This equation could also have been derived as a first-order approximation to Somigliana's formula ($1-23$); similarly there is a rigorous, though less simple, equivalent of Clairaut's formula (2-26) for the level ellipsoid; cf. (Heiskanen and Moritz, 1967, secs. $2-8$ and $2-10$) and eq. (5-69) later in sec. 5.2 .

If we had a uniform coverage of the earth by gravity measurements (unfortunately we don't), then we could try to fit a formula of type (2-29) (to a higher approximation) to these measurements, obtaining f^{*}. Then the flattening f could be derived by (2-26) from

$$
\begin{equation*}
f=-f^{*}+\frac{5}{2} m \tag{2-30}
\end{equation*}
$$

This is a complete gravimetric analogue to (2-18): it permits to determine the flattening f from gravity flattening f^{*}, whereas (2-18) allows the computation of f from the satellite-determined J_{2}.

2.2 Internal Field of a Stratified Sphere

First-order ellipsoidal formulas, as we have seen and will see, are basically spherical formulas with corrections on the order of the flattening f. In this sense, the sphere serves as a reference for the ellipsoid, and it will be useful to study the gravitational field of a stratified sphere, such as shown by Fig. 1.5.

The external gravitational field of any spherically symmetric distribution is given simply by

$$
\begin{equation*}
V=\frac{G M}{r} \tag{2-31}
\end{equation*}
$$

It is formally equal to the potential of a mass point, regardless of the inner structure of the body as long as it is spherically symmetric. This is seen immediately on writing the general spherical-harmonic expansion (1-36), with (1-47), in Laplace's form

$$
\begin{equation*}
V=\sum_{n=0}^{\infty} \frac{Y_{n}(\theta, \lambda)}{r^{n+1}}=\frac{Y_{0}}{r}+\sum_{n=1}^{\infty} \frac{Y_{n}(\theta, \lambda)}{r^{n+1}} \tag{2-32}
\end{equation*}
$$

Of the Laplacian harmonics $Y_{n}(\theta, \lambda)$, only Y_{0} is constant; cf. (1-33). In the case of spherical symmetry, all functions $Y_{n}(\theta, \lambda)$ must be missing except the constant Y_{0} which, by ($1-3$), is seen to be equal to $G M$; this proves (2-31).

Gravity outside the sphere is then simply

$$
\begin{equation*}
g=-\frac{\partial V}{\partial r}=-\frac{d V}{d r}=\frac{G M}{r^{2}} \tag{2-33}
\end{equation*}
$$

Note that if we consider the sphere as a zero-degree approximation to the ellipsoid, it must be nonrotating since $\omega^{2}=O(f)$ by (2-10), so that $f=0$ implies $\omega=0$. Thus, to this primitive approximation, $W=V$, and gravity coincides with gravitational attraction. The spherical symmetry of $(2-33)$ is obvious. Eqs. $(2-31)$ and $(2-33)$ are valid down to the surface of the sphere.

FIGURE 2.1: A spherical shell
The internal potential is more complicated. First we consider the potential in the interior of a hollow spherical shell (Fig. 2.1). It is easily seen to be constant:

$$
\begin{equation*}
V_{i}=C=\text { const. } \tag{2-34}
\end{equation*}
$$

In fact, the potential V_{i} is a harmonic function, satisfying Laplace's equation $\Delta V=0$, in the interior of the shell, and must therefore admit a spherical-harmonic expansion

$$
\begin{equation*}
V_{i}=\sum_{n=0}^{\infty} r^{n} Y_{n}(\theta, \lambda)=Y_{0}+\sum_{n=1}^{\infty} r^{n} Y_{n}(\theta, \lambda) \tag{2-35}
\end{equation*}
$$

analogous to (2-32), but with the outer harmonics ($1-35 \mathrm{~b}$) replaced by the inner harmonics (1-35a). Repeating the previous argument considering spherical symmetry, only the term Y_{0} can survive in (2-35), and setting $Y_{0}=C$ proves (2-34).

