8 CHAPTER 1 BACKGROUND INFORMATION

where o :

denotes the mean curvature of the level surface passing through the point under
consideration, with R; and R, being its principal radii of curvature. Eq. (1-19) is
a nontrivial consequence of (1-14); its derivation can be found in (Heiskanen and
Moritz, 1967, pp. 51-53). It will play a basic role in Wavre’s theory of equilibrium
figures.

Normal and anomalous gravity field. Since the actual gravity field is mathemat-
ically rather complicated, it is usually referred to a normal gravity field of a simple
analytical nature. In general, the normal gravity potential U is chosen in such a way
that the reference ellipsoid is an equipotential surface for U:

U(z, y, z) = U ='const." (1-21)

in the same way as the geoid is an equipotential surface for the actual gravity potential
W:
Wi, o, z). = Wy = const. (1-22)

we may assume Uy = W,. The normal potential U will be considered in detail in
Chapter 5; here we only mention Somigliana’s closed formula for normal gravity v on
the ellipsoid:
_ % cos? ¢ + by, sin’ ¢ (1-23)
\/a,2 cos? ¢ + b?sin’ ¢

where a and b are shown in Fig. 1.1, . and v, denote normal gravity at equator and
pole, respectively, and ¢ indicates geographical latitude on the ellipsoid (sec. 1.4).
The difference

P=W—U (1-24)

for the same point is called anomalous potential, or disturbing potential. Denoting by
N the height of the geoid (1-22) above the reference ellipsoid (1-21), we have the
famous formula

T
N==— , (1-25)
4
also due to Bruns, which is as elementary as it is intriguing, besides being extremely

useful.

1.3 Spherical Harmonics

In this section we shall collect some well-known but very important formulas for
spherical harmonics for later reference; the notations follow (Heiskanen and Moritz,
1967), sections 1-8 through 1-15, 2-5, and 2-9.
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Spherical coordinates r (ra;dius vector), 6 (polar distance), and A (longitude) are
related to rectangular coordinates z, y, z by

=! 7 sindcosiX

_ = rsinfsin) (1-26)
l 2 =S rcond
; see Fig. 1.3.
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id FIGURE 1.3: Spherical and rectangular coordinates
If_we express Laplace’s equation AV = 0 in spherical coordinates and try to
) solve it by a product of three functions, each of which depends on only one spherical
by coordinate:
W | V= f(ra®h() (1-27)
) then the solutions are found to be
%) 1
: ‘ fr) = o or f(r) = (1-28a)
/ 9(0) = P.u(cosf) (1-28b)
,l h(A) = cosmA or h(\) = sinm) , (1-28c¢)
| where
] o 1) Ot 3. &
for ¢ (1-29)
i = 0 Ty




10 CHAPTER 1 BACKGROUND INFORMATION

n is called the degree, and m the order of the functions under consideration. (There
is a second solution for g which, however, will not be needed until much later, see

sec. 5.1.)
Thus, the dependence on 7 and on A is simple: f(r) is a positive or negative power

of r, and k() is a sine or cosine of multiples of A.
The functions P,,,(cos #) are less elementary. They are called Legendre functions

and defined by (we put cosf = t):

1
2nn!

Pun(t) = = (1 — )BT (2 _ qye (1-30)
nm dintm .

An explicit expression is

e e e
B e A =g,

5 (1-31)

where ng is the greatest integer < (n — m)/2. The Legendre functions are thus
polynomials in ¢ = cos §, multiplied by powers of /1 — 2 = sin 6.
For m = 0 we have the Legendre polynomials
L&
2rn! din
they are polynomials in ¢ of degree n. For m # 0, the P,.(t) are called the associated

Legendre functions.
The first five Legendre polynomials are

F=1)= ; (1-32)

Po(t) = Pro(t) =

Py(t) s
Pl(t) = ‘)
3 il
t) = -t*—= 1-33
P2( ) 2 2 2 ( )
5 3
= 8¢
Ps(t) 2 .2 )
35 15
NG ey
Fa(t) 8 gy
The products of functions (1-28b) and (1-28c),
R0 X)) = Baacosl) c-os mXA (1-34)
Spm(0, A) = Pan(cosf)sinm
are Legendre surface harmonics, and the products of (1-28a, b, c),
7 R0, A) 25800, X)) (1-35a)
pie R (BaX) r S 0, 2) (1-35b)

are the corresponding solid spherical harmonics (m = 0: zonal, 0 < m < n: tesseral
(m = n: sectorial)). The functions (1-35), as well as their (finite or convergent

infinite) linear combinations, are harmonic.
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In particular, the series

o\ Rum(6, A) Snm (8, A)
veo =% % = 1 By = 0] (1-36)

or, equivalently,

. > Pam(cos 8)(Apm cosmA + By sinm)) (1-37)

n+1
T m=0

V(r, 8, )) = fj

n=0

may be used for representing the earth’s external gravitational potential, which is a
harmonic function.

