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ABSTRACT: Many current brain-computer interfaces
(BCIs) rely on motor imagery or oculomotor paradigms
to transfer information, yet these functions are impaired
in people that suffer from late stage Amyotrophic Lateral
Sclerosis (ALS). Additionally, patients have limited ac-
cess to cutting-edge BCI technology for home-use because
the necessary, medical grade equipment is expensive and
difficult to setup.
We addressed both issues with the current study. First, we
devised a novel paradigm that relies on music imagery
and mental subtraction. We argue that these are motor-
independent abilities that can be reliably executed, without
the need for subject training. We find that both tasks can
be distinguished after only one experimental session with
a 124-channel EEG system, from the band-power in the
theta (4-8 Hz) and alpha (8-13 Hz) range. Second, we
tested our paradigm in combination with a low-cost EEG
system to show that it can be used to develop accessible
BCIs for patients in the future.

INTRODUCTION

Background For patients suffering from paralysis,
brain-computer interfaces (BCIs) offer the possibility of
renewed communication [1, 2, 3]. This is of great im-
portance for people who suffer from amyotrophic lateral
sclerosis (ALS), a motor-neuron disease that renders pa-
tients completely locked-in during its final stage [4]. How-
ever, BCIs for ALS patients suffer from two limitations:
The usability of existing paradigms varies greatly, and the
required technology is expensive and difficult to set up.
In the final stages of their disease, ALS patients are unable
to use most current BCIs that rely on motor-imagery or
oculomotor control [5], as these functions decay during
disease progression [1, 6]. Recently, efforts have been
made to combine motor imagery with higher cognitive
tasks including spatial navigation, meditation, mental cal-
culation to improve BCI usage for people with motor-
disabilities [7, 8]. Hohmann et al. [9, 12] devised a
self-paced strategy that relies on positive self-referential
thoughts to modulate activity in the Default-Mode Net-
work (DMN) as an alternative to motor-based strategies.
However, it was argued that repeatedly recalling a positive
memory may induce fatigue which limits the performance

of the BCI over longer time-periods.
Current Work We propose music imagery as another

motor-independent task for BCI control. Music imagery
fulfils three important criteria: First, it targets a cognitive
process that should be immediately accessible to everyone.
Second, it is unrelated to motor imagery. And third, it is
self-paced and stimulus-independent and should therefore
remain accessible to completely paralysed patients. We
argue that music imagery is a more concrete task than
self-referential thought generation and it may therefore
be easier to execute it repeatedly. Music imagery has
been found to modulate parietal alpha, similar to positive
self-referential thoughts [10].
Based on Hohmann et al. [12], we choose mental subtrac-
tion as the opposing task. Mental subtraction is related to
an increase in prefrontal theta and a decrease in parietal
alpha [13]. With music imagery and mental subtraction
we introduce an easy-to-use two-class paradigm that can
be performed without the need for motor-abilities.
BCIs are only accessible to patients if they are affordable
and easy to set up. To investigate the portability of our
paradigm, we tested our paradigm on a low-cost EEG
system, in addition to our recordings with a conventional
high-density EEG system.

MATERIALS AND METHODS

Experimental Paradigm We conducted a study with 10
healthy subjects that were seated in a chair approx. 1.25
meters away from a 17" LCD screen with a refresh rate of
60 Hz and a resolution of 1280x1024 px. For each trial
the instructions were presented in white font on a black
background. Between instructions we presented a fixation
cross in the middle of the screen.
After the resting phase we recorded two experimental
phases, where we employed the high-density EEG and
the low-cost EEG for recording. Each experimental phase
consisted of two blocks with a brief intermission that each
contained 10 trials for the mental subtraction task and 10
for the music imagery task, in randomized order. The
order of those two phases was counterbalanced between
subjects.
For the music imagery condition, participants were asked
to “imagine a favourite song”. In the mental subtraction
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task they were asked to “continuously subtract X from
Y” until the end of the trial, where X was a single-digit
number and Y was a three-digit number. We excluded
1, 2 and 5 for the single digit number and restricted the
range of the three digit number to the interval between
[800, 999]. Each trial took 35 seconds and began with
5± 0.50 seconds pause, after which the instructions were
displayed on screen as well as given acoustically by a
text-to-speech engine (CereProc Ltd., Edinburgh, United
Kingdom). The respective task then had to be executed
continuously for the whole trial.

Experimental Data The study was conducted at the
Max Planck Institute for Intelligent Systems in Tübingen,
Germany. Ten healthy subjects (five male and five female,
mean age 24.6 ± 3.6 years) were recruited from the lo-
cal community and received 12 Euro per hour for their
participation. Half of the subjects had previous experi-
ence with EEG studies. The experimenter informed them
about the procedure with standardised instructions. All
participants signed a consent form in advance to confirm
their voluntary participation. For the high-density sys-
tem, a 124-channel EEG was employed. Recordings were
conducted at a sampling rate of 500 Hz using actiCAP
active electrodes and a BrainAmp amplifier (BrainProd-
ucts GmbH, Gilching, Germany). Electrodes were placed
according to the 10-5 system with the left mastoid elec-
trode as the initial reference. For the low-cost system,
a 14-channel EPOC+ portable EEG system (EMOTIV,
San Francisco, U.S.A.) was employed. Recordings were
conducted at a sampling rate of 128 Hz. OpenViBE [14]
was used to record and store the EEG data. Because of
technical issues we excluded the recorded low-cost device
data for the first three subjects .