It is clear that the structure of the shell has no influence as long as it is spherically symmetric: it may be homogeneous or layered (stratified).

Since the potential is identically constant inside the shell, the force vanishes there:

$$
\begin{equation*}
\mathrm{g}=\operatorname{grad} V_{i}=0 \tag{2-36}
\end{equation*}
$$

inside the shell.
Homogeneous sphere. The gravity (gravitational attraction) of a homogeneous sphere at an internal point P is found by a simple but very useful trick (this trick is one reason for treating the physically rather uninteresting homogeneous case here). Consider the sphere S_{P} passing through P (Fig. 2.2). Then gravity g_{1} due to the shell between S and S_{P}, is zero by ($2-36$). The gravity g_{2} due to the "core" bounded by S_{P} is then given by the "external" formula (2-33):

$$
\begin{equation*}
g_{2}=\frac{G M_{P}}{r^{2}}, \tag{2-37}
\end{equation*}
$$

FIGURE 2.2: Computation point P inside the sphere
where

$$
\begin{equation*}
M_{P}=\frac{4 \pi}{3} r^{3} \rho \tag{2-38}
\end{equation*}
$$

denotes the mass of the part enclosed by $S_{P} ; \rho$ is the constant density. ("Core" is meant in a figurative sense and has, of course, nothing to do with the actual earth's core!)

Thus

$$
\begin{equation*}
g_{P}=g_{1}+g_{2}=g_{2}=\frac{4 \pi G}{3} r \rho \tag{2-39}
\end{equation*}
$$

by $(2-36),(2-37)$, and (2-38).
In order to find the potential V, we integrate $(2-33)$ in our case,

$$
\begin{equation*}
\frac{d V}{d r}=-g=-\frac{4 \pi G}{3} \rho r \tag{2-40}
\end{equation*}
$$

which gives

$$
\begin{equation*}
V=-\frac{2 \pi G}{3} \rho r^{2}+C_{1} \tag{2-41}
\end{equation*}
$$

The integration constant C_{1} is determined such that, at the outer surface $r=R$, (2-41) must yield the same result as (2-31):

$$
\begin{equation*}
V(R)=-\frac{2 \pi G}{3} \rho R^{2}+C_{1}=\frac{G M}{R}=\frac{4 \pi G}{3} R^{3} \rho \frac{1}{R} \tag{2-42}
\end{equation*}
$$

whence $C_{1}=2 \pi G \rho R^{2}$, and

$$
\begin{equation*}
V_{i}=V(r)=2 \pi G \rho\left(R^{2}-\frac{1}{3} r^{2}\right) \tag{2-43}
\end{equation*}
$$

gives the internal potential of a homogeneous sphere. It is quadratic in x, y, z since $r^{2}=x^{2}+y^{2}+z^{2}$:

$$
\begin{equation*}
V=\frac{2 \pi}{3} G \rho\left(3 R^{2}-x^{2}-y^{2}-z^{2}\right) \tag{2-44}
\end{equation*}
$$

from which we immediately calculate ($\rho=$ const.!) that Poisson's equation

$$
\begin{equation*}
\Delta V=V_{x x}+V_{y y}+V_{z z}=-4 \pi G \rho \tag{2-45}
\end{equation*}
$$

is satisfied.
Stratified sphere. Here we start with (1-1), noting that for the sphere

$$
\begin{align*}
\iiint_{v} d v & =\int_{r^{\prime}=0}^{R} \int_{\lambda^{\prime}=0}^{2 \pi} \int_{\theta^{\prime}=0}^{\pi} r^{\prime 2} \sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime} d r^{\prime} \\
& =\int_{r^{\prime}=0}^{R} \iint_{\sigma} r^{\prime 2} d \sigma d r^{\prime} \tag{2-46}
\end{align*}
$$

by (1-43); the integration variables are denoted by $r^{\prime}, \theta^{\prime}, \lambda^{\prime}$, reserving r, θ, λ for the interior point P at which V is to be computed. Thus (1-1) becomes

$$
\begin{equation*}
V=V(r, \theta, \lambda)=G \int_{r^{\prime}=0}^{R} r^{\prime 2} \rho\left(r^{\prime}\right) \iint_{\sigma} \frac{d \sigma}{l} d r^{\prime} \tag{2-47}
\end{equation*}
$$

