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Abstract

Many traffic safety related investigations show a correlation between the tire-road friction

coefficient (TRFC) and accidents probability. The accurate information of this TRFC

can significantly enhance the performance and reliability of existing vehicle-safety related

functions like Electric Stability Control (ESC). Besides, as automated vehicles develope,

the automated systems, instead of the driver, should be responsible for adapting the driv-

ing style like braking, steering to the TRFC. Therefore, TRFC estimation is increasingly

critical for modern vehicles. This dissertation describes the development of observers

for estimating TRFC based on vehicle lateral dynamics with sensors available on the

current mass-produced vehicles. The proposed observers should be real time capable

and asymptotically stable in a wide range of vehicle operations.

This study presents two branches of methods for TRFC estimation depending on the

availability of tire self-aligning torque (TSAT). The first branch contains two methods

with TSAT information: the method I is a nonlinear adaptive observer with an indirect

measurement based on estimated total aligning torque and front axle tire lateral force,

while the method II proposes a more advanced nonlinear adaptive observer with no

need to estimate front axle lateral force. In the second branch, a method III without

TSAT information is presented. This method proposes an optimization based observer,

with guarantee on real time capability and finding the global optima.

Simulations and experiments for the first branch among method I and method II as

well as Extended Kalman Filter (EKF) (as a comparison), show that method I and

method II can guarantee stability of TRFC estimation in a wider range of vehicle

operations than EKF. Besides, in terms of root mean square of TRFC estimation error,

method I, method II and EKF (in stable situations) have similar performance. In the

second branch, method III and a linearization based observer (lbo) (as a comparison)

illustrate that the method III performs better than lbo (in stable situations) w.r.t.

root mean square of TRFC estimation error and can always guarantee stability in a

wide range of vehicle operations while lbo cannot.





Kurzfassung

Verschiedene Studien zeigen einen Zusammenhang zwischen dem maximalen Kraftschluss

zwischen Reifen und Fahrbahn und der Unfallwahrscheinlichkeit. Die Kenntnis des

maximalen Kraftschlusses kann die Leistungsfähigkeit und die Zuverlässigkeit von beste-

henden fahrsicherheitsrelevanten Funktionen wie der Elektronischen Stabilitätskontrolle

(ESC) erheblich verbessern. Mit steigender Automatisierung von Fahrzeugen müssen

diese, wie aktuell der Fahrer oder die Fahrerin, den Fahrstil beim Bremsen und Lenken

an den maximalen Kraftschluss anpassen können. Daher nimmt die Schätzung des

maximalen Kraftschlusses an Bedeutung für moderne Fahrzeuge zu. Diese Disserta-

tion befasst sich mit der Entwicklung von Beobachtern zur Abschätzung des maximalen

Kraftschlusses zwischen Fahrbahn und Reifen auf Basis der Fahrzeugquerdynamik mit

verfügbaren Sensoren in aktuellen Serienfahrzeugen. Die vorgeschlagenen Beobachter

sollen echtzeitfähig und in weiten Bereichen des Fahrzeugbetriebs asymptotisch stabil

sein.

In der vorliegenden Arbeit werden zwei Gruppen solcher Methoden vorgestellt, die sich

durch die notwendigen Signaleingänge unterscheiden. Bei der ersten Gruppe von Metho-

den wird die Verfügbarkeit von Informationen über das Reifenrückstellmoment vorausge-

setzt. Zwei verschiedene Schätzer wurden entwickelt: Methode I verwendet einen nicht-

linearen adaptiven Zustandsbeobachter mit der indirekten Messung des gesamten Rück-

stellmoments und der Querkraft an der Vorderachse, wohingegen Methode II einen erweit-

erten nichtlinearen adaptiven Beobachter verwendet, der keine Schätzung der Querkraft

an der Vorderachse benötigt. In der zweiten Gruppe von Methoden, zu der die Methode

III dieser Arbeit gehört, wird das Reifenrückstellmoment nicht benötigt. Hier kommt

ein optimierungsbasierter Beobachter zum Einsatz, der garantiert echtzeitfähig ist und

ein globales Optimum garantiert.

Simulationen und Experimente zeigen, dass Methode I und Methode II im Vergleich

mit einem Extended Kalmanfilter (EKF) Stabilität in einem größeren Betriebsbereich

garantieren können. Bei einem Vergleich des quadratischen Mittelwerts des Schätzfehlers

zeigen sowohl Methode I, Methode II und die Schätzung mit dem EKF vergleichbare



Ergebnisse. Methode III wird mit einem linearisierten Beobachter verglichen. Hier ist

der quadratische Mittelwert des Schätzfehlers der Methode III deutlich besser als der

Vergleichswert. Stabilität kann bei Methode III immer, während das für die Vergle-

ichsmethode nicht der Fall ist.
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1. Introduction

1.1. Motivation

According to the World Health Organization (WHO), there were about 1.25 million road

traffic deaths globally in 2013, with millions more sustaining serious injuries and living

with long-term adverse health consequences [2]. Therein, the road fatalities per 100000

inhabitants spread not equally over the world as shown in Fig. 1.1. Actually, 90% of all

traffic casualties occur in low- and middle-income countries [2]. Besides, traffic injuries

are the leading cause of death among young people who are between 15 and 29 years

old, and the economic damage costs governments approximately 3% of Gross Domestic

Product (GDP) [2]. To promote solving this global road safety crisis, the lately adopted

2030 Agenda for Sustainable Development in United Nations (UN) has set an ambitious

target of “halving the global number of deaths and injuries from road traffic crashes by

2020” (based on 2010) [3].
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Figure 1.1.: Road fatalities per 100000 inhabitants per year in each area [2].



1. Introduction

Traffic-safety related investigations from Wallman [124] demonstrate a correlation be-

tween the tire-road friction coefficient (TRFC) (µmax) and accidents probability: the

smaller the TRFC is, the higher the accident rate is. One of the important reasons for

this is that the traditional vehicle functions like Autonomous Emergency Braking System

(AEB) are developed to prevent accidents on dry road and cannot always avoid accidents

under low friction road conditions. Besides, functions like Electronic Stability Control

(ESC), Anti-Lock Braking System (ABS) can perform better on icy road if the TRFC can

be identified in time. Therefore, the accurate information of the road friction condition

can significantly enhance the performance and reliability of existing vehicle functions

and thus reduce the accident rate on low friction road condition [26, 50, 79, 125].

Furthermore, with the development of automated vehicles, the responsibility to adapt

the driving style like braking, accelerating and steering to the TRFC is transferred

from the driver to the automated system. For instance, when the automated vehicle

drives on an icy road and plans to conduct a lane change, the current TRFC should be

immediately detected and considered by the trajectory planning and tracking process.

Similarly, when a pedestrian is detected in the front, the vehicle should be able to brake

in time according to the TRFC. As described in [126], for being accepted by society,

the automated vehicles need to bring about less traffic accidents than human drivers.

Therefore, it is necessary to obtain an accurate TRFC for the development of automated

vehicles.

1.2. Thesis objective

The objective of this dissertation is the development of different observers for estimating

tire-road friction coefficient based on vehicle lateral dynamics with the following criteria:

� Sensors utilized for observers should be based on mass-produced vehicles.

� The asymptotic stability of the observers for µmax should be mathematically guar-

anteed in a wide range of vehicle operations, otherwise, the observers may easily

diverge and the TRFC may not be obtained accurately and reliably.

� The whole designed algorithms should be able to run in real time1.

� The methods should be validated during a variety of driving conditions and ma-

neuvers with simulations and experiments.

1The real time capability will only be guaranteed by proposing frameworks and not be systematically
tested in this thesis.

2



1.3. Outline and contributions

The observers will be divided into two branches based on whether the tire self-aligning

torque (TSAT) information, obtained by vehicles installed with Electric Power Steering

system (EPS) or Active Front Steering system (AFS), is available or not. Such systems

providing TSAT can deliver the TRFC information with less excitation from the vehicle

than the lateral tire force does. The rest measurements used for all observers in this

dissertation are consistently the same, which are the longitudinal velocity, the steering

wheel angle and information from ESC (yaw rate, longitudinal and lateral acceleration).

1.3. Outline and contributions

Chapter 1 initially discusses the significance of TRFC estimation for conventional and

automated vehicles. Then the objective, outline and contributions of this dissertation

are presented.

Chapter 2 starts to describe some basics about TRFC. Then the state-of-the-art of

TRFC is provided. Subsequently, based on the objective of this dissertation — TRFC

estimation based on vehicle lateral dynamics, methods for nonlinear state and parameter

estimation are summarized. After that the technical difficulties of designing observers for

TRFC estimation are explained. Finally, the key ideas of how to tackle this nonlinear pa-

rameter estimation problem in this dissertation are presented. The main contributions

of this chapter are:

� Summary of the methods of nonlinear state and parameter estimation.

� Explanation of the difficulties in TRFC estimation based on vehicle lateral dynam-

ics.

Chapter 3 introduces the vehicle model, tire model, as well as the steering system uti-

lized for TRFC estimation. Then, the process of how to implement strain gauge sensors

installed on the tie rod to estimate front axle total-aligning torque is demonstrated.

Chapter 4 introduces two methods for estimating TRFC based on tire self-aligning

torque.

Method I proposes a framework to estimate TRFC with asymptotic stability and ro-

bustness guarantee using the total aligning torque (containing tire self-aligning torque

information). Firstly a strategy is adopted by innovatively implementing unknown input

observer [94] (UIO) to estimate the front axle lateral force. Then, combined with an in-

direct measurement based on estimated total aligning torque and front axle lateral force,
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1. Introduction

a nonlinear adaptive observer is designed to estimate TRFC with asymptotic stability

guarantee. To increase the robustness of the estimation result, criteria are proposed to

decide when to update the estimated TRFC. The main contributions of this method

are:

� The relationship between derivative of front axle and rear axle lateral force is

analyzed by simulation, based on which an optimized estimation strategy for front

axle lateral force is proposed.

� A nonlinear adaptive observer with stability guarantee is proposed to estimate

TRFC based on the obtained total aligning torque and estimated front axle lateral

force.

� Criteria are proposed to detect excitation level of lateral dynamics and thus used

to decide when to update estimated TRFC reliably.

Method II, compared to Method I, proposes a nonlinear adaptive observer to observe

TRFC with no need to estimate front axle lateral force. Firstly, the vehicle lateral dynam-

ics model is transformed into a lower-triangular form. Then, for non-affine parametrized

systems in such a form, a nonlinear adaptive observer is proposed with uniform expo-

nential stability guarantee. Furthermore, the design procedure is applied to the TRFC

estimation problem with proper modifications. The main contributions of method II

are:

� For non-affine parametrized systems in lower-triangular form, a nonlinear adaptive

observer is proposed and its estimation error is proved to be uniformly exponen-

tially stable by constructing a strict Lyapunov function.

� The proposed nonlinear adaptive observer is universally applicable if other dy-

namic systems featuring the same system form (a lower-triangular form) satisfy

the corresponding assumptions for this observer.

Finally, TRFC estimation results among method I and method II as well as Extended

Kalman Filter (EKF) (as a comparison) are demonstrated and compared in both simu-

lations and experiments.

Chapter 5 describes a method III to estimate TRFC without utilizing tire self-aligning

torque information. This method firstly formulate the estimation of side-slip angle and

TRFC as an optimization problem. Then, by interweaving discrete time solution of

the optimization and continuous integration of sensor data, the proposed method has

sufficient time for finding the global optima approximately through adaptive resolution
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1.3. Outline and contributions

based grid-search. Finally, the estimation results from the proposed observer and a

linearization based observer (lbo) for comparison are demonstrated under various road

conditions with simulations and experiments. The main contributions of method III

are:

� An observer is proposed to simultaneously estimate side slip angle and TRFC in

real-time regardless of solving a non-convex optimization problem in the observa-

tion process.

� The stability of the observer can be guaranteed even when the vehicle lateral

dynamics system lacks observability.

Chapter 6 summarizes the research and gives an outlook to enhance the applicability

and reliability of TRFC estimation in the future.
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2. Background

This chapter firstly describes the definition of tire-road friction coefficient. Then the state

of the art about µmax estimation is provided. Subsequently, based on the objective of this

research, an overview on nonlinear state and parameter estimation is summarized. After

that the technical difficulties of designing observers for µmax estimation is explained.

Finally, this chapter presents solutions about how to tackle this nonlinear parameter

estimation problem in this research.

2.1. Basics on tire-road friction coefficient

The tire-road friction coefficient, usually referred as µmax in the automotive engineering

field, is the ratio of the maximum horizontal force Fm acting in the wheel/ground contact

plane to normal force Fz acting in the wheel plane [19], which is represented by

µmax =
Fm
Fz

, (2.1)

and limited by a friction circle as shown in Fig. 2.1 [14]. The tire road friction coefficient

results from complex mechanisms and is normally dependent on some parameters and

variables, such as sliding velocity between rubber and contact surface [100].

During purely longitudinal accelerating or braking, only longitudinal force is generated,

which is caused by the relative motion between tire and road. Usually, slip ratio is

utilized to describe this relative motion and is defined as follows [90]:

λ =
ωa · re − vw,x
|vw,x|

· 100% (2.2)

where λ refers to the slip ratio, ωa the wheel angular velocity, re the wheel effective radius,

vw,x the longitudinal velocity component in the contact patch. The relationship between

slip ratio, µmax and longitudinal force can be described by Fig. 2.2. Under cornering

conditions, when the travel direction of the wheel speed shows an angle with respect to



2. Background

the wheel plane, the tire slip angle α occurs, leading to the generation of tire lateral force

Fy and tire self-aligning torque Mz, which respect steady state nonlinear characteristics

in relation to the tire slip angle and the tire-road friction coefficient, respectively, see in

Fig. 2.3. The acceleration or deceleration maneuvers can also occur during cornering,

leading to generation of combined force between longitudinal and lateral directions. This

combined force can be expressed by a function of combined slip (combined slip ratio

and slip angle) and µmax, and demonstrates similar characteristics compared to purely

longitudinal and lateral ones [90].

acceleration

deceleration

left right
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fully utilized 

friction 𝜇max  

Figure 2.1.: Friction circle of a tire [14].
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Figure 2.2.: Tire characteristics in longitudinal direction.
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Figure 2.3.: Tire characteristics in lateral direction.

2.2. State of the art

This thesis aims at estimating the tire-road friction coefficient µmax based on vehicle

lateral dynamics. It belongs to the large research area of tire-road friction coefficient es-

timation, whose existing methods, as shown in Fig.2.4, can be mainly divided into follow-

ing two categories: cause-based and effect-based methods [122]. Cause-based methods

attempt to investigate measured factors bringing about the changes of friction on the

road based on sensors (vision, laser and temperature sensors, etc.) and then estimate

road conditions. On the contrary, effect-based methods capture the response of tires

and vehicles from different tire-road conditions and then extrapolate the tire-road fric-

tion coefficient. Although there are also some other methods like sensor fusion methods

and Car-to-X (C2X) methods as mentioned in [78], these methods are actually related

to the cause-based and effect-based methods. They either try to combine different es-

timated µmax, resulted from cause-based methods or effect based methods, to infer the

most probable µmax or transmit the estimated µmax with Car-to-Car (C2C) or Car-to-

Infrastructure (C2I) techniques to other vehicles. Therefore, it can be concluded that,

cause-based methods and effect-based methods are still the basics. This research focuses

on conducting literature review of cause-based and effect-based methods described in

section 2.2.1 and 2.2.2, respectively. For C2X and sensor fusion methods, readers may

refer to [17, 69, 77].
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2. Background

Figure 2.4.: Classification of tire-road friction estimation methods based on [122].