Data Analysis The analysis was performed offline.
To differentiate between the patterns of neural activity
related to music imagery and mental subtraction we com-
puted per-trial θ-bandpower features between 4 and 8 Hz
as well as α-bandpower features between 8 and 13 Hz for
all channels. For each subject the feature matrix contains
trials × features, which is one alpha and theta value
per channel per trial, so a 40 × (2 ∗ 124) matrix for the
high-density system (124 electrodes), and a 40× (2 ∗ 14)
matrix for the low-cost system (14 electrodes). The num-
ber of features is twice the number of electrodes since for
each electrode there are two bandpower values associated.
We used a transfer learning method by Jayaram et al.
[15] to account for variation across subjects and the is-
sues arising from large feature spaces. This method
fits a linear regression model for each subject individ-
ually but penalises deviations in the regression weights
from a Gaussian prior distribution. We evaluated
the classification performance on one subject in a 10-
fold cross-validation procedure, after learning a prior
on all others as follows. Afterwards we tested the
H0 : AccuraciesBrainAmp 6= AccuraciesEPOC+ by
a paired Student’s T-Test.
To investigate the meaningfulness of the weights learned
by the transfer learning framework, we multiplied the

learned weights with the feature covariance matrix [16].
The resulting matrix can be visualized as a topography
map where each value represents the importance the clas-
sifier has assigned to this channel based on the modulation
by the cognitive strategy.

RESULTS

We achieved a mean classification accuracy of 85% with
the high-density system and 77% with the low-cost system
(Fig. 1). The paired Student’s T-Test yields a significant
difference between the classification accuracies from sub-
jects S4 to S10 of the BrainAmp (M = 0.84, SD =
0.17) compared to the EPOC+ (M = 0.77, SD =
0.18); t(6) = −2.83, p = 0.03.

After multiplying the weights learned by the transfer learn-
ing framework with the feature covariance, we obtained
the relevance-map of all 124 features for both the theta
and alpha frequency-band (Figure 2).

The channel with the largest weight for the alpha features
is PO1 and for the theta features is AFF1. Figure 3 shows
the modulation in the power spectrum for both tasks at
both of those channels from the BrainAmp recordings.

DISCUSSION

We investigated whether the neural activity during music
imagery and mental subtraction could be discriminated
without prior subject-training. We found that we can clas-
sify both tasks with a mean accuracy of 85% for the high-
density EEG system, and 77% for a low-cost EEG system.
Additionally, we observed high classification weights for
frontal electrodes for the theta band-power features and
parietal ones for alpha.
Our results are consistent with previous publications
that show frontal activation during a mental subtraction
task [17, 18] and parietal activity in the alpha band for
music imagery [11]. Therefore the spatial patterns of the
relevant features for classification (Figure 2) are in line
with our hypotheses and previous research of both tasks.
All except one subject reported the tasks to be very easy.
Only subject S4 reported both tasks to be “boring”, which
might have lead them to not participating very actively
over the course of the experiment, causing the decrease in
performance as depicted in Fig. 1.
The performance of the low-cost system was significantly
lower than the performance of the full-sized system. This
may have been caused by the smaller amount of chan-
nels, the lesser quality of the electrodes, or non-optimal
positioning of the sensors for this paradigm. However,
on both the high-density and the low-cost system, we
achieved classification performances above 70%, which
is considered to be the threshold for building a meaning-
ful communication device. Therefore, we argue that our
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Figure 1: Classification accuracies for both devices (BrainAmp & EPOC+) for all ten individual subjects (S1-S10) in case
of the brain amp and the reduced subject set (S4-S10) for the EPOC+. The mean classification accuracy across subjects is
85% for the BrainAmp and 77% for the EPOC+. Chance level (50%) as well as both mean accuracies are indicated with a
solid tick on the right of the plot and are labeled accordingly.

results motivate further studies that focus on the devel-
opment of low-cost EEG devices with better electrode
placement with respect to the presented paradigm, or a
higher signal quality.
Asking subjects to imagine their favorite song is hard
to control, as songs vary in their genre, complexity, the
presence of lyrics, and personal relevance. The large vari-
ability could have affected the classification performance.
To get a better understanding of the effects, it would be
interesting to combine this EEG approach with an imaging
method like fMRI. This could provide some insight in the
related brain-networks which might be for example the
dorsal attention network as Scherer et al. [7] hypothesize.
Most importantly, an online BCI study with ALS-patients
in all stages of the disease is very important to investigate
the feasibility of this cognitive paradigm.

CONCLUSION

We find the neural activity elicited by music imagery and
mental subtraction to be distinguishable after only one ex-
perimental session. We believe, that our work can be used
as a foundation for future development of reliable and
accessible systems for paralyzed patients to communicate
throughout the whole progress of their disease.
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Figure 2: Topography of the weights of the transfer learning classifier based on the BrainAmp recordings. A larger weight
represents stronger relevance for the classification. The weights for the theta features are plotted on the left and on the right
the weights for the alpha features can be seen.
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Figure 3: Average power spectral density with a single standard deviation across all 10 subjects for the BrainAmp at the
two electrodes with the highest classification weights (AFF1, PO1).
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