Note that ρ is a function only of the radius vector r^{\prime} because of spherical symmetry.
Now we apply the basic series (1-53). Note that r^{\prime} and r play a symmetric role in (1-52), but in (1-53), the larger one of the two must be in the denominator in order to obtain a convergent series. Thus within S_{P} (Fig. 2.2) there is $r^{\prime}<r$ and we must use

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{\prime n}}{r^{n+1}} P_{n}(\cos \psi), \quad 0<r^{\prime}<r \tag{2-48a}
\end{equation*}
$$

whereas in the shell between S_{P} and S there is $r^{\prime}>r$ and we must use

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{n}}{r^{\prime n+1}} P_{n}(\cos \psi) \quad, \quad r<r^{\prime}<R \tag{2-48~b}
\end{equation*}
$$

Thus (2-47) must be split up into two parts:

$$
\begin{align*}
& V=V_{1}+V_{2} \tag{2-49}\\
& V_{1}=G \int_{r^{\prime}=0}^{r} r^{\prime 2} \rho\left(r^{\prime}\right) \iint_{\sigma} \sum_{n=0}^{\infty} \frac{r^{\prime n}}{r^{n+1}} P_{n}(\cos \psi) d \sigma d r^{\prime} \tag{2-50a}\\
& V_{2}=G \int_{r^{\prime}=r}^{R} r^{\prime 2} \rho\left(r^{\prime}\right) \iint_{\sigma} \sum_{n=0}^{\infty} \frac{r^{n}}{r^{\prime n+1}} P_{n}(\cos \psi) d \sigma d r^{\prime} \tag{2-50~b}
\end{align*}
$$

In (2-50a) we can interchange integral and sum:

$$
\begin{align*}
\iint_{\sigma} \sum_{n=0}^{\infty} \frac{r^{\prime n}}{r^{n+1}} P_{n}(\cos \psi) d \sigma & =\sum_{n=0}^{\infty} \iint_{\sigma} \frac{r^{\prime n}}{r^{n+1}} P_{n}(\cos \psi) d \sigma \\
& =\sum_{n=0}^{\infty} \frac{r^{\prime n}}{r^{n+1}} \iint_{\sigma} P_{n}(\cos \psi) d \sigma \tag{2-51}
\end{align*}
$$

(This interchange is easily justified because for $r^{\prime}<r$ the series is uniformly convergent: lift P very little above S_{P} to have $r^{\prime}<r$ and then move it back to S_{P} by continuity of the potential; cf. sec. 1.2. Disregard this remark if you are not a mathematician.) Then the orthogonality relations (sec. 1.3) enter and give, by (1-42) with $n=0$,

$$
\begin{equation*}
\iint_{\sigma} P_{0}(\cos \psi) d \sigma=\iint_{\sigma} P_{0}^{2}(\cos \psi) d \sigma=\iint_{\sigma} d \sigma=4 \pi \tag{2-52}
\end{equation*}
$$

whereas, by (1-51) with $k=0$, for $n>0$

$$
\begin{equation*}
\iint_{\sigma} P_{n}(\cos \psi) d \sigma=0 \tag{2-53}
\end{equation*}
$$

since $P_{0}=R_{00}=1$ and $Y_{0}=$ const.
Thus, in the sum (2-51), only the term $n=0$ survives (there remains only $4 \pi / r$), and (2-50a), as well as (2-50b) by analogy, reduce to

$$
\begin{align*}
& V_{1}=4 \pi G \frac{1}{r} \int_{r^{\prime}=0}^{r} r^{\prime 2} \rho\left(r^{\prime}\right) d r^{\prime} \\
& V_{2}=4 \pi G \int_{r^{\prime}=r}^{R} r^{\prime} \rho\left(r^{\prime}\right) d r^{\prime} \tag{2-54}
\end{align*}
$$

