Über die Abhängigkeit

des

Hysteresisverlustes im Eisen

von der Feldwechselzahl

von

BENI HERZFELD Dini. Jun.

op@do-

Von der Technischen Hochschule zu Darmstadt zur Erlangung der Würde eines Doktor-Ingenieurs genehmigte Dissertation.

(13. VII. 1903.)

I 9965

Referent: Professor Dr. Karl Wirtz.

Korreferent: Professor Adolf Sengel.

MÜLHAUSEN i. E. Buchdruckerei J. Brinkmann 1908. Dem Andenken seiner Eltern gewidmet.

Der Verfasser.

Inhalts-Angabe.

· · ·

		Berte
I.	Einleitung	5
II.	Definition der verschiedenen Arten von Hysteresis	6-8
III.	Spezielles über Wechselfeldhysteresis (Ist die Hysteresis abhängig von der Periodenzahl?)	8
IV.	Geschichtlicher Überblick	8-12
V.	Sichtung und Kritik der unter IV angeführten Arbeiten	12-14
VI.	Beschreibung der in dieser Arbeit verwendeten Methode	15-17
VII.	Beschreibung der Schaltung und der Apparate	18-21
VIII.	Allgemeine Vorbemerkungen zu den Messungen	22-25
IX.	Beschreibung einer Messreihe und Tabelle der Beobachtungs-	
	resultate	26-33
Х.	Allgemeine Bemerkungen zu den Kurvenserien Nr. 2, 3, 4, 5	34
XI.	Kritik der Kurvenserien	35-41
	a) Kurvenserie Nr. 2 (Schirmwirkung)	35-36
	b) " Nr. 3 (Feststellung der Foucaultströme) .	36-38
	c) " Nr. 4 (Schirmwirkung zu vernachlässigen)	39
	d) " Nr. 5 (Reine Hysteresis)	39-41
XII.	Vergleich der Resultate mit denen unter IV angeführten	42
XIII.	Darstellung der Kurven durch die Gleichung y = A \cdot x + B \cdot x ²	43-52
XIV.	Folgerungen aus XIII	53-54
XV.	Bestimmung der absoluten Grösse der Verluste	55-61
XVI.	Kontrolle der Konstanz der Empfindlichkeit der Versuchs- anordnung	62-66
XVII.	Zusammenfassung	67-68
KVIII.	Abkürzungen der Litteraturangaben	69
XIX.	7 Blätter mit Schaltungsschema und Kurven bei	igeheftet.

-odi-ibo-

I. Einleitung.

Die Untersuchungen über das Verhalten der ferromagnetischen Substanzen, die einem periodischen Wechselfelde ausgesetzt sind, haben schon immer ein reges Interesse in der wissenschaftlichen und technischen Welt beansprucht.

Für die Technik ist es bei der ausgedehnten Verwendung der Wechselströme in der Praxis besonders wichtig, die Verluste in den Eisenteilen der elektrischen Maschinen, hervorgerufen durch das periodisch Stärke und Richtung wechselnde magnetische Feld, auf ein Minimum zu beschränken, um auf solche Weise den Nutzeffekt der Maschine möglichst günstig zu gestalten.

Die Wissenschaft ist bestrebt, durch geeignete Methoden diese Verhältnisse zu studieren, dadurch die Theorie zu vertiefen und an Hand der Ergebnisse der Technik die nötigen Fingerzeige zur praktischen Verwendung dieser Resultate zu geben.

Vorliegende Arbeit, die in dem physikalischen Laboratorium der Universität Genf auf Anregung des Herrn Professors Dr. C. E. Guye ausgeführt ist, beschäftigt sich mit der Erscheinung der Hysteresis und behandelt insbesondere den Einfluss rasch wechselnder Felder auf Eisendräte, die diesen Wechselfeldern ausgesetzt sind.

Transfer States and States

II. Definition der verschiedenen Arten von Hysteresis.

Der Begriff "Hysteresis" ist nicht eindeutig und soll deshalb vor Allem näher definiert werden.

Warburg¹) unterscheidet drei Arten von Hysteresis: 1. *Deformationshysteresis* (hystérésis de déformation).

2. Feldhysteresis (hystérésis de champ).

3. Temperaturhysteresis (hystérésis de température).

Unter Deformationshysteresis ist die von Thomson²) zuerst beobachtete Erscheinung zu verstehen. Thomson machte Versuche über die Torsion eines weichen Eisendrates unter dem Einfluss der Vertikalkomponente des erdmagnetischen Feldes und fand, dass die Torsion eines solchen Drates seine Magnetisierung vermindere, dass jedoch bei cyklischer Variation der Torsionswerte demselben Werte der Torsion zwei Werte der Magnetisierung entsprechen, je nachdem die Torsion ansteigt oder abfällt.

Im Jahre 1880 beobachtete Warburg³), dass bei Variationen der Feldstärke H, die stufenweise von O bis zu einem Maximum und zurück zum Anfangswerte O verändert wurde, demselben Wert von H nicht immer derselbe Wert der Induktion B in einem dem Felde ausgesetzten Eisenkern entspricht, sondern, dass einem einzigen Werte von H hauptsächlich zwei Werte von B entsprechen, je nachdem man diese Induktion bei ansteigendem oder abfallendem Felde bestimmt. Warburg zeigte auch, indem er die Richtung von H umkehrte und in diesem Sinne entsprechend variirte, den ganzen Cyklus, stellte die Abhängigkeit B, H graphisch dar und wies nach, dass die so erhaltene Schleife dem durch die Erscheinung bedingten Arbeitsaufwand äquivalent ist und dass diese Arbeit in Wärme

¹) Warburg E. "L'hystérésis" rapp. du Congr. intern. de phys. Bd. 2, Seite 509. 1900.

²⁾ Thomson W. Phil. Trans. Bd. 170, Seite 68. 1879.

³) Warburg E. Freib. Ber. Bd. 8, Seite 1. 1880. Wied. Ann. Bd. 13, Seite 141. 1881.

DEFINITION DER VERSCHIEDENEN ARTEN VON HYSTERESIS.

umgesetzt wird. — Ewing¹) kam 1881, unabhängig von Warburg, zu dem gleichen Resultate und er gab der Erscheinung den Namen *Hysteresis*. Warburg bezeichnet diese Hysteresis mit *Feldhysteresis*.

Unter Temperaturhysteresis versteht Warburg die von Hopkinson²) zuerst beobachtete Erscheinung an den bis 25 $^{0}/_{0}$ Nickel enthaltenden Nickelstahllegierungen. Variirt man die Temperatur einer solchen Legierung von — 57° bis + 580° einmal ansteigend und dann bei abfallender Temperatur, so findet man, dass einem einzigen Temperaturwerte zwei Induktionswerte entsprechen (konstantes Feld vorausgesetzt).

In vorliegender Abhandlung handelt es sich nur um die "Feldhysteresis", die wir in Folgendem der Einfachheit halber kurz mit "Hysteresis" bezeichnen. — Diese Hysteresis ist hiermit jedoch noch nicht eindeutig bestimmt, denn sie ist nicht vollkommen unabhängig von der Art und Weise, wie sie hervorgerufen ist. Wir unterscheiden in diesem Sinne hauptsächlich drei verschiedene Unterarten von Hysteresis :

1. Die Hysteresis, hervorgebracht durch allmählige Veränderung eines durch einen Gleichstrom hervorgerufenen Feldes, nach der Anordnung, wie sie von Warburg (s. Seite 6, Anm. 3) schon verwendet wurde, bezeichnen wir mit *"elektrostatischer Hysteresis".*³) (Der Ausdruck ist in diesem Sinne in der Litteratur häufig verwendet, er ist nicht zu verwechseln mit einem Hysteresisphänomen, welches bei dielektrischer Polarisation beobachtet wird.)

2. Unterwerfen wir einen Eisenkern einem Wechselfelde, herrührend von einem industriellen Wechselstrom, ein Fall, der sehr häufig praktisch vorliegt, so haben wir

es hier natürlich ebenfalls mit Hysteresiserscheinungen zu thun, die wir mit "Wechselfeldhysteresis" bezeichnen.

3. Ein weiterer Fall, der hauptsächlich in unseren praktischen elektrischen Maschinen vorliegt, ist die allgemein als Drehfeldhysteresis oder "*rotierende Hysteresis"* bezeichnete Erscheinung. Sie ist hervorgebracht, indem entweder ein Eisenkern in einem konstanten Magnetfelde, oder indem das Feld um einen Eisenkern rotiert.¹)

III. Spezielles über Wechselfeldhysteresis.

(lst die Hysteresis abhängig von der Periodenzahl?)

Obwohl es sich hier im Grunde genommen um dieselbe Erscheinung handelt, so ist jedoch bis heute noch nicht mit Bestimmtheit festgestellt, ob die Wirkungen dieser auf verschiedene Weise hervorgerufenen Hysteresis sich mit einander decken oder nicht. Greifen wir ganz speziell den Fall heraus, den wir als Wechselfeldhysteresis bezeichnet haben, so drängt sich uns die Frage auf:

"Wie verhält 'sich die Erscheinung in Bezug auf die Zahl der cyklischen magnetischen Kreisprozesse pro Zeiteinheit?" Mit anderen Worten: "Ist die Hysteresiserscheinung abhängig von der Periodenzahl des sie erzeugenden Wechselstromes?" Einen Beitrag zur Lösung dieser Frage zu liefern ist der Hauptzweck dieser Arbeit.

¹) Dina A. Rend. Lomb. (2). Bd. 33, Seite 34. 1900. E. T. Z. , 21, , 470. 1900. Niethammer F. Wied. Ann. , 66, , 29. 1898.

IV. Geschichtlicher Überblick.

Es ist wohl angebracht, vorerst die hauptsächlichen Arbeiten, die sich mit dieser Frage beschäftigten, zu erwähnen und ihre Resultate kurz vergleichend zu betrachten.

Warburg und Hönig¹) waren die ersten, die diese Frage aufstellten. Sie wiesen schon darauf hin, dass sie innig verquickt ist mit einer anderen Frage, nämlich: "Setzt sich der durch Hysteresis bedingte Arbeitsaufwand auch tatsächlich vollkommen in Wärme um?" Zur Lösung dieser Fragen bedienten sich die beiden Beobachter einer Versuchsanordnung, wie sie später mit einigen Verbesserungen von Weihe²) ebenfalls angewendet wurde. Ein aus dünnen, von einander isolierten Eisendräten bestehender Kern wurde einem cyklisch sich verändernden Feld ausgesetzt, und zwar wurde die cyklische Veränderung hervorgebracht einmal durch Variationen eines mittelst Gleichstrom erzeugten Feldes, ein zweites Mal mit Hilfe eines aus einer Wechselstrommaschine entnommenen Stromes von der sekundlichen Periodenzahl $\nu = 56$ (Anordnung von Weihe). Mittelst eines Magnetometers wurde im ersten Falle die Hysteresisschleife ermittelt, ausgewertet und so der Energieaufwand bestimmt. Bei der zweiten Methode wurde die in Wärme umgesetzte Energie in einem Bunsen'schen Eiskalorimeter festgestellt und nun die beiden Resultate, entsprechend reduziert, mit einander verglichen. Als Resultat ergab sich. dass die kalorimetrisch bestimmte Wärmemenge etwa 80 % der durch Auswertung der Schleife bestimmten ist. Tanakadaté³) fand auf andere Weise

- 2) Weihe F. A. Wied. Ann. Bd. 61, Seite 578. 1897.
- ³) Tanakadaté. Phil. Mag. 5. Serie, Bd. 28, Seite 207. 1889.

Warburg E. und Hönig L. Wied. Ann. Bd. 20, Seite 814. 1883.

einen ähnlichen Wert, während Warburg und Hönig nur 68 $^{0}/_{0}$ gefunden hatten. Diese Resultate sind durch ihre Verschiedenheit nicht sehr vertrauenerweckend, zumal die Versuchsanordnungen nicht einfach waren.

J. und B. Hopkinson, Wilson und Lyndall¹) beobachteten vergleichend den Spannungsabfall an einem induktionslosen und einem induktiven Widerstand. hervorgerufen durch einen Strom, der mittelst eines auf der Achse einer Wechselstrommaschine befestigten Kontaktes einer Phase entnommen war. Ihre Resultate zeigten eine Übereinstimmung der Kurven, die einmal mittelst "elektrostatischer" Magnetisierung, das zweite Mal mittelst der angewendeten Methode erhalten waren. Williams kam zu gleichen Resultaten mit einer von Kaufmann²) angegebenen Methode. Der auf gleiche Weise wie bei Hopkinson einer Phase entnommene Strom wird durch eine Dratspule geschickt, die an der Stelle einer Magnetnadel in einem Magnetometer aufgehängt ist. Die Ablenkung der Spule ist dem jeweiligen Momentanwert des Magnetismus der betreffenden Phase proportional. Maurain³) arbeitete mit der Hopkinson'schen Anordnung und kam zu identischen Resultaten.

In neuerer Zeit waren es hauptsächlich zwei Forscher, die sich mit der Frage der Abhängigkeit des Hysteresisverlustes von der sekundlichen Wechselzahl beschäftigten; es ist dies Wien und Klemencic. Während Wien⁴) sehr gründliche und umfangreiche Untersuchungen im Bereich der Periodenzahlen von 128 bis 520 pro Sekunde anstellte, ging Klemencic⁵)

¹) Hopkinson J., Wilson E., Lyndall F. Proc. Roy. Soc. Bd. 53, Seite 352. 1893.

²) Kaufmann W. Verh. d. deutsch. phys. Ges. Bd. 1, Seite 42. 1899.

³⁾ Maurain Ch. Ecl. électr. Bd. 15, Seite 409. 1898.

⁴⁾ Wien M. Wied. Ann. Bd. 66, Seite 859. 1898.