2.2.1. Cause-based methods

In cause-based approaches, two types of parameters—Roughness and Lubricants— are

observed as shown in Fig.2.4. Roughness parameters mainly refer to the

� road type

� road geometry

while Lubricants parameters focus on

� additional media on the road such as waters, snow, ice, oil

� the depth of the film of the media, especially water depth

The principles of utilizing these observed parameters for µmax estimation are shown in

Fig.2.5.
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Input
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 Tire-road conditions

Figure 2.5.: Principles of cause-based method for µmax estimation [64].

The observed parameters can be processed by neural networks related algorithms, aiming

at exploring the correlation of the observed parameters and µmax. After this processing,

the estimated road condition is outputted.

Andersson used optical sensors to measure infrared light at different wavelengths re-

flected from the road, such that different road surfaces (dry, wet, icy, snow surfaces)

can be identified [14]. Holzmann applied cameras to classify road types by analyzing

the pixels’ luminance of road images and utilized microphones to improve the estima-

tion accuracy [48]. In [57], the road condition is detected based on light polarization

change reflected from road surface, and then texture analysis is conducted to improve

recognition capability. More works can be found in [27, 70, 33, 49, 76, 46].

Overall, these methods are promising. As mentioned in [8], there are mainly two ad-

vantages: i) the µmax of the road surface ahead of the vehicle may be detected, which

enables the planning and other control algorithms in vehicles perform better; and ii)

µmax estimation is possible without physical excitation, leading to widely utilization of

this estimation algorithm in various scenarios. However, there are also some shortcom-

ings: at first, these methods require extra sensors installed on mass-produced vehicles

which increase the costs. Besides, other factors (tire wear as well as hydroplanning, etc.)

influencing µmax are difficult to be considered, so only an interval of the tire-road friction

coefficient can be obtained which can be quite large sometimes. For example, on wet

road condition, the interval may vary from 0.3 to 0.9 [117] which is not sufficient in many
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2. Background

applications such as AEB, ESC [129].

2.2.2. Effect-based methods

Effect-based methods focus on capturing the reaction of the vehicle on different tire-

road conditions during driving and then estimate the µmax. According to Fig. 2.4,

effect-based methods can be mainly divided into three branches: vehicle dynamics based

(e.g. slip-based), acoustic based as well as tire tread based methods. This research will

concentrate on the review of slip based methods. With respect to acoustic and tire tread

based methods, readers may refer to [64, 7, 122, 83, 6, 13, 118, 119].

2.2.2.1. Longitudinal dynamics based estimation

Methods for estimating µmax based on longitudinal dynamics mainly consist of slip-slope1

based and model based as well as algebraic based methods.

For the slip-slope based methods, Gustafsson experimentally demonstrated that the

relationship of the normalized tire longitudinal force and tire slip ratio is different under

various road conditions during normal straight traction [43], so this relationship can be

utilized to deduce the current µmax. Hwang [53], Yi [127] conducted more experiments

to prove that this relationship could work for normal traction. Uchanski [122] applied

the slip-slope idea during braking maneuvers. By developing an Optimal FIR Derivative,

the longitudinal tire force is estimated based on longitudinal vehicle dynamics. Then

combined with the estimated slip ratio, the µmax is identified based on linear regression.

However, this slip-slope based methods will be heavily influenced by the tire type, tire

pressure, tire wear and so on, leading to a misjudgement of µmax, hence, adaptation of

the slip-slope relationship is necessary [122, 43].

For the model based method, Liu [80] estimated tire-road friction coefficient by writing

it as a function of tire slip ratio and longitudinal force based on the special structure

of a brush model. Therefore, the µmax can be obtained after the tire slip ratio and the

longitudinal force are calculated. Lex implemented particle filtering to estimate tire-

road friction with on-board vehicle sensors based on tire model TMsimple [47, 78]. In

[114], Svendenius also implemented the brush model to estimate the µmax. He firstly col-

lected the sampled measurements (slip ratio and longitudinal force) into bins, in which

1The slip-slope method utilizes the relationship between normalized longitudinal tire force and slip ratio
to determine the tire-road friction coefficient [97].
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2.2. State of the art

the available data are evenly spread and weighted along the force and slip axis. When

the whole sampled measurements in the bins already demonstrate nonlinear tire char-

acteristics, a Gauss-Newton method is applied to estimate tire-road friction coefficient.

Canudas firstly formulated a quarter vehicle model as an affine parametrized nonlinear

system based on a LuGre tire model. Subsequently, an adaptive observer is proposed

to estimate tire-road friction coefficient [28]. Albinsson implemented an active tire force

excitation method, in which large but opposite tire forces are exerted on the front and

rear tires, while guaranteeing the intended vehicle motion. As a result, µmax estimation

is possible with no limitation from the driver’s input [11], however, this method can lead

to increase in energy consumption.

For the algebraic methods, Villagra estimated µmax without using tire model by intro-

ducing the extended braking stiffness concept, refering to the slope of utilized tire-road

friction coefficient against slip ratio at the operational point [123]. When this slope is

flat enough, the µmax can be obtained.

2.2.2.2. Lateral dynamics based estimation

Research on tire-road friction estimation based on vehicle lateral dynamics is conducted

for more than 20 years and a large amount of literature is dedicated to this topic. In

the beginning, researchers focused on estimating µmax by exploiting the tire lateral force

characteristics, which, do not reach the nonlinear region until large tire slip angle (see

Fig. 2.3). This leads to large excitation as a necessity for µmax estimation, which makes

the procedure impossible in normal driving such as motorway cruising. Recently, Electric

Power System (EPS) or Active Front Steering system (AFS) are increasingly installed

on vehicles, providing an extra signal — the front axle total aligning torque, containing

tire self-aligning torque information — for µmax estimation. Moreover, it is worth to

notice that tire self-aligning torque comes into nonlinear region earlier than lateral tire

force saturates, see Fig. 2.6. As a result, only moderate excitation is needed to estimate

µmax [51]. In this thesis, literature review of µmax estimation with lateral dynamics will

be conducted based on whether the tire self-aligning torque information is utilized or

not.
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Figure 2.6.: Comparison of characteristics between tire lateral force and tire self-aligning
torque.

2.2.2.2.1. Estimation without self-aligning torque (SAT)

Most of the researches for µmax estimation without tire self-aligning torque also have

no access to Global Positioning System (GPS) information. Therefore, they usually

also need to estimate side slip angle or its variants like tire slip angle. Boßdorf utilized

Extended Kalman Filter (EKF) to simultaneously estimate vehicle side slip angle and

tire-road friction coefficient with a two track vehicle model [25]. Ray also applied EKF to

observe vehicle states and tire forces, then the obtained force and slip angle are compared

statistically with those that result from a nominal tire model to select the most likely road

friction coefficient [99]. Other examples of EKF or similar linearization based methods

can refer to Best [24], Baffet [20] and Grip [37]. However, as a vehicle undergoes agile or

extreme maneuvers, the tires are pushed to highly nonlinear operation regions resulting

in nonlinear vehicle dynamics. Consequently, linearization based approaches, like EKF,

do not perform well in this case [54]. In [38], Grip proposed a Lyapunov-based observer

to identify the vehicle side slip angle with friction adaptation, but the observer is based

on a crucial assumption that the tire force is affine in a tire-related parameter, which is

not consistent with the traditional tire model like brush model and magic formula. In

[31], Ding utilized recursive least squares (RLS) to estimate the vehicle side slip angle and

tire-road friction coefficient by minimizing the squared errors between estimated lateral

acceleration, yaw acceleration and their measured values. However, for implementing

RLS, measured lateral acceleration and yaw acceleration have to be linearized around

the estimated tire-road friction coefficient and the side slip angle, which may lead to
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2.2. State of the art

large estimation error when the tires come into the nonlinear region.

For the approaches with the GPS information, efforts are also put on by many researchers.

Hahn at first obtained the vehicle lateral velocity with GPS information, then he imple-

mented an adaptive estimator to simultaneously estimate tire-road friction coefficient

and cornering stiffness based on a brush tire model [45]. Combined with GPS informa-

tion, Gupta utilized a machine learning method — a polynomial kernel Support Vector

Machine (SVM) — as a classier to estimate tire-road friction coefficient during steering

[42]. Though the implementation of GPS can simplify lateral velocity estimation and

thus ease the difficulties of TRFC estimation, the continuous availability of the GPS

signals in the urban area is always a challenge [30].

2.2.2.2.2. Estimation with tire self-aligning torque

The introduction of EPS or AFS in the mass-production vehicles makes the self-aligning

torque information available (through estimation) for µmax estimation. The methods

can also be divided into two branches based on whether GPS information is available or

not. For the methods without GPS information, various researches are conducted. In

[51], Hsu designed a nonlinear observer and argued that the estimation error converges

when the front axle tire slip angle and the µmax are both over- or underestimated at the

same time, which suggests that the observer may not be stable. In [10], Ahn designed a

nonlinear observer to robustly estimate front axle tire slip angle and µmax. He utilized

Sequential Quadratic Programming (SQP) to calculate the best suitable feedback gains

for the observer, such that the operation region of the front axle tire slip angle and

µmax in the state space is maximized under a given required tolerable initial estimation

error, a steady state estimation error as well as an observer’s convergent rate. However,

when the states (front axle tire slip angle and µmax) are in the tire saturation region and

quasi linear region of tire characteristics, the attraction domain of the operation points

is still quite small and does not satisfy the requirements (tolerable initial estimation

error, steady state estimation error as well as observer’s convergent rate). This results

in a possible instability of the observer in the real application due to the model uncer-

tainty or poor initial guesses, which is also demonstrated in his own work. In ([9]), a

nonlinear least squares optimization is formulated to estimate front axle tire slip angle

and µmax. The authors applied standard non-linear optimization algorithm to this prob-

lem. Unfortunately as the optimization is non-convex, there is no guarantee to find the

global minimum without an accurate initial guess. Consequently the observation error

can be excessively large in some situations. In [85], EKF for estimating the µmax and
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front axle tire slip angle is applied, which, however, cannot ensure the stability of the

observer. Matilainen innovatively utilized the front tire lateral force, normal force, tire

self-aligning torque as well as contact length to express µmax based on the brush model

and Experiments demonstrate good performance [84].

For methods with GPS based positioning data, there is rare work. In [51], the judgement

of whether the self-aligning torque characteristics comes into the nonlinear region is firstly

conducted by comparing the difference of linear and nonlinear regression methods. When

a large difference is obtained, enough information of µmax is indicated and the nonlinear

regression method will output the estimated µmax.

2.2.3. Summary

This section summarizes cause-based and effect-based methods for tire-road friction co-

efficient estimation. Cause-based methods are promising, since, with the development

of highly automated functions, more and more sensors like camera and radar will be

installed on the mass-produced vehicles, enriching the availability of the µmax. What

needs to be improved is the reliability and accuracy of the µmax estimation results with

respect to environment and tire uncertainties. About effect-based methods, emphasis

of the literature review was put on the vehicle dynamics based methods, which are also

listed in the table 2.1. In the longitudinal dynamics based methods, slip-slope based

methods can detect road conditions under low excitation, however, they are sensitive to

tire wear, tire type as well as tire pressure. Model based methods and algebraic methods

cannot obtain reliable µmax until the tire characteristics come into the nonlinear region,

resulting in more excitation requirement from the driver compared to slip-slope based

methods. Lateral dynamics based methods with GPS are promising, because GPS can

measure side slip angle that is difficult to be estimated. Consequently, regression meth-

ods can be implemented to estimate the µmax both with and without self-aligning torque.

However, the GPS signals have errors such as multi-path induced errors [8] and may not

be always available in real applications. Therefore, many researchers still focus on lateral

dynamics based methods with inertial sensors which are reliable and accurate, but how

to design an observer which guarantees stability in wide range of vehicle operations is

still an open question.
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Table 2.1.: Category of vehicle dynamics based methods

Methods Category References

Longitudinal

dynamics based

Slip-slope-based [43],[53],[127],[122]

Model-based [80], [78], [114], [28], [11]

Algebraic [123]

Lateral dynamics based

without TSAT

without GPS [25], [99], [24], [37], [20], [38], [31]

with GPS [45], [42]

Lateral dynamics based

with TSAT

without GPS [51], [10], [9], [85], [84]

with GPS [51]

2.3. Nonlinear state and parameter estimation

A classical problem occurring in vehicle automation is either lack of measured signals

which are necessary for control purposes, or the measured signals are of low quality be-

cause of heavy noise, time delays or low sampling rates. In these situations, an observer

is advisable to estimate these unknown or inaccurate states by modelling the vehicle’s

dynamics based on the available measurements. The tire-road friction coefficient estima-

tion based on vehicle lateral dynamics without GPS information is a good example. In

literature, researchers often formulate this problem as a nonlinear state (side slip angle

or tire slip angle) and parameter (tire-road friction coefficient) estimation problem, then

utilize either deterministic-based methods (Luberger type observers) or stochastic-based

methods (Kalman method and its extensions) to simultaneously estimate the unknown

state and parameter. These approaches were reviewed in section 2.2.2.2. This section

will review deterministic-based methods for simultaneous state and parameter estimation

based on nonlinear systems. It has to be mentioned that, this section will not review the

stochastic-based methods such as EKF [56], Unscented Kalman Filter (UKF) [58, 59],

and Particle Filter (PF) [29, 105], etc., because they usually offer no proof for stability

which is one of the research objectives of this thesis.
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2.3.1. Approaches in nonlinear state and parameter estimation

2.3.1.1. Nonlinear adaptive observers

In presence of unknown parameters in a dynamic system, online estimation of them to

yield a desired control results may be necessary. Consider a dynamic system shown in

(2.3), where x is a state vector, θ is a vector of unknown parameters, u is an input vector

and y is a measurement vector. Observers estimating the states with online adapta-

tion of unknown parameters based on available measurements for dynamic systems are

called adaptive observers[22]. There is much literature available on designing adaptive

observers for linear systems [55, 22, 130], proposing a typical ideal by separating the

state and parameter estimation into two sub-problems: 1) using gradient based or least

squares methods to estimate the unknown parameters with input and measured signals

2) applying the Luenberger type observers for state estimation with the estimated param-

eters as ’known’ ones in the linear system [55]. The corresponding estimation structure of

adaptive observers for linear systems is shown in Fig. 2.7(a). However, for nonlinear sys-

tem, relying on input and measured signals to estimate unknown parameters are usually

not enough. Therefore, researchers bring about other estimation structure as illustrated

in Fig. 2.7(b), which additionally requires the estimated states as feedback for estimat-

ing unknown parameters. There are various nonlinear adaptive observers, which can be

mainly divided into two branches: nonlinear adaptive observers for parameter-affine2

and parameter-non-affine nonlinear systems. They will be discussed in the following

separately.