Thus the internal potential V, by (2-49), finally becomes

$$
\begin{equation*}
V=4 \pi G\left[\frac{1}{r} \int_{r^{\prime}=0}^{r} r^{\prime 2} \rho\left(r^{\prime}\right) d r^{\prime}+\int_{r^{\prime}=r}^{R} r^{\prime} \rho\left(r^{\prime}\right) d r^{\prime}\right] \tag{2-55}
\end{equation*}
$$

As a check we put $\rho=$ const. and get (2-43).
Gravity inside the earth. In agreement with (2-33) we have

$$
\begin{equation*}
g=-\frac{d V}{d r} \tag{2-56}
\end{equation*}
$$

Differentiating (2-55) according to the usual rules of calculus we get

$$
g=-4 \pi G\left[-\frac{1}{r^{2}} \int_{0}^{r} r^{\prime 2} \rho\left(r^{\prime}\right) d r^{\prime}+\frac{1}{r} \cdot r^{2} \rho(r)-r \rho(r)\right]
$$

or

$$
\begin{equation*}
g=\frac{4 \pi G}{r^{2}} \int_{0}^{r} r^{2} \rho(r) d r \tag{2-57}
\end{equation*}
$$

now we may, without danger of confusion, write r instead of r^{\prime} in the integrand, a convenient and customary though somewhat questionable simplification since, after the integral sign, r denotes the integration variable, whereas as the upper limit of integration and before the integral sign, r denotes the radius vector of P at which V and g are considered (Fig. 2.2).

The physical interpretation of $(2-57)$ is very clear. The part of the earth's mass which is enclosed by the surface S_{P} is

$$
\begin{equation*}
M_{P}=\int_{r^{\prime}=0}^{r} \iint_{\sigma} \rho\left(r^{\prime}\right) r^{\prime 2} d r^{\prime} d \sigma=4 \pi \int_{0}^{r} \rho r^{2} d r \tag{2-58}
\end{equation*}
$$

by $(2-52)$, so that $(2-57)$ may be written

$$
\begin{equation*}
g=\frac{G M_{P}}{r^{2}} \tag{2-59}
\end{equation*}
$$

in agreement with $(2-33)$ and (2-37). This is the attraction of the "core" within S_{P}, whereas the attraction of the outer shell is zero, by ($2-36$). This is quite analogous to the homogeneous case (2-37).

Using this analogy, it is also extremely convenient and useful to introduce the mean density D within the sphere S_{P} by

$$
\begin{equation*}
D=\frac{3}{4 \pi r^{3}} M_{P} \tag{2-60}
\end{equation*}
$$

in agreement with (2-38), which is the fictitious constant density producing the same attraction (2-59) on and outside S_{P} as the real density distribution $\rho(r)$ inside S_{P}. By (2-58) we have

$$
\begin{equation*}
D=\frac{3}{r^{3}} \int_{0}^{r} \rho r^{2} d r=D(r) \tag{2-61}
\end{equation*}
$$

(D is constant within S_{P} but, depending on S_{P}, it depends on $r!$). Finally, (2-58), $(2-59)$, and (2-61) give

$$
\begin{equation*}
g(r)=\frac{4 \pi G}{3} r D(r) \tag{2-62}
\end{equation*}
$$

a useful formula which is the analogue of $(2-39)$ for a heterogeneous, spherically symmetric stratification.

2.3 Homogeneous Ellipsoid: First-Order Theory

Since the earth is not homogeneous, the theory of a homogeneous ellipsoid only plays an auxiliary and preparatory role, although an important one.