⁵) Klemencic J. Wien. Ber. Bd. 103, Seite 724. 1895.

weit darüber hinaus. Er beobachtete die Hysteresisverluste bei Periodenzahlen von einigen Tausend pro Sekunde. Klemencic erhält diese hohen Schwingungszahlen mit Hilfe oscillatorischer Kondensatorentladungen. die er durch die zur Magnetisierung dienenden Spulen schickt. Aus der Dämpfung dieser Schwingungen, die eintritt, sobald sich Eisen in der Spule befindet, und die der Hysteresis zuzuschreiben ist, berechnet Klemencic die Grösse der Hysteresisverluste. Klemencic folgert aus seinen Beobachtungen, indem er sie mit magnetostatischen Resultaten, die innerhalb der gleichen Grenzen der Feldstärke erhalten sind, vergleicht, dass der Verlust pro Periode bei den hochperiodisch wechselnden Feldern bedeutend grösser ist, als der bei elektrostatischer Magnetisierung erhaltene. In den späteren Beobachtungen¹) weist Klemencic darauf hin. dass eine solche Zunahme des Hysteresisverlustes pro Cyklus von der Koercitivkraft abhängig ist, und zwar ist die Zunahme des Verlustes um so grösser, je kleiner die Koercitivkraft der Eisensorte ist. Bei hartem Eisen konnte selbst bei einer Zahl von 4000 Feldwechseln noch keine Zunahme festgestellt werden. Mit noch höheren Periodenzahlen (bis 10000) hat in neuester Zeit Varley²) Beobachtungen angestellt und hat dabei die Abhängigkeit der Induktion bei konstantem Feld und variabler Periodenzahl studiert: Er fand, dass, je dicker die zur Verwendung gelangenden Eisendräte sind, bei steigender Periodenzahl und konstantem Feld die Induktion abnimmt, und zwar um so mehr, je dicker die Dräte sind. Folgerungen in Bezug auf Hysteresis aus den Beobachtungen zu ziehen, erscheint etwas gewagt, da der Einfluss der Wirbelströme bei diesen Periodenzahlen sehr schwer zu eliminieren ist. Wien erzeugte die Wechselströme mit einem von ihm als

¹⁾ Klemencic J. Wien. Ber. Bd. 107, Seite 330. 1898.

²⁾ Varley, Mausbergh. Phil. Mag., 6. Serie. Bd. 3, Seite 500. 1902.

Wechselstromsirene bezeichneten Apparat, der ihm gestattet, sinusförmige Wechselströme von 128, 256 und 520 sekundlichen Perioden zu entnehmen Indem Wien den so erhaltenen Wechselstrom durch einen rinoförmigen Elektromagneten schickt, beobachtet er die Phasenverschiebung zwischen der E. M. K. des Stromes und des durch ihn hervorgerufenen Feldes. Diese Phasenverschiebung ist eine Folge der Hysteresis und ist also auch ein Mass für dieselbe. Die mittelst dieser sehr gründlich vertieften Methode erhaltenen Resultate decken sich grösstenteils mit denen von Klemencic; d. h. Wien fand, dass der Hysteresisverlust pro Cyklus bei rasch wechselnden Feldern (Wechselstrom) grösser ist als bei langsamen Wechseln (Gleichstrom) und dass der Verlust mit der Zahl der sekundlichen Feldwechsel wächst. Ausserdem ist dieser Unterschied des Verlustes abhängig von der (magnetischen) Härte des Eisenmaterials und zwar ist diese Differenz um so grösser, ie weicher das Eisen ist.

V. Sichtung und Kritik der unter IV angeführten Arbeiten.

Wenn man die Resultate der verschiedenen Forscher mit einander vergleicht, so findet man, dass sie sich in drei Hauptgruppen unterbringen lassen. 1) Warburg, Hönig, Weihe und Tanakadaté folgern, dass der mittelst Wechselstrom hervorgebrachte Hysteresisverlust nur ein gewisser Bruchteil des Verlustes ist, den man durch Variation eines Gleichstromes erhält. 2) Hopkinson, Wilson, Lyndall, Kaufmann etc. finden, dass die auf beide Arten erhaltenen Verluste sich decken, während 3) Klemencic feststellt, dass der Hysteresisverlust, herstammend von rasch wechselnden Feldern, grösser ist als der entsprechend mittelst variirtem Gleichstrom erzeugte. Man kann die Resultate nicht ohne Weiteres mit einander vergleichen, denn die Versuchsbedingungen sind von einander zu verschieden. Wie schon angedeutet, hängen die Resultate ja sehr von der magnetischen Qualität des verwendeten Eisens ab, ausserdem spielt auch die Kurvenform des zur Verwendung gelangenden Stromes eine gewisse Rolle. Die Frage, ob denn auch der ganze durch die Hysteresis bedingte Arbeitsaufwand in Wärme umgesetzt ist, wurde von verschiedenen Seiten untersucht. Strauss¹) und Trilsky²) haben auf verschiedene Art einmal die zur Hysteresis aufgewendete Arbeit mittelst Wattmeter und andererseits die durch Hysteresis hervorgerufene Wärme gemessen. Die geringfügigen Differenzen der beiden Grössen liegen innerhalb der Beobachtungsfehler. Aus solchen Gründen lassen sich jedoch die prinzipiellen Abweichungen der verschiedenen Resultate nicht erklären.

Vielleicht liegen die Differenzen auf einem anderen Gebiete und zwar auf dem grösstenteils nicht genügend berücksichtigten *Einfluss der Wirbelströme*. Die Wirkungen dieser Wirbel- oder Foucaultströme decken sich vollkommen mit der von der Hysteresis herstammenden Wärmeentfaltung und sind infolgedessen nur sehr schwer davon zu trennen. Auch die Resultate der Untersuchungen von Krogh und Rikli³), die sich mit der gleichen Frage wie die der vorliegenden Arbeit beschäftigten, sind nicht durchsichtig genug und scheinen unter den Wirkungen der Wirbelströme zu leiden, deren Grösse man unterschätzt zu haben scheint.

Hauptsächlich zwei Eigenschaften sind es, die uns Mittel an die Hand geben, die Foucaultverluste von den Hysteresisverlusten zu trennen. 1. die Eigenschaft, dass die Wirbelstromverluste proportional der Periodenzahl des Wechselfeldes sind, dem sie ihren Ursprung verdanken⁴) und 2. dass sie mit dem Querschnitt des

¹⁾ Strauss B. Dissertation Zürich 1896.

²) Trilsky L. " 1900.

³⁾ Krogh K. und Rikli H. E. T. Z. Bd. 21, Seite 1083. 1900.

⁴⁾ Steinmetz Ch. Pr. Wechselstromerscheinungen Seite 143. Berlin 1900.

Körpers, in welchem sie sich bilden, quadratisch zunehmen.¹) Man benutzte fast immer den unter 2. bezeichneten Umstand, um sich in einfacher Weise des Einflusses der Wirbelströme zu entledigen, indem man den Querschnitt des zu untersuchenden Kernes derart unterteilte, dass man die durch Wirbelströme verursachte Wärmeentfaltung gegenüber der von der Hysteresis herrührenden vernachlässigen konnte. Diese Voraussetzung vieler Versuche ist um so heikler, als bei nicht genügend genauer Innehaltung dieses Punktes auch noch die sekundären Einflüsse der Wirbelströme wie die Schirmwirkung hinzutreten und auf solche Weise die Versuchsresultate stark beeinflusst werden.

Wie in der vorliegenden Arbeit nachgewiesen ist, ist man grösstenteils mit dieser Unterteilung des Eisenkerns nicht genügend weit gegangen und hat fast immer Wirkungen konstatiert, die nicht von der Hysteresis allein herrührten, sondern zu denen die Foucaultströme fast immer, manchmal sogar erhebliche Beiträge geleistet haben. Andererseits hat man in den erwähnten Arbeiten wenig Wert darauf gelegt, durch kontinuirlich sich entwickelnde Versuchsreihen, die durch die Regelmässigkeit der Resulte eine erhöhte Sicherheit bieten, die Frage zu klären. Diesen beiden Mängeln begegnet die vorliegende Arbeit durch entsprechende Vorbedingungen der Versuchsanordnung.

1) du Bois. Magnetische Kreise Seite 306. Berlin 1894.

VI. Beschreibung der in dieser Arbeit verwendeten Methode.

Es möge zunächst eine Beschreibung der Methode erfolgen. Bei der Diskussion der mittelst dieser Methode erhaltenen Ergebnisse werden wir vergleichend auf die in der obigen Übersicht skizzierten Resultate zurückkommen.

Die zur Untersuchung der Abhängigkeit des Hysteresisverlustes von der Periodenzahl verwendete Methode ist eine thermische unter Verwendung der Bolometerschaltung.¹)

In Figur 1 (Beilage 1) haben wir das Schema der Wheatstone'schen Brücke, das bei unserer Methode zur Verwendung kommt. Während Zweig 2 und 4 aus einem gewöhnlichen Brückendrat mit Schleifkontakt gebildet werden, bestehen die Zweige 1 und 3 aus je einem Eisendrat. Die beiden Eisendräte, die vom selben Material, vom gleichen Durchmesser und Länge sind, werden auf geeignete Weise innerhalb je einer Spule fixiert, die uns ein gleichförmiges magnetisches Feld liefert. Die Stromschaltungsweise der Spulenwindungen ist derartig angeordnet, dass man mittelst eines Kommutators die Windungen in jeder der beiden Spulen unabhängig von einander derart schalten kann, dass man entweder ein magnetisches Feld von messbarer Grösse innerhalb der Spule erhält, oder dass ein solches nicht zu Stande kommt. Die Beobachtungsmethode besteht nun im hauptsächlichen aus folgenden Vorgängen. -Zuvörderst schaltet man beide Spulen derart, dass kein magnetisches Feld entsteht; mittelst des Schleifkontaktes bringt man das Galvanometer in seine Nulllage. Schaltet man nun eine der beiden Spulen derart.

1) Guye C. E. und Herzfeld B. Arch. des sciences nat. Genève. 4. Per., Bd. 14, Seite 380. 1902.

C. R. Bd. 136, Seite 957. 1903.

dass sich ein gleichförmiges Feld in ihrem Innern ergiebt, so tritt unter dem Einfluss dieses magnetischen Feldes die der Hysteresis und den Foucaultströmen zuzuschreibende Wärmeentwickelung auf und der Widerstand des betreffenden Drates verändert sich in entsprechender Weise. Die sichtbare Folge dieses Vorganges ist eine Ablenkung des Galvanometers aus seiner Ruhelage. Wie leicht einzusehen ist, verhalten sich die Ablenkungen am Galvanometer proportional der Wärmeentwickelung, die diese Ablenkung hervorgebracht hat.

Für den vorliegenden Fall gilt ja die Beziehung:

W = J. S. E. Q.

Hierin bedeutet

W = Die in Wärme umgesetzte Energie der Hysteresis und Wirbelströme.

J = Mechanisches Wärmeäquivalent.

S = Oberfläche des Drates.

E == Wärmestrahlungsvermögen.

Q = Temperaturerhöhung.

J und S sind Konstanten; da es sich in unseren Versuchen nur um relativ geringe Temperaturerhöhungen handelt, so kann E ebenfalls als Konstante betrachtet werden, besonders für ein und dieselbe Serie von Beobachtungen; es bleibt also die Beziehung:

$$\mathbf{Q} = \mathbf{C}. \mathbf{W}.$$

worin $C = \frac{1}{J. S. E.}$ bedeutet.

Aus den Untersuchungen über das Bolometer ist allgemein nachgewiesen, dass sich die Ablenkung am Galvanometer proportional mit der Temperaturerhöhung in einem Brückenzweig ändert. Es resultiert also, dass bei unserer Versuchsanordnung der Galvanometerausschlag ein direktes Mass für die Hysteresis- und Foucaultströme ist.

BESCHREIBUNG DER METHODE.

Da der Durchmesser der zur Untersuchung verwendeten Dräte nur sehr gering ist, so stellt sich fast unmittelbar der neue Gleichgewichtszustand im Widerstandswerte ein und infolgedessen kommt das Galvanometer in sehr kurzer Zeit in der neuen Lage zur Ruhe. An späterer Stelle ist eine entsprechende Beobachtung zahlenmässig mit der zugehörigen Kurve wiedergegeben (siehe Seite 22). Die Vervielfältigung dieses kurz beschriebenen Experimentes giebt die nötige Sicherheit der so erhaltenen Werte.

Mittelst eines besonders konstruierten Wechselstromgenerators war es nun möglich, durch Variirung der Tourenzahl die Zahl der sekundlichen Wechsel des Stromes, d. h. seine Periodenzahl in den Grenzen von 100 bis 1200, in besonders günstigen Fällen von 60 bis 1250 zu verändern. Auf solche Weise war die Grundlage der Beobachtungsserien mit derselben Feldstärke bei den verschiedensten Periodenzahlen gegeben.

Um den absoluten Wert der Verluste zu bestimmen, wurde, ähnlich der Methode wie sie Dina¹) und Strauss²) [siehe auch Baur³)] angewendet haben, mittelst eines Gleichstromes eine der Hysteresiswärme äquivalente Wärmemenge in dem Drat erzeugt und der Betrag dieses Arbeitsäquivalentes bestimmt.

¹) Dina A. Rend. R. Ist. Lomb. Bd. 33, Seite 34. 1900. ""E. T. Z. Bd. 23, Seite 41. 1902.

definitations another Battanting and a die Stromstarie

²) Strauss, B. Dissertation. Zürich 1896.

³) Baur, C. E. T. Z. Bd. 23, Seite 186. 1902.

VII. Beschreibung der Schaltung und der Apparate.

Nachdem die Methode in kurzen Zügen geschildert ist, soll eine Erläuterung der verwendeten Schaltung und eine Beschreibung der Apparate folgen.

Schaltung: (siehe Figur 2, Beilage 1).

Wenn wir zuvörderst den Stromverlauf verfolgen, der das magnetische Feld innerhalb der Spulen hervorruft, so sind insbesondere zwei Kommutatoren zu erwähnen, mit Hilfe derer man die beiden parallel auf derselben Spule befindlichen Wickelungen derart schalten kann, dass der Strom entweder die beiden Windungen im gleichen Sinne hintereinander durchläuft (Schaltung in dieser Arbeit als "Schaltung in Addition" bezeichnet: auf der Figur Kommutator "()" geschaltet); in diesem Falle ist die resultierende Wirkung ein magnetisches Wechselfeld von bekannter Grösse, oder der Strom durchläuft die eine Windungshälfte im entgegengesetzten Sinne als die andere; (Schaltung in dieser Arbeit als "Schaltung in Opposition" bezeichnet, in der Figur Kommutator "(())" geschaltet). Dann ist die resultierende Wirkung gleich Null. Für beide Spulen ist diese Schaltung identisch. Zur Regulierung der Stromstärke (Konstanz des Feldes) dient ein grobstufiger Regulierwiderstand, der in Serienschaltung mit einem Widerstand besonderer Konstruktion gestattet, die Stromstärke sowohl in grösseren Sprüngen als auch in sehr feinen Stufen zu regulieren, beziehungsweise während des Verlaufs einer Beobachtungsserie die Stromstärke konstant zu halten. Ein Hitzdrat-Ampèremeter mit entsprechendem Messbereich gestattet eine Ablesung auf 0,8 % Genauigkeit. Der Schwachstromkreis der Wheatstone-Schaltung ist ohne Weiteres verständlich. Der Übersichtlichkeit halber ist in dem Schaltungsschema sowohl der Kommutator im Galvanometerzweig weggelassen, der gestattet, zur Kontrolle die Stromrichtung im Galvanometer umzukehren, als auch die

beiden Umschalter, mit denen man in einfacher Weise jeden der beiden Eisendräte durch einen Manganinwiderstand ersetzen kann. Diese letztgenannte Manipulation wird nur bei Bestimmung des absoluten Wertes der Verluste vorgenommen und wird an entsprechender Stelle näher darauf eingegangen werden. Es ist dann noch der im Galvanometerzweig liegende Stöpselrheostat und der Regulierwiderstand im Stromquellenzweig zu erwähnen, zwei Vorrichtungen, die gestatten, in einfacher Weise die Empfindlichkeit der Anordnung zu verändern.