Since the first term, for n = 0, is nothing else than GM/r (see (1-3)), the series
(1-36) or (1-37) may also be given the form, frequently used in satellite applications:

n

Vie= g [1 - Z Z (g) P,..(cos8)(Jum cosmA + K, sinmA)| (1-38)
n=2m=0
in which a is the semimajor axis of the earth (that is, of a best-fitting earth ellipsoid)
and the coefficients J,,,, and K,,,, are, in a simple way, related to the coefficients A,,,
and B, in (1-37). The advantage of the form (1-38) is that the coefficients are small
dimensionless numbers. There is no term with n = 1 if the origin is at the geocenter.
As an example we mention the case of the equipotential ellipsoid. In view of the
rotational symmetry we have K,,, = 0 always and J,,, = 0 if m # 0. On putting
Jno = J, and noting (1-32), the expansion (1-38) thus reduces to

GM = “
iy [1 s S (5) P,,(cos@)] , (1-39)
T n=2 ui
and the coefficients are given by
3™ C—A
P R AR 2P\
» = (O e e ey TVt Y araa)
Jowtr1 =0 (1-40)

where e* = (a® — b%)/a?, M denotes the mass of the (normal) earth, A (equatorial)

and C (polar) are its principal moments of inertia, and v = 1, 2, 3,. .. (Heiskanen
and Moritz, 1967, p. 73).

Orthogonality relations. The integral over the unit sphere of the product of any
two different functions R, or S, is zero:

[ / Rpn(8, VR, (6, \)do = 0

7 if both
// Som(8, \)S1r(8, N\)do 5 i &s£m of *#m orboth,

(1-41)
// Rom(6, X)S,.(8, \)de = 0 in any case

4
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The symbol o denotes the unit sphere r = 1, and do its surface element.
For the product of two equal functions we have

47

[ Bua(®: NP o = = ko
J[ (Ban(®, M de = [[ [Sun(8, W) do = (1-42)
2r  (n+m)! y
- 2n+1zn_—)'_nnm if an=£0

The integral over the unit sphere is explicitly expressed by

// do = / /( sin8d0dX . (1-43)

A=06=0

Let us now put » =1 in (1-36) and write

V(1,8,))=f(6,2) , (1-44)
so that
(6, X)) = Z Z [ Bran (0 X)) B S0y N) % (1-45)

We multiply f(0, A) by R.n(0, A) or S,.(8, A\) and integrate over the unit sphere,
taking into account (1-41) and (1-42). This determines the coefficients as

dly = /f9AR.,m(0/\) ,

Knm

(1-46)

Bom /fe,\,,,,,oA)d

K‘nm

Finally we introduce the Laplace surface harmonics Y,(6, A) of f(6, A), defined by

Ya(0, 2) = 3 [AumBon(8, A) + BasSorn(6, N)] (1-47)
and write b
A)="Y Y ) (1-48)

Then the Laplace harmonic of degree n is given by the expression

27 ™
Y. (6, A):Z";l [ [ £ 3)Pcos gy singrasax (1-49)
A'=06'=0
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which obviously is closely related to (1-46), 3 being the spherical distance between
the points (6, A) and (8', \'):

costp = cos B cos @' + sinfsin§ cos(A' — A) . (1-50)
A simple consequence of (1-49) is obtained by taking f(8, A) = Yi(0, A) with k # n:

// Y, (6, X )P, (cosp)do =0 (1-51)
another important expression of orthogonality (do = sin 6'd6'd)\’ here).
Reciprocal distance. We finally mention the simple but fundamental spherical-
harmonic development of 1/ occurring in equations such as (1-1) and (1-5). Consider
two points P and P’ in space, having spherical coordinates

P(r,0,)) and P'(+',0,)")

By applying the cosine theorem to the plane triangle OPP’, O being the origin r = 0,
we find for the spatial distance [ = PP":

l= \/r2 + 72 —2rr'costyp (1-52)
where 9, the angle between the radius vectors r = OP and ' = OP’, is again given
by (1-50). The reciprocal distance may now be expanded into the series

1 oo T’"
1= nZ:% .,.n_-HP"(COS P) (1-53)

which converges (uniformly in %) for 7' < r since

|Pa(cos®)[ <1 5

it diverges for 7' > r.

1.4 Elements of Ellipsoidal Geometry

For convenience and later reference we collect here some well-known (cf. Bomford,

1962, pp. 494-497; Heitz, 1988, pp. 99-105) and easily derivable formulas from ellip-
soidal geometry.

Besides the semimajor axis a and semiminor axis b of the meridian ellipse (Fig. 1.1)
we have already met the flattening

a—b

a

f:

and the (first) excentricity e defined by

(1-54)

2. 13
a?—b
ot =

ek (1-55)
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