ẋ = f(x, θ, u, t) (2.3)

y = h(x, u),

For parameter-affine nonlinear systems, there are various observers available according

to the structure of the dynamic systems. Systems with the following typical structure

can express most of the available results:

ẋ = Ax+ ϕ(x, u) +BΨ(x, u)θ (2.4)

y = Cx,

2The vector of unknown parameters θ appears linearly in the nonlinear system.
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(a) General structure of adaptive observers for linear systems
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(b) General structure of adaptive observers for nonlinear systems

Figure 2.7.: Different structures of adaptive observers for linear and nonlinear systems

where A ∈ Rn×n, B ∈ Rn×m, ϕ : Rn × Rp → Rn, Ψ : Rn × Rp → Rm×r, θ ∈ Rr,
C ∈ Rm×n. The corresponding nonlinear adaptive observer [22] is

˙̂x = Ax̂+ ϕ(x̂, u) +BΨ(x̂, u)θ̂ + L(y − Cx̂), (2.5)

˙̂
θ = ΓΨ(x̂, u)T (y − Cx̂),

if following conditions are satisfied: strict positive real (SPR) and some Lipschitz condi-

tions. To be specific, there exist symmetric positive definite matrices P , Q and a gain

matrix L as well as positive constant ki fulfilling:

P (A− LC) + (A− LC)TP = −Q,

PB = CT , (2.6)

kϕ + kΨ max(θ)||B|| ≤ λmin(Q)− ki
2λmax(P )

,
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where kϕ and kΨ are Lipschitz constants for ϕ(x, u) and Ψ(x, u) uniformly w.r.t u, re-

spectively, Γ ∈ Rr×r is a positive definite matrix. Denoting x̃ and θ̃ as the estimation

error of x and θ, we have a Lyapunov function

V (x̃, θ̃) = x̃TPx̃+ θ̃TΓ−1θ̃. (2.7)

By calculating the derivative of V (x̃, θ̃), we can deduce that

V̇ (x̃, θ̃) ≤ −ki||x̃||. (2.8)

Therefore, the equilibrium (x̃, θ̃) is stable. Further use of Barbǎlat’s Lemma, we have

x̃→ 0 as t→∞. (2.9)

Define

BΨ(x̂, u) = W T (t), (2.10)

and if ||W (t)|| as well as ||Ẇ (t)|| are uniformly bounded and W (t) is persistently exciting

[22] which will be described later, we have

θ̃ → 0 as t→∞. (2.11)

Except for the system featuring the above structure, some literature presented adaptive

observers for other structure of nonlinear systems. Besancon and Zhang proposed an

adaptive version of the high gain observer for a class of nonlinear systems in [23], without

the need of the system being SPR. Stamnes extends the existing class of nonlinear sys-

tems for which adaptive observers with stability guarantee can be designed. He presented

a type of adaptive observer features that both unknown parameters and non-linearity

of the unmeasured states can appear in the dynamics of the unmeasured states [110].

Meanwhile, the process of designing an implementable update law, which is difficult to

be directly constructed with Lyapunov analysis, is simplified to solve a certain partial

differential equation (PDE).

For parameter-non-affine nonlinear system, there is rare work available. In [40], adap-

tation laws for monotonically parametrized perturbations are proposed with all states
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measurable based on following nonlinear system:

ẋ = f(t, x) +B(t, x)(g(t, x, θ) + v(t, x)), (2.12)

y = x,

where x ∈ Rn is a measured state vector and θ ∈ Rp is a vector of unknown constant

parameters, f : R≥0 × Rn → Rn, B : R≥0 × Rn → Rn×m, g : R≥0 × Rn × Rp →
Rm, v : R≥0 × Rn → Rm. Denote φ as B(t, x)g(t, x, θ) to represent the full unknown

perturbations in (2.12). The overall idea of the estimation scheme shown in Fig. 2.8 is:

1) design of an update law that exponentially estimates θ based on the quantity φ, as

if φ were known, 2) then design of an observer for φ as if θ were known. With small

gain theorem [66], the uniform exponential stability of the estimation error of φ and

θ can be guaranteed based on some persistent excitation conditions and monotonicity

of g(t, x, θ) w.r.t θ. Similar works with all states measurable are also demonstrated

in [15, 120]. Annaswamy introduced a tuning function and an adaptive law based on

a min-max strategy to estimate the unknown parameters, with assumption that the

nonlinearity in the parameters is either convex or concave [15]. There are also some

researchers focusing on simultaneously parameter and state estimation for parameter-

non-affine nonlinear system. In [41], under a set of technique assumptions, Grip, et

al. proposed an adaptive observer for systems that can be described by a linear part

with a nonlinear perturbation, in which there are nonlinearities in the system states and

unknown parameters. The nonlinear system is described as follows:

ẋ = Ax+Bu+ Eφ(u, y, x, θ), (2.13)

y = Cx,

where x ∈ Rn, u ∈ Rm, y ∈ Rr, φ(u, y, x, θ) : Rm × Rr × Rn × Rp → Rk. The observers

consist of a modified high-gain observer and a parameter estimator. The high gain

observer is to estimate x and φ, while the parameter estimator is designed to identify

the unknown parameters. The estimation structure is also illustrated in Fig. 2.9. Except

the research described in [41], readers can also refer to similar work for simultaneously

state and parameter estimation in [121], where the concepts of weakly attracting sets

and non-uniform convergence are utilized.
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Figure 2.9.: Estimation structure of the adaptive observer based on [36]

The aforementioned term “ Persistent Excitation ” (PE) will be introduced in the follow-

ing, which is critical for the convergence of unknown parameters θ̂ to the real value θ

in the nonlinear adaptive observer. Take the equation (2.4) as an example to describe

this problem. With the assumption of ||W (t)|| and ||Ẇ (t)|| being uniformly bounded as

defined in equation (2.10), only

lim
t→∞

W T (t)θ̃ = 0, (2.14)

can be obtained, which does not give any information about the convergence of the

estimation error of θ. Therefore, extra assumption about W (t) should be introduced

which is called persistent excitation, defined as follows:

Definition 2.3.1. Persistent Excitation (PE): For ∀ t ≥ 0, ∃ T > 0 and ε > 0, such
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2.3. Nonlinear state and parameter estimation

that ∫ t

t+T
W (τ)W T (τ)dτ ≥ εI. (2.15)

When this PE condition is satisfied, the convergence of θ̃ to the origin can be guaranteed

[22]. It has to be mentioned that the PE condition cannot always be satisfied, since

W (t) may rely on external signals which cannot be determined by the designer of the

nonlinear adaptive observer.

2.3.1.2. Approaches for other observers

Except nonlinear adaptive observers, several other methods consider the unknown pa-

rameters in equation (2.3) as states. Consequently, this nonlinear equation is formulated

as follows 3:

ẋ = f(x, u, t). (2.16)

y = h(x, u),

There is much literature available for nonlinear observers design. They can be mainly

divided into high gain observer (HGO) [116, 95, 65, 96], circle criteria based observer

(CCO) [16, 34], sliding mode observer (SMO) [107, 109], immersion and invariance ob-

server (IIO) [60, 61], coordinate transformation based observer (CTO) [72, 73, 62, 74, 71],

moving horizon observer (MVO) [98, 12, 113]. This section will not extend the detailed

review of these observers, but their mechanism, pros and cons are briefly listed as follows:

� High gain observer

Mechanism: the observer is designed based on the utilization of high-gain linear

terms to dominate the state dependent nonlinearities in the system.

Pros: canonical form is available, simple to implement.

Cons: sensitive to signal noise, global Lipschitz condition is usually necessary.

� Circle criteria based observer

Mechanism: given that an observer error dynamics is expressed as a linear part

and a monotonic nonlinear part w.r.t. state estimation error, then based on linear

matrix inequality (LMI), the observer feedback gains are computed to satisfy the

circle criterion and, hence, to drive the observer error to zero.

3In order to use the standard notion from the control community [66], we here still use x to represent
the states (including states and parameters), and f and h to express the nonlinear equations.
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2. Background

Pros: simple to implement with LMI, the restriction of global Lipschitz is removed.

Cons: the linear part of the observer error system is strict positive real (SPR); the

nonlinearity in the observer error system should satisfy the sector condition of the

circle criterion.

� Sliding mode observer

Mechanism: utilization of sliding mode technique to design nonlinear observer

Pros: robust to model uncertainties

Cons: chattering phenomenon, sensitive to noise

� Immersion and invariance observer

Mechanism: transformation of a nonlinear observer design problem into finding

certain mapping so that a chosen manifold, corresponding to estimation error being

equal to zero, is rendered attractive and invariant.

Pros: the observer design framework is, in theory, applicable for general nonlinear

systems.

Cons: finding the mapping to render the chosen manifold attractive and invariant

is in general difficult.

� Coordinate transformation based observer

Mechanism: reduction of the nonlinear system into a linear system by coordinate

transformation, such that linear observer design techniques can be applied.

Pros: usually applicable for many autonomous systems.

Cons: in general not suitable for nonautonomous system, the existence of the

transformation may rely on some stringent assumptions.

� Moving horizon observer

Mechanism: the state estimation problem is formulated as an online optimization

problem based on dynamics of the nonlinear system with a list of current and

previous measurements.

Pros: robust to measurement noise, constraints of the states can also be considered.

Cons: the optimization process may be time-consuming, good initial guesses of the

unknown states may be necessary, stability of the observer may be a problem.

2.4. Technical challenges of observer design for µmax estimation

As mentioned in the thesis objectives, µmax will be estimated based on vehicle lateral

dynamics without GPS information, so in general vehicle lateral velocity or side slip angle
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2.4. Technical challenges of observer design for µmax estimation

has to be estimated. However, there are following technical challenges for simultaneously

estimation of vehicle lateral velocity and µmax:

� Nonlinear tire modelling results in highly nonlinear vehicle lateral dynamics,

� Both unknown µmax and tire slip angle appear nonlinearly and are coupled with

each other in the tire model.

Consider the simple single track model as an example see in Fig. 3.1 to explain these

difficulties. For the case with front axle tire self-aligning torque information, the single

track model with measurements can be written as:

ω̇ =
lfFyf (αf , µmax) cos δ

Iz
− lrFyr(αr, µmax)

Iz
v̇y = ay(αf , αr, µmax)− ωvx (2.17)

y = [ω, ay(αf , αr, µmax),Mzf (αf , µmax)]T ,

with

αf =
vy + lfω

vx
− δ, αr =

vy − lrω
vx

, (2.18)

while the case without front axle tire self-aligning torque information, the single track

model with measurements will be written as:

ω̇ =
lfFyf (αf , µmax) cos δ

Iz
− lrFyr(αr, µmax)

Iz
v̇y = ay(αf , αr, µmax)− ωvx (2.19)

y = [ω, ay(αf , αr, µmax)]T ,

with

αf =
vy + lfω

vx
− δ, αr =

vy − lrω
vx

, (2.20)

where ω is the yaw rate, ay the lateral acceleration, vy the lateral velocity, lf is the

distance between the vehicle front axle to the center of gravity, lr the distance between

the vehicle rear axle to the center of gravity, δ the front wheel steering angle, vx the

longitudinal velocity, m the vehicle mass, Iz the yaw moment of inertia of the vehicle,

Fyf and Fyr are the front and rear axle tire lateral force, respectively, Mzf the front axle

tire self-aligning torque, αf the vehicle front axle tire slip angle, αr the vehicle rear axle

tire slip angle.

Since ay =
Fyf cos δ+Fyr

m , it can be concluded that the nonlinearity of the single track

model depends on the nonlinearity of the tire model. However, the classical tire mod-
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2. Background

els, such as the brush model [90], the magic formula [90], the dugoff tire model [32],

TMsimple [47]/TMeasy4 [100], are highly nonlinear, in which both tire slip angle and

µmax appear nonlinearly and are coupled with each other in the tire models, leading to

high nonlinearities in the single track model. To the author’s best knowledge, the exist-

ing approaches of adaptive observers for non-affine parametrized nonlinear system may

not be suitable to be directly applied in both cases (cases with and without self-aligning

torque). Besides, even consider µmax as a state, and attempt to utilize the existing nonlin-

ear observer methods reviewed in 2.3.1.2, it seems difficult to satisfy the corresponding

canonical form or solve the PDEs required by the nonlinear observer methods. The

moving horizon observer may be a choice (Ahn also utilized a similar method [9]), but

solving the non-convex optimization problem real time with stability guarantee is also a

great challenge. Most of the existing work based on vehicle lateral dynamics reviewed

in 2.2.2.2 does not demonstrate satisfactory solutions: some of them utilize linearization

based methods which may be unstable in highly nonlinear region [25, 24, 20], and some

designed observers with unrealistic tire model assumptions [38] or with small operation

regions [10]. It seems there is a great barrier to come up with a good theoretical solution

for simultaneous lateral velocity and tire-road friction estimation.

2.5. Approaches in this research

Several approaches for nonlinear observer design based on vehicle lateral dynamics are

presented in the following.

For the case with tire self-aligning torque information, it can be noted that the tire models

like the brush model, the magic formula5,the dugoff tire model, TMsimple/TMeasy can

all be written as following form:

Fy = µmax · f(
α

µmax
),

Mz = µmax · g(
α

µmax
). (2.21)

Regard α
µmax

as a new state variable, it can be noticed that µmax and α
µmax

are decoupled

with each other and µmax appears linearly in the tire model. Hence, the single track

4Usually TMsimple and TMeasy are used to express the tire lateral force and self-aligning torque,
respectively.

5For magic formula, the influence of horizontal and vertical shift as well as the camber reduction on
the pure lateral force is omitted, so is the influence of horizontal and vertical shift as well as residual
torque on the tire self-aligning torque [90]
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2.5. Approaches in this research

model can be formulated into a low-triangular affine-parametrized nonlinear system as

shown below:

ω̇ = %1(t) + %2(t)%3(t, xf )

ẋf = %4(t, xf ) + %5(t)θ (2.22)

y = ω.

where %1(t) and %2(t) as well as %5(t) are time varying functions, xf =
αf
µmax

, αf is the

front axle tire slip angle, %3(t, xf ) is the monotonic and odd function with respect to

xf and uniformly to t, %4(t, xf ) is the function and global Lipschitz with respect to xf

and uniformly to t, θ = 1
µmax

. Based on this transformation, two different methods to

estimate xf and µmax are proposed. The estimation framework can be seen in Fig. 2.10

and Fig. 2.11, respectively.

In method I, the measurements (yaw rate, lateral acceleration as well as longitudinal

velocity etc.) are firstly utilized to estimate the front axle tire lateral force with a novel

strategy based on unknown input observer (UIO) [94]. Meanwhile, the front axle total

aligning torque (contains tire self-aligning torque information) is estimated on the basis

of the measured tie rod force. Then, with the front axle tire lateral force and total

aligning torque as input, an indirect measurement y(xf , t) is generated. Combining

with this indirect measurement a nonlinear adaptive observer is designed to estimate

the tire-road friction coefficient. To increase the robustness of the estimation result, an

excitation detection block is proposed with defined criteria to better update estimated

tire-road friction coefficient.

