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ABSTRACT: Measuring brain activity with non inva-
sive techniques as EEG and MEG allows to detect os-
cillatory sources related to neural processes. Covariance-
based spatial filters determined by linear subspace meth-
ods allow to extract narrow band sources whose band
power correlates with a given target variable in single
trial. Since knowledge about the frequency band of
interest usually is unknown, filterbank strategies are
commonly used. They rely on time domain filtering of
the signals to predefined frequency bands. We suggest
that the implementation can be optimized by computing
the covariance matrices directly in the frequency do-
main, thus rendering the iterative time-domain filtering
unnecessary. Our contribution shows that the imple-
mentation in the frequency domain is computationally
more efficient than the classic approach. We evaluated
the novel approach in the context of source power co-
modulation (SPoC) and give indications, how it can be
extended to other subspace methods such as common
spatial patterns (CSP) [1].

INTRODUCTION

Measuring electrical oscillatory activity of the brain by
using electroencephalography (EEG) provides functional
information about the underlying neural processes [2].
Extraction and analysis techniques of such oscillatory
components have been developed in the context of brain-
computer interfaces (BCI) [3], [4] and neuroscience [5].
As low signal-to-noise ratio (SNR) and volume con-
duction impedes the EEG analysis, spatial de-mixing
approaches are widely used in order to extract oscillatory
subspace components. For this purpose, unsupervised
techniques are widely used, with independent com-
ponent analysis (ICA) [6], [7] being most prominent
in the field. With specific prior knowledge, however,
more specialized methods like spatio-spectral decom-
position (SSD) [8] or slow feature analysis [9] may
prove valuable. If discrete labels are available, however,
then a supervised method like common spatial patterns
(CSP) [1] can improve the subspace representation, as
the spatial decomposition can be guided by the label
information. CSP is applicable when discrete labels are
given (e.g. class labels in a motor imagery task, hits
vs. misses in a perception task). CSP determines the
projecting components based on channel-space covari-
ance matrices, that maximize the contrast of oscillatory
activity between conditions.

In other paradigms, the additional information is pro-
vided in the form of continuous labels rather than
discrete class labels. A regression approach – like Source
Power Comodulation (SPoC), introduced by Dähne et al.
– is able to exploit these continuous labels in order to
extract spatial components [10], [11]. Both supervised
covariance-based subspace methods, CSP and SPoC,
have been designed to extract oscillatory components
whose band-power is informative. However, while CSP
expects discrete two-class labels and maximizes con-
trast, SPoC requires a continuous target signal and
identifies spatial components, which co-modulate in
their power with this known continuous univariate target
signal. For applications of SPoC on neural signals please
refer to [12], [10], [11], [13].
Choosing a suitable frequency band is a critical hyper-
parameter for these methods, since they require a narrow
band frequency filter to be applied to the data prior
to starting the search for subspace components [14],
[15]. If knowledge about expected informative frequency
bands is not available, a generic filter bank approach can
be used, as proposed by Ang et al. for CSP [16]. It runs
CSP separately on several versions of the data, each one
pre-filtered to a different frequency band. Finally, the
outcomes of the bands are merged, e.g. by a subsequent
feature selection or regression step as proposed by Nove
et al. [17].
Typically, filterbank strategies are implemented by fil-
tering the signals in the time domain. However, since
trial-wise stationarity of the signals is assumed for most
applications, the explicit representation of the temporal
dynamics within a trial may actually not be necessary.
In this regard, we propose the implementation of a
more computationally efficient filter-bank approach for
subspace methods that is based on the calculation of a
stationary frequency domain representation of the data.
We present results of a study carried out in the context
of SPoC for real EEG data.

METHODS

Forward Model of EEG Generation

Let X ∈ RNc×Nt be a multivariate signal describing
data of brain activity measured in the EEG sensor
space, where Nt is the number of time samples and Nc

the number of sensors. Furthermore, let S ∈ RNs×Nt

describe the time course of Ns neural sources, where
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Ns describes the number of hidden neural sources
considered. We assume a linear generative model, which
maps the source space to the sensor space as follows:

X = AS +E . (1)

In this model, matrix A∈RNc×Ns describes the pro-
jection of the sources to the sensor space, where the
columns of A, a∈RNc , are referred to as spatial pat-
terns. Furthermore, the matrix E contains spatially and
temporally uncorrelated noise to model measurement
noise.
An estimation of the time course of a source component
ŝ can be extracted from the measurements by applying a
spatial filter w ∈ RNc , which projects the data from sen-
sor space into source space. Thus we have ŝ = w>X .
For many problems, such a spatial filter w is not known
a priori and must be estimated from the data. However,
once a spatial filter (or an entire set thereof, denoted
by W ∈ RNc×Ns , where each column w represents a
single spatial filter) has been obtained, an estimate of
the corresponding spatial patterns can be obtained via
Â = CW

(
W>CW

)−1
, where C ∈ RNc×Nc denotes

the spatial covariance matrix of the data. See [18] for
further details on the relation between spatial filters and
spatial patterns.