Was nun die einzelnen Apparate anbelangt, so ist vor Allem der Wechselstromgenerator zu erwähnen, dem der zur Erzeugung des Feldes dienende Strom entnommen wird. Der Generator ist von der "Compagnie de l'Industrie électrique, Genève" konstruiert. Es ist eine Gleichpoltype mit 50 Polzacken, feststehendem Anker und feststehender Magnetwickelung, nur der Eisenkern des Magnetsystems rotiert. Der Generator liefert bei entsprechender Regulierung bis 1250 Perioden pro Sekunde. Das elektrische und mechanische Verhalten der Maschine ist von Herrn Dipl. Sng. A. Aufricht untersucht und bildet Gegenstand einer demnächstigen Publikation. Ich entnehme den Resultaten nur die Bemerkung, dass die Kurvenform der E. M. K. mit einiger Annäherung "ungefähr" sinusförmig ist. Zum Antrieb des Generators dient ein Gleichstrommotor, dessen Tourenzahl sowohl durch Veränderungen im Ankerkreis als auch im Nebenschluss und durch Regulierung der Betriebsspannung in den weitesten Grenzen variirt werden kann. Der Unabhängigkeit von der Betriebsspannung des Gleichstrommotors halber wurde der hochperiodische Wechselstromgenerator von einer besonderen Batterie aus erregt.

Die Spulen, neben der Maschine wohl der wichtigste Teil der Anordnung, sind auf eine Glasröhre von 1,7 cm äusserem Durchmesser und 100 cm Länge gewickelt.

2*

Zum sicheren Festlegen der Windungen wurde die Glasröhre an beiden Enden durch je einen Holzsupport geführt, der auch gleichzeitig ermöglicht, die ganze Länge und den ganzen Umfang der Spule gleichmässig der kühlenden Luft auszusetzen. Die Windungen, die in zwei Lagen auf die Glasröhre aufgebracht sind, sind aus mit Baumwolle doppelt isoliertem Kupferdrat gewickelt. Die Windungszahl beträgt pro Lage 2×369 = 738, d. h. pro 1 cm = $2 \times 3,75 = 7,5$ (bei einer verfügbaren Gesamtlänge von 98,5 cm). Der Kupferdrat hat einen nackten Durchmesser von 0,1 cm und isoliert 0,125 cm. Der Spulendurchmesser beträgt nach Aufbringung der ersten Lage 1,9 cm nach der zweiten Lage 2,15 cm.

Der zu untersuchende Eisendrat, der in das Innere der Spule eingeführt wird, hat eine Länge von ca. 90 cm und wird so innerhalb der Spule fixiert, dass das magnetische Feld über seine ganze Länge als gleichmässig betrachtet werden kann. An seinen Enden wird der Eisendrat mittelst kleiner Klemmschrauben in zwei achsial geschlitzten dichten Kupferdräten befestigt. Diese beiden Kupferdräte sind behufs guter Zentrierung durch je einen Ebonitbolzen geführt, die die Extremitäten der Glasröhre verschliessen. Während das eine Kupferdratende direkt an einem Messingsupport befestigt ist, ist das andere Ende zur Spirale gewickelt und dann auf gleiche Weise fixiert. Auf diese Weise erhält man eine bequeme Stromverbindung zum Eisendrat und gleichzeitig hält die Federkraft der Spirale den Drat ständig gespannt.

Das verwendete Galvanometer war eine nach Wiedemann gebaute Spiegelbussole mit verschiebbaren Multiplikatoren von hoher Empfindlichkeit mit guter Dämpfung. Durch Astatisierung mittelst Hilfsmagneten konnte die Empfindlichkeit des Instruments noch um ein Bedeutendes erhöht werden.

 $\hat{2}0$

Als Stromquelle für die Brückenschaltung wurden immer gut aufgeladene Akkumulatoren verwendet, die Sicherheit für Konstanz der Klemmenspannung während der Beobachtungsdauer einer Serie boten.

Es ist noch zu erwähnen, dass die Tourenzahl, also auch die Periodenzahl des Generators mit Hilfe eines Handtachometers von "Bundschuh, Magdeburg", das von Zeit zu Zeit mittelst Tourenzählers geaicht wurde, kontrolliert wurde.

Nachdem die verwendeten Apparate kurz skizziert sind, folgen einige Bemerkungen über Fragen, die uns in Vorversuchen beschäftigt haben.

VIII. Allgemeine Vorbemerkungen zu den Messungen.

Es wurden mittelst der angegebenen Methode 4 Eisendräte vom gleichen Material mit verschiedenen Durchmessern untersucht. Das Material ist industriell erzeugter und verwendeter "weicher" Eisendrat. Die untersuchten Dräte waren von folgenden Durchmessern:

Drat Nr. 1 Durchmesser 0,0374 cm

77	Nr.	2	"	0,0235	"
**	Nr.	3	"	0,0155	37
17	Nr.	4	77	0,0038	77

Während Drat Nr. 3 und Nr. 4 durch Ziehen des Drates Nr. 2 erhalten sind, wurde als Drat Nr. 1 ein solcher verwendet, der aus der gleichen Fabrik wie Drat Nr. 2 stammt und für die gleichen Zwecke hergestellt wird. Man kann also auf ein gleiches Material mit ziemlicher Sicherheit schliessen.

Durch einen Vorversuch mit einem Drate vom Durchmesser = 0,03 cm wurde die Kurve Nr. 1 aufgenommen, bei einer mittleren Periodenzahl und bei einer mittleren Empfindlichkeit des Galvanometers.

Period	le 1.	Period	e 2.	Period	e 3.	Period	le 4.	Period	le 5.	Periode 6.		
Zeit	Galv.	Zeit	Galv,									
10"	501	1' 10"	500	2' 10"	580	3' 10"	414	4' 10"	497	5' 10"	499	
20"	500	20"	503	20"	592	20"	408	20"	501	20"	502	
30"	504	30"	502	30"	594	30"	406	30"	499	30"	499	
40"	498	40"	497	40"	595	40"	404	40"	498	40"	501	
50"	496	50"	495	50"	599	50"	402	50"	503	50"	502	
1'00"	500	2' 00"	500	3' 00"	594	4' 00"	404	5' 00"	500	6' 00''	498	

Tabelle zum Kurvenblatt Nr. 1.

Die Kurve zerfällt in 6 Perioden. In der ersten Periode ist das Galvanometer aus dem Stromkreis ausgeschaltet und schwingt um seine Nulllage, in der

zweiten Periode ist es in den Stromkreis eingeschaltet, die beiden Magnetisierungsspulen A und B sind so geschaltet, dass das Feld in beiden null ist. Bei der Periode 3 ist Spule A in der alten Schaltung verblieben, während in B ein magnetisches Feld von 56,6 c. g. s. herrscht. Das Resultat ist eine Ablenkung des Galvanometers aus der Ruhelage. In der Periode 4 ist das Umgekehrte der Fall. In Spule A ist ein Feld von 56,6 c. g. s. und in Spule B ist das Feld null. Resultat ist eine Galvanometerablenkung nach der andern Seite. In der Periode 5 ist der gleiche Zustand wie in Periode 2 und Periode 6 korrespondiert mit Periode 1. Jede Periode dauert eine Minute ; alle 10 Sekunden ist eine Ablesung gemacht. Periode 1 und 6 zeigt uns die Nullpunktsschwankungen, die relativ gering sind im Vergleich zu den Ablenkungen. Periode 2 und 5 zeigen, dass die Brückenwiderstände mittelst des verschiebbaren Kontaktes vorher gut abgeglichen waren, denn der Nullpunkt schwankt beide Mal um denselben Wert. Auch zeigt die Vergleichung der beiden Perioden, dass durch die Schaltung der einen und der anderen Spule zu einem aktiven Feld in der Nulllage nichts verändert wurde, was beweist, dass der Zustand der beiden Eisendräte durch diese Vorgänge keine merklichen Veränderungen erlitten hat. Die Perioden 3 und 4 endlich zeigen, dass das Galvanometer fast augenblicklich auf seine neue Ruhelage einspielt, und dass die Schwankungen um diese neue Ruhelage diejenigen um die Nulllage nicht übertreffen. Nach 20 Sekunden ist bereits dieser Zustand erreicht. Bei Verwendung der Beobachtungsresultate haben wir uns darauf beschränkt, die Werte nach 40, 50 und 60 Sekunden zu einem Mittelwerte zusammenzuziehen, so dass hiermit eine hohe Garantie für die Richtigkeit der in Rechnung gesetzten Ablenkungswerte geschaffen ist. Bei den ganz dünnen Dräten (Drat Nr. 4) zeigte sich diese Massregel als überflüssig, da der Ablenkungswert schon nach

5 Sekunden vollkommen unveränderlich war. -- Die Vergleichung der verschiedenen Perioden der Kurve Nr. 1 zeigt uns ausserdem, dass sich die Spulen A und B vollkommen symetrisch verhalten. Zu Beginn der Beobachtungen wurde immer mit beiden Spulen gearbeitet, um durch die Vergleichung der Resultate eine Kontrolle zu haben und zufälligen Beobachtungsfehlern sofort auf die Spur zu kommen. Nachdem die Methode in den Grundzügen ausgebaut war, wurden die Beobachtungen mit der Spule B bei Seite gelassen. Die hier angeführten Resultate entstammen alle der Spule A. Trotzdem wurde die Spule B ständig im Stromkreis belassen und mit entsprechenden Eisendräten beschickt. Obwohl man auch ohne eine zweite Spule auskommen könnte, so ist trotzdem die Verwendung einer solchen sehr von Vorteil, indem sie alle Unregelmässigkeiten, wie z. B. Temperaturschwankungen etc. kompensiert. Ein sehr wichtiger Faktor für die Exaktheit der Resultate ist die unbedingte Konstanz der Empfindlichkeit der Brückenanordnung nicht nur während der Dauer einer Serie bei konstantem Feld, sondern über die sämtlichen Versuchsreihen hin, die für einen Drat aufgenommen sind. Diese Bedingung muss deshalb erfüllt sein, weil wir sämtliche Beobachtungsresultate eines Drates auf dasselbe Kurvenblatt eintragen und nur auf diese Weise eine Konkordanz der Resultate erzielt werden kann Die Lösung dieser Bedingung kommt im hauptsächlichen darauf hinaus, die Klemmenspannung an den beiden Punkten der Brücke, wo die Akkumulatoren liegen, konstant zu halten, denn das Galvanometer selbst wird kaum wesentliche Schwankungen seiner Empfindlichkeit erleiden. In welchen Grenzen der Bedingung "Konstanz der Empfindlichkeit für jeden Drat" Genüge geleistet wurde, ist bei den Widerstandsmessungen der Dräte an späterer Stelle (siehe Seite 62) zu ersehen. Für die verschiedenen Dräte waren auch verschiedene

Empfindlichkeiten gewählt worden, und zwar wurden dieselben so reguliert, dass für die höchst zu erwartende Ablenkung (höchste Feldstärke und höchste Periodenzahl) die Tangentenabweichung der Spiegelablesung nicht allzu beträchtlich wurde, so dass noch mittelst einfacher Korrektionen die wahre Ablenkung ermittelt werden konnte. Wurden dann bei niedrigen Feldstärken die Ablenkungen zu gering, so wurden diese Serien mit höherer Empfindlichkeit wiederholt und auf den entsprechenden Kurvenmassstab reduziert.

Ein weiterer Punkt verdient noch der Erwähnung. Dies ist die Temperatur im Innern der Spulen, die mit der magnetisierenden Stromstärke durch Entwickelung von Joule'scher Wärme wechselt. Ausserdem ist sie jedoch auch abhängig von der Zimmertemperatur, die deshalb während einer Serie keine erheblichen Schwankungen erleiden darf.

Was die Kontrolle der Periodenzahl anbelangt, so ist zu erwähnen, dass die in Rechnung gesetzten Werte Mittelwerte sind aus 1 minutlichen Tachometerablesungen. Da die Maschine vor Beobachtungsbeginn stets schon mindestens 40 Minuten im Betrieb war, so waren grössere Schwankungen ausgeschlossen.

35. 25 mit any Aut die Art and Weise, wie die Tabellen auf Suite 27, 38, 20 mit 30 zeigen, wurden für die rerschiedenen Feldmiendikken und für die verschiedenen Dräte die Beobachtungen duethgeführte Die erhaltenen Mitolwern wurden noch körrigiert um den Fehlerbetrag, der steh ans der Langentanabweichung der Tabellen für die anderen ergiebt. Auf die Anfahrung der Tabellen für die anderen Beobachtungsserien wurde verzichtet. In den Tabellen Beobachtungsserien wurde verzichtet. In den Tabellen Beobachtungsserien wurde verzichtet. In den Tabellen

IX. Beschreibung einer Messreihe und Tabelle der Beobachtungsresultate.

Nach diesen Vorbemerkungen allgemeinerer Natur treten wir an die ausführliche Beschreibung einer kompletten Messreihe heran. Wir wählen zu diesem Zwecke eine mittlere Dratstärke, die schon unterhalb der Grenze liegt, bei der bis jetzt bei den Arbeiten über Hysteresis der Foucaultverlust als zu vernachlässigende Grösse galt. Wir nehmen den Drat Nr. 3.

Beobachtungsreihe mit Drat Nr. 3. Magnetisierende Stromstärke J = 3 Amp.