Though method I is simple to implement, the indirect measurement is singular when total

aligning torque approaches zero. Meanwhile, front axle lateral force needs to be extra

estimated. Therefore, a method II, aiming at eliminating aforementioned shortcomings,

is proposed. Based on system (2.22), an adaptive observer, generally applicable for

non-affine parametrized lower-triangular nonlinear system, is designed. Furthermore,

the design procedure is applied to the tire-road friction coefficient estimation problem,

with no need to estimate front axle tire lateral force. After various simulation and

experimental validation, the estimation result of µmax from method II is overall similar

to that from method I in terms of root mean square of estimation error (RMS).

For the case without tire self-aligning torque information, it’s in general difficult to

simultaneously estimate lateral velocity and µmax. An approach similar to the moving

horizon estimation in this research is presented, which, however, propose an innovative
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Figure 2.10.: Estimation structure of method I
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Figure 2.11.: Estimation structure of method II

scheme shown in fig. 2.12 to leave sufficient time for solving a non-convex optimization

problem and meanwhile guarantee the stability of the estimation error. This scheme can

be realized since the derivative of lateral velocity and µmax (assumed to be zero) are

measurable, which inspires us to interweave the discrete time solution of the non-convex

optimization for vy and µmax as initial value of integration and continuous integration

of measurable derivatives. Therefore, this scheme can real time estimate vehicle lateral

velocity and µmax despite of the non-convex optimization.

Eventually, it can be ensured that, the whole proposed observers can work in real time

and their stability for µmax can be mathematically guaranteed in wide range of vehicle

operations6.

6In each method, an operational region of the observer in the later chapters will be given.
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3. Vehicle Model

In this chapter, the models used for µmax estimation will be described. At first, the

vehicle model based on lateral dynamics will be presented. Subsequently, the tire model

TMsimple for modelling tire lateral force and TMeasy for tire self-aligning torque will

be introduced. Finally, the steering system, together with the method utilized for total

aligning torque estimation, will be demonstrated. It has to be mentioned that the

identification and validation of the tire model, steering system model as well as the

whole vehicle model based on lateral dynamics is described in Appx. A.

3.1. Vehicle model based on lateral dynamics

3.1.1. Single track model

In this thesis, for simplifying the description of vehicle lateral dynamics without losing its

main dynamic property, the vehicle is assumed to move on a flat, horizontal surface and

the external forces, such as air drag, forces caused by slope and bank1, are omitted. In

other words, only the tire road interaction forces are exerted on the vehicle. Therefore,

a nonlinear single track model, with yaw rate and lateral velocity as state variables

as shown in Fig. 3.1, can be used to express the lateral dynamics of the vehicle. It

considers lateral load transfer (caused by lateral acceleration), and assumes that µmax is

piecewise constant and longitudinal velocity vx is slowly changing or positive constant2.

The corresponding differential equations are described as

ω̇ =
lfFyf cos δ

Iz
− lrFyr

Iz
, (3.1a)

1In case of slopes and banks in the real application, the work from [39] can be implemented to estimate
them.

2These assumptions are proposed for neglecting time derivatives of µmax and vx. Hence, if the vehicle
accelerates or brakes aggressively during cornering, the assumption of vx for single track model in
this work does not hold any more. Besides, if the µmax varies dramatically under a fixed road surface
due to e.g. varying tire temperature caused by aggressive variation of vx, the assumption for µmax is
invalid.



3. Vehicle Model
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Figure 3.1.: Single track model

v̇y = ay − ωvx, (3.1b)

with

αf =
vy + lfω

vx
− δ, αr =

vy − lrω
vx

(3.2)

where lf is the distance between the front axle to the center of gravity, lr the distance

between the rear axle to the center of gravity, δ the front wheel steering angle, Fyf the

front axle lateral force, Fyr the rear axle tire lateral force, ω the yaw rate, vy the side

slip angle, ay the lateral acceleration and Iz the moment of inertia of the vehicle, αf the

front axle tire slip angle, αr the rear axle tire slip angle, ϕ the heading angle.

3.1.2. Load transfer

Dynamic tire loads of the vehicle occur during accelerations. If the vertical dynamics

are ignored, the variations of load force on the tires can be calculated by using the
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3.2. Tire model

longitudinal and lateral acceleration. Since the vx is assumed to be slowly changing or

positive constant, lateral acceleration can be mainly utilized to express the variations.

If the front axle and rear axle are considered to be decoupled with each other, the tire

load transfer on front axle and rear axle can be calculated, separately [68]. Introducing

a virtual mass mf to express the static front axle tire loads as shown in Fig. 3.2,

mf =
mlr
lf + lr

(3.3)

is deduced. Based on the contact point of the front left wheel, the torque balance

equation

mfg
wf
2

+mfayhg = Fzfrwf (3.4)

is obtained, where hg is the height of gravity, Fzfr the front right wheel normal force,

wf the front track, g the acceleration of gravity. Replacing mf from equation (3.3), the

front right wheel normal force can be calculated as follows:

Fzfr =
mlr
lf + lr

(
g

2
+
ayhg
wf

). (3.5)

The remaining normal forces are obtained by

Fzfl =
mlr
lf + lr

(
g

2
− ayhg

wf
), (3.6a)

Fzrl =
mlf
lf + lr

(
g

2
− ayhg

wr
), (3.6b)

Fzrr =
mlf
lf + lr

(
g

2
+
ayhg
wr

), (3.6c)

where Fzfl, Fzrl, Fzrr are the front left, rear left, rear right normal force, respectively,

wr is the rear track.

3.2. Tire model

A suitable tire model for describing tire lateral force and tire self-aligning torque is very

important. Tire models, such as magic formula [90], brush model [90] as well as TM-

simple (for tire lateral force) [47]/TMeasy (tire self-aligning torque) [100] can all express

33



3. Vehicle Model
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Figure 3.2.: Load transfer in the front axle during cornering

the tire characteristics and they are compared in table. 3.1. As can be seen, both brush

model and TMsimple/TMeasy are simpler than magic formula in real implementation.

However, they have less available parameters than magic formula in describing the tire

characteristics. In other words, magic formula has higher possibility to describe the real

tire characteristics since there are more parameters available for tuning. Due to the same

reason, TMsimple/TMeasy are more flexible than brush model in accurately expressing

the tire self-aligning torque characteristics. Therefore, by comprehensively considering

the simplicity in implementation and available parameters in accurately capturing tire

characteristics, tire models TMsimple/TMeasy are chosen.

Table 3.1.: Comparison of different tire models. Ratings: ++... higher ; +... high; −...

low.

Magic Formula Brush Model TMsimple/TMeasy

Simplicity for

implementation
− + +

Available parameters

to describe tire lateral

force characteristics

++ + +

Available parameters

to describe tire

self-aligning torque

characteristics

++ − +

34



3.2. Tire model

Tire lateral force Fy of TMsimple can be expressed as a function of tire slip angle α and

tire-road friction coefficient µmax [47]:

Fy = −K sin[B(1− e
−|α|
A )sign(α)] (3.7)

with

K = Ymax

B = π − arcsin(Y∞/Ymax) (Y∞ ≤ Ymax) (3.8)

A = (1/dY0)KB,

where Ymax, Y∞ as well as dY0, as shown in Fig. 3.3, refer to the maximum lateral

force, the saturation lateral force and initial stiffness, respectively. Ymax and Y∞ are

proportional to the µmax which, however, does not influence dY0. They are all related

to normal force Fz and are expressed as follows:

Ymax(Fz, µmax) =

(
a1

Fz
Fz,nom

+ a2

(
Fz

Fz,nom

)2
)
· µmax

µ0

dY0(Fz) = b1
Fz

Fz,nom
+ b2

(
Fz

Fz,nom

)2

(3.9)

Y∞(Fz, µmax) =

(
c1

Fz
Fz,nom

+ c2

(
Fz

Fz,nom

)2
)
· µmax

µ0
,

where Fz,nom refers to nominal tire load; µ0 is the nominal value of the tire-road

friction coefficient; a1, a2, b1, b2, c1, c2 are derived based on the measurements of

Ymax(Fz,nom, µ0), Ymax(Fz,2nom, µ0), dY0(Fz,nom), dY0(Fz,2nom), Y∞(Fz,nom, µ0),

Y∞(Fz,2nom, µ0) under nominal tire load (Fz,nom) and an extra tire load3 (Fz,2nom) as

3Usually this extra tire load is double the nominal tire load, but other values are also possible. The
principle for selecting this extra tire load is to allow the variation range of tire normal force in the
real application within the nominal tire load and this extra tire load.
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Figure 3.3.: Example of a passenger car tire characteristics under constant normal force
and tire-road friction coefficient

well as nominal tire-road friction (µ0), and expressed as

a1 =
Ymax(Fz,nom, µ0)r2

rat − Ymax(Fz,2nom, µ0)

r2
rat − rrat

a2 =
Ymax(Fz,2nom, µ0)− Ymax(Fz,nom, µ0)rrat

r2
rat − rrat

b1 =
dY0(Fz,nom)r2

rat − dY0(Fz,2nom)

r2
rat − rrat

(3.10)

b2 =
dY0(Fz,2nom)− dY0(Fz,nom)rrat

r2
rat − rrat

c1 =
Y∞(Fz,nom, µ0)r2

rat − Y∞(Fz,2nom, µ0)

r2
rat − rrat

c2 =
Y∞(Fz,2nom, µ0)− Y∞(Fz,nom, µ0)rrat

r2
rat − rrat

where rrat = Fz,2nom/Fz,nom.

After formulation of the tire lateral force, it comes to the self-aligning torque shown in

Fig. 3.3 and is represented as

Mz = Fy · n. (3.11)
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Instead of directly expressing the pneumatic trail n, TMeasy introduces a normalized

pneumatic trail — n
L (pneumatic trail above contact length L), which is represented as

n

L
= (

n

L
)0[(1− w)(1− |s|) + w(1− (3− 2|s|)s2)] |s| ≤ 1

n

L
= (

n

L
)0[−(1− w)(|s| − 1)(

1− w|s|
1− w

)2] 1 < |s| ≤ 1

w
(3.12)

n

L
= 0 |s| > 1

w
,

where (nL)0 the initial value of the pneumatic trail divided by the contact length, s =
αµ0

s0yµmax
, w =

s0y
sEy

. The (nL)0 is influenced by normal force Fz and can be expressed by

linear interpolation on two points (nL)0(Fz,nom) as well as (nL)0(Fz,2nom):

(
n

L
)0(Fz) = (

n

L
)0(Fz,nom) +

(nL)0(Fz,2nom)− (nL)0(Fz,nom)

Fz,2nom − Fz,nom
(Fz − Fz,nom). (3.13)

The (nL)0(Fz,nom) and (nL)0(Fz,2nom) are estimated by fitting the measurement data under

Fz,nom and Fz,2nom. s0
y and sEy are determined by normal force (Fz) and (µmax) and can

be expressed as

s0
y(Fz, µmax) =

(
s0
y(Fz,nom, µ0) +

s0
y(Fz,2nom, µ0)− s0

y(Fz,nom, µ0)

Fz,2nom − Fz,nom
(Fz − Fz,nom)

)µmax

µ0

sEy (Fz, µmax) =
(
sEy (Fz,nom, µ0) +

sEy (Fz,2nom, µ0)− sEy (Fz,nom, µ0)

Fz,2nom − Fz,nom
(Fz − Fz,nom)

)µmax

µ0
,

where s0
y(Fz,nom, µ0), s0

y(Fz,2nom, µ0), sEy (Fz,nom, µ0), sEy (Fz,2nom, µ0) are estimated by

fitting the measurement data under nominal tire load (Fz,nom) and the extra tire load

(Fz,2nom) as well as nominal tire-road friction (µ0).

After obtaining n
L , we also need to calculate contact length L. According to [100], L is

approximated as:

L ≈ 2

√
r0Fz
cz

, (3.14)

where r0 is the unloaded tire radius, cz the vertical stiffness.
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3.3. Steering system model and total aligning torque

estimation

3.3.1. Steering system model

More and more vehicles are equipped with electric power steering systems (EPS) or

active front steering systems (AFS), allowing for estimation of front axle total aligning

torque (contains self-aligning torque information) [10, 51, 85]. In this research, instead

of utilizing EPS or AFS information, strain gauge sensors are installed on the tie rod of

the steering system to estimate total aligning torque information, and thus the steering

system shown in Fig. 3.4 can be written in a similar way like [10] as

τg(t) = Fl(t)Ll(δ)− Fr(t)Lr(δ) (3.15)

Jsδ̈ + ksδ̇ = τg(t)− τzf (t) (3.16)

with

τzf (t) = Mzfl +Mzfr + (Fyfl + Fyfr)dc, (3.17)

where Js is the effective moment of inertia of steering system, ks the effective damping

of steering system, δ the wheel steering angle, τzf (t) the total aligning torque, τg(t) the

aligning torque caused by Fl(t) and Fr(t) which are the tie rod forces on the left and

right sides measured by strain gauge sensors, Ll(δ) and Lr(δ) are the vertical distances

between the tie rod to the kingpin separately which vary with steering angle, Mzfl and

Mzfr the front left and right self-aligning torque separately, Fyfl the front left lateral

force, Fyfr the front right lateral force, dc the mechanical trail of front tires which is

assumed to be the same for both front left and right tires. It has to be mentioned that

the contribution of jacking torque here can be omitted since the jacking torque caused

by the vertical load on the right and left wheels are mutually cancelled [85].

3.3.2. Total aligning torque estimation

For estimation of τzf (t) based on equation (3.16), an unknown input observer (UIO) is

implemented in [10] by assuming the dynamic variation of τzf is slow or invariant. In this

work, since the signal of wheel steering angle δ is smooth, its first and second numerical

differentiation will be used to represent the total aligning torque, which is demonstrated
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Steering rackdc

δ

Mzfl

MzfrFyfl
Fyfr

dc

Ll LrFl Fr

δ

Figure 3.4.: Steering system

as follows:

τ̂zf (t) = Fl(t)Ll(δ)− Fr(t)Lr(δ)− Jsδ̈ − ksδ̇, (3.18)

where τ̂zf (t) is the estimation of total aligning torque.
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4. Tire-road friction coefficient estimation

with tire self-aligning torque

4.1. Introduction

This chapter introduces two methods for estimating µmax based on self-aligning torque.

Method I proposes a framework to estimate the tire-road friction coefficient with asymp-

totic stability and reliability guarantee using the total aligning torque of the front axle

during steering. A novel strategy is firstly adopted to estimate the front axle lateral

force which performs better than the classical unknown input observer (UIO) [94]. Then,

combined with an indirect measurement based on the estimated total aligning torque

and front axle lateral force, a nonlinear adaptive observer is designed to estimate µmax

with asymptotic stability guarantee. To increase the reliability of the estimation result,

criteria are proposed to decide when to update the estimated µmax.

Though method I is simple to implement, the indirect measurement is singular when the

total aligning torque approaches zero. Meanwhile, front axle lateral force needs to be

extra estimated. Therefore, a method II, aiming at eliminating aforementioned short-

comings, is proposed. Method II proposes a nonlinear adaptive observer to estimate

tire-road friction coefficient with no need to estimate the front axle lateral force. Firstly,

the vehicle lateral dynamics model is transformed into a lower-triangular form with yaw

rate, xf (front axle tire slip angle over µmax) and µmax as state variables. Then, for

non-affine parametrized systems in such a form, a nonlinear adaptive observer was pro-

posed and its estimation error was proved to be exponentially stable by constructing

a strict Lyapunov function. Furthermore, the design procedure is applied to the µmax

estimation problem with proper modifications. It has to be mentioned that the proposed

nonlinear adaptive observer is universally applicable if other dynamic systems featuring

the same system form (a lower-triangular form) satisfy the corresponding assumptions

for this observer.