Source Power Co-Modulation — SPoC

The multivariate analysis method called source power
co-modulation (SPoC) by Dähne and colleagues [10]
utilizes a supervised regression approach in order to
estimate a set of spatial filters W . The method assumes
that the recorded data X has been pre-filtered to a
narrow frequency band, which contains the oscillatory
source of interest.
Based on data of multiple epochs e, a filter w is
optimized such that the power of an epoch Θx(e) =
var[ŝ](e) of the spatially filtered data ŝ = w>X ,
maximally covaries with a known, epoch-wise defined
univariate target variable z(e). For the sake of simplicity
in the notation, ŝ will be noted as s, hereafter.
It can be shown that solving such an optimization prob-
lem is equivalent to solving the generalized eigenvalue
problem [10]

CzW = ΛCW (2)

where Cz = 〈C(e)z(e)〉 and C = 〈C(e)〉. 〈C(e)〉 and
〈C(e)z(e)〉 provide the (z-weighted) covariance of X ,
averaged across epochs e: C(e) = X(e)X(e)T. Matrix
Λ ∈ RNc×Nc contains the corresponding eigenvalues in
the main diagonal.
Given a spatial filter wtr determined on training data tr,
the true target variable z = [z(1) . . . z(Ne)]

> can sub-
sequently be approximated/estimated as ẑ on a single-
trial basis for unseen test data (te) epochs Xte via
ẑ(e) = var[w>trXte(e)]. While in most scenarios a small
number of filters is utilized, we limit our analysis for
the reminder of this contribution to the one spatial filter
w which corresponds to the biggest eigenvalue of the
aforementioned decomposition.

Filterbank SPoC

Until now, we have assumed that the target frequency
band is known. Unfortunately, this is typically not true,
thus exploring the full available spectrum is necessary.
SPoC can then be extended by using the filterbank con-
cept proposed by Ang and colleagues for the filterbank
CSP algorithm [16]. Here, a set of Nfilt frequency
bands are defined, for which the subspace decomposition
method is applied separately. In the context of SPoC, this
approach shall be termed filterbank SPoC (FB-SPoC)
hereafter. FB-SPoC results in a set of Nfilt different
estimations of ẑ. We define these intermediate band-
wise estimations ẑi. To obtain a final ẑ, a linear model
combining all the estimations of the target variables can
be applied:

ẑ(e) =

Nfilt∑
i

βiẑi(e) (3)

where the weights β are determined by solving the
optimization problem:

arg max
β

||ẑ − z||22 + λ||β||2p. (4)

In Eq. 4, λ is a positive real-valued regularization
parameter and p defines the type of regularization ap-
plied to the model, with p = 2 corresponding to the
classic Tikhonov regularization and p = 1 a sparseness
promoting prior, termed LASSO.

Computation of Covariance Matrices in the Frequency
Domain

In implementations of filterbanks for different al-
gorithms (as CSP, spatio-spectral decomposition [8],
among others), data initially is bandpass filtered in
the time domain using IIR or FIR filters. Thus, the
computational cost grows linearly with the number of
bands.
However, since the aforementioned methods are based
on the computation of the covariance matrix of the
signal, which is assumed to be stationary in the ana-
lyzed epochs, the actual computation of such covariance
matrices could alternatively be executed directly in the
frequency domain. According to the Plancherel theorem
[19], the dot product of two signals in the time domain
is equal to the inner product of their frequency repre-
sentation. Consequently, the covariance matrix C may
be computed for a specific frequency band f as

Cf
i,j = re(< X f

i ,X
f
j >) (5)

where re(·) is the real part of the argument, Xi are
the coefficients of the Fourier transform of channel
i in X , and superindex f indexes the frequency bin
corresponding to frequency bands of interest. The in-
tuition behind neglecting the imaginary part of the dot
product is that it provides information about the mean
phase difference between the considered distributions,
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Figure 1. Schematic representation of the filter bank
strategy applied to SPoC, FB-SPoC, compared to the
proposed approach of computing the covariance matrix
directly in the frequency domain (fFB-SPoC).

