where

$$
\begin{equation*}
J=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \tag{1-20}
\end{equation*}
$$

denotes the mean curvature of the level surface passing through the point under consideration, with R_{1} and R_{2} being its principal radii of curvature. Eq. (1-19) is a nontrivial consequence of (1-14); its derivation can be found in (Heiskanen and Moritz, 1967, pp. 51-53). It will play a basic role in Wavre's theory of equilibrium figures.

Normal and anomalous gravity field. Since the actual gravity field is mathematically rather complicated, it is usually referred to a normal gravity field of a simple analytical nature. In general, the normal gravity potential U is chosen in such a way that the reference ellipsoid is an equipotential surface for U :

$$
\begin{equation*}
U(x, y, z)=U_{0}=\text { const } \tag{1-21}
\end{equation*}
$$

in the same way as the geoid is an equipotential surface for the actual gravity potential W :

$$
\begin{equation*}
W(x, y, z)=W_{0}=\text { const. } \tag{1-22}
\end{equation*}
$$

we may assume $U_{0}=W_{0}$. The normal potential U will be considered in detail in Chapter 5 ; here we only mention Somigliana's closed formula for normal gravity γ on the ellipsoid:

$$
\begin{equation*}
\gamma=\frac{a \gamma_{e} \cos ^{2} \phi+b \gamma_{p} \sin ^{2} \phi}{\sqrt{a^{2} \cos ^{2} \phi+b^{2} \sin ^{2} \phi}} \tag{1-23}
\end{equation*}
$$

where a and b are shown in Fig. 1.1, γ_{e} and γ_{p} denote normal gravity at equator and pole, respectively, and ϕ indicates geographical latitude on the ellipsoid (sec. 1.4).

The difference

$$
\begin{equation*}
T=W-U \tag{1-24}
\end{equation*}
$$

for the same point is called anomalous potential, or disturbing potential. Denoting by N the height of the geoid (1-22) above the reference ellipsoid (1-21), we have the famous formula

$$
\begin{equation*}
N=\frac{T}{\gamma} \tag{1-25}
\end{equation*}
$$

also due to Bruns, which is as elementary as it is intriguing, besides being extremely useful.

1.3 Spherical Harmonics

In this section we shall collect some well-known but very important formulas for spherical harmonics for later reference; the notations follow (Heiskanen and Moritz, 1967), sections $1-8$ through $1-15,2-5$, and $2-9$.

Spherical coordinates r (radius vector), θ (polar distance), and λ (longitude) are related to rectangular coordinates x, y, z by

$$
\begin{align*}
& x=r \sin \theta \cos \lambda, \\
& y=r \sin \theta \sin \lambda, \tag{1-26}\\
& z=r \cos \theta ;
\end{align*}
$$

see Fig. 1.3.

FIGURE 1.3: Spherical and rectangular coordinates
If we express Laplace's equation $\Delta V=0$ in spherical coordinates and try to solve it by a product of three functions, each of which depends on only one spherical coordinate:

$$
\begin{equation*}
V=f(r) g(\theta) h(\lambda) \tag{1-27}
\end{equation*}
$$

then the solutions are found to be

$$
\begin{align*}
& f(r)=r^{n} \text { or } f(r)=\frac{1}{r^{n+1}} \tag{1-28a}\\
& g(\theta)=P_{n m}(\cos \theta) \tag{1-28b}\\
& h(\lambda)=\cos m \lambda \text { or } h(\lambda)=\sin m \lambda \tag{1-28c}
\end{align*}
$$

where

$$
\begin{align*}
n & =0,1,2,3, \ldots \\
m & =0,1, \ldots, n \tag{1-29}
\end{align*}
$$

n is called the degree, and m the order of the functions under consideration. (There is a second solution for g which, however, will not be needed until much later, see sec. 5.1.)

Thus, the dependence on r and on λ is simple: $f(r)$ is a positive or negative power of r, and $h(\lambda)$ is a sine or cosine of multiples of λ.