4. Tire-road friction coefficient estimation with tire self-aligning torque

Finally, µmax estimation results between method I and method II as well as Extended

Kalman Filter (EKF) are demonstrated and compared in both simulations and experi-

ments. The results show that both method I and method II can guarantee stability of

µmax estimation in a wider range of vehicle operations than EKF. Furthermore, in terms

of root mean square of µmax estimation error1 (RMS), the performance from method

I, method II and EKF (in stable situation) is overall similar. Moreover, method I

and method II are both real time capable. It has to be mentioned that in this chapter,

method I and method II are short for AVE and NAO, respectively.

4.2. Model transformation

4.2.1. Tire model transformation

Introducing the state variable x = α/µmax, the tire models in (3.7) and (3.11) can then

be rewritten as

Fy = µmax · f(x),

Mz = µmax · g(x), (4.1)

which decouples x and µmax in the expression of Fy and Mz. It can be noted that other

tire models like brush model, magic formula2, dugoff tire model can also be written in

this form.

Then the tire characteristics in Fig. 4.1 are obtained under a constant normal force with

the new abscissa x. With respect to the tire self-aligning torque in Fig. 4.1, it can be

deduced that the peak of Mz is at the same value of x = xo independent of µmax. In

addition, the smaller |x| is, the closer the relationship of |x| to Mz is to a linear one,

making a possible estimation of µmax in this area less accurate. In this work, |x| ≤ xc is

used to indicate the quasi-linear region. In this way, the excitation of lateral dynamics

can be detected by checking whether the value of x is pushed into the nonlinear region

of tire self-aligning torque regardless of the road conditions. Although the values of x for

the peak and the end of the linear region differ, this assumption for the linear region also

holds for Fy over x. For different tire normal force, the values of xc and xo vary, however,

1RMS is a common index to measure the quality of estimation result and is widely used in the vehicle
states estimation [14, 93].

2For the magic formula, the influence of horizontal and vertical shift on the tire lateral force and
self-aligning torque are omitted [90].
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4.2. Model transformation

if we assume the longitudinal velocity changes slowly, leading to a negligible longitudinal

load transfer, both xc and xo change little for the overall front tire lateral force and

self-aligning torque in the front axle (especially for low tire-road friction coefficient3)

and can be assumed constant for this application [103].
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Figure 4.1.: Fy and Mz varies with x in different µmax for a constant normal force [115]

4.2.2. Vehicle model transformation

Using the relationship αf = β+
lfω
vx
− δ, the single track model (3.1) can be transformed

into

ω̇ =
lfFyf cos δ

Iz
− lrFyr

Iz
, (4.2a)

α̇f = aFyf + bFyr − ω − δ̇, (4.2b)

where a = 1
mvx

+
l2f
Izvx

, b = 1
mvx
− lf lr

Izvx
. With Fyr = may −Fyf cos δ, following equations

ω̇ =
lFyf cos δ

Iz
− lrmay

Iz
, (4.3a)

α̇f = (a− b)(cosδ)Fyf + bmay − ω − δ̇ (4.3b)

3On low µmax condition, the vehicles have small lateral acceleration, resulting in less lateral road transfer
and thus less normal force variation.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

are deduced. Applying the result from (4.1) to the vehicle front axle and considering the

lateral load transfer,

Fyf = µmax · ff (xf , t),

Mzf = µmax · gf (xf , t), (4.4)

are obtained, where xf =
αf
µmax

, ff (xf , t) := ffl(xf , t)+ffr(xf , t), gf (xf , t) := gfl(xf , t)+

gfr(xf , t), fl and fr denote front left and front right, respectively.

Combining (3.17) and (4.4),

µmax =
τzf

gf (xf ) + ff (xf )dc
(4.5)

is obtained, finally transforming (3.1) into

ω̇ =
lτzfmv cos(δ)− lrmay

Iz
(4.6a)

+
−|τzf |l cos(δ)

Iz
(

ff (xf )

gf (xf ) + ff (xf )dc
−mv)sign(xf ),

ẋf = (a− b)(cosδ)ff (xf ) + (bmay − ω − δ̇)
1

µmax
, (4.6b)

where mv = limxf→0
ff (xf )

gf (xf )+ff (xf )dc
. Details of the transformation can be found in Appx.

B.

4.3. Method I: µmax estimation with front axle tire lateral force

estimation

4.3.1. Front axle tire lateral force estimation

According to (4.3a),

ω̇ =
lFyf cos δ

Iz
− lrmay

Iz
,

Ḟyf = p1(t) (4.7)

is obtained, where ay is the lateral acceleration and p1(t) the derivative of Fyf .
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Usually, for estimating Fyf , classical UIO can be applied as follows:

˙̂ω =
lF̂yf cos δ

Iz
− lrmay

Iz
+ k1(ω − ω̂),

˙̂
Fyf = k2(ω − ω̂), (4.8)

where k1 and k2 are the positive constants. The corresponding error dynamics is

˙̃ω =
lF̃yf cos δ

Iz
− k1ω̃,

˙̃Fyf = −k2ω̃ + p1(t). (4.9)

Therefore, the steady state estimation error of Fyf is

F̃yf =
k1Izp1(t)

lk2 cos δ
. (4.10)

Since k2 cannot be set infinite large due to the yaw rate measurement noise, a novel

strategy is introduced to reduce the estimation error of the front axle tire lateral force

without changing UIO gains, which is

F̂yf,ave =
F̂yf + (may − F̂yr)/ cos δ

2
, (4.11)

where F̂yr is the estimated rear axle tire lateral force, observed in a similar way. The

corresponding steady state estimation error of Fyr is

F̃yr = −k3Izp2(t)

lk4
, (4.12)

where k3 is a positive and k4 is a negative constant, p2(t) the derivative of rear axle tire

lateral force. The overall observer for the front axle tire lateral force is summarized in

Table 4.1. The corresponding steady state estimation error is

F̃yf,ave = Fyf − F̂yf,ave

= Fyf −
F̂yf + (Fyf cos δ + Fyr − F̂yr)/ cos δ

2

=
Fyf − F̂yf

2
− Fyr − F̂yr

2 cos δ

=
Iz

2l cos δ
(
k1p1(t)

k2
+
k3p2(t)

k4
). (4.13)
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4. Tire-road friction coefficient estimation with tire self-aligning torque

Table 4.1.: Summary of Fyf estimation

Fyf estimation summary

˙̂ω =
lF̂yf cos δ

Iz
− lrmay

Iz
+ k1(ω − ω̂)

˙̂
Fyf = k2(ω − ω̂)

˙̂ωr =
lfmay
Iz
− lF̂yr

Iz
+ k3(ω − ω̂r)

˙̂
Fyr = k4(ω − ω̂r)

F̂yf,ave =
F̂yf+(may−F̂yr)/ cos δ

2 .

Dividing (4.13) by (4.11),

|F̃yf,ave|
|F̃yf |

=
|1 + k2k3

k1k4

p2(t)
p1(t) |

2
(4.14)

is obtained. For this application, k2k3
k1k4

is set to be −1 to guarantee similar performance

of UIOs for front axle and rear axle tire lateral force estimation. Therefore, as long as

−1 ≤ p2(t)
p1(t) ≤ 3, |F̃yf,ave| ≤ |F̃yf | can be guaranteed.

In the following, simulations will be used to demonstrate that −1 ≤ p2(t)
p1(t) ≤ 3 holds most

of the time with typical driving maneuvers. Before conducting these simulations, an

evaluation criteria pv is introduced which demonstrates ratio of time when p2(t)
p1(t) is within

−1 and 3 to overall simulation time during one simulation, see in Fig.4.2. The maneuvers

chosen for simulations are step steer, sinusoidal input as well as double lane change [1].

The dimensions of the input space for these maneuvers are different, for instance, there

are three input variables for the step steer and four for the sinusoidal maneuver, which

are longitudinal velocity vx, amplitude of the front wheel steering angle δa as well as

tire-road friction coefficient µmax (common for both maneuvers) and steering frequency

(additional for sinusoidal maneuver). On the contrary, the dimensions of the input space

for double lane change are 2 (vx and µmax).

Now it comes to the conduction of simulation maneuvers. For lowing the simulation

effort in step steer, one of these three variables (vx, δa and µmax) is fixed in each time

and then the relationship between pv and the rest two are studied. The chosen fixed

values are selected as µmax = 1, vx = 20 m/s, δa = 0.03 rad, so that the maximum

lateral acceleration is approximate 4 m/s2 which is recommended in the standard [1].

The duration time starts from the execution of the step steer and ends with recovery of

stability (about 5% variation around steady yaw rate) of the vehicle. The results can be
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4.3. Method I: µmax estimation with front axle tire lateral force estimation

seen in Fig. 4.3. It has to be mentioned that only surface surrounded by line segments

without intersecting with plane pv = 0 is valid, since other parts are too aggressive to

be simulated, which also holds for sinusoidal and double lane change maneuvers. In

Fig. 4.3, it can be concluded that pv apparently exceeds 50% and is actually larger than

80% which means −1 ≤ p2(t)
p1(t) ≤ 3 holds in most of the simulation time. In a next step,

sinusoidal inputs are considered. Since during the transient process of the step steer the

behavior of the vehicle is close to that of a vehicle in sinusoidal maneuver, frequency

influence is focused on shown in right down side of fig. 4.3. As can be seen, the higher

the frequency is, the lower pv is, but still much larger than 50%. Finally double lane

change maneuver is simulated. As illustrated in fig. 4.4, with increasing of vx, pv drops

for fixed µmax, while pv is robust to µmax when vx is fixed. Overall speaking, based on

pv analysis with simulation, it can be demonstrated that the proposed strategy works

better than classical UIO for front axle tire lateral force estimation.

p2(t)
p1(t) pv = t1+(t3−t2)+(t5−t4)

t5

3

0

−1

t1 t2 t3 t4 t5 t

Figure 4.2.: Demonstration of how to calculate pv.

In order to more intuitively demonstrate Fyf estimation quality of the proposed novel

estimation strategy, some exemplary comparison is shown, between the proposed strategy

and classical UIO considering the variation of µmax and velocity as well as the amplitude

of the front wheel steering angle. Three different maneuvers—the sinusoidal, the step

steer and the double lane change—are performed and the results are illustrated in Fig.

4.5. As can be seen, the estimation errors from F̂yf,ave with the proposed estimation

strategy are smaller than those from F̂yf,nor with classical UIO most of the time in all

three maneuvers, which also verifies the pv simulation analysis.
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Figure 4.5.: The results for the Fyf estimation in three different driving maneuvers.
Three different maneuvers—sinusoidal, step steer and double lane change—are illustrated.

Sinusoidal maneuver is conducted from high friction with vx = 20 m/s to low friction road

condition with vx = 15 m/s. The step steer maneuver is carried out from low friction to

high friction road condition: vx = 15 m/s. Under low friction road condition, the front

wheel steering angle jumps from 0 to 0.03 rad and then from 0.03 rad to 0.05 rad under

high friction road condition. Double lane change maneuver is performed from low fric-

tion to high friction road condition: vx = 12 m/s. The estimation result with “ave” and

“nor” are based on the proposed Fyf estimation strategy and the classical UIO estimation,

respectively.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

4.3.2. Nonlinear adaptive observer for µmax estimation

4.3.2.1. Nonlinear adaptive observer design

After estimating the front axle lateral force and total aligning torque,

F̂yf,ave = µmax · ff (xf , t),

τzf = µmax · (gf (xf , t) + ff (xf , t)dc) (4.15)

are obtained. Then how to utilize these information for an observer, such that the

designed one can be guaranteed to be stable, is critical. According to summary of

observer design in 2.3.1, directly incorporating these information in an observer seems

difficult. In the authors’ previous work [102], convex optimization was firstly used to

solve xf online, subsequently it was applied as a measurement in an adaptive observer.

However, the convex optimization needs high calculation effort. To avoid this, an indirect

measurement possessing monotonicity property w.r.t. xf and demonstrated in (4.16) is

introduced, which is simple to be implemented in an adaptive observer[55, 40].

y(xf , t) = (
ff (xf , t)

gf (xf , t) + ff (xf , t)dc
−mv)sign(xf )

= (
F̂yf,ave
τzf

−mv)sign(−F̂yf,ave), (4.16)

where mv = limxf→0
ff (xf ,t)

gf (xf ,t)+ff (xf ,t)dc
and y(xf , t) is a monotonic increasing odd function

(between −xs and xs) with respect to xf and uniformly to t, see in Fig. 4.6. However,

the indirect measurement y(xf , t) is confronted with singularity problem when τzf is

close to zero, so some processing is needed to improve the quality of y(xf , t) and can be

described as follows:

if |F̂yf,ave| ≤ Fyf,thres | |τzf | ≤ τthres | sign(τzf − F̂yf,ave · dc) 6= sign(F̂yf,ave)

| |F̂yf,ave| < |τzf ·mv|
y = 0, ka = 0, kb = 0;

else

y = y(xf , t); ka = ka; kb = kb(t);

end

where τthres, Fyf,thres are thresholds to judge whether the estimated total aligning torque

and front axle lateral force are close to zero or not. The term sign(τzf − F̂yf,ave · dc) 6=
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y(t, xf )

1
dc
−mv

− 1
dc

+mv

xs
xs xf

Figure 4.6.: Indirect measurement y(xf , t) with respect to xf . Between −xs and xs (as
shown in fig. 4.1), y(xf , t) is monotonic increasing odd function, otherwise
it is constant.

sign(F̂yf,ave) is to detect whether the front axle self-aligning torque and the front axle

lateral force have the same sign. Theoretically speaking, they should be the same, but

when both of the estimated values are close to zero, the sign may differ due to estimation

error of F̂yf,ave or numerical error. W.r.t. the condition |F̂yf,ave| < |τzf · mv|, if it is

respected, there is no solution in the tire model because |F̂yf,ave| should be equal or

larger than |τzf ×mv|. If one of the proposed conditions is satisfied, y(xf , t) = 0, ka =

0, kb = 0 are set, where ka and kb are gains for the nonlinear adaptive observer and will

be described in the following.

Based on this indirect measurement and the model given in (4.6b), following system

ẋf = c1(t)ff (xf , t) + c2(t)θ,

θ̇ = 0,

y = y(xf , t) (4.17)

is considered, where c1(t) = (a − b)(cosδ) > 0, c2(t) = bmay − ω − δ̇, xf ∈ Θ1 ⊂ R,

Θ1 = {xf ∈ R| − xs ≤ xf ≤ xs}, xs is constant as shown in Fig. 4.1, θ = 1
µmax

and

θ ∈ Θ2 ⊂ R with Θ2 = {θ ∈ R|0.8 ≤ θ ≤ 10}, Θ1 and Θ2 are compact sets.

