prime}\right)=P_{2}\left(\cos \theta^{\prime}\right)$, orthogonality removes all terms except the one with $n=2$, for which by (1-49) we simply get

$$
\begin{equation*}
\iint_{\sigma} P_{2}\left(\cos \theta^{\prime}\right) P_{2}(\cos \psi) d \sigma=\frac{4 \pi}{5} P_{2}(\cos \theta) \tag{2-74}
\end{equation*}
$$

Thus (2-73) reduces to

$$
\begin{equation*}
v_{e}=-\frac{8 \pi}{15} G \rho f \frac{R^{5}}{r^{3}} P_{2}(\cos \theta) \tag{2-75}
\end{equation*}
$$

This is added to the potential of a homogeneous sphere as given by (2-31) with

$$
M=\frac{4 \pi}{3} \rho R^{3}
$$

by (2-38), in agreement with (2-65). The result is

$$
\begin{equation*}
V_{e}=\frac{4 \pi}{3} G \rho\left[\frac{R^{3}}{r}-\frac{2}{5} \frac{R^{5}}{r^{3}} f P_{2}(\cos \theta)\right] \tag{2-76}
\end{equation*}
$$

This is the desired formula for the external potential of a homogeneous ellipsoid.

For the internal potential $(r<R)$ we proceed in exactly the same way, substituting

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{n}}{R^{n+1}} P_{n}(\cos \psi) \tag{2-77}
\end{equation*}
$$

instead of (2-72), into (2-71) and obtaining the internal potential $v=v_{i}$. Again, orthogonality eliminates all terms except $n=2$, and (2-74) again applies. The result is

$$
\begin{equation*}
v_{i}=-\frac{8 \pi}{15} G \rho f r^{2} P_{2}(\cos \theta) \tag{2-78}
\end{equation*}
$$

In order to apply (2-65), we must use for the inner spherical potential the expression (2-43), obtaining

$$
\begin{equation*}
V_{i}=\frac{4 \pi}{3} G \rho\left[\frac{3}{2} R^{2}-\frac{1}{2} r^{2}-\frac{2}{5} f r^{2} P_{2}(\cos \theta)\right] \tag{2-79}
\end{equation*}
$$

as the formula for the internal potential of a homogeneous ellipsoid. In both formulas $(2-76)$ and $(2-79)$, terms of $O\left(f^{2}\right)$ are neglected. These two formulas will serve as a basis for computing the potential of a heterogeneous (stratified) ellipsoid.

2.4 Heterogeneous Ellipsoid

Homogeneous shell. As a preparation, consider a thin ellipsoidal shell (of infinitesimal thickness), bounded by two ellipsoids E_{1} and E_{2}, within which the density ρ is constant.

In the same way as we have assigned, in Fig. 2.3, to an ellipsoid E its mean sphere S (of radius R, which defines R as mean radius for E), we can assign such spheres to E_{1} and E_{2}; let q be the mean radius of the inner ellipsoid E_{1} and $q+d q$ the mean radius of the outer ellipsoid E_{2} (remember they are infinitesimally close to each other). Similarly let f denote the flattening of E_{1} and $f+d f$ that of E_{2}, and let f be a function of q,

$$
\begin{equation*}
f=f(q) \tag{2-80}
\end{equation*}
$$

so that

$$
\begin{equation*}
d f=\frac{d f}{d q} d q \tag{2-81}
\end{equation*}
$$

Then the equation of E_{1} is, by (2-64),

$$
\begin{equation*}
r=q\left[1-\frac{2}{3} f P_{2}(\cos \theta)\right] \tag{2-82}
\end{equation*}
$$

and that of E_{2},

$$
\begin{equation*}
r=(q+d q)\left[1-\frac{2}{3}(f+d f) P_{2}(\cos \theta)\right] \tag{2-83}
\end{equation*}
$$

keeping in mind that f and $d f$ depend on q through (2-80) and (2-81).
Now comes the important step. In order to determine the potential of the shell, consider the homogeneous solid ellipsoid bounded by E_{2}, of constant density ρ, and

