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This equation could also have been derived as a first-order approximation to So-
migliana’s formula (1-23); similarly there is a rigorous, though less simple, equivalent
of Clairaut’s formula (2-26) for the level ellipsoid; cf. (Heiskanen and Moritz, 1967,
secs. 2-8 and 2-10) and eq. (5-69) later in sec. 5.2.

If we had a uniform coverage of the earth by gravity measurements (unfortunately
we don’t), then we could try to fit a formula of type (2-29) (to a higher approximation)

to these measurements, obtaining f*. Then the flattening f could be derived by (2-26)
from

f=-f+ gm 3 (2-30)

This is a complete gravimetric analogue to (2-18): it permits to determine the flatte-

ning f from gravity flattening f*, whereas (2-18) allows the computation of f from
the satellite-determined J,.

2.2 Internal Field of a Stratified Sphere

First-order ellipsoidal formulas, as we have seen and will see, are basically spherical
formulas with corrections on the order of the flattening f. In this sense, the sphere
serves as a reference for the ellipsoid, and it will be useful to study the gravitational
field of a stratified sphere, such as shown by Fig. 1.5.
The ezternal gravitational field of any spherically symmetric distribution is given
simply by
GM

»
It is formally equal to the potential of a mass point, regardless of the inner structure
of the body as long as it is spherically symmetric. This is seen immediately on writing
the general spherical-harmonic expansion (1-36), with (1-47), in Laplace’s form

VvV =

(2-31)

O X050 b3 (SR Wl N)
V= “2:‘3 s o b 2_)1 = (2-32)

Of the Laplacian harmonics Y,(6, ), only Y; is constant; cf. (1-33). In the case of
spherical symmetry, all functions Y,(6, \) must be missing except the constant Y,
which, by (1-3), is seen to be equal to GM; this proves (2-31).

Gravity outside the sphere is then simply

8V dv _GM

S i e i

Note that if we consider the sphere as a zero-degree approximation to the ellipsoid, it
must be nonrotating since w? = O(f) by (2-10), so that f = 0 implies w = 0. Thus,
to this primitive approximation, W = V, and gravity coincides with gravitational
attraction. The spherical symmetry of (2-33) is obvious. Egs. (2-31) and (2-33) are
valid down to the surface of the sphere.
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FIGURE 2.1: A spherical shell

The internal potential is more complicated. First we consider the potential in the
interior of a hollow spherical shell (Fig. 2.1). It is easily seen to be constant:

Vi: = € = const. (2-34)

In fact, the potential V; is a harmonic function, satisfying Laplace’s equation AV = 0,
in the interior of the shell, and must therefore admit a spherical-harmonic expansion

oo oo
Vi=3 Y0, A)=Yo+ 3 "X (0, 2) (2-35)
n=0 n=1
analogous to (2-32), but with the outer harmonics (1-35b) replaced by the inner
harmonics (1-35a). Repeating the previous argument considering spherical symmetry,
only the term Y, can survive in (2-35), and setting ¥; = C proves (2-34).
It is clear that the structure of the shell has no influence as long as it is spherically
symmetric: it may be homogeneous or layered (stratified).
Since the potential is identically constant inside the shell, the force vanishes there:

g =gradV; =0 (2-36)

inside the shell. ;

Homogeneous sphere. The gravity (gravitational attraction) of a homogeneous
sphere at an internal point P is found by a simple but very useful trick (this trick is
one reason for treating the physically rather uninteresting homogeneous case here).
Consider the sphere Sp passing through P (Fig. 2.2). Then gravity g, due to the shell
between S and Sp, is zero by (2-36). The gravity g, due to the “core” bounded by
Sp is then given by the “external” formula (2-33):

92 = GAZJP ’ (2_37)

>
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S
FIGURE 2.2: Computation point P inside the sphere
where
Mp = %r"‘p (2-38)

denotes the mass of the part enclosed by Sp; p is the constant density. (“Core” is

meant in a figurative sense and has, of course, nothing to do with the actual earth’s
core!)

Thus
4G
3

gp=g1+92=9g2=

by (2-36), (2-37), and (2-38).
In order to find the potential V, we integrate (2-33) in our case,

L/ (2—39)

& 23 4400 2-40)
T i N (
which gives
2rG
V= —WTp'rz%—Cl ; (2-41)

The integration constant C, is determined such that, at the outer surface r = R,
(2-41) must yield the same result as (2-31):

2rG GM 4nG 1
V(B)= ~==pB + Gy = — = == Rz (2-42)

whence C; = 2rGpR?, and

V; =V(r) = 2nGp (R’ - §r2> (2-43)
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gives the internal potential of a homogeneous sphere. It is quadratic in z, y, z since
r? =22 + 9y + 2%
2
Vi ?" Gp(3R? —z? —y? — 2%) (2-44)

from which we immediately calculate (p = const.!) that Poisson’s equation

AV = Voo + Vo + V,. = —4wGp (2-45)

is satisfied.
Stratified sphere. Here we start with (1-1), noting that for the sphere

// dv

R 2 =«
/ 72 sin 0'd0'd )\ dr’
r'=0A'=06'=0

/R // r2dodr’ (2—46)

v'=0.'o

by (1-43); the integration variables are denoted by 7/, 6’, X', reserving r, 8, A for the
interior point P at which V is to be computed. Thus (1-1) becomes

V(r, 6, A) G/rp')//—dr : (2-47)

r'=0

Note that p is a function only of the radius vector 7’ because of spherical symmetry.