The corresponding observer is

˙̂xf = c1(t)ff (x̂f , t) + c2(t)θ̂ + ka(y − y(x̂f , t)),

˙̂
θ = kb(t)

∂y(x̂f , t)

x̂f
c2(t)(y − y(x̂f , t)), (4.18)
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4. Tire-road friction coefficient estimation with tire self-aligning torque

where ka is a positive constant, while kb(t) is kc
max(|c2(t)|,ε) with kc and ε both being

positive constant, such that the convergent rate of θ̂ to the real θ will be less influenced

by the time varying c2(t). Then, the corresponding error dynamics is

˙̃xf = c1(t)(ff (xf , t)− ff (x̂f , t)) + c2(t)(θ − θ̂)− ka(y − y(x̂f , t))

˙̃
θ = −kb(t)

∂y(x̂f , t)

x̂f
c2(t)(y − y(x̂f , t)), (4.19)

where x̃f = xf − x̂f and θ̃ = θ − θ̂

4.3.2.2. Stability analysis

For the stability analysis, the following assumptions and properties need to be intro-

duced.

Assumption 4.3.1. For all (t, xf , x̂f , x̃f ) ∈ R≥0 ×Θ1 × R× (Θ1 − R),

ky,lowx̃f ≤ ỹ(x̃f , t) (4.20)

where ky,low is a positive constant and ỹ(x̃f , t) = y(xf , t)− y(x̂f , t)

Remarks. This is a Lipschitz condition to make the variation of y(xf , t) w.r.t. xf

always bounded by ky,low. With this assumption, it is required that, when xf reaches

the boundary of set Θ1 in very aggressive situation (rarely occurs), x̂f should stay in

the interior of set Θ1 for guaranteeing the Lipschitz condition. This assumption can

be actually replaced by implementing some projection techniques to restrict x̂f within a

boundary [75]. In this thesis, for simplicity, instead of taking the proposed measure, the

Assumption 4.3.1 is directly presented. However, this is already far more enough for

tire-road friction estimation.

Assumption 4.3.2. Suppose that there exists positive scales T1, ε1 and ε2, such that,

for all t ∈ R≥0, we have

ε1 ≤
∫ t+T1

t
c2

2(τ)dτ ≤ ε2, (4.21)

with c2(t), ċ2(t) ∈ L∞.

Remarks. Assumption 4.3.2 indicates a persistent excitation condition, which is a com-

mon assumption for parameter estimation. Besides, the assumption of L∞ for c2(t),
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ċ2(t) is to guarantee the boundedness of kb(t) as well as k̇b(t), which will be described in

Property 4.3.2 in the following.

Property 4.3.1. Suppose that assumption 4.3.1 holds, then for all (t, xf , x̂f , x̃f ) ∈
R≥0 ×Θ1 × R× (Θ1 − R), we have

ky,lowx̃f ≤ ỹ(x̃f , t) ≤ ky,uppx̃f , (4.22)

and

||ff (xf )− ff (x̂f )|| ≤ kf ||x̃f ||, (4.23)

where ky,upp and kf are positive constants.

Property 4.3.2. Suppose that assumption 4.3.2 holds, then we have

ρ1 ≤ kb(t) ≤ ρ2, (4.24)

and

0 ≤ ||k̇b(t)|| ≤ ρ3, (4.25)

where ρ1 and ρ2 as well as ρ3 are positive constants.

Property 4.3.3. For all (t, xf , x̂f , x̃f ) ∈ R≥0 ×Θ1 × R× (Θ1 − R),

||d1(t, x̃f )|| ≤ l1||x̃f ||2, (4.26)

where l1 is a positive constant, d1(t, x̃f ) = 2kb(t)(y(xf , t)−y(x̂f , t))
(

(
∂y(xf ,t)
∂xf

−∂y(x̂f ,t)
∂x̂f

)ẋf+

(
∂y(xf ,t)

∂t − ∂y(x̂f ,t)
∂t )

)
+ k̇b(t)(y(xf , t)− y(x̂f , t))

2.

Theorem 4.3.1. Suppose that assumptions 1−2 hold, then there exist a positive constant

ka and a bounded positive kb(t), such that if ka is large enough, then x̃f → 0, θ̃ →
0 as t→∞ for (x̃f , θ̃) ∈ (Θ1 − R)× (Θ2 − R).

Proof. The Lyapunov function is defined as

V (x̃f , t) = kb(t)(y(xf , t)− y(x̂f , t))
2 + θ̃2

Denote the vector [x̃f ; θ̃] by X and according to property 1,

min(ρ1k
2
y,low, 1)X2 ≤ V (x̃f , t) ≤ max(ρ2k

2
y,upp, 1)X2 (4.27)
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4. Tire-road friction coefficient estimation with tire self-aligning torque

is deduced, which indicates that V (x̃f , t) is radially unbounded. Subsequently,

V̇ = 2kb(t)(y(xf , t)− y(x̂f , t))
(
∂y(xf ,t)
∂xf

ẋf −
∂y(x̂f ,t)
∂x̂f

˙̂xf

+
∂y(xf ,t)

∂t − ∂y(x̂f ,t)
∂t

)
+ 2θ̃

˙̃
θ + k̇b(t)(y(xf , t)− y(x̂f , t))

2

= 2kb(t)(y(xf , t)− y(x̂f , t))
(

(
∂y(xf ,t)
∂xf

− ∂y(x̂f ,t)
∂x̂f

)ẋf +
∂y(x̂f ,t)
∂x̂f

˙̃xf

+(
∂y(xf ,t)

∂t − ∂y(x̂f ,t)
∂t )

)
+ 2θ̃

˙̃
θ + k̇b(t)(y(xf , t)− y(x̂f , t))

2

= 2kb(t)(y(xf , t)− y(x̂f , t))
∂y(x̂f ,t)
∂x̂f

˙̃xf + 2θ̃
˙̃
θ + d1(t, x̃f )

= 2kb(t)(y(xf , t)− y(x̂f , t))
∂y(x̂f ,t)
∂x̂f

(
c1(t)(ff (xf )− ff (x̂f ))− ka(y − y(x̂f , t))

)
+2kb(t)(y(xf , t)− y(x̂f , t))

∂y(x̂f ,t)
∂x̂f

c2(t)θ̃

+2θ̃
(
− kb(t)

∂y(x̂f ,t)
∂x̂f

c2(t)(y − y(x̂f , t))
)

+ d1(t, x̃f )

≤ −2kakb(t)
∂y(x̂f ,t)
∂x̂f

(y(xf , t)− y(x̂f , t))
2 + 2kb(t)c1(t)k2

y,uppkf ||x̃f ||2 + l1||x̃f ||2

≤ (−2kaρ1k
3
y,low + 2ρ2c1(t)k2

y,uppkf + l1)||x̃f ||2.
(4.28)

Since c1(t) is positive and bounded, then if ka is chosen large enough, there exists a

positive constant k∗, such that

V̇ (X, t) ≤ −k∗||x̃f ||2. (4.29)

According to theorem 8.4 barbalat lemma in [66], it can be deduced that

x̃f → 0 as t→∞.

Combined with Assumption 4.3.2 and applying Lemma A.1. from [22], it can be reasoned

out that

θ̃ → 0 as t→∞.

4.3.3. Criteria and overall estimation framework description

4.3.3.1. Criteria description

Estimating µmax is important, but when to estimate µmax, such that a reliable tire-

road friction coefficient can be obtained? To the author’s best knowledge, based on

the sensor configurations of mass produced vehicles, no reliable criteria of excitation

detection to trigger the update of µmax estimation result are given. As is known, under
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4.3. Method I: µmax estimation with front axle tire lateral force estimation

different µmax the corresponding lateral acceleration as threshold to indicate the tires

coming into the nonlinear region is different, for instance, on high friction road condition,

lateral acceleration smaller than 4 m/s2 is an indication that the tires still work in

the linear region [86] while this value can be much smaller under low friction road

conditions. Grip uses yaw rate and derivative of lateral velocity to check the excitation

of vehicle lateral dynamics [39]. Similar methods are implemented to detect vehicle

excitation [35, 44]. However, these criteria cannot be well adapted due to the lack of

µmax information. Besides, in order to avoid mis-operation of ESC, the strategy about

when to estimate µmax is conservative, which means some situations suitable for µmax

estimation are ignored since there are no excitation criteria uniformly to µmax. Hence,

the criteria should be robust to µmax variations and meanwhile not conservative to the

utilization of excitation, such that the µmax can be estimated more reliably.

The criteria in this study consist of two parts. The first and also the most important

one is to compare the estimated |xf | with a defined constant threshold xf,c shown in

Fig. 4.1 (shown as xc) which is applicable for all tire-road friction conditions and thus

can be used to detect excitation effectively. Moreover, this threshold is the boundary

between the quasi-linear region and the nonlinear region of the front axle self-aligning

torque, therefore, the decision of when to estimate road friction is not conservative due

to sufficient usage of the tire non-linearity. The second part is an auxiliary criterion to

alleviate the misuse of the first criterion. When vehicle lateral dynamic excitation is too

small, the tire characteristics remain exactly in the linear region, which leads to a singular

estimation of xf . As a result, the estimated xf may be much larger than the real value

and thus leads to misuse of the criterion one. Therefore, extra criteria is introduced

to alleviate its misoperation. To be more specific, the activation of criterion one is

based on the precondition that the estimated total aligning torque, the measured lateral

acceleration and the estimated front axle tire lateral force are simultaneously larger than

their corresponding defined thresholds, which increases the reliability of µmax estimation.

These criteria are shown more detailed with mathematical description as follows:

if |x̂f | > xf,c & |τzf | > τthres & |ay| > ay,thres & |F̂yf,ave| > Fyf,thres

µ̂max = µmax,update;

else

µ̂max = µmax,pre;

end

where τthres, Fyf,thres as well as ay,thres are thresholds to avoid updating µmax when the
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Vehicle

Front steering angle

Yaw rate,
Lateral Acceleration,
Longitudinal velocity,

Total aligning
torque

Novel
strategy with UIO

Front axle tire
lateral force

Adaptive observer

Excitation detection

Tie rod
force

Calculation with
steering system

Indirect measurement
selection

τzf
F̂yf,ave

y(xf , t) ka, kb

x̂f µ̂max,update

F̂yf,ave, τzf , ay

µ̂max

Figure 4.7.: Overall estimation framework, which is further referred to as AVE.

excitation is too small, µ̂max is the final estimated tire-road friction coefficient, µmax,update

is the estimation result of tire-road friction coefficient from the observer, µmax,pre is the

value of µ̂max in previous step. It has to be mentioned that τthres and Fyf,thres here are

the same values for avoiding singularity in the indirect measurement y(xf , t).

4.3.3.2. Overall estimation framework (AVE)

For a better understanding of the whole description in this thesis, the overall estimation

framework is presented in Fig. 4.7. All parts of this estimation framework are further

referred to as AVE. The measurements (yaw rate, lateral acceleration as well as longitu-
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4.4. Method II: nonlinear adaptive observer for tire-road friction coefficient estimation

dinal velocity, etc.) are firstly utilized to estimate the front axle tire lateral force with a

novel strategy based on UIO. Meanwhile, the front axle total aligning torque is estimated

on the basis of measured tie rod force. Then, considering the front axle tire lateral force

and the total aligning torque as input, an indirect measurement y(xf , t) based on the

selection criteria is generated. Combined with this indirect measurement, a nonlinear

adaptive observer is designed to estimate the tire-road friction coefficient. To increase

the reliability of the estimation result, an excitation detection block is proposed with

the proposed criteria to better update the estimated tire-road friction coefficient. The

simulation and experimental results from method I are described in section 4.5 together

with those from method II.

4.4. Method II: nonlinear adaptive observer for tire-road

friction coefficient estimation

4.4.1. Transformed vehicle model

The transformed single track model (4.6) can be expressed as

ω̇ = q1(t) + q2(t)v1(xf )

ẋf = q3(t, xf ) + q4(t)v2(µmax) (4.30)

where q1(t) =
lτzfmv cos(δ)−lrmay

Iz
, q2(t) =

−|τzf |l cos(δ)
Iz

, v1(xf ) = (
ff (xf )

gf (xf )+ff (xf )dc
−mv)sign(xf )

which is a monotonic increasing odd function (between −xs and xs) w.r.t. xf and already

shown in Fig.4.6 in section 4.3.2.14, q3(t, xf ) = (a−b)(cosδ)ff (xf ), q4(t) = (bmay−ω−δ̇),
v2(µmax) = 1

µmax
. In the following, a nonlinear adaptive observer will be proposed for

a more generalized low-triangular system and then be applied to the µmax estimation

problem.

4.4.2. Nonlinear adaptive observer

Various approaches have been developed for adaptive observer design [22, 21, 55, 75,

110, 130, 40, 120, 41]. For affine-parametrized system, there is a considerable amount

of literature. In [55], the Luenberger type observers, combined with different parameter

adaptation laws such as gradient based and least squares methods, etc., are proposed

4The indirect measurement y(xf ) in method I is actually the v1(xf ) in method II.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

for linear time invariant systems. Zhang proposed an adaptive observer for linear time

varying systems which require only uniform complete observability for the systems and

persistent excitation for parameter estimation [130]. In [22], an adaptive observer is

presented for nonlinear systems which need to be strict positive real (SPR) and satisfy

some Lipschitz conditions. Stamnes designed a type of adaptive observer features that

both unknown parameters and non-linearity of the unmeasured states can appear in the

dynamics of the unmeasured states [110]. For non-affine parametrized systems, there

is less work due to its complexity and difficulty. In [120] and [40], adaptation laws for

monotonically parametrized perturbations are proposed with all states measurable. In

[41], partial states are needed to be measured for estimation of non-affine parameters,

however, this proposed method is based on some assumptions which are not all applicable

for the system in this study.

Based on [40], in which an estimator for non-affine parametrized system was proposed

with requirement of all states measurable, a nonlinear adaptive observer is proposed

in this thesis. It recursively applies the idea from [40] on a non-affine parametrized

lower triangular system, such that only partial states need to be measured for non-affine

parameter estimation.

4.4.2.1. Nonlinear adaptive observer design

Considering the following class of system:
ẇ = f1(t, w) +B1(t, w)g1(w, x)

ẋ = f2(t, x) +B2(t, x)g2(x, θ)

θ̇ = 0

y = w,

(4.31)

where x ∈ Θ1 ⊂ Rn is a state vector, θ ∈ Θ2 ⊂ Rr is a vector of unknown constant param-

eters, w ∈ Θ3 ⊂ Rn is a measured state vector, Θ1, Θ2, Θ3 are all compact sets. The func-

tions f1 : R≥0×Rn → Rn, B1 : R≥0×Rn → Rn×m, g1 : Rn×Rn → Rm, f2 : R≥0×Rn →
Rn, B2 : R≥0 × Rn → Rn×q, g2 : Rn × Rr → Rq. Besides, g1(w, x), g2(x, θ) and f2(t, x)

are locally Lipschitz in their arguments, respectively. ||B1(t, w)||, ||B2(t, x)||, ||∂B1(t,w)
∂t ||,

||∂B2(t,x)
∂t ||, ||∂B1(t,w)

∂w ||, ||∂B2(t,x)
∂x || are bounded, respectively.

