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where 

J= ~(~+~) 
2 R 1 R 2 

(1-20) 

denotes the mean curvature of the level surface passing through the point under 
consideration, with R 1 and R 2 being its principal radii of curvature. Eq. (1-19) is 
a nontrivial consequence of (1-14); its derivation can be found in (Heiskanen and 
Moritz, 1967, pp. 51-53). It will play a basic role in Wavre's theory of equilibrium 
figures. 

Normal and anomaloua gravity field. Since the actual gravity field is mathemat­
icaIly rather complicated, it is usuaIly referred to anormal gravity field of a simple 
analytical nature. In general, the normal gravity potential U is chosen in such a way 
that the reference ellipsoid is an equipotential surface for U: 

U(x, y, z) = Uo = const. (1-21) 

in the same way as the geoid is an equipotential surface for the actual gravity potential 
W: 

W(x, y, z) = Wo = const. (1-22) 

we may assurne Uo = Wo. The normal potential U will be considered in detail in 
Chapter 5; here we only mention Sornigliana's closed formula for normal gravity I on 
the ellipsoid: 

ale cos2 <p + lryp sin2 <p 
I = 7======~=~ Ja2 cos2 <p + b2 sin2 <p 

(1-23) 

where a and bare shown in Fig. 1.1, le and IP denote normal gravity at equator and 
pole, respectively, and <p indicates geograph.icallatitude on the ellipsoid (sec. 1.4). 

The difference 

T=W-U (1-24) 

for the same point is caIled anomaloua potential, or diaturbing potential. Denoting by 
N the height of the geoid (1-22) above the reference ellipsoid (1-21), we have the 
famous formula 

N=! (1-25) 
I 

also due to Bruns, which is as elementary as it is intriguing, besides being extremely 
useful. 

1.3 Spherical Harrnonics 

In this section we shaIl collect some well-known but very important formulas for 
spherical harmonies for later reference; the notations follow (Heiskanen and Moritz, 
1967), sections 1- 8 through 1- 15 , 2- 5, and 2-9. 
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Spherical coordinate3 r (radius vector), 0 (polar distance), and >. (longitude) are 
related to rectangular coordinates x, y, z by 

x = r sin 0 cos >. 
y r sin 0 sin >. (1-26) 

z r cos 0 

see Fig. 1.3. 
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FIGURE 1.3: Spherical and rectangular coordinates 

If we express Laplace's equation t:" V = ° in spherical coordinates and try to 
solve it by a product of three functions, each of which depends on only one spherical 
co ordinate: 

V = f(r)g(B)h(>') 
then the solutions are found to be 

where 

f(r) 
g(O) 
h(>') 

n 

m 

or f(r) = 
1 

Pnm(cosB) 

cos m>. or h( >') = sin m>. 

0,1,2,3, ... , 

0,1, . . . , n 

(1- 27) 

(1-28a) 

(1-28b) 

(1- 28c) 

(1-29) 
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n is called the degree, and m the order of the functions under consideration. (There 
is a second solution for gwhich, however, will not be needed until much later, see 
sec. 5.1.) 

Thus, the dependence on r and on>. is simple: f(r) is a positive or negative power 
of r, and h( >') is a sine or cosine of multiples of >.. 

The functions Pnm( cos (J) are less elementary. They are called Legendre functions 
and defined by (we put cos (J = t): 

P. (t) = _1_ (1 _ t 2)'i- ~+m (t 2 - Ir 
nm 2nn! dtn+m (1-30) 

An explicit expression is 

no (-I)k(2n - 2k)' 
Pnm(t) = Z-n(1 - t 2)'i- L . tn- m- 2k (1 - 31) 

k=O k!(n - k)!(n - m - 2k)! 

where no is the greatest integer::; (n - m)/2. The Legendre functions are thus 
polynomials in t = cos (J, multiplied by powers of JI=t2 = sin (J. 

For m = 0 we have the Legendre polynomialJ 

they are polynomials in t of degree n. For m =1= 0, the Pnm(t) are called the auociated 
Legendre function3. 

The first five Legendre polynomials are 

3 2 1 
-t 
2 2 
5 3 3 
-t - - t 
2 2 
35 4 . 15 2 3 
-t --t +-
8 4 8 

The products of functions (1-28b) and (1-28e), 

Pnm ( eos 0) eos m>. 

Pnm( eos (J) sin m>. 

are Legendre 3urface harmonic3, and the produets of (1-28a, b, e), 

r
n R..m(fJ, >') 

r-(n+l) R..m(O, >') 
rnSmn(O, >') 
r -(n+l) Snm (0, >') 

(1-33) 

(1-34) 

(1-35a) 

(1-35b) 

are the eorresponding 301id 3pherical harmonic3 (m = 0: zonal, 0 < m ::; n: teJJeral 
(m = n : Jectorial)). The functions (1-35), as weil as their (finite or eonvergent 
infinite) linear eombinations, are harmonie. 
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In particular, the series 

(1-36) 

or, equivalently, 

00 1 n • 

V(r, 8, A) = L - L Pnm(cos8)(AnmcosmA + BnmsmmA) 
n=O r n+1 

m=O 

(1-37) 

may be used for representing the earth's external gravitational potential, which is a 
harmonic function. 

