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This equation eould also have been derived as a first-order approximation to So
migliana's formula (1-23); similarly there is a rigorous, though less simple, equivalent 
of Clairaut's formula (2-26) for the level ellipsoid; cf. (Heiskanen and Moritz, 1967, 
sees. 2-8 and 2-10) and eq. (5-69) later in sec. 5.2. 

If we had a uniform eoverage of the earth by gravity measurements (unfortunately 
we don't), then we eould try to fit a formula of type (2-29) (to a higher approximation) 
to these measurements, obtaining r. Then the flattening f eould be derived by (2-26) 
from 

(2-30) 

This is a eomplete gravimetrie analogue to (2-18): it permits to determine the flatte
ning f from gravity flattening r, whereas (2-18) allows the eomputation of f from 
the satellite-determined J 2 • 

2.2 Internal Field of a Stratified Sphere 

First-order ellipsoidal formulas, as we have seen and will see, are basieally spherieal 
formulas with eorreetions on the order of the flattening f. In this sense, the sphere 
serves as a referenee for the ellipsoid, and it will be useful to study the gravitational 
field of a stratified sphere, such as shown by Fig. 1.5. 

The ezternal gravitational field of any spherieally symmetrie distribution is given 
simply by 

r 
(2-31) 

It is formally equal to the potential of a mass point, regardless of the inner strueture 
of the body as long as it is spherieally symmetrie. This is seen immediatelyon writing 
the general spherieal-harmonie expansion (1-36), with (1-47), in Laplaee's form 

(2-32) 

Of the Laplaeian harmonies Yn(B, .>..), only Yo is eonstant; cf. (1-33). In the ease of 
spherieal symmetry, all functions Yn ( B, .>..) must be missing exeept the eonstant Yo 
whieh, by (1-3), is seen to be equal to GM; this proves (2-31). 

Gravity outside the sphere is then simply 

8V dV GM 
g=--=--=--

8r dr r 2 
(2-33) 

Note that if we eonsider the sphere as a zero-degree approximation to the ellipsoid, it 
roust be nonrotating sinee w 2 = 0(1) by (2-10), so that f = 0 implies w = O. Thus, 
to this primitive approximation, W = V, and gravity eoineides with gravitational 
attraction. The spherieal symmetry of (2-33) is obvious. Eqs. (2-31) and (2-33) are 
valid down to the surfaee of the sphere. 
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FIGURE 2.1: A spherical shell 

The internal potential is more complicated. First we consider the potential in the 
interior of a hollow spherical shell (Fig. 2.1). It is easily seen to be constant: 

v; = C = const. (2-34) 

In fact, the potential V; is a harmonie function, satisfying Laplace's equation t::. V = 0, 
in the interior of the shell, and must therefore admit a spherical-harmonic expansion 

(2-35) 
n=O n=l 

analogous to (2-32), but with the outer harmonies (1-35b) replaced by the inner 
harmonies (1-35a). Repeating the previous argument considering spherical symmetry, 
only the term Yo can survive in (2-35), and setting Yo = C proves (2-34). 

It is clear that the structure of the shell has no influence as long as it is spherically 
symmetrie: it may be homogeneous or layered (stratified). 

Since the potential is identically constant inside the shell, the force vanishes there: 

g = gradV; = 0 (2-36) 

inside the shell. 
Homogeneou~ ~phere. The gravity (gravitational attraction) of a homogeneous 

sphere at an intern al point P is found by a simple but very useful trick (trus trick is 
one reason for treating the physically rather uninteresting homogeneous case here). 
Consider the sphere Sp passing through P (Fig. 2.2). Then 9ravity 91 due to the ~hell 
between S and Sp, i& zero by (2-36). The gravity 92 due to the "core" bounded by 
Sp is then given by the "external" formula (2-33): 

(2-37) 
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where 

FIGURE 2.2: Computation point P inside the sphere 

47r 3 
M p = -r p 

3 

31 

(2-38) 

denotes the mass of the part enclosed by Sp; p is the constant density. ("Core" is 
meant in a figurative sense and has, of course, notrung to do with the actual earth's 
core!) 

Thus 
47rG 

9P=9l+92=92=-3- rp , 

by (2-36), (2-37), and (2-38). 
In order to find the potential V, we integrate (2-33) in our case, 

dV 47rG 
- = -9= ---pr 
dr 3 

wruch gives 

(2-39) 

(2-40) 

(2-41) 

The integration constant Cl is determined such that, at the outer surface r = R , 
(2-41) must yield the same result as (2-31): 

VeR) - 27rG R2 C _ GM _ 47rG R 3 1 
- --3- P + 1 - R - -3- PR 

whence Cl = 27rGpR2 , and 

(2-42) 

(2- 43) 
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gives the internal potential of a homogeneous sphere. It is quadratic in x, y, z since 
7'2 = x 2 + y2 + Z2: 

27r 2 2 2 2 
V = 3 Gp(3R - x - y - z ) (2--44) 

from which we immediately calculate (p = const.!) that Poisson's equation 

fl. V = V .. Z + VIIII + v.. = -47rGp (2--45) 

is satisfied. 
Stratified aphere. Here we start with (1-1), noting that for the sphere 