Remarks. It is realistic to assume that x, θ, w all belong to some compact sets, since

usually the parameters and state variables in real systems are bounded, especially for

vehicle dynamics systems.
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4.4. Method II: nonlinear adaptive observer for tire-road friction coefficient estimation

The observer for the system is given by

ż1 = −Kϕ1(f1(t, w) + ϕ̂1)−B1(t, w)
∂g1(w, x̂)

∂x̂

(
uτ − f2(t, x̂)−B2(t, x̂)g2(x̂, θ̂)

)
ϕ̂1 = z1 +Kϕ1w +B1(t, w)g1(w, x̂)

˙̂x = uτ (t, w, ϕ̂1, x̂, θ̂)

ż2 = −Kϕ2(f2(t, x̂) + ϕ̂2)−B2(t, x̂)
∂g2(x̂, θ̂)

∂θ̂
uθ

ϕ̂2 = z2 +Kϕ2 x̂+B2(t, x̂)g2(x̂, θ̂)

˙̂
θ = uθ(t, x̂, ϕ̂2, θ̂)

with

uτ = Proj
(
k1Γ1M1

(
sat(ϕ̂1)−B1(t, w)g1(w, x̂)

)
+ f2(t, x̂) +B2(t, x̂)g2(x̂, θ̂)

)
uθ = Proj

(
Γ2M2

(
sat(ϕ̂2)−B2(t, x̂)g2(x̂, θ̂)

))
where Kϕ1 , Kϕ2 , Γ1 and Γ2 are all symmetric positive definite matrices, respectively,

z1 ⊂ Rn, z2 ⊂ Rn, k1 is a positive scale. ϕ̂1 and ϕ̂2 are estimation for ϕ1 and ϕ2,

respectively, where ϕ1 = B1(t, w)g1(w, x), ϕ2 = B2(t, x)g2(x, θ). sat(ϕ̂1) = ϕ̂1 if ||ϕ̂1|| ≤
Φ1, otherwise sat(ϕ̂1) = ϕ̂1

||ϕ̂1||Φ1, where Φ1 is a positive scale. This is also true for

sat(ϕ̂2). Besides, sat(ϕ̂1) ∈ Θ4, sat(ϕ̂2) ∈ Θ5, where Θ4 and Θ5 are both compact sets,

thus indicates ϕ̂1 ∈ Rn, ϕ̂2 ∈ Rn. The projection function is denoted as Proj(·), refer

to Appx. C.1. Due to the projection technique, it can be noted that, if x̂(t0) ∈ Θ1 and

θ̂(t0) ∈ Θ2, x̂(t) and θ̂(t) remain in Θ1 and Θ2, respectively. M1(t, w) : R≥0×Θ3 → Rn×n,

M2(t, x̂, θ̂) : R≥0 × Θ1 × Θ2 → Rr×n, where ||M1(t, w)|| and ||M2(t, x̂, θ̂)|| are both

bounded.

Remarks. A more intuitive explanation for the proposed observer is given in the fol-

lowing: with measured w, ẇ − f1(t, w) can be used to express ϕ1, then x is obtained by

solving equation ϕ1 = B1(t, w)g1(w, x). After obtaining x, ϕ2 is denoted by ẋ− f2(t, x).

Finally θ is calculated with similar equation ϕ2 = B2(t, x)g2(x, θ).

4.4.2.2. Stability analysis

Introducing a new state ϕ̄2 = z2 + Kϕ2x + B2(t, x)g2(x, θ̂), the error dynamics of the

observer is then written as

59



4. Tire-road friction coefficient estimation with tire self-aligning torque

˙̃ϕ1 = ϕ̇1 − ˙̂ϕ1

= −Kϕ1ϕ̃1 + d1(t, w, θ, x̃) + d3(t, w, x̂, θ̃),
(4.32a)

˙̃x = ẋ− ˙̂x

= f2(t, x) +B2(t, x)g2(x, θ)− uτ (t, w, x̂, ϕ1, θ)

+d4(t, w, x̂, ϕ̃1, θ) + d5(t, w, x̂, ϕ̂1, θ̃),

(4.32b)

˙̃ϕ2 = ϕ̇2 − ˙̄ϕ2

= −Kϕ2ϕ̃2 + d2(t, x, θ̃) + d6(t, x̃, ϕ̂2, θ̂),
(4.32c)

˙̃
θ = θ̇ − ˙̂

θ

= −uθ(t, x, ϕ2, θ̂) + d7(t, x, ϕ̃2, θ̂) + d8(t, x̃, ϕ̄2, x̂, θ̂).
(4.32d)

The detailed deduction of the error dynamics and expressions for d1 to d8 can be found

in Appx. C.2.

In the following, Fig.4.8 demonstrates the structure of the error dynamics for the observer.

Denote the interconnected system Σ0
˙̃
θ

and Σ0
˙̃ϕ2

as Σ0 with (θ̃, ϕ̃2) as state variables,

besides, d6(t, x̃, ϕ̂2, θ̂) and d8(t, x̃, ϕ̄2, x̂, θ̂) can be viewed as external inputs; The inter-

connection of Σ0 and Σ1
˙̃x

compose system Σ1, which with (x̃, θ̃, ϕ̃2) as state variables is

subject to external input d4(t, w, x̂, ϕ̃1, θ); Finally, define Σ2 as the inter-connection of

Σ1 and Σ2
˙̃ϕ1

with (ϕ̃1, x̃, θ̃, ϕ̃2) as state variables. The target is to recursively stabilize

the interconnected systems from the inner layer Σ0 to outer layer Σ2 by constructing

strict Lyapunov functions. The following assumptions are put forward.

Assumption 4.4.1. For all (t, w, θ, x̃) ∈ R≥0×Θ3×Θ2× (Θ1−Θ1), ||d1(t, w, θ, x̃)|| ≤
l1||x̃||, where l1 is a positive constant, (Θ1 −Θ1) := {x− x̂ ∈ Rn | x, x̂ ∈ Θ1};

Assumption 4.4.2. For all (t, x, θ̃) ∈ R≥0 × Θ1 × (Θ2 − Θ2), ||d2(t, x, θ̃)|| ≤ l2||θ̃||,
where l2 is positive constant, (Θ2 −Θ2) :=

{
θ − θ̂ ∈ Rr | θ, θ̂ ∈ Θ2

}
;

Assumption 4.4.3. For all (t, x̃, ϕ̂2, θ̂) ∈ R≥0×(Θ1−Θ1)×Rn×Θ2, ||d6(t, x̃, ϕ̂2, θ̂)|| ≤
l6(Kϕ2 ,Γ2)||x̃||, where l6(Kϕ2 ,Γ2) is a positive variable determined by Kϕ2 and Γ2.

Assumption 4.4.4. For all (t, x̃, ϕ̄2, x̂, θ̂) ∈ R≥0 × (Θ1 −Θ1)× Rn ×Θ1 ×Θ2,

||d8(t, x̃, ϕ̄2, x̂, θ̂)|| ≤ l8(Kϕ2 ,Γ2)||x̃||, where l8 is a positive variable and determined by

Kϕ2 and Γ2.

Assumption 4.4.5. Suppose that there exists a piecewise continuous function p1(t, w) :

R≥0 × Θ3 → R>0 with p1(t, w) > p∗1, where p∗1 is a positive constant, and a function
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Σ2

Σ1

Σ0
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˙̃
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Σ1
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d4(ϕ̃1)

d1(x̃)

d3(θ̃)

Figure 4.8.: Structure of error dynamics for the observer.

M1(t, w) : R≥0 × Θ3 → Rn×n, such that for all t ∈ R≥0, w ∈ Θ3 and x ∈ Θ1 as well as

arbitrarily large k1 > 0,

M1(t, w)B1(t, w)
∂g1(w, x)

∂x
+
∂gT1 (w, x)

∂x
BT

1 (t, w)MT
1 (t, w)

− 1

k1
Γ−1

1

∂(f2(t, x) +B2(t, x)g2(x, θ))

∂x
− 1

k1

∂(f2(t, x) +B2(t, x)g2(x, θ))T

∂x
Γ−1

1

≥ 2p1(t, w)I (4.33)

Assumption 4.4.6. Suppose that there exists a piecewise continuous function P2(t, x) :

R≥0×Θ1 → Sr+, where Sr+ is the cone of r×r symmetric positive-semidefinite matrices5,

and a function M2(t, x, θ) : R≥0 × Θ1 × Θ2 → Rr×n, such that for all t ∈ R≥0, x ∈ Θ1

and for all pairs of θ1, θ2 ∈ Θ2

M2(t, x, θ1)B2(t, x)
∂g2(x, θ2)

∂θ
+
∂gT2 (x, θ2)

∂θ
BT

2 (t, x)MT
2 (t, x, θ1) ≥ 2P2(t, x), (4.34)

5The set of all symmetric positive-semidefinite matrices of particular dimension is called the positive
semidefinite cone.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

Suppose furthermore that there exist scales T2 > 0, ε2 > 0, such that, for all t ∈ R≥0,

∫ t+T2
t P2(τ, x(τ))dτ ≥ ε2I, (4.35)

and that for all (t, θ) ∈ R≥0 ×Θ2,

||B2(t, x)(g2(x, θ)− g2(x, θ̂))|| ≤ lg2(θ̃TP2(t, x)θ̃)
1
2 , (4.36)

for some lg2 > 0 [40].

Remarks. Assumptions 4.4.1 - 4.4.4 are some Lipschitz type conditions, especially for

Assumption 4.4.4 regarding d8(t, x̃, ϕ̄2, x̂, θ̂), in which term uθ(t, x̂, ϕ̄2, θ̂)− uθ(t, x̂, ϕ̂2, θ̂)

is actually also related to x̃; Assumption 4.4.5 is the monotonic condition for estima-

tion of x; Assumption 4.4.6 is the monotonic and persistent excitation condition for

estimation of θ.

There are also properties for d3, d4, d5, d7.

Property 4.4.1. For all (t, w, x̂, θ̃) ∈ R≥0×Θ3×Θ1×(Θ2−Θ2), ||d3(t, w, x̂, θ̃)|| ≤ l3||θ̃||,
where l3 is a positive constant;

Property 4.4.2. For all (t, w, x̂, ϕ̃1, θ) ∈ R≥0 ×Θ3 ×Θ1 × (Θ4 − Rn)×Θ2,

||d4(t, w, x̂, ϕ̃1, θ)|| ≤ l4(Γ1, k1)||ϕ̃1||, where l4 is a positive variable determined by Γ1 and

k1, (Θ4 − Rn) := {ϕ1 − ϕ̂1 ∈ Rn | ϕ1 ∈ Θ4, ϕ̂1 ∈ Rn};

Property 4.4.3. For all (t, w, x̂, ϕ̂1, θ̃) ∈ R≥0 ×Θ3 ×Θ1 × Rn × (Θ2 −Θ2),

||d5(t, w, x̂, ϕ̂1, θ̃)|| ≤ l5||θ̃||, where l5 is a positive constant.

Property 4.4.4. For all (t, x, ϕ̃2, θ̂) ∈ R≥0 × Θ1 × (Θ5 − Rn) × Θ2, ||d7(t, x, ϕ̃2, θ̂)|| ≤
l7(Γ2)||ϕ̃2||, where l7 is a positive variable determined by Γ2,

(Θ5 − Rn) := {ϕ2 − ϕ̄2 ∈ Rn | ϕ2 ∈ Θ5, ϕ̄2 ∈ Rn};

Proof. For d3(t, w, x̂, θ̃), since ||B1(t, w)||, ||∂g1(w,x̂)
∂x̂ ||, ||B2(t, x̂)|| are all bounded, and

g2(x, θ) are local Lipschitz in their arguments, ||d3(t, w, x̂, θ̃)|| ≤ l3||θ̃|| is deduced.

For d4(t, w, x̂, ϕ̃1, θ), according to Lipschitz continuity [40], with (t, w, x̂, ϕ̃1, θ) ∈ R≥0 ×
Θ3 ×Θ1 × (Θ4 − Rn)×Θ2, projection can be discarded. Therefore,

||d4(t, w, x̂, ϕ̃1, θ)|| = ||uτ (t, w, x̂, ϕ1, θ)− uτ (t, w, x̂, ϕ̂1, θ)||
≤ l4(Γ1, k1)||ϕ1 − sat(ϕ̂1)|| ≤ l4(Γ1, k1)||ϕ̃1||

(4.37)

The proof procedure from d4 also holds for d5, d7.
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Besides, there are also two propositions.

Proposition 4.4.1. Suppose assumption 4.4.5 holds, then the Lyapunov function

Vx(t, x̃) =
1

2
x̃TΓ−1

1 x̃, (4.38)

and its derivation satisfies following inequations:

V̇x(t, x̃) ≤ −α1||x̃||2 + β1(ϕ̃1, θ̃)||x̃||, (4.39)

where α1 = k1p
∗
1, β1(ϕ̃1, θ̃) = ||Γ−1

1 ||(l4(Γ1, k1)||ϕ̃1||+ l5||θ̃||). Besides,

1

2
λmin(Γ−1

1 )||x̃||2 ≤ Vx(t, x̃) ≤ 1

2
λmax(Γ−1

1 )||x̃||2 (4.40)

Proof. See Appx. C.3.

Proposition 4.4.2. Suppose Assumption 4.4.6 holds, then the Lyapunov function

Vθ(t, θ̃) =
1

2
θ̃T (Γ−1

2 − ψ
∫ ∞
t

exp(t− τ)P2(τ, x(τ))dτ)θ̃, (4.41)

satisfies following inequations:

V̇θ(t, θ̃) ≤ −α2(Γ2)||θ̃||2 + λmax(Γ−1
2 )||θ̃||

(
l7(Γ2)||ϕ̃2||+ l8(Kϕ2 ,Γ2)||x̃||

)
, (4.42)

where α2 is a positive variable determined by Γ2. Besides,

1
2(λmin(Γ−1

2 )− ψλ∗2)||θ̃||2 ≤ Vθ(t, θ̃) ≤ 1
2λmax(Γ−1

2 )||θ̃||2, (4.43)

where ψ <
λmin(Γ−1

2 )
λ∗2

, λ∗2 is the upper boundary of
∫∞
t exp(t− τ)P2(τ, x(τ))dτ .

Proof. The reader can refer to the proposition 4 in [81].

Theorem 4.4.1. Suppose that Assumptions 4.4.1 — 4.4.6 hold, then there exists a posi-

tive definite matrix Kϕ1, such that if λmin(Kϕ1) is large enough, then the error dynamics

of (4.32a)-(4.32d) are uniformly exponentially stable for
(
ϕ̃1, x̃, ϕ̃2, θ̃

)
∈ (Θ4 − Rn) ×

(Θ1 −Θ1)× (Θ5 − Rn)× (Θ2 −Θ2) .