Since the first term, for n = 0, is not hing else than GM/r (see (1-3)), the series 
(1-36) or (1-37) may also be given the form, frequently used in satellite applications: 

GM [ 00 n (a)n ] V = -r- 1 - E~o ;- Pnm(cos8)(Jnm cosmA + K nm sinmA) (1-38) 

in which ais the semimajor axis of the earth (that is, of a best-fitting earth ellipsoid) 
and the coefficients Jnm and K nm are, in a simple way, related to the coefficients Anm 
and Bnm in (1-37). The advantage of the form (1-38) is that the coefficients are small 
dimensionless numbers. There is no term with n = 1 if the origin is at the geocenter. 

AB an example we mention the case of the equipotential ellip30id. In view of the 
rotational symmetry we have K nm = 0 always and Jnm = 0 if m # O. On putting 
JnO = Jn and noting (1-32), the expansion (1-38) thus reduces to 

V = G~ [1-~ Jn (;f Pn(COS8)] (1-39) 

and the coefficients are given by 

_ (v+! 3e
2v 

( C - A) 
J2v - -1) (211+1)(211+3) 1-11+5I1Ma2e2 

J2V+1 = 0 (1-40) 

where e2 = (a2 - b2)/ a2, M denotes the mass of the (normal) earth, A (equatorial) 
and C (polar) are its principal moments of inertia, and 11 = 1,2, 3, ... (Heiskanen 
and Moritz, 1967, p. 73). 

Orthogonality relation3. The integral over the unit sphere of the product of any 
two different functions R...m or Snm is zero: 

!! R...m(8, A)R .. (8, >')dcr 

/! Snm(8, >')S .. (8, >')dcr 
u 

JJ R...m(8, >')S .. (8, A)dcr 

00 } if s # n or r # m or both, 
(1 - 41 ) 

o in any case 
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The symbol u denotes the unit sphere r = 1, and du its surfaee element. 
For the product of two equal functions we have 

JJ [R,.0(8, >.)]2 du 

JJ [R,.m(8, >.W du 
er 

471" 
2n + 1 == II:no , 

271" (n + m)! _ 
2n + 1 (n _ m)! = II:nm if m =1= 0 . 

The integral over the unit sphere is explieitly expressed by 

2". ". 

JJ( .)dU = J J (-)sin8d8d>' 
er A=08=0 

Let us now put r = 1 in (1-36) and write 

V(l, 8, >') = f(8, >') , 

so that 
n 

f(8, >') = L L [Anm R,.m(8, >') + Bnm Snm (8, >')] 
n=Om=O 

(1-42) 

(1-43) 

(1-44) 

(1-45) 

We multiply f(8, >') by R,.m(8, >') or Snm(8, >') and integrate over the unit sphere, 
taking into aeeount (1-41) and (1-42). This determines the eoeffieients as 

lI:~m JJ f(8, >')R,.m(8, >')du 
er 

(1-46) 
lI:~m JJ f(8, >')Snm(8, >')du 

er 

Finally we introduee the Laplace Jurface harmonicJ Yn(8, >') of f(8, >'), defined by 

n 

Yn(8, >') = L [Anm R,.m (8, >') + Bnm Snm(8, >')] (1-47) 
m=O 

and write 

(1-48) 
n=O 

Then the Laplaee harmonie of degree n is given by the expression 

2". ". 

Yn(8, >') = 2n
4
: 1 J J f( 8', >.')Pn( cos"p) sin 8' d8' d>.' , (1-49) 

>"'=08'=0 
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which obviously is closely related to (1-46), 'I/J being the spherical distance between 
the points (0, >') and (0 /, N): 

cos'I/J = cos 0 cos 0' + sin 0 sin 0' cos( >" - >') (1-50) 

A simple consequence of (1-49) is obtained by taking /(0, >') = Yk(O, >') with k =I n: 

11 Yk(O/, >")Pn(cos'I/J)du = 0 (1-51 ) 

" 
another important expression of orthogonality (du = sin 0' dO' dN here) . 

Reciprocal di&tance. We finally mention the simple but fundamental spherical­
harmonic development of 1/1 occurring in equations such as (1-1) and (1-5). Consider 
two points P and P' in space, having spherical coordinates 

P(r, 0, >') and P'(r /, 0/, >.') 

By applying the cosine theorem to the plane triangle OPP' , 0 being the origin r = 0, 
we find for the spatial distance I = P P': 

I = Jr 2 + r /2 
- 2rr' cos 'I/J (1-52) 

where 'I/J, the angle between the radius vectors r = OP and r' = OP' , is again given 
by (1-50). The reciprocal distance may now be expanded into the series 

(1-53) 

which converges (uniformly in 'I/J) for r ' < r since 

it diverges for r ' > r. 

1.4 Elements of Ellipsoidal Geometry 

For convenience and later reference we collect here some well-known (cf. Bomford, 
1962, pp. 494-497; Heitz, 1988, pp . 99-105) and easily derivable formulas from ellip­
soidal geometry. 

Besides the semimajor axis a and semiminor axis b of the meridian ellipse (Fig. 1.1) 
we have already met the fiattening 

a-b 
/=-

a 
(1-54) 

and the (first) excentricity e defined by 

(1-55) 
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