Durchmesser	des	Drates			d	=	0,0115 cm
Länge	,,	,,			1	=	88,2 cm
Volumen	"	,,			v	=	0,009 155 cm ³
Intensität des	Fe	ldes			H	=	$4\pi J \cdot N/L = 56.6 c. g. s.$
Temperaturin	nInr	nern der S	Spi	ile	e t	=	44º C.

Es wurde vor und nach jeder Ablenkung der Nullpunkt kontrolliert. Die Versuche sind wie alle anderen mit Spule A durchgeführt. Als Ablenkungswert wurde das Mittel aus den drei letzten Ablesungen genommen; und schliesslich aus den so erhaltenen 5 Werten nochmals das Mittel. (Tabellen auf Seite 27, 28, 29 und 30).

Auf die Art und Weise, wie die Tabellen auf Seite 27, 28, 29 und 30 zeigen, wurden für die verschiedenen Feldintensitäten und für die verschiedenen Dräte die Beobachtungen durchgeführt. Die erhaltenen Mittelwerte wurden noch korrigiert um den Fehlerbetrag, der sich aus der Tangentenabweichung der Spiegelablesung ergiebt. Auf die Anführung der Tabellen für die anderen Beobachtungsserien wurde verzichtet. In den Tabellen auf Seite 31 und 32 sind nur die korrigierten mittleren Ablenkungswerte nebst den zugehörigen Periodenzahlen angeführt.

Periode pro Sel	eriodenzahl so Sekunde 187								300	5171	515	392					
Null	lage	511	510	511	511	512	503	502	500	500	502	501	500	500	498	499	
	10"	/	1	1	1-	1	1	/	/	1	1	1	1	/	1	1	
en	20"	575	578	573	577	578	605	604	1	614	611	649	649	631	629	631	
nkung strich	30"	575	577	575	577	576	606	608	602	615	613	650	652	635	630	630 	
Teil	40"	575	577	576	578	577	605	605	603	613	612	651	650	635	632	630	
A in	50"	576	576	576	577	577	605	604	604	614	613	651	645	635	632	629	
	60"	575	577	577	577	577	603	603	604	613	612	652	640	634	632	630	
Nulll	age	511	510	510	512	512	502	500	500	503	505	499	500	498	499	496	
Ablen	kung	64,3	66,6	65,8	65,8	65	101,7	103	103,6	111,8	108,8	151,3	145	135,6	133,5	130,1	
Mittl Ablenl	ere kung	e reme	e San	65,5					106	101.01	eren de	eliona eliona	interna Serena	139	in de la composition de la composition Esta composition de la	entri Intri	

Tabelle für den Drat Nr. 3 bei konstanter magnetisierender Stromstärke J = 3 Amp.

(Fortsetzung umseitig)

TABELLEN ZU KAPITEL IX.

Periode pro Se	enzahl kunde	-64'3		525	101	2. 10.		ata:	596	111/1	11-31- 312- ¹ 9	1073	708					
Null	lage	503	501	501	501	503	502	505	506	505	505	502	503	501	503	501		
akung strichen	10" 20" 30"	/ 685 685	/ 685 683	/ 685 685	/ 687 686	/ 686 688	/ 712 712	/ / 715	/ 714 712	/ 718 719	/ 718 718	/ 756 758	/ / 754	/ 750 753	/ 752 752	/ 753 753		
Ablei in Teil	40" 50" 60"	684 685 685	683 684 684	685 685 685	685 686 685	688 689 688	717 716 715	716 717 716	713 716 718	720 720 719	718 716 717	759 757 758	754 756 756	752 753 754	753 752 754	755 757 757		
Nulll	age	501	500	502	503	505	ō05	505	506	504	505	503	504	502	502	503		
Ablen Mitt Ablen	kung lere kung	182,6	183,1	183,5 183,4	183,3	184,3	214,5	211,3	209,6 212,5	215,1	212	255,5	251,8	251,5 253	250,5	254,8		

Tabelle für den Drat Nr. 3 bei konstanter magnetisierender Stromstärke J=3 Amp.

TABELLEN ZU KAPITEL IX.

Vpjen		A CALLER IN	-														
Periode pro Sel	enzahl kunde	-maie	108	800	-mete	li si i Titoshe	्रत्तुः । नृत्तुः । नृत्	(1980').	916		्र क्षेत्र भ	1000					
Nulll	lage	502	502	502	503	504	501	501	500	504	503	500	502	500	501	500	
	10"	0.10	013	0.0	1	1000	1	1	1	1	1	1.	/	/	1	/	
en	20"		787	789	790	790	825	828	829	1	832	1	1	862	862	863	
ikung	30"	785	780	788	789	791	826	830	830	831	834	860	864	865	861	864	
.bler Feils	40"	789	786	788	791	791	828	829	831	831	835	862	865	862	862	864	
A in '	50"	789	785	788	791	791	829	828	833	833	835	862	863	865	865	864	
	60"	788	786	790	791	789	829	828	835	833	834	862	865	864	864	865	
Nullla	age	502	502	504.	504	503	501	501	504	504	503	502	500	501	500	500	
Ablen	kung	286,6	283,6	286,3	287,5	286,1	327,6	327,3	331	328,3	331,6	361	363,3	363,1	363,1	364,3	
Mittl Ablen	lere kung			286		in in		e mai	329,2	and an		iedia eraini	ROAN	363		interest	

Tabelle für den Drat Nr. 3 bei konstanter magnetisierender Stromstärke J = 3 Amp.

(Fortsetzung umseitig)

TABELLEN ZU KAPITEL IX.

Periode pro Sel	enzahl kunde			1108	- 1- 1997				1192		1010
Nulll	lage	501	502	501	501	501	504	500	501	500	501
	10"	1	1	1	1	1	1	1	1	1	1
1en	20"	910	909	908	1	908	944	946	946	946	946
nkung strich	30"	910	911	909	910	909	944	947	945	946	946
Able Teil	40"	909	910	910	910	909	945	947	946	946	946
in	50"	910	911	911	909	910	944	948	946	946	946
	60"	910	913	910	908	.909	945	945	946	948	945
Nullla	age	501	501	501	500	500	500	501	502	501	501
Ablen	kung	408,6	409,8	409,3	408,5	408,8	442,6	446,1	444,5	446,1	444,6
Mittl Ablenl	lere kung	and an	an said Tanan	409				-	444,8		

Tabelle für den Drat Nr. 3 bei konstanter magnetisierender Stromstärke J = 3 Amp.

30

TABELLEN ZU KAPITEL IX.

	J ==	3 Amp., H = 1	56, 6 c. g. s.	J =	= 2 Amp., H	= 37,68	J =	= 1 Amp., H	= 18,84	J = 0,5 Amp., $H = 9,42$			
A = 0.001000.000	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	
Drat Nr. 1. d = 0,0374 cm 1 = 88,6 cm $V = 0,0972 \text{ cm}^3$	440	165 288 408 522 580 696 805 900 996 1104 1198	43 81 126 169 193 245 296 331 380 433 480	n	icht ausg	eführt	220	93 340 480 563 708 820 925 992 1107 1204	$ 15 \\ 63 \\ 95 \\ 116 \\ 148 \\ 179 \\ 206 \\ 224 \\ 255 \\ 280 $	200	59 200 225 300 434 542 692 792 915 1100 1227	4 15 18 23 35 45 59 64 75 88 99	
Drat Nr. 2. d = 0,0235 cm 1 = 89,3 cm $V = 0,0387 \text{ cm}^3$	440	222 335 400 500 608 693 793 905 991 1120 1191	$59 \\ 92 \\ 116 \\ 154 \\ 199 \\ 223 \\ 274 \\ 316 \\ 356 \\ 405 \\ 448 \\ $	30,4º	$\begin{array}{c} 220\\ 304\\ 398\\ 500\\ 600\\ 700\\ 806\\ 902\\ 1002\\ 1102\\ 1194 \end{array}$	56 84,5 107 148 176 211 250 281 316 354 394	17,8º	$ 105 \\ 308 \\ 400 \\ 500 \\ 600 \\ 700 \\ 807 \\ 900 \\ 993 \\ 1100 \\ 1182 $	21 63 88 108 134 160 188 211 239 274 303	130	$\begin{array}{c} 253\\ 296\\ 394\\ 500\\ 600\\ 700\\ 800\\ 900\\ 1000\\ 1100\\ 1193 \end{array}$	22 29 41 53 65 75 87 97 109 122,5 130	

TABELLEN ZU KAPITEL IX.

A manipa and	J=	3 Amp., H = 8	56,6c.g.s.	J =	2 Amp., H	= 37,68	J =	= 1 Amp., H	= 18,84	J = 0,5 Amp., H = 9,42			
1	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	Temp.	Periodenzahl v	Ablenkung Y	
Drat Nr. 3. d=0,0155 cm l=88,2 cm $V=0,009155 \text{ cm}^3$	440	187 300 392 525 596 708 800 916 1000 1108 1192	$\begin{array}{r} 65,5\\ 106\\ 139\\ 182,5\\ 211\\ 252\\ 285\\ 327,5\\ 360\\ 404\\ 440\\ \end{array}$	290	180 292 387 500 607 700 800 900 1000 1000 1108 1204	60 94 122,5 162 197 228 261 297 338 382 414	18,70	137 308 400 492 587 708 792 900 1000 1100 1200	$\begin{array}{c} 24 \\ 65 \\ 84 \\ 105 \\ 115 \\ 151 \\ 164 \\ 190 \\ 208 \\ 233 \\ 259 \end{array}$	16,8º	$\begin{array}{c} 70\\ 305\\ 417\\ 500\\ 617\\ 700\\ 800\\ 908\\ 1000\\ 1108\\ 1192\\ 1250\\ \end{array}$	$1 \\ 4,4 \\ 5,7 \\ 8 \\ 10,4 \\ 11,5 \\ 12,7 \\ 14,6 \\ 16,5 \\ 18,2 \\ 19,8 \\ 21,2 \\ $	
Drat Nr. 4. d=0,0038 cm l=88,6 cm $V=0,001003 \text{ cm}^3$	440	200 225 395 788 992 1226	$\begin{array}{c} 62 \\ 65,8 \\ 96,4 \\ 165,2 \\ 202,6 \\ 240,5 \end{array}$	27,4º	126 200 372 775 988 1235	40 49 70 122 154 188	$\overset{\tau}{\parallel} J = 1.5. \text{Amp.}$ $\overset{\tau}{\parallel} y = 28.3 \text{ c. g. s.}$	145 222 430 775 1016 1226	19 28 41 60 80 91	N	icht ausg	eführt.	

TABELLEN ZU KAPITEL IX.

BEMERKUNGEN ZU DEN TABELLEN.

Zu den in der Tabelle auf Seite 32 angeführten Beobachtungsresultaten ist nur zu bemerken, dass die Beobachtungen mit dem Drat Nr. 4 für grössere Intervalle in der Periodenzahl vorgenommen wurden, dafür aber die angegebenen Mittelwerte nicht aus 5 Beobachtungen, sondern aus 25 Beobachtungen resultieren. Diese Methode wurde bei diesem dünnen Drat angewendet, da die Verluste sehr klein, infolgedessen auch die Erwärmung des Drates sehr minimal wurde. Um trotzdem deutliche Ausschläge zu erhalten, musste die Empfindlichkeit des Galvanometers erhöht werden. was die Nullpunktschwankungen etwas vergrösserte. Um trotzdem zu Resultaten gleicher Genauigkeit wie bei den anderen Messreihen zu gelangen, wurde die Zahl der Beobachtungen für jede einzelne Periodenzahl um das Fünffache vermehrt.

aren daren findena suziri tani ma giachirina Kurrin

34 ALLGEMEINE BEMERKUNGEN ZU DEN KURVENSERIEN.

X. Allgemeine Bemerkungen zu den Kurvenserien Nr. 2, 3, 4, 5.

Die Werte, wie sie in den Tabellen auf Seite 31 u. 32 aufgeführt sind, wurden nun für jeden Drat in ein Kurvenblatt eingezeichnet und zwar die Periodenzahlen als Abscissen und die zugehörigen Ablenkungen als Ordinaten. Dann wurde die Kurve durch die so gefundenen Punkte aufgezeichnet, indem dabei, selbstverständlich nicht punktweise verbunden wurde. sondern die mittlere Kurve mit stetigem Verlauf festgelegt wurde. Die Kurvenserien Nr. 2, 3, 4, 5 geben die Werte wieder. Die schwarzen Punkte sind die beobachteten Werte und die schwarz ausgezogenen Kurven sind auf die oben angegebene Art und Weise aufgezeichnet. Für sämtliche Kurvenblätter sind die Werte aus der Beobachtungsserie mit J = 3 Amp. mit Kreuzen +, mit J = 2 Amp. mit Kreisen \odot , mit J=1 Amp. mit Kreis und Kreuz (+) und mit J=0.5 Amp. mit schrägliegendem Kreuz \times bezeichnet.

Wenn wir nun die auf solche Weise erhaltenen Kurven betrachten, die uns ja direkt die Abhängigkeit der Eisenverluste von der sekundlichen Feldwechselzahl vor Augen führen, so ist fast auf sämtlichen Kurven als Charakteristikum zu bemerken, dass sie mit steigender Periodenzahl sich von der Abscissenaxe abbiegen, d. h., dass die Gesamtverluste stärker als einfach proportional der Periodenzahl wachsen. Ausnahme hiervon machen nur die sämtlichen Kurven des Drates Nr. 4 und die Kurve für 0,5 Amp. des Drates Nr. 1. Um die Resultate besser würdigen und sichten zu können, sollen die Kurven für jeden Drat einzeln einer Kritik unterzogen werden.

XI. Kritik der Kurvenserien.

Drat Nr. 1 (Beilage 3).

a) Kurvenserie Nr. 2 (Schirmwirkung).