The functions $P_{n m}(\cos \theta)$ are less elementary. They are called Legendre functions and defined by (we put $\cos \theta=t$):

$$
\begin{equation*}
P_{n m}(t)=\frac{1}{2^{n} n!}\left(1-t^{2}\right)^{\frac{m}{2}} \frac{d^{n+m}}{d t^{n+m}}\left(t^{2}-1\right)^{n} \tag{1-30}
\end{equation*}
$$

An explicit expression is

$$
\begin{equation*}
P_{n m}(t)=2^{-n}\left(1-t^{2}\right)^{\frac{m}{2}} \sum_{k=0}^{n_{0}} \frac{(-1)^{k}(2 n-2 k)!}{k!(n-k)!(n-m-2 k)!} t^{n-m-2 k} \tag{1-31}
\end{equation*}
$$

where n_{0} is the greatest integer $\leq(n-m) / 2$. The Legendre functions are thus polynomials in $t=\cos \theta$, multiplied by powers of $\sqrt{1-t^{2}}=\sin \theta$.

For $m=0$ we have the Legendre polynomials

$$
\begin{equation*}
P_{n}(t)=P_{n 0}(t)=\frac{1}{2^{n} n!} \frac{d^{n}}{d t^{n}}\left(t^{2}-1\right)^{n} \tag{1-32}
\end{equation*}
$$

they are polynomials in t of degree n. For $m \neq 0$, the $P_{n m}(t)$ are called the associated Legendre functions.

The first five Legendre polynomials are

$$
\begin{align*}
P_{0}(t) & =1 \\
P_{1}(t) & =t \\
P_{2}(t) & =\frac{3}{2} t^{2}-\frac{1}{2} \tag{1-33}\\
P_{3}(t) & =\frac{5}{2} t^{3}-\frac{3}{2} t \\
P_{4}(t) & =\frac{35}{8} t^{4}-\frac{15}{4} t^{2}+\frac{3}{8}
\end{align*}
$$

The products of functions ($1-28 \mathrm{~b}$) and ($1-28 \mathrm{c}$),

$$
\begin{align*}
R_{n m}(\theta, \lambda) & =P_{n m}(\cos \theta) \cos m \lambda \tag{1-34}\\
S_{n m}(\theta, \lambda) & =P_{n m}(\cos \theta) \sin m \lambda
\end{align*}
$$

are Legendre surface harmonics, and the products of (1-28a, b, c),

$$
\begin{array}{ll}
r^{n} R_{n m}(\theta, \lambda), & r^{n} S_{n m}(\theta, \lambda) \\
r^{-(n+1)} R_{n m}(\theta, \lambda), & r^{-(n+1)} S_{n m}(\theta, \lambda) \tag{1-35b}
\end{array}
$$

are the corresponding solid spherical harmonics ($m=0$: zonal, $0<m \leq n$: tesseral ($m=n$: sectorial)). The functions ($1-35$), as well as their (finite or convergent infinite) linear combinations, are harmonic.

In particular, the series

$$
\begin{equation*}
V(r, \theta, \lambda)=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[A_{n m} \frac{R_{n m}(\theta, \lambda)}{r^{n+1}}+B_{n m} \frac{S_{n m}(\theta, \lambda)}{r^{n+1}}\right] \tag{1-36}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
V(r, \theta, \lambda)=\sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \sum_{m=0}^{n} P_{n m}(\cos \theta)\left(A_{n m} \cos m \lambda+B_{n m} \sin m \lambda\right) \tag{1-37}
\end{equation*}
$$

may be used for representing the earth's external gravitational potential, which is a harmonic function.

Since the first term, for $n=0$, is nothing else than $G M / r$ (see ($1-3$)), the series $(1-36)$ or (1-37) may also be given the form, frequently used in satellite applications:

$$
\begin{equation*}
V=\frac{G M}{r}\left[1-\sum_{n=2}^{\infty} \sum_{m=0}^{n}\left(\frac{a}{r}\right)^{n} P_{n m}(\cos \theta)\left(J_{n m} \cos m \lambda+K_{n m} \sin m \lambda\right)\right] \tag{1-38}
\end{equation*}
$$

in which a is the semimajor axis of the earth (that is, of a best-fitting earth ellipsoid) and the coefficients $J_{n m}$ and $K_{n m}$ are, in a simple way, related to the coefficients $A_{n m}$ and $B_{n m}$ in (1-37). The advantage of the form (1-38) is that the coefficients are small dimensionless numbers. There is no term with $n=1$ if the origin is at the geocenter.