Now we apply the basic series (1-53). Note that 7 and r play a symmetric role in
(1-52), but in (1-53), the larger one of the two must be in the denominator in order
to obtain a convergent series. Thus within Sp (Fig. 2.2) there is 7’ < r and we must

use
pin

Z r"“ (costp) Qi<7 <n (2—48a)

Nu--n

whereas in the shell between Sp and S there is »’ > r and we must use

rn

.,.m+1

~| =

()3

P,(cos?p) 7 < rl<R (2-48b)

n=0

Thus (2-47) must be split up into two parts:

V = W+V (2-49)
W =a / ?p(r") //Z P, (costp)dodr’ (2-50a)
V., = G / r2p(r //Z —F (cos¥p)dadr’ . (2-50b)

ri=r

e



2.2 INTERNAL FIELD OF A STRATIFIED SPHERE 33

In (2-50a) we can interchange integral and sum:
A A o pin
// Zﬂ ey P,(cosp)do '2 // e P,(cosp)do

n=0

,rln

. / P (cosy)do . (2-51)
(This interchange is easily justified because for ' < r the series is uniformly con-
vergent: lift P very little above Sp to have 7' < r and then move it back to Sp by
continuity of the potential; cf. sec. 1.2. Disregard this remark if you are not a mathe-
matician.) Then the orthogonality relations (sec. 1.3) enter and give, by (1-42) with

n=0,
// Py(costp)do =// P}(cosy)do =// do =4mr (2-52)

a

whereas, by (1-51) with £k =0, forn > 0
// P,(cos$)do = 0 (2-53)
since Py = Rgp = 1 and Y, = const.

Thus, in the sum (2-51), only the term n = 0 survives (there remains only 4m/7),
and (2-50a), as well as (2-50b) by analogy, reduce to

1 T
Vi = 4nG- / r2p(r)dr
n
=0
R (2-54)
V. = 4nG / r'p(r")dr'
Thus the internal potential V, by (2-49), finally becomes
1 r R
V = 4rG [; / r2p(r')dr' + / r'p(r')dr'] . (2-55)
/=0 ri=y
As a check we put p = const. and get (2-43).
Gravity inside the earth. In agreement with (2-33) we have
av

Differentiating (2-55) according to the usual rules of calculus we get

r

17, s 3
g=—4rG [——;/r 2p(r!)dr' + 7 r2p(r) — rp(r)
0
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or
47rG/rzp(r)dr g (2-5T7)

0

9= 2
now we may, without danger of confusion, write r instead of 7’ in the integrand, a
convenient and customary though somewhat questionable simplification since, after
the integral sign, r denotes the integration variable, whereas as the upper limit of
integration and before the integral sign, 7 denotes the radius vector of P at which V
and g are considered (Fig. 2.2).

The physical interpretation of (2-57) is very clear. The part of the earth’s mass
which is enclosed by the surface Sp is

Mp = / // p(r"rdr'do = 41r/pr dr (2-58)

r'=0 o
by (2-52), so that (2-57) may be written
_ GMp

72
in agreement with (2-33) and (2-37). This is the attraction of the “core” within Sp,
whereas the attraction of the outer shell is zero, by (2-36). This is quite analogous
to the homogeneous case (2-37).

Using this analogy, it is also extremely convenient and useful to introduce the
mean density D within the sphere Sp by

3

4773

3 (2-59)

Mp ’ (2_60)

in agreement with (2-38), which is the fictitious constant density producing the same
attraction (2-59) on and outside Sp as the real density distribution p(r) inside Sp.
By (2-58) we have

= T—3/pr2dr = D(r) (2-61)
0
(D is constant within Sp but, depending on Sp, it depends on r!). Finally, (2-58),

(2-59), and (2-61) give
4G

9(r) = rD(r) (2-62)

a useful formula which is the analogue of (2-39) for a heterogeneous, spherically
symmetric stratification.

2.3 Homogeneous Ellipsoid: First-Order Theory

Since the earth is not homogeneous, the theory of a homogeneous ellipsoid only plays
an auxiliary and preparatory role, although an important one.
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