therefore it does not contribute to the co-varying power
information provided by the covariance matrix.
Computing the covariance matrix in the frequency do-
main requires a single calculation of the fourier trans-
form of X , and this computational effort is independent
of the number of frequency bands included in the
filter bank. Furthermore, a single copy of the signal is
required in memory, whereas for time domain filter bank
approaches, Nfilt versions of it are necessary. Thus,
the frequency domain representation optimizes memory
access operations and allows cheaper caching in hierar-
chical memory architectures. The proposed approach of
computing FB-SPoC using the frequency representation
of data X is termed fFB-SPoC hereafter. Figure 1
shows a schematic representation of the implementation
differences between FB-SPoC and fFB-SPoC

EXPERIMENTAL SETUP

The proposed approaches, FB-SPoC and fFB-SPoC,
were tested using real EEG data. Signals were recorded
from 64 passive Ag/AgCl electrodes (EasyCap /
BrainAmp DC amplifiers) placed according to the 10-
20 system and referenced against the nose. Data were
recorded while performing an auditory oddball exper-
iment with an interstimulus onset of 1 s. Information
about the paradigm was not used in the subsequent anal-
ysis. Signals were sampled at 1 kHz, then a band-pass
filter with a cut-off frequency of 0.7-90 Hz and a notch
filter at 50 Hz were applied to the data. Afterwards, it
was downsampled to 250 Hz.
A target source s, which would serve as the ground
truth source in a following simulation, was determined
by projecting the preprocessed EEG data onto a single
source. The corresponding filter v for this purpose was
chosen pseudo-randomly. The projected signal was then
filtered to the alpha band (8 − 12 Hz) and its envelope
was extracted via the Hilbert transform.
The final dataset for running performance comparisons
was obtained by segmenting the EEG and the ground
truth target source s data into 1 s windows with 50 %
overlap. The ground truth target variable z(e) for each

epoch e was defined as the average of the envelope of
the target source s for that epoch.

Performance Metrics

In order to quantitatively assess the performance of the
considered methods, the following performance metrics
were considered:

Correlation – corr: This metric evaluates the quality
of the final regression model. More precisely, it describes
the correlation between the target variable estimated by
the regression model ẑ and the true modulating signal
(target variable) z. A higher absolute value suggests a
better estimation.

Best Band Correlation – corr: This metric evaluates
the quality of estimation for the best performing fre-
quency band. More precisely, it describes the correlation
between the target variable estimated by the best filter
ẑi and the true modulating signal (target variable) z. A
higher absolute value suggests a better estimation.

Earth Mover’s Distance – emd: This metric can be
used to characterize the most important frequency band.
It measures the dissimilarity between the estimated and
the true spatial pattern â and a within a single frequency
band. The lower the value of emd, the more accurate
the estimation. As fFB-SPoC and FB-SPoC yield one
pattern per frequency band, emd is calculated in the
frequency band achieving the highest corr performance.

Angle Between Patterns – angle: Analogous to emd,
this metric describes the angle between the estimated
and true spatial patterns â and a. The lower the value of
angle, the more accurate the estimation. Since FB-SPoC
and fFB-SPoC yield patterns corresponding to more than
one frequency band, emd is calculated using the pattern
related to the most relevant frequency band, according
to the corr achieved.

Elapsed Time – et: Computational cost is compared
in terms of walltime required to compute the final
estimation of ẑ.

Parameter Sensitivity Analysis

The aforementioned metrics are assessed in a parame-
ter sensitivity analysis. For this, a random search was
performed, where the parameter space is defined by (1)
the number of bands in the filter bank, (2) the type of
spacing (grid) between passing bands of the filter bank
and their corresponding width, which can be linearly or
logarithmically spaced, and (3) the regularization type
for the regression model in Eq. 4. Random search of the
parameter space was performed using the random-search
tool provided by the publicly available sequential model-
based algorithm configuration (SMAC) toolbox1 [20],
whereas the parameters sensitivity analysis was per-
formed using functional ANOVA (FANOVA)2 [21]

1http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
2https://github.com/automl/fanova
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Figure 2. Marginalized performance of FB-SPoC and
fFB-SPoC for the considered metrics.

RESULTS

FB-SPoC vs fFB-SPoC: Overall Performance

Figure 2 shows the marginalized performance of FB-
SPoC and fFB-SPoC as computed with FANOVA. As
expected, correlation values achieved and the spatial
accuracy of the spatial patterns (as assessed by emd and
angle), are not significantly different for the considered
methods. On the other hand, marginalized walltime was
significantly lower for fFB-SPoC compared to FB-SPoC.