Die Kurve für die Intensität des magnetisierenden Stromes J = 3 Amp., die einem Feld von H = 56,6 c.g.s. entspricht, ist gegen die Abscissenaxe ziemlich stark konvex. Jedoch fällt sofort auf, dass die Kurve bei höheren Periodenzahlen sich abflacht. Die Ursache dieser Konvexität ist ohne weiteres klar. Die Dratstärke ist relativ hoch, der Durchmesser beträgt d = 0.0374 cm, sodass der Wirbelstromverlust noch ziemlich beträchtlich ist. Da die Wirbelstromverluste nicht einfach proportional der Periodenzahl, sondern bedeutend stärker wachsen, so ist die Konvexität der Kurve leicht verständlich. Auffallend ist nur die Erscheinung, dass die Kurve bei niederen Periodenzahlen stärker gekrümmt ist als bei hohen, wo doch den Wirbelströmen zufolge das Gegenteil zu erwarten wäre. Jedoch findet auch diese Erscheinung ihre Erklärung und zwar durch die Schirmwirkung der Wirbelströme. d. h. durch die Tatsache, dass die Wirbelströme ein Feld hervorrufen, welches jenes Feld, dem sie selbst ihren Ursprung verdanken, schwächt. Diese Entmagnetisierung ist um so stärker, je höher die Intensität der Wirbelströme ist. Da nun die Wirbelströme bei steigender Periodenzahl bedeutend zunehmen, so macht sich auch ihr Einfluss durch Verminderung der Induktion im Eisendrat, also auch Verminderung der Gesamtverluste, in steigendem Masse geltend, was auf der Kurve, die ja nur bei konstantem äusseren Feld aufgenommen ist, durch eine Abflachung zum Ausdruck kommt. (Details siehe an späterer Stelle.)

Die gleiche Erscheinung lässt sich aus der zweiten Kurve, die einem J = 1 Amp. und einem H = 18,84 c.g.s. entstammt, folgern. Der Einfluss der Schirmwirkung der Wirbelströme lässt sich deutlich erkennen. Bei der

3*

Intensität J = 0.5 Amp. die einem Feld von H = 9.42entspricht, haben wir die Erscheinung, dass die Gesamtverluste bei konstanter magnetisierender Stromstärke direkt proportional der Frequenz sind. Hätte man nicht vorher die beiden andern Kurven diskutiert, so könnte man aus dieser Kurve leicht den Schluss ziehen, dass die Verluste bei konstantem Feld direkt proportional der Periodenzahl sind; dass also in diesem Falle keine Foucaultverlustemehr auftreten. Bei genauerer Untersuchung der Verhältnisse findet man jedoch, dass dies nicht der Fall ist. In Wirklichkeit haben wir während der Dauer einer Beobachtungsserie nur die Feldstärke des "ursprünglichen Feldes" konstant gehalten, indem wir die Stromstärke des magnetisierenden Wechselstroms auf den gleichen Betrag regulierten. Jedoch ist das "aktive Feld" im Innern des Eisendrahtes d. h. die magn. Induktion infolge des mit der Periodenzahl wachsenden Einflusses der Wirbelströme entsprechend geschwächt worden, und zwar gerade um einen Betrag, der die Gesamtverluste bei konstantem ursprünglichen Feld auf einen Betrag herabdrückt, der proportional der Periodenzahl wächst.

Ohne uns vorerst auf die Zusammensetzung dieses Gesamtverlustes einzulassen, kann man ganz allgemein aus den Kurven des Drates Nr. 1 entnehmen, dass bei dieser Dratstärke die Foucaultströme neben der Hysteresis einen erheblichen Einfluss besitzen, der sich nach zwei Richtungen hin fühlbar macht: 1. leisten sie einen erheblichen Beitrag zum Gesamtverlust und 2. rufen sie eine Schwächung des Feldes im Dratinnern hervor, die deutlich zu erkennen ist.

b) Kurvenserie Nr. 3 (Konstatierung der Foucaultströme).

Nach diesen allgemeinen Folgerungen gehen wir zur Kritik der Kurvenserie Nr. 3 über, welche die Resultate des **Drates Nr. 2** vom Durchmesser d = 0.0235 cm enthält. Bei den meisten bis daher

gemachten Beobachtungen über die Eisenverluste wurde vorausgesetzt, dass bei diesen Dratstärken der Foucaultverlust gegenüber dem Hysteresisverlust zu vernachlässigen sei. Nehmen wir nun an, was von vielen Forschern nachgewiesen wurde, dass der Hysteresisverlust pro Periode unabhängig von der Zahl der sekundlichen Feldwechsel ist, so muss ja der Verlust in Abhängigkeit von der Periodenzahl durch eine Gerade dargestellt sein, die unter einem gewissen Winkel vom Nullpunkt des Koordinatensystems aus ansteigt. Ein Blick auf das Kurvenblatt, das die Resultate über diesen Punkt wiedergiebt, zeigt uns. dass diese Resultate nicht mit der oben ausgesprochenen Folgerung übereinstimmt. Sämtliche Kurven zeigen ganz deutlich den Charakter, dass die Verluste nicht einfach proportional, sondern stärker als einfach proportional mit der Periodenzahl wachsen. Wären in Wirklichkeit die Foucaultströme gegenüber der Hysteresis zu vernachlässigen, so wären die Verluste, die durch die Kurven wiedergegeben sind, auch nur der Hysteresis zuzuschreiben. Es wäre also die Tatsache zu folgern, dass die Hysteresisverluste pro Cyklus bei rasch wechselnden Feldern grösser sind als bei geringerer Periodenzahl. In der Tat sind auch Wien und Klemencic in den früher citierten Arbeiten auf ähnliche Schlüsse gekommen, allerdings Letzterer mit Periodenzahlen von über 1000 pro Sekunde. Im Gegensatz hierzu stehen die Untersuchungen von Hopkinson und Kaufmann etc., die den Hysteresisverlust pro Cyklus als unabhängig von der Zahl der sekundlichen Feldwechsel gefunden haben. Auch Ewing's Theorie¹) stimmt mit den letztgenannten Ansichten überein ebenso wie die bekannten theoretischen Untersuchungen von Steinmetz.²)

Ewing J. A. Magnetische Induktion Berlin (Springer) 1892, Seite 300 ff.

Steinmetz Ch. Pr. Wechselstromerscheinungen, Seite 143 ff. Berlin 1900.
 E. T. Z. Bd. 16, Seite 623 etc. 1895.
Die von uns erhaltenen Kurven stimmen weder mit der letztgenannten Gruppe überein, denn sonst müssten wir gerade Linien haben, noch lassen sie sich mit den Resultaten von Wien identifizieren, denn sonst müsste ja die "Zunahme" der Verluste für den gleichen Frequenzintervall bei höheren Periodenzahlen grösser sein als bei geringen Periodenzahlen. In unsern Kurven ist das Gegenteil der Fall, denn bei entsprechender Untersuchung (Division der Ordinaten durch die zugehörigen Abscissen) ist ganz deutlich eine Abflachung der Kurven zu konstatieren, besonders für die Kurven bei J = 3 Amp. und J = 2 Amp. Wir haben also hier dieselbe Erscheinung wie bei den Kurven des Drates Nr. 1. Es liegt also nahe, anzunehmen, dass denselben Wirkungen dieselben Ursachen zu Grunde liegen, d. h., dass auch bei dem Drat Nr. 2 noch Foucaultströme wirksam sind, wenn auch ihre Wirkungen relativ zur Hysteresis nicht mehr so gross sind, wie bei Drat Nr. 1. Wir erkennen jedoch noch deutlich die Schwächung des Feldes bei der Kurve für J = 3 Amp. Bei J = 2 Amp. ist diese Wirkung schon schwächer, aber immer noch mit der oben angegebenen Methode zu konstatieren, während bei J = 1 Amp. und J = 0.5 Amp. diese Wirkung kaum noch nachzuweisen ist. Bei sämtlichen Kurven ist jedoch die Abweichung von der geraden Linie unzweifelhaft zu konstatieren. -Als Zusammenfassung dieser Betrachtungen über die mittelst des Drates Nr. 2 erhaltenen Kurven kann festgestellt werden: Die Verluste setzen sich trotz des geringen Durchmessers noch aus Foucault- und Hysteresisverlusten zusammen und der Einfluss der Foucaultströme ist selbst in einem Teil der Beobachtungen noch so gross, dass die Schirmwirkung deutlich wahrgenommen werden kann.

c) Kurvenserie Nr. 4 (Schirmwirkung zu vernachlässigen).

Wir gehen mit der Dratstärke noch weiter herunter. um die Foucaultströme mehr und mehr zu beseitigen. Der nun untersuchte Drat hatte noch nicht die Hälfte des Durchmessers des letzten Drates. Drat Nr. 3 hat nur einen Durchmesser von d = 0.0155 cm. Es ist schon bedeutend unter der Grenze, bei der die Foucaultströme als zu vernachlässigen angenommen wurden. Auf der zugehörigen Kurvenserie Nr. 4 sind die Resultate aufgezeichnet. Auch hier ist das allgemeine Merkmal sämtlicher Kurven eine deutliche Konvexität genau wie bei den andern bis jetz besprochenen Kurvenblättern. Selbst bei der Kurve für J == 0,5 Amp., die sich nur aus ganz geringen Galvanometerablenkungen zusammensetzt, ist dieser Charakter noch ohne Zweifel festzustellen. (Diese letztgenannte Kurve ist übrigens mittelst höherer Empfindlichkeit des Galvanometers aufgenommen und auf den Massstab des Kurvenblattes reduciert.) Was die Kurven des Drahtes Nr. 3 von den bis jetzt diskutierten unterscheidet, ist der Umstand, dass die entmagnetisierende Wirkung der Foucaultströme nicht mehr festzustellen ist, eine Tatsache, die uns beweisst, dass der Einfluss der Foucaultströme bedeutend zurückgegangen ist. Immerhin ist anzunehmen, dass sie noch nicht ganz wirkungslos geworden sind, denn hierzu berechtigt uns der Charakter der Kurven.

d) Kurvenserie Nr. 5 (Reine Hysteresis).

Um nun die Frage zur Entscheidung zu bringen, ob tatsächlich die bis jetzt immer beobachtete Konvexität gegen die Abscissenaxe, wie wir voraussetzten, den Wirbelströmen zu verdanken ist, oder ob, entsprechend den Ansichten Wien's der Hysteresisverlust pro Cyklus tatsächlich mit der Zahl der sekundlichen Wechsel wächst, haben wir den Durchmesser des untersuchten Drates immer mehr vermindert. Die Untersuchungen eines Drates vom Durchmesser d = 0.0092 cm, die hier nicht mitgeteilt sind, ergaben

immer noch deutlich eine Konvexität wie sein Vorgänger. Durch Ziehen wurde schliesslich Drat Nr. 4 erhalten mit einem Durchmesser d = 0.0038 cm. Bei der Winzigkeit dieses Durchmessers war natürlich das Eisenvolumen des Drates sehr gering geworden; es betrug nur noch 0,001003 cm³. Um die Verluste, die in diesem geringen Volumen durch Hysteresis und eventuell durch Wirbelströme hervorgerufen werden, zu bestimmen, musste natürlich die Empfindlichkeit der Anordnung sehr erhöht werden, was durch Astatisierung des Galvanometers erreicht wurde. Auf der Beilage Nr. 6 sind die erhaltenen Resultate aufgetragen, sie entsprechen den Intensitäten J == 3 Amp., J = 2 Amp. und J = 1,5 Amp. Sofort fällt es auf, dass die Kurven für diese Dratstärke tatsächlich gerade Linien sind. Bevor wir jedoch die nötigen Folgerungen ziehen, sei der Tatsache, dass die Geraden nicht durch den Nullpunkt des Koordinatensystems gehen, etwas Aufmerksamkeit geschenkt. - Durch die erhöhte Empfindlichkeit der ganzen Anordnung kam auch eine andere Erscheinung deutlicher zum Vorschein, die bereits bei sämtlichen Dräten konstatiert wurde, die aber. da sie keinen Einfluss auf die Resultate ausübte. noch nicht erwähnt wurde. Es ist dies die schon lang bekannte Erscheinung, dass Eisendräte, die einem magnetischen Feld ausgesetzt werden, ihren elektrischen Widerstand erhöhen. Bei sämtlichen Dräten wurde diese Widerstandserhöhung mittelst eines durch einen Gleichstrom von entsprechender Stärke erzeugten Feldes konstatiert und gefunden, dass diese Widerstandserhöhung gegenüber derjenigen durch Hysteresis und Wirbelströme zu vernachlässigen war. Bei diesem dünnen Drat jedoch ist diese Art von Widerstandserhöhung gegenüder der Hysteresis mehr in Vordergrund getreten und macht sich durch die Tatsache kenntlich, dass die Kurven der Hysteresis nicht mehr durch den Ursprung gehen. Um zu kontrollieren, dass dies tatsächlich der Grund ist, wurden auch hier die

Versuche mit Gleichstrom erzeugtem Feld von entsprechender Intensität angestellt, dabei wurden Ablenkungen am Galvanometer erhalten, die von der gleichen Grössenordnung waren, wie die Entfernungen des Ursprungs der einzelnen Kurven vom Nullpunkt des Koordinatensystems. (Natürlich im entsprechenden Massstab des Kurvenblattes.) Infolge der geringen Ablenkungen des Galvanometers bei den Gleichstromversuchen, die durch die Unstetigkeit des Nullpunktes bei dem astatisierten Galvanometer nur einen gualitiven Wert besitzen, konnte der besprochenen Erscheinung nicht mit der zu wünschenden Genauigkeit ziffernmässig auf den Grund gegangen werden, doch wurde mit ausreichender Sicherheit, wie oben angedeutet, festgestellt, dass diese Erscheinung auf die Widerstandserhöhung durch Magnetisierung zurückzuführen ist. Ist dies einmal als Tatsache bekannt, so ist es ein. Leichtes, aus den Kurven die Hysteresisverluste zu erhalten, indem man von jedem Beobachtungswert den betreffenden Betrag, welcher der Magnetisierung zuzuschreiben ist, und der ja für die gleiche Feldstärke denselben Wert besitzt, abzieht. Wir erhalten dann die auf Beilage Nr. 7 aufgezeichneten Kurven. Bei dieser Transformation sind wir uns jedoch bewusst, dass wir stillschweigend als richtig vorausgesetzt haben, dass die Widerstandserhöhung durch Magnetisierung unabhängig von der Zahl der Richtungswechsel des Feldes ist und nur unabhängig von der Stärke des Feldes.

Nachdem wir so den Punkt "Abweichung des Kurvenursprungs vom Nullpunkt des Systems" aufgeklärt haben, können wir zur Kritik der Kurven selbst übergehen. Wir erhalten bei den drei beobachteten Intensitäten des magnetisierenden Stromes als Kurve der Unabhängigkeit der Eisenverluste von der Periodenzahl des Wechselfeldes je eine gerade Linie; d. h. die Verluste pro Cyklus sind in einem Drat von solcher Stärke unabhängig von der Zahl der Feldwechsel pro Zeiteinheit.

