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where 

J= ~(~+~) 
2 R 1 R 2 

(1-20) 

denotes the mean curvature of the level surface passing through the point under 
consideration, with R 1 and R 2 being its principal radii of curvature. Eq. (1-19) is 
a nontrivial consequence of (1-14); its derivation can be found in (Heiskanen and 
Moritz, 1967, pp. 51-53). It will play a basic role in Wavre's theory of equilibrium 
figures. 

Normal and anomaloua gravity field. Since the actual gravity field is mathemat
icaIly rather complicated, it is usuaIly referred to anormal gravity field of a simple 
analytical nature. In general, the normal gravity potential U is chosen in such a way 
that the reference ellipsoid is an equipotential surface for U: 

U(x, y, z) = Uo = const. (1-21) 

in the same way as the geoid is an equipotential surface for the actual gravity potential 
W: 

W(x, y, z) = Wo = const. (1-22) 

we may assurne Uo = Wo. The normal potential U will be considered in detail in 
Chapter 5; here we only mention Sornigliana's closed formula for normal gravity I on 
the ellipsoid: 

ale cos2 <p + lryp sin2 <p 
I = 7======~=~ Ja2 cos2 <p + b2 sin2 <p 

(1-23) 

where a and bare shown in Fig. 1.1, le and IP denote normal gravity at equator and 
pole, respectively, and <p indicates geograph.icallatitude on the ellipsoid (sec. 1.4). 

The difference 

T=W-U (1-24) 

for the same point is caIled anomaloua potential, or diaturbing potential. Denoting by 
N the height of the geoid (1-22) above the reference ellipsoid (1-21), we have the 
famous formula 

N=! (1-25) 
I 

also due to Bruns, which is as elementary as it is intriguing, besides being extremely 
useful. 

1.3 Spherical Harrnonics 

In this section we shaIl collect some well-known but very important formulas for 
spherical harmonies for later reference; the notations follow (Heiskanen and Moritz, 
1967), sections 1- 8 through 1- 15 , 2- 5, and 2-9. 
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Spherical coordinate3 r (radius vector), 0 (polar distance), and >. (longitude) are 
related to rectangular coordinates x, y, z by 

x = r sin 0 cos >. 
y r sin 0 sin >. (1-26) 

z r cos 0 

see Fig. 1.3. 
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FIGURE 1.3: Spherical and rectangular coordinates 

If we express Laplace's equation t:" V = ° in spherical coordinates and try to 
solve it by a product of three functions, each of which depends on only one spherical 
co ordinate: 

V = f(r)g(B)h(>') 
then the solutions are found to be 

where 

f(r) 
g(O) 
h(>') 

n 

m 

or f(r) = 
1 

Pnm(cosB) 

cos m>. or h( >') = sin m>. 

0,1,2,3, ... , 

0,1, . . . , n 

(1- 27) 

(1-28a) 

(1-28b) 

(1- 28c) 

(1-29) 
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n is called the degree, and m the order of the functions under consideration. (There 
is a second solution for gwhich, however, will not be needed until much later, see 
sec. 5.1.) 

Thus, the dependence on r and on>. is simple: f(r) is a positive or negative power 
of r, and h( >') is a sine or cosine of multiples of >.. 

The functions Pnm( cos (J) are less elementary. They are called Legendre functions 
and defined by (we put cos (J = t): 

P. (t) = _1_ (1 _ t 2)'i- ~+m (t 2 - Ir 
nm 2nn! dtn+m (1-30) 

An explicit expression is 

no (-I)k(2n - 2k)' 
Pnm(t) = Z-n(1 - t 2)'i- L . tn- m- 2k (1 - 31) 

k=O k!(n - k)!(n - m - 2k)! 

where no is the greatest integer::; (n - m)/2. The Legendre functions are thus 
polynomials in t = cos (J, multiplied by powers of JI=t2 = sin (J. 

For m = 0 we have the Legendre polynomialJ 

they are polynomials in t of degree n. For m =1= 0, the Pnm(t) are called the auociated 
Legendre function3. 

The first five Legendre polynomials are 

3 2 1 
-t 
2 2 
5 3 3 
-t - - t 
2 2 
35 4 . 15 2 3 
-t --t +-
8 4 8 

The products of functions (1-28b) and (1-28e), 

Pnm ( eos 0) eos m>. 

Pnm( eos (J) sin m>. 

are Legendre 3urface harmonic3, and the produets of (1-28a, b, e), 

r
n R..m(fJ, >') 

r-(n+l) R..m(O, >') 
rnSmn(O, >') 
r -(n+l) Snm (0, >') 

(1-33) 

(1-34) 

(1-35a) 

(1-35b) 

are the eorresponding 301id 3pherical harmonic3 (m = 0: zonal, 0 < m ::; n: teJJeral 
(m = n : Jectorial)). The functions (1-35), as weil as their (finite or eonvergent 
infinite) linear eombinations, are harmonie. 
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In particular, the series 

(1-36) 

or, equivalently, 

00 1 n • 

V(r, 8, A) = L - L Pnm(cos8)(AnmcosmA + BnmsmmA) 
n=O r n+1 

m=O 

(1-37) 

may be used for representing the earth's external gravitational potential, which is a 
harmonic function. 