As an example we mention the case of the equipotential ellipsoid. In view of the rotational symmetry we have $K_{n m}=0$ always and $J_{n m}=0$ if $m \neq 0$. On putting $J_{n 0}=J_{n}$ and noting (1-32), the expansion (1-38) thus reduces to

$$
\begin{equation*}
V=\frac{G M}{r}\left[1-\sum_{n=2}^{\infty} J_{n}\left(\frac{a}{r}\right)^{n} P_{n}(\cos \theta)\right] \tag{1-39}
\end{equation*}
$$

and the coefficients are given by

$$
\begin{align*}
& J_{2 \nu}=(-1)^{\nu+1} \frac{3 e^{2 \nu}}{(2 \nu+1)(2 \nu+3)}\left(1-\nu+5 \nu \frac{C-A}{M a^{2} e^{2}}\right) \\
& J_{2 \nu+1}=0 \tag{1-40}
\end{align*}
$$

where $e^{2}=\left(a^{2}-b^{2}\right) / a^{2}, M$ denotes the mass of the (normal) earth, A (equatorial) and C (polar) are its principal moments of inertia, and $\nu=1,2,3, \ldots$ (Heiskanen and Moritz, 1967, p. 73).

Orthogonality relations. The integral over the unit sphere of the product of any two different functions $R_{n m}$ or $S_{n m}$ is zero:

$$
\begin{align*}
& \iint_{\sigma} R_{n m}(\theta, \lambda) R_{s r}(\theta, \lambda) d \sigma=0 \tag{1-41}\\
& \iint_{\sigma} S_{n m}(\theta, \lambda) S_{s r}(\theta, \lambda) d \sigma=0 \\
& \iint_{\sigma} R_{n m}(\theta, \lambda) S_{s r}(\theta, \lambda) d \sigma=0 \quad \text { if } s \neq n \quad \text { or } \quad r \neq m \quad \text { or both, }
\end{align*}
$$

The symbol σ denotes the unit sphere $r=1$, and $d \sigma$ its surface element.
For the product of two equal functions we have

$$
\begin{align*}
\iint_{\sigma}\left[R_{n 0}(\theta, \lambda)\right]^{2} d \sigma & =\frac{4 \pi}{2 n+1} \equiv \kappa_{n 0} \quad, \\
\iint_{\sigma}\left[R_{n m}(\theta, \lambda)\right]^{2} d \sigma & =\iint_{\sigma}\left[S_{n m}(\theta, \lambda)\right]^{2} d \sigma= \tag{1-42}\\
& =\frac{2 \pi}{2 n+1} \frac{(n+m)!}{(n-m)!} \equiv \kappa_{n m} \quad \text { if } \quad m \neq 0
\end{align*}
$$

The integral over the unit sphere is explicitly expressed by

$$
\begin{equation*}
\iint_{\sigma}(\cdot) d \sigma=\int_{\lambda=0}^{2 \pi} \int_{\theta=0}^{\pi}(\cdot) \sin \theta d \theta d \lambda . \tag{1-43}
\end{equation*}
$$

Let us now put $r=1$ in (1-36) and write

$$
\begin{equation*}
V(1, \theta, \lambda)=f(\theta, \lambda), \tag{1-44}
\end{equation*}
$$

so that

$$
\begin{equation*}
f(\theta, \lambda)=\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left[A_{n m} R_{n m}(\theta, \lambda)+B_{n m} S_{n m}(\theta, \lambda)\right] \tag{1-45}
\end{equation*}
$$

We multiply $f(\theta, \lambda)$ by $R_{n m}(\theta, \lambda)$ or $S_{n m}(\theta, \lambda)$ and integrate over the unit sphere, taking into account (1-41) and (1-42). This determines the coefficients as

$$
\begin{align*}
& A_{n m}=\frac{1}{\kappa_{n m}} \iint_{\sigma} f(\theta, \lambda) R_{n m}(\theta, \lambda) d \sigma \\
& B_{n m}=\frac{1}{\kappa_{n m}} \iint_{\sigma} f(\theta, \lambda) S_{n m}(\theta, \lambda) d \sigma \tag{1-46}
\end{align*}
$$