XII. Vergleich der Resultate mit denen unter IV angeführten.

Es kann wohl ohne allzugrosse Ungewissheit angenommen werden, dass in einem Drat von solch minimalem Durchmesser die Wirkung der Foucaultströme zu vernachlässigen ist, und dass wir es hier innerhalb der Grenzen des Versuchs einzig und allein mit Hysteresis zu tun haben. Es wären, dies als richtig vorausgesetzt, unsere Resulte eine Bestätigung der Ewing'schen Theorie und der Steinmetz'schen Untersuchungen über Hysteresis; sie ständen jedoch im Widerspruch mit den Resultaten, die Wien mit seinen Untersuchungen erhielt. Dieser Widerspruch lässt sich jedoch aufklären aus dem Umstand, dass Wien den Einfluss der Foucaultströme bei seinen Beobachtungen unterschätzte, denn wir haben nachgewiesen, dass Foucaultströme noch bedeutend unterhalb der Grenze, bei der man sie zu vernachlässigen können glaubte, deutlich zu konstatieren waren.

Nehmen wir einmal als richtig an, dass wir tatsächlich dazu gelangt sind, den Durchmesser des Drates derart zu verringern, dass die Foucaultströme praktisch null sind, so ist aus den Kurven dieses letzten Drates ohne Weiteres klar, dass der Hysteresisverlust pro Cyklus unabhängig von der Zahl der Feldwechsel ist, d. h., dass der gesamte Hysteresisverlust einfach proportional der Periodenzahl wächst.

laieuslinten des lingheinsteining richane als Karre der Ur ablähren keitther Richare haber und die Porhaen

XIII. Darstellung der Kurven durch die Gleichung $y = A \cdot x + B \cdot x^2$.

Dies einmal als richtig anerkannt, muss es ja nicht sonderlich schwer sein, dies an den Kurven der anderen Dräte nachzuweisen oder mit andern Worten den Hysteresisverlust von dem Foucaultverlust zu trennen. Der Energieverlust durch Wirbelströme ist ja nach Steinmetz proportional dem Quadrat der Wechselzahl des Wechselfeldes.

Wenn diese beiden Beziehungen Gültigkeit haben, so lässt sich die Trennung der Verluste sehr leicht durchführen, denn der Gesamtverlust setzt sich dann zusammen aus zwei Gliedern, von denen das eine einfach proportional, das zweite Glied proportional dem Quadrat der Frequenz ist. Es müssen sich also die Kurven darstellen lassen durch die Gleichung

$\mathbf{y} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{x}^2.$

Diese Gleichung stellt nur dann die Kurven dar, wenn die Schirmwirkung der Wirbelströme zu vernachlässigen ist. Es bedeuten dann A und B zwei unabhängige Konstanten, x = Periodenzahl und y die Ablenkung des Galvanometers in Teilstrichen, x und y sind bekannt; A und B lassen sich ohne Weiteres berechnen, wenn wir zwei Werte von y herausgreifen und hieraus den Wert von A und B algebraisch finden.

Wir nehmen zuerst die Kurven des Drates Nr. 3 vor, weil wir hier die Hysteresis und Wirbelstromverluste noch in der grössten Reinheit besitzen, noch nicht beeinflusst durch sekundäre Erscheinungen. Bei der Bestimmung der Faktoren A und B begnügen wir uns nicht mit der Berechnung aus zwei Ablenkungswerten, sondern wir nehmen das Mittel aus Werten, die dem ganzen Verlauf der Kurven entnommen sind. Um möglichst homogene Resultate zu erhalten, wird je ein Wert von A und B immer aus zwei Werten

von y berechnet, die um x = v = 600 Perioden voneinander entfernt sind. Für den Drat Nr. 3 sei diese Rechnung für J = 3 Amp. ausführlich angeführt; für die anderen Versuchsreihen folgen dann die auf dieselbe Art gewonnenen Resultate. Es seien zuerst die Periodenzahlen nebst den zugehörigen Ablenkungen angeführt, wie sie aus der Kurve entnommen sind.

J	= 3 An	ıp.	
	ν	у	menteriore, elsmaters dan
1	100	34	
2	200	68	Es werden nun Werte
3	300	103	mit onterreakenden
4	400	138	mit entsprechenden
5	500	174	deutschen und lateini-
6	600	210	schen Ziffern zur Be-
I	700	247	rechnung von A und B
II	800	283	zusammengefasst.
III	900	320	A TO A DE A D
IV	1000	359	
V	1100	399	
VI	1200	439	banhidesigen ist. Eb. bed
the bar	ind I		2 und II
= 100	A + 100) ² B	$68 = 200 \text{ A} + 200^2 \text{ B}$
= 700	A + 700) ² B	$283 = 800 \text{ A} + 800^2 \text{ B}$
),33792;	B = 0,00	00208	A = 0,3355; B = 0,0000225
3 u	nd III		4 und IV
= 300	A + 300) ² B	$138 = 400 \text{ A} + 400^2 \text{ B}$

$103 = 300 \text{ A} + 300^2 \text{ B}$	138 =
$320 = 900 \text{ A} + 900^2 \text{ B}$	359 ==
A = 0,3375; B = 0,00002	$A = 0, \epsilon$
5 und V	

 $174 = 500 A + 500^2 B$ $399 = 1100 \text{ A} + 1100^2 \text{ B}$ A = 0.3369; B = 0.0000242 A 400 A +

359	= 1000	A +	1000 ² B
-==	0,3367;	B ==	0,0000223

6 und VI

174 = 600	A + 600	² B
439 = 1200	A + 1200	B B
A = 0,335;	B = 0,000	025

34 247 $\mathbf{A} = \mathbf{0}$

$\mathbf{y} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{x}^2.$

Auf solche Weise sind für sämtliche Kurven A und B berechnet. In den folgenden Tabellen sind die Werte von A und B für jeden Drat zusammengestellt und die Mittelwerte daraus für jede magnetisierende Stromstärke berechnet. Dann werden aus den gefundenen Mittelwerten nach der Formel $y = A \cdot \nu + B \cdot \nu^2$ die theoretischen Kurven berechnet und mit der experimentellen Kurve verglichen.

Drat Nr. 3.								
	J = 3 Amp.		J = 2 Amp.		J = 1 Amp.		J = 0,5 Amp.	
	А	в	A	в	А	В	Α	в
1 und I 2 und II 3 und III 4 und IV 5 und V 6 und VI	0,33792 0,3355 0,3375 0,33678 0,3369 0,335	0,0000208 0,0000225 0,00002 0,0000233 0,0000242 0,000025	0,3077 0,3075 0,3038 0,3045 0,3061 3,3021	0,00002335 0,000025 0,0000317 0,0000325 0,0000317 0,00003535	0,1987 0,1972 0,2 0,2017 0,2023 0,2019	0,0000128 0,0000137 0,00001 0,00000834 0,00000734 0,000008	0,013716 0,014032 0,014439 0,01455 0,01445 0,01426	0,00000284 0,00000234 0,00000187 0,00000175 0,00000190 0,00000206
Mittelwert .	0,3366	0,00002265	0,30525	0,00002976	0,2003	0,00001003	0,01426	0,000002167

46

TABELLEN ZU KAPITEL XIII.

Drat Nr. 3.						
e and Mr. 1	$J_{\rm i} = 3$ Amp.	J = 2 Amp.	J = 1 Amp.	J = 0,5 Amp.		
5 and V	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$		
¥100	33,66 + 0,23 = 33,9	30,53 + 0,3 = 30,8	20,03 + 0,1 = 20,1	1,4+0 = 1,4		
¥200	67,32 + 0,91 = 68,2	61,05 + 1,2 = 62,2	40,06 + 0,4 = 40,5	2,9+0,1=3		
¥300	100,98 + 2,04 = 100	91,6 + 2,7 = 94,3	60,09 + 0,9 = 61	4,3+0,3=4,5		
¥400	134,64 + 3,63 = 138,3	122,1 + 5,8 = 127,9	80,12 + 1,6 = 81,7	5,7+0,3=6		
Ұ500	168,30 + 5,67 = 174	152,63 + 7,5 = 160,1	100,15 + 2,51 = 102,6	7,1+0,5=7,6		
Ү600	201,96 + 8,16 = 210,1	183,1 + 10,8 = 193,9	120,18 + 3,62 = 123,8	8,5 + 0,8 = 9,3		
¥700	235,62 + 11,1 = 246,7	213,7 + 14,7 = 228,4	140,21 + 4,92 = 145,1	10 + 1,0 = 11,0		
Y800	269,28 + 14,5 = 238,8	244,2 + 19,2 = 263,4	160,24 + 6,43 = 166,7	11,4+1,4=12,8		
У900	302,94 + 18,35 = 321,3	274,7 + 24 = 268,7	180,27 + 8,13 = 188,4	12,8+1,7=14,5		
¥1000	336,6 + 22,65 = 359,9	305,3 + 29,8 = 335,1	200,3 + 10 = 210,3	14,3+2,1=16,4		
¥1100	370,26 + 27,45 = 397,7	335,8 + 36 = 371,8	220,33 + 12,15 = 232,5	15,7+2,6=18,3		
¥1200	404,42 + 32,65 = 437,1	366,2 + 42,8 = 409	220,36 + 14,46 = 254,8	17,1 + 3,1 = 20,2		

TABELLEN ZU KAPITEL XIII.

Drat Nr. 2.								
2.5759 2.7630 2.869	J =	3 Amp.	J = 2 Amp.		J =	J = 1 Amp.),5 Amp.
X809 X600 1 1 1 X600	A	B	A	13'3 = 303'4 14'1 = B 38'4 10'8 == 183'9	A	Barris Barris Charles	A	0.8 = 1.3 $1.0 = \mathbf{B}^{-0}$ 1.4 = 12.8
1 und I	0,24815	0,0001185	0,251	0,00007	0,2011	0,000039	0,09895	0,0000105
2 und II	0,2454	0,000173	0,2433	0,0000784	0,2025	0,0000375	0,10087	0,00000818
3 und III	0,2429	0,0001237	0,2458	0,000074	0,2115	0,0000384	0,1017	0,00000534
4 und IV	0,2414	0,0001216	0,2514	0,0000666	0,1993	0,0000417	0,102	0,0000075
5 und V	0,2482	0,0001117	0,2503	0,0000675	0,1957	0,0000467	0,10367	0,00000667
6 und VI .	0,2560	0,0001085	0,2565	0,0000625	0,1952	0,0000517	0,1	0,00000833
Mittelwert .	0,24701	0,0001174	0,2497	0,00006983	0,1992	0,0000425	0,10103	0,000007755

TABELLEN ZU KAPITEL XIII.

Drat Nr. 2.

	J = 3 Amp.	J = 2 Amp.	J = 1 Amp.	J = 0,5 Amp.
	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$	$\nu \cdot \mathbf{A} + \nu^2 \cdot \mathbf{B} = \mathbf{y}$
¥100	24,7 + 1,2 = 25,9	25 + 0,7 = 25,7	19,9 + 0,4 = 20,3	10,1 + 0,1 = 10,2
Y200	49,5 + 4,7 = 54,2	49,5 + 2,8 = 51,7	39.8 + 1.7 = 41.5	20,2 + 0,3 = 20,5
Үзоо	74,1 + 10,6 = 84,7	74.9 + 6.3 = 81.2	59.8 + 3.8 = 63.6	30,3 + 0,7 = 31
¥400 · · ·	98,8 + 18,8 = 117,6	99,9 + 11,2 = 111,1	79,7 + 6,8 = 86,5	40,4 + 1,2 = 41,6
¥500	123,5 + 29,4 = 152,9	124,9 + 17,4 = 142,3	99,6 + 10,6 = 110,2	80,5 + 1,9 = 52,4
Ұ500	148.2 + 42.3 = 190.5	148,9 + 25,1 = 174	119,5 + 15,3 = 134,8	60,6 + 2,8 = 63,4
¥600	172,9 + 57,6 = 230,5	174,8 + 34,2 = 209	139,4 + 20,6 = 160	70,7 + 3,8 = 74,5
Ұ700	197,6 + 75,2 = 272,8	199,8 + 44,7 = 244,5	159,4 + 27,2 = 186,6	80,8 + 5 = 85,8
¥800	222,3 + 95,2 = 317,5	224.8 + 56.6 = 281.4	179,3 + 34,4 = 213,7	90,9 + 6,3 = 97,2
У900	247 + 117,4 = 364,4	249,7 + 69,8 = 319,5	199,2 + 42,5 = 241,7	101 + 7,7 = 108,7
¥1000	271,8 + 142,1 = 413,9	274,5 + 84,5 = 359	219,1 + 51,5 = 270,6	111,1 + 9,4 = 120,5
Y1100	296,2 + 169,2 = 465,4	299,5 + 100,5 = 400	239 $+ 61,2 = 300,2$	121,2 + 11,2 = 132,4

TABELLEN ZU KAPITEL XIII.

Drat Nr. 1.

Ueber die Kurve für J = 0.5 Amp. lassen sich diese Tabellen nicht aufstellen, denn die Kurve ist praktisch eine Gerade, also eine Gleichung aus einem Glied.

	J =	3 Amp.	J = 1,0 Amp.		
	Α	В	Α	В	
1 und I	0,2333	0,0001667	0,15116	0,0000884	
2 und II	0,2387	0,0001566	0,15416	0,0000792	
3 und III	0,244	0,0001433	0,15888	0,0000704	
4 und IV	0,2579	0,0001241	0,166	0,00006	
5 und V	0,2636	0,0001167	0,1759	0,0000482	
6 und VI	0,2766	0,0001028	0,1809	0;0000435	
14-13-15-15-15-15-15-15-15-15-15-15-15-15-15-	0,252	0,000135	0,1645	0,0000649	
	v . A +	$v^2 \cdot B = y$	ν·A +	$\nu^2 \cdot \mathbf{B} = \mathbf{y}$	
¥100	25,2+	1,4= 26,6	16,5 +	0,6 = 17,1	
Y200	50,4+	5,4= 55,8	32,9 +	2,6 = 35,5	
Y300	75,6+	12,2= 87,8	49,4+	5,8 = 55,2	
Y400	100,8+	21,6=122,4	65,8+	10,4 = 76,2	
Y500	126 +	33,8=159,8	82,3+	16,2 = 98,5	
Y600	151,2+	48,8=199,8	98,7 +	23,3 = 122	
Y700	176,4+	66,1=242,5	115,2+	31,7 = 146,9	
Y800	201,6+	86,4=288	131,6 +	41,5 = 173,1	
Y900	226,8+1	.09,2=335	148,1 +	52,5 = 200,6	
Y1000	252 +1	35 = 387	164,5 +	64,9 = 229,4	
Y1100	277,2+1	63,2=440,4	181 +	78,7 = 259,5	
Y1200	302,4+1	94,3=496,7	197,4+	93,5 = 290,9	

Die Werte von y sind in sämtlichen Tabellen entsprechend ihrer Verwendbarkeit im Kurvenmassstab abgerundet. Die aus den Berechnungen erhaltenen Werte von y sind in die Kurvenblätter gestrichelt eingezeichnet mit entsprechender Bezeichnung wie für die beobachteten Werte (J = 3 Amp. mit Kreuzen etc.).