Since the first term, for n = 0, is not hing else than GM/r (see (1-3)), the series 
(1-36) or (1-37) may also be given the form, frequently used in satellite applications: 

GM [ 00 n (a)n ] V = -r- 1 - E~o ;- Pnm(cos8)(Jnm cosmA + K nm sinmA) (1-38) 

in which ais the semimajor axis of the earth (that is, of a best-fitting earth ellipsoid) 
and the coefficients Jnm and K nm are, in a simple way, related to the coefficients Anm 
and Bnm in (1-37). The advantage of the form (1-38) is that the coefficients are small 
dimensionless numbers. There is no term with n = 1 if the origin is at the geocenter. 

AB an example we mention the case of the equipotential ellip30id. In view of the 
rotational symmetry we have K nm = 0 always and Jnm = 0 if m # O. On putting 
JnO = Jn and noting (1-32), the expansion (1-38) thus reduces to 

V = G~ [1-~ Jn (;f Pn(COS8)] (1-39) 

and the coefficients are given by 

_ (v+! 3e
2v 

( C - A) 
J2v - -1) (211+1)(211+3) 1-11+5I1Ma2e2 

J2V+1 = 0 (1-40) 

where e2 = (a2 - b2)/ a2, M denotes the mass of the (normal) earth, A (equatorial) 
and C (polar) are its principal moments of inertia, and 11 = 1,2, 3, ... (Heiskanen 
and Moritz, 1967, p. 73). 

Orthogonality relation3. The integral over the unit sphere of the product of any 
two different functions R...m or Snm is zero: 

!! R...m(8, A)R .. (8, >')dcr 

/! Snm(8, >')S .. (8, >')dcr 
u 

JJ R...m(8, >')S .. (8, A)dcr 

00 } if s # n or r # m or both, 
(1 - 41 ) 

o in any case 
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The symbol u denotes the unit sphere r = 1, and du its surfaee element. 
For the product of two equal functions we have 

JJ [R,.0(8, >.)]2 du 

JJ [R,.m(8, >.W du 
er 

471" 
2n + 1 == II:no , 

271" (n + m)! _ 
2n + 1 (n _ m)! = II:nm if m =1= 0 . 

The integral over the unit sphere is explieitly expressed by 

2". ". 

JJ( .)dU = J J (-)sin8d8d>' 
er A=08=0 

Let us now put r = 1 in (1-36) and write 

V(l, 8, >') = f(8, >') , 

so that 
n 

f(8, >') = L L [Anm R,.m(8, >') + Bnm Snm (8, >')] 
n=Om=O 

(1-42) 

(1-43) 

(1-44) 

(1-45) 

We multiply f(8, >') by R,.m(8, >') or Snm(8, >') and integrate over the unit sphere, 
taking into aeeount (1-41) and (1-42). This determines the eoeffieients as 

lI:~m JJ f(8, >')R,.m(8, >')du 
er 

(1-46) 
lI:~m JJ f(8, >')Snm(8, >')du 

er 

Finally we introduee the Laplace Jurface harmonicJ Yn(8, >') of f(8, >'), defined by 

n 

Yn(8, >') = L [Anm R,.m (8, >') + Bnm Snm(8, >')] (1-47) 
m=O 

and write 

(1-48) 
n=O 

Then the Laplaee harmonie of degree n is given by the expression 

2". ". 

Yn(8, >') = 2n
4
: 1 J J f( 8', >.')Pn( cos"p) sin 8' d8' d>.' , (1-49) 

>"'=08'=0 
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which obviously is closely related to (1-46), 'I/J being the spherical distance between 
the points (0, >') and (0 /, N): 

cos'I/J = cos 0 cos 0' + sin 0 sin 0' cos( >" - >') (1-50) 

A simple consequence of (1-49) is obtained by taking /(0, >') = Yk(O, >') with k =I n: 

11 Yk(O/, >")Pn(cos'I/J)du = 0 (1-51 ) 

" 
another important expression of orthogonality (du = sin 0' dO' dN here) . 

Reciprocal di&tance. We finally mention the simple but fundamental spherical
harmonic development of 1/1 occurring in equations such as (1-1) and (1-5). Consider 
two points P and P' in space, having spherical coordinates 

P(r, 0, >') and P'(r /, 0/, >.') 

By applying the cosine theorem to the plane triangle OPP' , 0 being the origin r = 0, 
we find for the spatial distance I = P P': 

I = Jr 2 + r /2 
- 2rr' cos 'I/J (1-52) 

where 'I/J, the angle between the radius vectors r = OP and r' = OP' , is again given 
by (1-50). The reciprocal distance may now be expanded into the series 

(1-53) 

which converges (uniformly in 'I/J) for r ' < r since 

it diverges for r ' > r. 

1.4 Elements of Ellipsoidal Geometry 

For convenience and later reference we collect here some well-known (cf. Bomford, 
1962, pp. 494-497; Heitz, 1988, pp . 99-105) and easily derivable formulas from ellip
soidal geometry. 

Besides the semimajor axis a and semiminor axis b of the meridian ellipse (Fig. 1.1) 
we have already met the fiattening 

a-b 
/=-

a 
(1-54) 

and the (first) excentricity e defined by 

(1-55) 
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