FB-SPoC vs fFB-SPoC: Parameter Sensitivity Analysis

Figure 3 shows marginalized effects of different config-
urations of the parameter space uppon the performance,
both for FB-SPoC and fFB-SPoC.
The number of frequency bands is the parameter that
had the greatest impact on the correlation achieved. The
grid type used for the definition of the filter bands plays
a less critical role, with the linear model showing a small
advantage over the logarithmic grid. The regularization
method of the regression model did not affect the
performance in terms of the marginalized correlation.
The effects of the parameter configuration upon emd and
angle are very similar. Comparably to the effects upon
the correlation metrics, the number of bands used in the
filter bank is the parameter that has the strongest impact
upon the spatial patterns, where as the grid type and the
regression model do not seem to be critical.
For both, the accuracy of the target variable (corr)
and the spatial pattern estimation, the optimal number
of frequency bands for the considered scenario are
approximately 5 bands. Using more than 5 bands does
not improve the performance, according to any of the
considered measures.
Finally, the bottom row of Figure 3 demonstrates the
computational advantages of fFB-SPoC, where the wall-
time required increases at a much slower rate than for
FB-SPoC. It is worth mentioning that between 1 and 3
bands, the metric et grows with the same rate for both
algorithms.

DISCUSSION

In this contribution, we extended the use of a filterbank
approach to the context of source power co-modulation

analysis, SPoC. Furthermore, we propose to perform the
covariance matrix calculation in the frequency domain to
speed-up the computation of filterbank-based subspace
techniques.

i A filterbank strategy for SPoC is a suitable approach
to estimate target variables that co-modulate with
the power of hidden neural sources. The proposed
approaches are specially valuable in scenarios where
the frequency band of interest is not known and,
consequently, a full exploration of the available spec-
trum is necessary. Such applications have already
been reported in the literature, for example [13],
[12].

ii Under the realistic scenario considered, the number
of frequency bands is the most important hyperpa-
rameter considering the high final correlation with
the target variable and a good reconstruction of the
true spatial pattern a. This might be explained by
the fact that a coarse segmentation of the frequency
spectrum leads to mixing of informative and noisy
frequency bands into the same filters, thus degrading
the performance. This is also observed in the vari-
ance of the performance itself — a sudden reduction
of the variance is observed once the number of
frequency bands becomes greater than five. It is
important to point out that the optimal number of
frequency bands should be defined individually and
for each application scenario, since the width of
the informative frequency band of the target source
and its location within the spectrum is not known a
priori.

iii For our data, where no label noise was involved, the
grid type and regression model had little influence.
Similarly to the number of frequency bands, the
grid type is likely to be application-dependent. The
regression model, on the other hand, is likely to be
independent of the frequency characteristics of the
target neural source, but may be sensitive to the level
of noise contained in its labels. In future work, we
will investigate the interaction of label noise noise
with different regression models.

iv We have also shown that the computation of the
covariance matrix using the frequency representation
of the EEG data is a suitable approach for filter
bank strategies. The computational advantage is not
only caused by the single-time computation of the
FFT compared to the Nfilt-many (sequential) time-
domain filtering steps. It also affects the calculation
of the covariance matrix itself, which has quadratic
runtime. When computed in the time domain, each
of the entries of the covariance matrix C corre-
sponds to the dot product of two time series, each
with length N . In contrast, when computed in the
frequency domain, each entry of C corresponds to
the dot product of two vectors containing a subset
of M frequency bins obtained after the Fourier
transform, with typically N >> M . It is important
to point out that the covariance is computed simul-
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Figure 3. Marginalized parameter sensitivity analysis comparing FB-SPoC and fFB-SPoC , in terms of the
considered performance measures.

taneously on the entire subset of M frequency bins
in a single step, and not for each bin individually.

v The main limitation of the frequency-domain fil-
terbank approach is the coarse granularity of the
frequency bands considered. Their resolution is lim-
ited by the number of frequency bins resulting from
the Fourier transformation, while filters in the time
domain can be defined in high precision.

vi Another limitation of applying SPoC in the fre-
quency domain is the smaller number of SPoC
components which can be derived per frequency
band. Specifically, the rank of the covariance matrix
is limited by the number of frequency bins contained
in the analyzed band. However, this limitation may
not be a relevant one in practice, as a full rank SPoC
decomposition often is not required and usually only
the first-ranked, most informative components are

used.
vii Finally, the proposed frequency domain approach

for filterbank analysis should easily extend to other
covariance-based subspace methods such as CSP or
SSD.
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