Nehmen wir nun von Neuem das Kurvenblatt des Drates Nr. 3 vor [Beilage V], so konstatieren wir die Tatsache, dass für sämtliche Kurven dieses Blattes die nach der Formel $y = \nu A + \nu^2 B$ berechneten Werte auf der Kurve liegen, die wir experimentell ermittelt haben. Mit andern Worten: Die experimentell gefundene Kurve für die Eisenverluste in Abhängigkeit von der Periodenzahl lässt sich darstellen durch eine Gleichung mit zwei Gliedern, von denen das eine einfach proportional, das zweite jedoch proportional dem Quadrat der Periodenzahl wächst. Es ist also unsere Annahme durch diese Tatsache bestätigt, dass sich die Gesamtverluste zusammensetzen aus dem Hysteresisverlust,. der einfach proportional der Periodenzahl und dem Wirbelstromverlust, der mit dem Quadrate der Periodenzahl wächst. Nachdem sich unsere Vermutung auf diese Weise bestätigt hat, drängt sich uns eine andere Frage auf, der wir nähere Beachtung schenken müssen.

Sobald wir die Wirbelströme konstatiert haben, müssen wir auch den Wirkungen dieser Ströme Beachtung schenken und da ist es wie schon früher besprochen ihre sogenannte Schirmwirkung, die auf unsere Resultate einen Einfluss ausübt. Unsere Beobachtungen sind bei konstanter magnetisierender Stromstärke ausgeführt. Dies ist gleichbedeutend mit einem konstanten Feld und konstanter Induktion im Eisen, vorausgesetzt, dass diese erwähnte Schirmwirkung zu vernachlässigen ist. Nur unter dieser Bedingung ist die Behauptung richtig, dass sich die Verlustkurve aus zwei Gliedern zusammensetzt, von denen das eine einfach proportional, das andere proportional dem

4*

Quadrat der Periodenzahl ist. Unter dieser Voraussetzung müssen dann auch über die ganze Kurve hin die Faktoren A und B konstant sein. Wenn wir unsere aus den verschiedenen Gebieten der Kurve berechneten A und B vergleichen, so finden wir, dass dies bei den Kurven des Drates Nr. 3 nicht ganz zutrifft; immerhin lässt sich eine bestimmte Tendenz nicht feststellen. Die Unterschiede sind sehr gering und liegen innerhalb der Fehlergrenzen, die durch das Ablesen der Ablenkungswerte auf dem Kurvenblatt verursacht sind. Hierin liegt die Grenze der Genauigkeit in der Bestimmung der Faktoren A und B, denn sie werden berechnet aus Ablenkungswerten, die auf dem Kurvenblatt abgelesen werden, wo also schon die zweite Decimale nicht mehr konstatiert werden kann. Daher mag es wohl auch kommen, dass der Mittelwert von B für J = 3 Amp. etwas grösser ausfiel als derjenige für J = 2 Amp. Immerhin muss erwähnt werden, dass, wenn Foucaultströme vorhanden sind, sich auch ihre Schirmwirkung bemerkbar machen muss. Diese Wirkung ist um so stärker, je stärker die Wirbelströme selbst sind. Bei dem Drat Nr. 3 sind die Foucaultströme so gering, dass ihre Schirmwirkung praktisch zu vernachlässigen war.

Gehen wir zu den Kurven des Drates Nr. 2 über, so bemerken wir schon sehr deutlich diese Schirmwirkung. Zwar ist bei den Intensitäten J = 0.5 Amp. und J = 1.0 Amp. noch kein Einfluss wahrzunehmen, jedoch bei J = 2 Amp. und J = 3 Amp. bemerkt man ganz deutlich in den hohen Periodenzahlen, dass die tatsächliche Verlustkurve unterhalb der mittelst des Mittelwertes von A und B berechneten Ablenkungen liegt. Es ist also hier die Kurve nicht mehr nach dem Gesetz $y = A \cdot \nu + B \cdot \nu^2$ gebildet; dies haben wir dem wachsenden Einfluss der Wirbelströme zu verdanken, die das "wirksame" Feld (die Induktion im Eisen) mit steigender Periodenzahl vermindern.

XIV. Folgerungen aus XIII.

Auf dem Kurvenblatt des Drates Nr. 1 [Beilage III] ist dieser Einfluss sehr deutlich zu konstatieren. Es ist ohne Weiteres klar, dass bei diesen Verhältnissen der berechnete Wert von A und B keinen Anspruch mehr auf Richtigkeit hat, denn diese Werte sind ja unter der Voraussetzung eines konstanten Feldes und konstanter Induktion im Eisendrat für sämtliche Periodenzahlen berechnet. Unter dem Einfluss der Schirmwirkung der Wirbelströme ist diese Voraussetzung hinfällig geworden. Um ein Bild von dem wirklichen Verlauf bei konstanter Induktion im Eisendrat zu geben, haben wir die Tatsache benutzt, dass diese entmagnetisierende Wirkung bei geringen Periodenzahlen zu vernachlässigen ist. Wir haben, auf dieser Voraussetzung basierend, für J = 3 Amp. auf analoge Weise wie früher A und B berechnet. nur dass wir uns hierbei auf das Gebiet von 25 bis 325 Perioden beschränkten. Es wurde A = 0,242 und B = 0,000175 gefunden. Auf dem Kurvenblatt sind mit strichpunktierten Kreuzen----die so erhaltenen Werte von y eingezeichnet. Wenn auch diese Werte einer mathematischen Kritik nicht vollkommen Stand halten können, so lassen sie jedoch sehr deutlich den Einfluss und die Grössenordnung der Schirmwirkung auf die Gesamtverluste erkennen.

Vereinigen wir die durch die Berechnung der Faktoren A und B gefundenen Schlüsse, so kommen wir zu folgender Zusammenfassung:

Sind die Foucaultströme im Vergleich zur Hysteresis gering, so dass die Schirmwirkung derselben vernachlässigt werden kann, so lässt sich die Kurve der Abhängigkeit der Gesamt-Eisenverluste von der Periodenzahl des Feldes bei konstanter magnetisierender Stromstärke derstellen durch die Gleichung von der Form $y = A \cdot x + B \cdot x^2$, worin $A \cdot x$ den Hysteresisverlust und $B \cdot x$ den Foucaultverlust darstellt. Bei dickeren Dräten tritt diese Schirmwirkung der Foucaultströme mehr in den Vordergrund und macht sich bemerkbar, indem sie mit wachsender Periodenzahl das aktive Feld (die Induktion im Eisen) mehr und mehr abschwächt und infolge davon trotz konstanter magnetisierender Stromstärke die Gesammtverluste herabgedrückt werden. Ziehen wir diese beiden Folgerungen zusammen, so finden wir:

Halten wir das aktive Feld konstant (konstante Induktion im Eisen), so sind die Hysteresisverluste einfach proportional der Periodenzahl und die Wirbelstromverluste proportional dem Quadrat der Periodenzahl.

man Handerstein mit and the state of the state of the

and a second second

BESTIMMUNG DER ABSOLUTEN GRÖSSE DER VERLUSTE. 55

XV. Bestimmung der absoluten Grösse der Verluste.

Nachdem wir mittelst der vorangegangenen Untersuchung den Verlauf und den Einfluss der Hysteresis und der Wirbelströme bei den verschiedenen Dratstärken gezeigt und nachgewiesen haben, dass die von uns verwendete Methode mit grosser Präcision diese Erscheinungen qualitiv nachzuweisen im Stande ist, treten wir der Frage näher, wie wir es mit der Methode ermöglichen, auch die Quantität der Erscheinungen zu würdigen; mit anderen Worten, wie man die Grösse der Verluste bestimmt.

Ein Punkt ist vor allem insbesondere zu erwähnen, der die Bestimmung des absoluten Betrags sehr vereinfacht. Da ja für jeden Drat die Empfindlichkeit der Versuchsanordnung während sämtlicher Experimente konstant gehalten wurde, so sind natürlich sämtliche Kurven eines Kurvenblattes mit einander in Übereinstimmung, d. h. sie haben denselben Kurvenmassstab. Die Aufgabe der Bestimmung des absoluten Wertes der Verluste für eine beliebige Periodenzahl und eine beliebige der beobachteten Feldstärken kommt darauf hinaus, den Massstab des Kurvenblattes zu bestimmen. Dies ist sofort geschehen, wenn wir diese Bestimmung für eine beliebige Periodenzahl und eine beliebige Feldstärke durchführen und das Resultat durch die zugehörige Ablenkung dividieren.

Das Prinzip der Methode, welches schon früher angewendet wurde, besteht darin, dass wir die Erwärmung, die der Drat der Hysteresis und den Wirbelströmen zu verdanken hat, durch elektrische Arbeit reproducieren, deren Grösse einfach bestimmt werden kann. Zu diesem Zwecke ersetzen wir den Zweig unserer Brückenschaltung, der durch den Drat B gebildet wird, durch einen Manganinwiderstand, der ja bei Temperaturerhöhung konstanten Widerstand behält. Wir regulieren dann die Spannung unserer Betriebsquelle in der Brückenschaltung derart, dass wir denselben Ausschlag am Galvanometer erhalten wie bei der entsprechenden Periodenzahl. Ist dies erreicht, so bestimmen wir die Stromstärke und den Widerstand des Drates A und haben im Ausdruck i². E den Betrag der durch Wärme im Drat verzehrten Energie

Der Hergang eines Versuchs ist folgender: Die Maschine wurde auf eine bestimmte Periodenzahl z. B. auf 900 Perioden reguliert und die Magnetisierungsspulen unter eine gewissen magnetisierenden Stromstärke z. B. J = 3 Amp. eingeschaltet. Nachdem konstante Verhältnisse eingetreten waren, wurde der Drat B durch einen Manganindrat ersetzt, dessen Länge so reguliert wurde, dass er den gleichen Widerstand wie Drat A besass. (Brückenkontakt auf der Mitte des Brückendrates.) An beiden Enden des Drates A liegt ein Galvanometer Nr. 2, das mit Hilfe eines Normalelementes als Spannungsmesser verwendet wurde-Es wurde nun mittelst Schaltung der Spule A in Addition ein magnetisches Feld erzeugt, infolge der Hysteresis und Wirbelströme erlangt das Galvanometer Nr. 1 eine Ablenkung, die im Übrigen aus den Versuchsreihen schon bekannt ist. Durch Verschiebung des Brückenkontaktes bringen wir das Galvanometer Nr. 1 wieder auf Null. Nachdem wir nun Spule A in Opposition geschaltet haben, den Brückenkontakt jedoch auf seinem Platz belassen haben, zeigt uns Galvanometer Nr. 1 wieder eine Ablenkung. Nun erhöhen wir durch Regulierung im Elementenzweig der Brückenanordnung die Spannung; das Resultat ist, dass die Stromstärke sich in den Brückenzweigen erhöht; dies ruft im Eisendrat A eine Temperaturerhöhung, also auch eine Widerstandserhöhung hervor. Der Manganinwiderstand jedoch bleibt in seinem alten Stadium. Regulieren wir nun solange, bis Galvanometer Nr. 1 wieder auf Null steht, so hat die Temperaturerhöhung im Eisendrat hervorgerufen durch Joule'sche Wärme denselben Betrag wie zuvor durch die Hysteresis und

Wirbelströme. Nun lesen wir am Galvanometer Nr. 2 die Ablenkung ab, die uns den Spannungsabfall angiebt. Der Widerstand wird mittelst einer besonderen Messung bestimmt. Aus diesen beiden Grössen ist dann der Arbeitsbetrag sofort zu berechnen $W = \frac{e^2}{r}$. Von diesem ist dann nur in Abzug zu bringen der Arbeitsbetrag, den wir der Wärmearbeit des Elementes zu verdanken haben, welches bei den Beobachtungen zum Betrieb der Brückenschaltung dient. Die Berechnung des Kurvenmassstabes wurde für jede Intensität des magnetisierenden Stromes für 900 Perioden durchgeführt. Die Vergleichung der Resultate giebt Aufschluss über die Genauigkeit der Messungen.

	J = 3 Amp.	J = 2 Amp.	J = 1 Amp.	J = 0,5 Amp.
$\begin{array}{c} {\rm Arbeitsbetrag} \\ {\rm (unkorrigiert)} \end{array} {\rm A} \ {}^{\prime} = \frac{{\rm E}^2}{{\rm r}} \end{array}$	$\frac{0,915^2}{1,021} = 0,867 \text{ Watt}$		$\frac{0,683^2}{0,9235} = 0,503$ Watt	$\frac{0,415^2}{0,9158} = 0,188 \text{ Watt}$
Korrektion $a = \frac{e^2}{r}$	$\frac{0,0772^2}{1,021} = 0,0057$ Watt		$\frac{0,069^2}{0,9235} = 0,0052$ Watt	$\frac{0,0686^2}{0,915} = 0,005 \text{ Watt}$
Wahrer Arbeitsbetrag A' — a	0,861 Watt .		0,4978 Watt	0,138 Watt
Ablenkung in Teilstrichen	$\frac{334}{\nu = 900}$		$201 \\ \nu = 906$	$72 \\ \nu = 892$
Massstab: 1 Teilstrich $=$	0,00258		0,00248	0,00254
Mittlerer Massstab:		1 Teilstrich =	0,00253 Watt	

Beilage III. Drat Nr. 1. $\nu \simeq 900$ Perioden.

58

TABELLEN ZU KAPITEL XV.

Beilage IV.

Drat Nr. 2. ν ∞ 900 Perioden.