R 21'1" 1'1" 

III dv I I I 7"2 sin B' dB' d>.' d7" 
1" = 0 )., '= 0 8'= 0 

R 

I 117"2dCT d7" (2-46) 
,,'=0 er 

by (1-43); the integration variables are denoted by 7", B', N, reserving 7', B, >. for the 
interior point P at which V is to be computed. Thus (1-1) becomes 

R 

V = V(7', B, >') = G I r'2p(7") II dZCT d7" (2-47) 
1"=0 

Note that p is a function only of the radius vector 7" because of spherical symmetry. 
Now we apply the basic series (1-53). Note that 7" and 7' playasymmetrie role in 

(1- 52), but in (1-53), the larger one of the two must be in the denominator in order 
to obtain a convergent series . Thus within Sp (Fig. 2.2) there is 7" < 7' and we must 
use 

0 < 7" < 7' (2--48a) 

whereas in the shell between Sp and S there is 7" > 7' and we must use 

7' < 7" < R (2--48b) 

Thus (2-47) must be split up into two parts: 

V = V1 +V2 (2--49) 

r 00 In 

G ! 7"2 p(7")!! L 7':+1 Pn(COS'IjJ)dCTd7" 
1" = 0 u n=O 

(2-50a) 

(2-50b) 
R 00 n 

G ! 7"2 p(7")!! L 7':+1 Pn(COS'IjJ)dCTd7" 
1"=1' er n=O 
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In (2-50a) we can inter change integral and sum: 

(2-51) 

(This interchange is easily justified because for r l < r the series is uniformly con
vergent: lift P very little above Sp to have r l < rand then move it back to Sp by 
continuity of the potential; cf. sec. 1.2. Disregard this remark if you are not a mathe
matician.) Then the orthogonality relationJ (sec. 1.3) enter and give, by (1-42) with 
n = 0, 

11 Po(cos1jJ)du = 11 Pg(cos1jJ)du = 11 du = 47r (2-52) 

" " 
whereas, by (1-51) with k = 0, for n > 0 

11 Pn(cos1jJ)du = 0 (2-53) 

since Po = Rao = 1 and Yo = const. 
Thus, in the sum (2-51), only the term n = 0 survives (there remains only 47r/r), 

and (2-50a), as weil as (2-50b) by analogy, reduce to 

r':::::::O 

R 

V2 = 47rG 1 r'p(r')dr' . 
r':::::r 

Thus the internal potential V, by (2-49), finally becomes 

As acheck we put p = const. and get (2-43). 
Gravity inJide the earth. In agreement with (2-33) we have 

dV 
9= -a;: 

Differentiating (2-55) according to the usual rules of calculus we get 

9 = -47rG [- r\ I r /2
p(r

/
)dr' + ;. . r 2 p(r) - rp(r)] 

(2-54) 

(2-55) 

(2-56) 



34 CHAPTER 2 EQUILIBRIUM FIGURE: BASIC THEORY 

or 
47rG Jr 

9 = ---:;:2 r 2p(r)dr (2-57) 
o 

now we may, without danger of eonfusion, write r instead of r' in the integrand, a 
eonvenient and eustomary though somewhat questionable simplifieation sinee, after 
the integral sign, r denotes the integration variable, whereas as the upper limit of 
integration and before the integral sign, r denotes the radius vector of P at whieh V 
and gare eonsidered (Fig. 2.2) . 

The physieal interpretation of (2-57) is very dear. The part of the earth's mass 
whieh is endosed by the surfaee Sp is 

r r 

M p = J JJ p(r
/
)r12dr'dO' = 47r J pr 2dr 

,.'=0 a 0 

by (2-52), so that (2-57) may be written 

GMp 
9 = -:;:z 

(2-58) 

(2-59) 

in agreement with (2-33) and (2-37). This is the attraction of the "eore" within Sp, 
whereas the attraetion of the out er shell is zero, by (2-36). This is quite analogous 
to the homogeneous ease (2-37) . 

Using this analogy, it is also extremely eonvenient and useful to introduee the 
mean den3ity D within the sphere Sp by 

3 
D=--Mp 

47rr3 
(2-60) 

in agreement with (2-38), whieh is the fietitious eonstant density produeing the same 
attraction (2-59) on and outside Sp as the real density distribution p(r) inside Sp. 
By (2-58) we have 

D = ~Jr pr2dr = D(r) 
r 3 

(2-61) 
o 

(D is eonstant within Sp but, depending on Sp, it depends on r!). Finally, (2-58), 
(2-59), and (2-61) give 

47rG 
g(r) = -3-rD(r) (2-62) 

a useful formula whieh is the analogue of (2-39) for a heterogeneous, spherieally ~ 
symmetrie stratifieation. 01 

2.3 Hornogeneous Ellipsoid: First-Order Theory 

Sinee the earth is not homogeneous, the theory of a homogeneous ellipsoid only plays ~ 

an auxiliary and preparatory role, although an important one. 
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