Finally we introduce the Laplace surface harmonics $Y_{n}(\theta, \lambda)$ of $f(\theta, \lambda)$, defined by

$$
\begin{equation*}
Y_{n}(\theta, \lambda)=\sum_{m=0}^{n}\left[A_{n m} R_{n m}(\theta, \lambda)+B_{n m} S_{n m}(\theta, \lambda)\right] \tag{1-47}
\end{equation*}
$$

and write

$$
\begin{equation*}
f(\theta, \lambda)=\sum_{n=0}^{\infty} Y_{n}(\theta, \lambda) \tag{1-48}
\end{equation*}
$$

Then the Laplace harmonic of degree n is given by the expression

$$
\begin{equation*}
Y_{n}(\theta, \lambda)=\frac{2 n+1}{4 \pi} \int_{\lambda^{\prime}=0}^{2 \pi} \int_{\theta^{\prime}=0}^{\pi} f\left(\theta^{\prime}, \lambda^{\prime}\right) P_{n}(\cos \psi) \sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime}, \tag{1-49}
\end{equation*}
$$

which obviously is closely related to ($1-46$), ψ being the spherical distance between the points (θ, λ) and $\left(\theta^{\prime}, \lambda^{\prime}\right)$:

$$
\begin{equation*}
\cos \psi=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \left(\lambda^{\prime}-\lambda\right) . \tag{1-50}
\end{equation*}
$$

A simple consequence of $(1-49)$ is obtained by taking $f(\theta, \lambda)=Y_{k}(\theta, \lambda)$ with $k \neq n$:

$$
\begin{equation*}
\iint_{\sigma} Y_{k}\left(\theta^{\prime}, \lambda^{\prime}\right) P_{n}(\cos \psi) d \sigma=0 \tag{1-51}
\end{equation*}
$$

another important expression of orthogonality ($d \sigma=\sin \theta^{\prime} d \theta^{\prime} d \lambda^{\prime}$ here).
Reciprocal distance. We finally mention the simple but fundamental sphericalharmonic development of $1 / l$ occurring in equations such as (1-1) and (1-5). Consider two points P and P^{\prime} in space, having spherical coordinates

$$
P(r, \theta, \lambda) \text { and } P^{\prime}\left(r^{\prime}, \theta^{\prime}, \lambda^{\prime}\right)
$$

By applying the cosine theorem to the plane triangle $O P P^{\prime}, O$ being the origin $r=0$, we find for the spatial distance $l=P P^{\prime}$:

$$
\begin{equation*}
l=\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime} \cos \psi} \tag{1-52}
\end{equation*}
$$

where ψ, the angle between the radius vectors $r=O P$ and $r^{\prime}=O P^{\prime}$, is again given by $(1-50)$. The reciprocal distance may now be expanded into the series

$$
\begin{equation*}
\frac{1}{l}=\sum_{n=0}^{\infty} \frac{r^{\prime n}}{r^{n+1}} P_{n}(\cos \psi) \tag{1-53}
\end{equation*}
$$

which converges (uniformly in ψ) for $r^{\prime}<r$ since

$$
\left|P_{n}(\cos \psi)\right| \leq 1 ;
$$

it diverges for $r^{\prime}>r$.

1.4 Elements of Ellipsoidal Geometry

For convenience and later reference we collect here some well-known (cf. Bomford, 1962, pp. 494-497; Heitz, 1988, pp. 99-105) and easily derivable formulas from ellipsoidal geometry.

Besides the semimajor axis a and semiminor axis b of the meridian ellipse (Fig. 1.1) we have already met the flattening

$$
\begin{equation*}
f=\frac{a-b}{a} \tag{1-54}
\end{equation*}
$$

and the (first) excentricity e defined by

$$
\begin{equation*}
e^{2}=\frac{a^{2}-b^{2}}{a^{2}} \tag{1-55}
\end{equation*}
$$