	J = 3 Amp.	J = 2 Amp.	J = 1 Amp.	J = 0,5 Amp.
$\begin{array}{c} \text{Arbeitsbetrag} \\ \text{(unkorrigiert)} \end{array} \mathbf{A'} = \frac{\mathbf{E^2}}{\mathbf{r}} \end{array}$	$\frac{0,987^2}{2,349}$ =0,375 Watt	$\frac{0,861^2}{2,204} = 0,3354$ Watt	$\frac{0,734^2}{2,0865}$ =0,2582 Watt	$\frac{0,509^2}{2,0435}$ = 0,1262 Watt
Korrektion $a = \frac{e^2}{r}$	$\frac{0,18}{2,349} = 0,014$ Watt	$\overline{\frac{0,17^2}{2,204}} = 0,013$ Watt	$\frac{0,16^2}{2,0865}$ =0,0123 Watt	$\frac{0,158^2}{2,0435} = 0,0122 \mathrm{Watt}$
Wahrer Arbeitsbetrag A' — a	0,361	0,322	0,246	0,114
Ablenkung in Teilstrichen	$314 \\ \nu = 900$	280	212	198
Massstab: 1 Teilstrich =	0,00115	0,00114	0,00118	0,00116
Mittlerer Massstab:		1 Teilstrich ==	0,00116 Watt	

TABELLEN ZU KAPITEL XV.

Beilage V. Draht Nr. 3. $\nu \propto 900$ Perioden.

	J = 3 Amp.	J = 2 Amp.	J = 1 Amp.	J = 0,5 Amp.
$\begin{array}{l} \textbf{Arbeitsbetrag} \\ \textbf{(unkorrigiert)} \textbf{A'} = \frac{\textbf{E}^2}{r} \end{array}$	$\frac{0,914^2}{5,305} = 0,157$ Watt	$\frac{0,8485^2}{4,945} = 0,146 \text{ Watt}$	$\frac{0,686^2}{4,731} = 0,0996$ Watt	$\frac{0,3395^2}{4,692} = 0,0245 \text{ Watt}$
Korrektion $a = \frac{e^2}{r}$	$\frac{0,353^2}{5,305} = 0,021 \text{ Watt}$	$\frac{0,31^2}{4,945} = 0,0194$ Watt	$\frac{0,296^2}{4,731} = 0,0187$ Watt	$\frac{0,2945^2}{4,692} = 0,0185$ Watt
Wahrer Arbeitsbetrag A' — a	0,136 Watt	0,1266 Watt	0,0809 Watt	0,006 Watt
Ablenkung in Teilstrichen	320	299	188	14
Massstab: 1 Teilstrich $=$	0,000425	0,000425	0,00043	0,000428
Mittlerer Massstab :		1 Teilstrich =	0,000427 Watt	

-

TABELLEN ZU KAPITEL XV.

BESTIMMUNG DER ABSOLUTEN GRÖSSE DER VERLUSTE. 61

Da es uns in vorliegender Arbeit weniger darauf ankommt, den absoluten Betrag der Eisenverluste zu studieren, denn in diesem Falle müssten wir uns mehrmit den physikalischen und chemischen Eigenschaften des Materials beschäftigen, wurde darauf verzichtet, diesem Punkt eingehendere Aufmerksamkeit zu schenken. Die oben angegebenen Resultate machen deshalb auch keinen Anspruch auf mathematische Genauigkeit. Es genügte uns, bei deren Feststellung von der Grössenordnung einen Begriff zu erhalten. Die in der Tabelle auf Seite 60 angeführten Resultate sind im übrigen mit einer etwas vereinfachten Methode erhalten, indem der Spannungsabfall an den Enden des Manganinwiderstandes gemessen wurde. Für den Drat Nr. 4 wurde diese Messung nicht durchgeführt. Da der Zweck dieser Arbeit nicht darin liegt, bestimmte Materialien auf ihre Verluste hin zu untersuchen, sondern, da es sich nur darum handelt, die Abhängigkeit der Verluste im allgemeinen von der Periodenzahl des Wechselfeldes mit der angegebenen Methode zu bestimmen, so ist eine genauere Bestimmung des absoluten Betrages der Verluste überflüssig; das ist die Aufgabe der speziellen Arbeiten unter Anwendung dieser Methode.

XVI. Kontrolle der Konstanz der Empfindlichkeit der Versuchsanordnung.

Bevor wir die gesamten Ergebnisse zusammenfassen, kommen wir nochmals auf den mehrmals erwähnten Punkt der Konstanz der Empfindlichkeit, der Gesamtanordnung während der Untersuchungen eines Drates zurück. Wir kontrollieren dies bei Gelegenheit der Widerstandsmessungen. Wenn wir den Widerstand eines Drates messen, ein Mal bei Schaltung der Magnetisierungsspule in Opposition und ein zweites Mal in Addition, so haben wir in der Widerstandsdifferenz ein Mass für die Temperaturzunahme. Bestimmen wir uns den Temperaturkoefficienten des Eisendrates, so ist sofort auch die Temperaturerhöhung selbst bestimmt. Wir können nun auf ähnliche Weise, wie bei der Bestimmung des absoluten Betrages den Massstab jedes Kurvenblattes in Celsius-Graden ermitteln, mit andern Worten: man kann das Galvanometer auf diese Weise als Termometer aichen. Nehmen wir nun diese Bestimmung bei verschiedenen magnetisierenden Stromstärken und verschiedenen Periodenzahlen vor, SO haben wir in dem Grad der Übereinstimmung der Resultate ein Mass für die Konstanz der Empfindlichkeit der Gesamtordnung. Der Temperaturkoefficient beträgt $\alpha = 0.0048$.

Drat Nr. 1. Beilage III.

	J = 3 Amp			J = 1,2 Amp.			J == 0,5 Amp.		
Periodenzahl	1196	900	400	1188	908	400	1196	. 890	392
Widerstand in Opposition	1.021	1,021	1,021	0,9235	0,9235	0,9235	0,915	0,915	0,915
Widerstand in Addition	1,144	1.199	1,053	0,989	0,971	0,945	0,9383	0,932	0,922
Temperatur-Zunahme	25,110	17,95°	6,52°	14,80	10,720	4,960	5,30	3,875°	1,5950
Entsprechende Ablenkung in Teil- strichen	478	334	123	276,5	202,5	76	96	72	32
1 Teilstrich = \ldots	0,0525	0,0538	0,053	0,0535	0 0529	0,0653	0,0552	0,0539	0,05
Mittel	0,0531		0,0532			0,05303			
Gesamt-Mittelwert	1 Teilstrich = $0,05311^{\circ}$ C.								

TABELLEN ZU KAPITEL XVI.

Drat	Nr. 2.	Beilage	IV.
		Dorrago	~

All AL	J = 3 Amp.		J == 2	= 2 Amp. J =		Amp.	J == 0,5 Amp.	
Periodenzahl	1200	910	1205	areas 1	1195	900	1194	913
Widerstand in Opposition	2,349	2,349	2,204		2,0865	2,0865	2,0435	2 0435
Widerstand in Addition	2,503	2,458	2,332		2,188	2,1485	2,084	2,075
Temperatur-Zunahme	13,68 º	9,66 ⁰	12,68 º	(Inter-	10,15 °	6,18 °	4,125 °	3,164 °
Entsprechende Ablenkung in Teilstrichen	452	319	400	in suite it i	305	212	183	133
1 Teilstrich = \ldots	0,0303	0,0303	0,0317	TEN F	0,0333	0,0292	0,031	0,03164
Mittel	0,08	303	0,0317		0,03125		0,03132	
Gesamt-Mittelwert	1 Teilstrich = $0,03114^{\circ}$ C.							

TABELLE ZU KAPITEL XVI.

Drat Nr. 3. Beilage V.

	$J = 3 \text{ Amp.} \qquad J = 2 \text{ Amp.}$		J = 1 Amp.		J == 0,5 Amp.			
Periodenzahl	1195	908	1185	900	1205	925	1192	HI HI
Widerstand bei Opposition	5,305	5,305	4,945	4,945	4,731	4,731	4,692	Editorial Control
Widerstand bei Addition	5,455	5,418	5,083	5,043	4,810	4,793	4,698	sester .
Temperatur-Zunahme	5,895 °	4,445 0	5,81 º	4,14 °	3,48 º	2,73 °	0,2665 °	0,001
Entsprechende Ablenkung in Teilstrichen	434	322	409	299	258	195	20	
1 Teilstrich = \ldots	0,0136	0,0137	0,0142	0,01382	0,0135	0,014	0,0133	inde li Palato
Mittel	0,01365		0,01401		0,01375		0,0133	
Gesamt-Mittelwert	1 Teilstrich = $0,013685^{\circ}$ C.							

TABELLEN ZU KAPITEL XVI.

01

Für den Drat Nr. 4 auf der Beilage VI erhalten wir für 1 Teilstrich = 0,00233 °C.

Mittelst der Resultate in den Tabellen auf Seite 63, 64 und 65 ist nachgewiesen, dass die Empfindlichkeit der Anordnung für die Dauer der Versuche für denselben Drat in sehr engen Grenzen konstant war. Gleichzeitig geben die Werte der Temperaturzunahme einen Begriff von der Wärmeentwickelung durch die Hysteresis und Wirbelströme.

Wir sind am Schluss unserer Betrachtungen angelangt und fassen deshalb nochmals kurz die erhaltenen Ergebnisse zusammen.

XVII. Zusammenfsssung.

Es wurden in vorliegender Arbeit mittelst einer bolometrischen Methode die Eisenverluste, insbesondere der Hysteresisverlust in Abhängigkeit von der Zahl der sekundlichen Feldwechsel innerhalb der Grenzen von 60 bis 1250 Perioden, bei Feldstärken von 9,4 bis 56,6 c. g. s., bei konstanter magnetisierender Stromstärke studiert. Innerhalb der angegebenen Grenzen wurde festgestellt:

1) Bei Eisendräten bis zu einem Durchmesser von ungefähr 0,005 cm treten neben den Hysteresisverlusten auch noch Foucaultverluste auf. Bei einem Durchmesser von 0,0155 cm sind die Foucaultverluste noch zahlenmässig festgestellt worden; bei 0,009 cm waren sie noch nicht zu vernachlässigen. Die Versuche mit einem Durchmesser von 0,0038 cm zeigten reinen Hysteresisverlust. Die Versuche mit einem Drate von 0,0235 cm und 0,0374 cm zeigten den Einfluss der Schirmwirkung der Wirbelströme.

2) Ist der Durchmesser des Drates so gering, dass die Foucaultströme praktisch gleich Null sind, so ist der Hysteresisverlust pro Cyklus unabhängig von der Geschwindigkeit, mit welcher er durchlaufen wird.

3) Ist der Durchmesser des Drates von der Grössenordnung, dass Foucaultströme festzustellen sind, dass jedoch die Schirmwirkung derselben zu vernachlässigen ist, so lässt sich die Kurve der Abhängigkeit der Verluste von der Periodenzahl bei konstanter magnetisierender Stromstärke sehr genau und innerhalb der Grenzen der Beobachtungsfehler darstellen durch eine Gleichung von der Form $y = A \cdot x + B \cdot x^2$. Hierin stellt $A \cdot x$ den Hysteresisverlust und $B \cdot x$ den Foucaultverlust dar.

4) Ist die Schirmwirkung der Foucaultströme nicht mehr zu vernachlässigen, so wird die Abhängigkeit der Verluste von der Periodenzähl bei konstanter magnetisierender Stromstärke kompliziert. Immerhin giebt die Methode auch in diesem Falle Mittel an die Hand, die Grösse dieser Wirkung zu würdigen.

5) Auf Grund dieser Tatsachen ist die Grenze der Feststellung und Trennung der Verluste bei einem bekannten äusseren Feld für verschiedene Dratstärken nach oben hin durch den Einfluss der Schirmwirkung festgelegt. Nach unten hin existiert keine andere Grenze als die der mechanischen Unmöglichkeit, Dräte unterhalb eines gewissen Durchmessers zu erhalten. Praktisch ist jedoch auch nach unten hin eine Grenze gesetzt, indem die Widerstandserhöhung durch Magnetisierung schliesslich von derselben Grössenordnung wird, wie die durch die Hysteresis hervorgerufene. Durch Zusammenfassen der Dräte zu einem Kern, kann diesem Umstand jedoch zum Teil begegnet werden.

2) ist der Durchmesser des Drates so gering, dass die Foncaultetröme praktisch gleich Null sind, so ist der Hysberesisverinst pro Cyklus unshhängig von der Geschwindigleit, mit welcher er durchlaufen wird.

B) hat der Desenberger von der Grössenordnung, dass Koncaultströme festwosiellen sind dass jedoch die Schinnworkung dereiben an rernachlässigen ist, so litest sich die Kurre der Abhängigkeit der Verliste von der Periodenschi bei konstanter magnetisierender Stramsläcke sehr zenau und innerhalb der Grenzen der Beobachtungslehler darstellen durch eine Gleichung von der Form $r = A \cdot x + B \cdot x^{4}$ flierin stellt A - x den Fysteresieverinst und B - x den Fournaltverlust dar.

 Jat die Schirmwirkung der Kodenftströme nicht nehr zu vermachlissigen, so wird die Abhängigkeit Abkürzungen der Litteraturangaben.

XVIII. Abkürzungen der Litteraturangaben.

Arch. des sciences nat. = Archives des Sciences Physiques et Naturelles, Genève.
Ecl. électr = L'Eclairage électrique, Paris.
E. T. Z = Elektrotechnische Zeitschrift, Berlin.
Freib. Ber = Berichte der naturforschenden Ge- sellschaft, Freiburg.
Phil. Mag The London, Edinbourgh and Dublin Philosophical Magazine and Jour- nal of Science, London.
Phil. Trans Philosophical Transactions of the Royal Society of London.
Proc. Roy. Soc = Proceedings of the Royal Society of London.
Rend. Lomb = Rendiconti del Reale Istituto Lombardo, Milano.
Verh. d. deutsch phys. Ges
Wied. Ann = Annalen der Physik und Chemie. Herausgegeb. von C. Wiedemann, Leipzig.
Wien. Ber = Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Wien.

20000000

Jipi. Jug. BENI HERZFELD.

Beilage II.

(Dissertation)

Beilage III.

Beilage V.

1 Teilstrich = 0,000427 Watt 1 ", = 0,013685 ° C. Dipi. Ing. BENI HERZFELD.

(Dissertation)

1 Teilstrich = $0,00233 \circ C$.

Dipit. Jug. BENI HERZFELD.

(Dissertation)

Beilage VI.

1 Teilstrich = 0,00233 ° C.

Dipl. Ing. BENI HERZFELD.

Beilage VII.

(Dissertation)