Proof. First, set X2 = [ϕ̃T2 , θ̃
T ]T and choose V2(t,X2) = Vθ(t, θ̃) + 1

2 ϕ̃
T
2 ϕ̃2. By applying

63



4. Tire-road friction coefficient estimation with tire self-aligning torque

Proposition 4.4.2,

V̇2(t,X2) ≤ −α2(Γ2)||θ̃||2 + λmax(Γ−1
2 )||θ̃||

(
l7(Γ2)||ϕ̃2||+ l8(Kϕ2 ,Γ2)||x̃||

)
−ϕ̃T2 Kϕ2ϕ̃2 + ϕ̃T2

(
d2(t, x, θ̃) + d6(t, x̃, ϕ̂2, θ̂)

)
≤ −α2(Γ2)||θ̃||2 − λmin(Kϕ2)||ϕ̃2||2 +

(
l7(Γ2)λmax(Γ−1

2 ) + l2

)
||θ̃||||ϕ̃2||

+
(
l8(Kϕ2 ,Γ2)λmax(Γ−1

2 )||θ̃||+ l6(Kϕ2 ,Γ2)||ϕ̃2||
)
||x̃||

≤ −[||ϕ̃2||, ||θ̃||]Q2[||ϕ̃2||, ||θ̃||]T

+
(
l8(Kϕ2 ,Γ2)λmax(Γ−1

2 ) + l6(Kϕ2 ,Γ2)
)
||X2||||x̃||

is deduced, where

Q2 =

 λmin(Kϕ2) − l7(Γ2)λmax(Γ−1
2 )+l2

2

− l7(Γ2)λmax(Γ−1
2 )+l2

2 α2(Γ2)

 .
Then, as long as λmin(Kϕ2) >

(l7(Γ2)λmax(Γ−1
2 )+l2)2

4α2(Γ2) , Q2 is positive definite. It can be

subsequently deduced that

V̇2(t,X2) ≤ −λmin(Q2)||X2||2 +
(
l8(Kϕ2 ,Γ2)λmax(Γ−1

2 ) + l6(Kϕ2 ,Γ2)
)
||X2||||x̃||.

Then choose Vf (t, x̃, ϕ̃1, X2) = Vx(t, x̃) + 1
2 ϕ̃

T
1 ϕ̃1 + V2(t,X2). Implementing 4.4.1 and

aforementioned Properties,

V̇f = V̇2(t,X2)− k1p
∗
1||x̃||2 + β1(ϕ̃1, θ̃)||x̃||

+ϕ̃T1

(
−Kϕ1ϕ̃1 + d1(t, w, θ, x̃) + d3(t, w, x̂, θ̃)

)
≤ −k1p

∗
1||x̃||2 − λmin(Kϕ1)||ϕ̃1||2 − λmin(Q2)||X2||2

+
(
l1 + l4(Γ1, k1)||Γ−1

1 ||
)
||ϕ̃1||||x̃||+ l3||ϕ̃1||||X2||

+
(
l5||Γ−1

1 ||+ l6(Kϕ2 ,Γ2) + l8(Kϕ2 ,Γ2)λmax(Γ−1
2 )
)
||X2||||x̃||

= −[||ϕ̃1||, ||x̃||, ||X2||]Q[||ϕ̃1||, ||x̃||, ||X2||]T

is deduced, with

Q =

 λmin(Kϕ1) −ι1 −ι2
−ι1 k1p

∗
1 −ι3

−ι2 −ι3 λmin(Q2)

 ,
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where

ι1 =
(
l1 + l4(Γ1, k1)||Γ−1

1 ||
)
/2,

ι2 = l3/2,

ι3 =
(
l5||Γ−1

1 ||+ l6(Kϕ2 ,Γ2) + l8(Kϕ2 ,Γ2)λmax(Γ−1
2 )
)
/2.

Choose a suitable k1 >
ι23

p∗1λmin(Q2) , then select an appropriate Kϕ1 to ensure that

λmin(Kϕ1) is sufficiently large, such that Q is positive definite. This is achievable, since

only the first item in Q is related to Kϕ1 . Then V̇f (t, ξ) ≤ −λmin(Q)||ξ||2 is obtained,

where ξ = [ϕ̃T1 , x̃
T , ϕ̃T2 , θ̃

T ]T . Since{
$1||ξ||2 ≤ Vf (t, ξ) ≤ $2||ξ||2

V̇f (t, ξ) ≤ −λmin(Q)||ξ||2,
(4.44)

where$1 = min{1
2λmin(Γ−1

1 ), 1
2 ,

1
2(λmin(Γ−1

2 )−ψλ∗2)}, $2 = max{1
2λmax(Γ−1

1 ), 1
2 ,

1
2λmax(Γ−1

2 )},
applying theorem 4.10 in [66], the error dynamics of (4.32a)-(4.32d) are uniformly expo-

nentially stable for
(
ϕ̃1, x̃, ϕ̃2, θ̃

)
∈ (Θ4 − Rn)× (Θ1−Θ1)× (Θ5−Rn)× (Θ2−Θ2).

4.4.3. Vehicle application

4.4.3.1. Verification of the assumptions

In this part, the nonlinear adaptive observer design procedure proposed in section 4.4.2.1

is applied to the tire-road friction coefficient estimation problem given in (4.6).

To set the system (4.30) in the same framework of the general structure (4.31), w = ω,

x = xf , θ = 1
µmax

, f1(t, w) = q1(t), B1(t, w) = q2(t), g1(w, x) = v1(xf ), f2(t, x) =

q3(t, xf ), B2(t, x) = q4(t), g2(x, θ) = v2(µmax), y = ω are defined. Then whether the
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4. Tire-road friction coefficient estimation with tire self-aligning torque

assumptions are satisfied or not is checked. Firstly there are

d1(t, θ, x̃) = B1(t)
(∂g1(x)

∂x
f2(t, x)− ∂g1(x̂)

∂x̂
f2(t, x̂)

)
+
∂B1(t)

∂t

(
g1(x)− g1(x̂)

)
+B1(t)

(∂g1(x)

∂x
B2(t)g2(θ)− ∂g1(x̂)

∂x̂
B2(t)g2(θ)

)
,

d2(t, θ̃) =
∂B2(t)

∂t
(g2(θ)− g2(θ̂)),

d6(t, x̃) = −Kϕ2

(
Kϕ2x−Kϕ2 x̂+ f2(t, x)− f2(t, x̂)

)
,

d8(t, x̃, θ̂) = Proj
(
Γ2M2(t, θ̂)(sat(ϕ̄2)−B2(t)g2(θ̂))

)
−Proj

(
Γ2M2(t, θ̂)(sat(ϕ̂2)−B2(t)g2(θ̂))

)
.

With respect to d1(t, θ, x̃), there is

d1(t, θ, x̃) = B1(t)f2(t, x)
(∂g1(x)

∂x
− ∂g1(x̂)

∂x̂

)
+B1(t)

∂g1(x̂)

∂x̂

(
f2(t, x)− f2(t, x̂)

)
+
∂B1(t)

∂t

(
g1(x)− g1(x̂)

)
+B1(t)B2(t)g2(θ)

(∂g1(x)

∂x
− ∂g1(x̂)

∂x̂

)
.

In the µmax estimation problem, g1(·) is C2, and w, θ, x all belong to compact set, ||B1(t)||,
||B2(t)||, ||g2(θ)||, ||f2(t, x)|| and ||∂B1(t)

∂t || are bounded, f2(t, x) is locally Lipschitz w.r.t

x and uniformly in t. Therefore, it can be deduced that

||d1(t, θ, x̃)|| ≤ l1||x̃||,

where l1 is positive constant, demonstrating that Assumption 4.4.1 holds. It can be

easily derived that Assumption 4.4.2 and 4.4.3 are also satisfied.

As for d8(t, x̃, θ̂) in Assumption 4.4.4, it can be deduced that

||d8(t, x̃, θ̂)|| ≤ l(Γ2)||(sat(ϕ̄2)− sat(ϕ̂2))||

≤ l(Γ2)||Kϕ2x−Kϕ2 x̂||

≤ l8(Γ2,Kϕ2)||x̃||,

where l8(Γ2,Kϕ2) is a positive variable determined by Γ2 and Kϕ2 .

For Assumption 4.4.5, this does not hold. When the front axle total aligning torque τzf

in q2(t) of (4.30) is zero, indicating B1(t) = 0, there is no such a positive p∗1 smaller than

p1(t, w) for a arbitrarily large k1. A feasible solution will be described in 4.4.3.2.

For Assumption 4.4.6, ∂g2(θ)
∂θ = ∂θ

∂θ = 1 and if M2(t) is defined as sign(B2(t)), the
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4.4. Method II: nonlinear adaptive observer for tire-road friction coefficient estimation

condition (4.34) is reduced to ||B2(t)|| ≥ ||P2(t)||. This condition will be satisfied, since

there always exists a P2(t), such that ||B2(t)|| = ||P2(t)||, indicating ||B2(t)|| ≥ ||P2(t)||.
With ||P2(t)|| being equal to ||B2(t)||, it is also easy to check that there exists a lg2

satisfying the condition (4.36). Furthermore, persistent excitation condition (4.35) is

reasonable and necessary.

Therefore, except for Assumption 4.4.5, the remaining are all satisfied.

4.4.3.2. Modification of the nonlinear adaptive observer

4.4.3.2.1. When to activate the µmax estimation In 4.4.3.1, it can be noticed that

Assumption 4.4.5 cannot be satisfied when τzf is zero, leading to unstable nonlinear

adaptive observer and generation of inferior estimated µmax. A feasible solution is to

freeze µmax estimation when |τzf | is very small and activate it again when |τzf | becomes

large. However, due to the poor quality of the τzf in the real application, auxiliary

criteria is also introduced to reduce the mis-activation of µmax estimation: when |x̂f | is

less than a positive threshold xf,a or |ay| is less than a positive threshold ay,thres, µmax

estimation is frozen. During the freeze of µmax estimation, the update of xf is open-loop.

The criteria for activating µmax estimation are demonstrated in Table 4.2, where τthres

is a threshold for front axle total aligning torque, θ is equal to 1
µmax

.

Table 4.2.: Criteria for the activation of µmax estimation

|x̂f | ≥ xf,a & |τzf | ≥ τthres & |ay| ≥ ay,thres |x̂f | < xf,a | |τzf | < τthres | |ay| < ay,thres

˙̂
θ = uθ(t, x̂f , ϕ̂2, θ̂),

˙̂xf = uτ (t, w, ϕ̂1, x̂f , θ̂),

˙̂
θ = 0,

˙̂xf = f2(t, x̂f ) +B2(t, x̂f )g2(x̂f , θ̂),

4.4.3.2.2. When to output a reliable µmax estimation result From 4.4.3.2.1, it can

be known that when the µmax estimation is activated, an updated µmax is obtained.

However, whether this estimated result is reliable enough for application in some vehicle

control system functions, more investigations should be conducted. From the tire char-

acteristics in Fig.4.1, an intuition is given that the more nonlinearity the tire reaches,

the richer the µmax information is contained. Therefore, if more tire characteristics in-

formation in the part of nonlinearity is utilized, more reliable µmax estimation result is

obtained. This intuition is also analytically validated in Fig.4.9, where the larger the
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Figure 4.9.: Sensitivity analysis of Fyf and Mzf with respect to µmax under normal
force 4000 N, where Fyf = µmaxff (xf ) and Mzf = µmaxgf (xf ), ff (xf ) =
∂Fyf (xf ,µmax)

∂µmax
, gf (xf ) =

∂Mzf (xf ,µmax)
∂µmax

.

absolute value of xf is, the more robust of µmax to the varying of Fyf while the absolute

value of
∂Mzf

∂µmax
grows at first then falls down to zero. So, the value of xf can be used

to indicate the reliability of µmax estimation. Hence, another criterion is proposed to

output the reliable µmax estimation result as follows:{
µmax,es = µmax,up; if |x̂f | ≥ xf,c
µmax,es = µmax,t-1; if |x̂f | < xf,c

(4.46)

where µmax,es is the output of the µmax estimation for application in some vehicle con-

trol system functions, µmax,up the estimated µmax from the nonlinear adaptive observer,

µmax,t-1 the output of the µmax in the previous time step, xf,c is the corresponding

threshold for the criterion.

For better understanding of the proposed criteria in both 4.4.3.2.1 and 4.4.3.2.2, Fig.

4.10 is illustrated to explain the whole structure in detail. The criteria proposed in

4.4.3.2.1 is realized in the “Tire-road friction estimation activation block” which is used

to activate the tire-road friction estimation in the nonlinear adaptive observer. And the

criterion proposed in 4.4.3.2.2 is corresponding to “Tire-road friction output decision

block”.
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Nonlinear
Adaptive
Observer

Tire-roadfriction
estimation

activation block

Measurements
Tire-road
friction

output decision
block

τzf , ay

x̂f ˙̂xf ,
˙̂
θ

x̂f
µmax,up

µmax,es

Figure 4.10.: Overall structure of the method II.“Tire-road friction estimation activation
block” is used to decide when to activate the µmax estimation in the non-
linear adaptive observer, while “Tire-road friction output decision block”
is used to judge if the estimated µmax from observer is reliable enough to
output for application in vehicle control systems.

Table 4.3.: Basic information of AVE and NAO as well as EKF

State equations Measurements
States illustrated

in figures

AVE

 ẋf = c1(t)ff (xf , t) + c2(t)θ

θ̇ = 0

may, τzf → y(xf , t) xf , 1
θ

NAO


ω̇ = q1(t) + q2(t)v1(xf )

ẋf = q3(t, xf ) + q4(t)v2(µmax)

µ̇max = 0

ω xf , µmax

EKF

 α̇f = aFyf + bFyr − w − δ̇

µ̇max = 0

may, τzf
αf
µmax

, µmax
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4. Tire-road friction coefficient estimation with tire self-aligning torque

Table 4.4.: Gains and thresholds in the criteria for AVE in the simulations and
experiments

Simulation Experiment

Gains

ka = 1 ka = 0.3

kb(t) = kc
max(|c2(t)|,ε) kb(t) = kc

max(|c2(t)|,ε)

where kc = 0.25, ε = 0.02 where kc = 0.03, ε = 0.25

Thresholds in
the criteria

xf,c = 0.01 rad xf,c = 0.02 rad

τthres = 35 Nm τthres = 40 Nm

ay,thres = 1 m/s2 ay,thres = 1 m/s2

Fyf,thres = 900 N Fyf,thres = 900 N

Table 4.5.: Gains and thresholds in the criteria for NAO in the simulations and
experiments

Simulation Experiment

Gains

k1 = 1 k1 = 1

Kϕ1 = 20, Γ1 = 10 Kϕ1 = 10, Γ1 = 1

Kϕ2 = 10, Γ2 = 35 Kϕ2 = 10, Γ2 = 15

Thresholds

xf,a = 0.001 rad xf,a = 0.005 rad

τthres = 35 Nm τthres = 40 Nm

ay,thres = 1 m/s2 ay,thres = 1 m/s2

xf,c = 0.01 rad xf,c = 0.02 rad

Table 4.6.: Settings for EKF in simulations and experiments

Simulation Experiment

Covariance of the process noise Q = [0.00053, 0; 0, 0.3] Q = [0.003, 0; 0, 0.3]

Covariance of the observation noise R = [10000, 0; 0, 50] R = [90000, 0; 0, 400]

Condition for freezing
µmax estimation

|ay| ≤ 1 m/s2 or |ay| ≤ 1 m/s2 or

|τzf | ≤ 35 Nm |τzf | ≤ 40 Nm

70



4.5. Simulation and experiment results

Table 4.7.: Statistical analysis of the estimated xf from ave, nao and ekf in simulations
and experiments: MVE means mean value of estimation error and RMS de-
notes root mean square of estimation error. Besides, Sinus., S. steer, DLC,
Rand. denote sinusoidal steer, step steer, double lane change, random ma-
neuver, respectively.

MVE (xf (◦)) RMS (xf (◦))

ave nao ekf ave nao ekf

Simulation

Sinus. (mixed µmax) 0.005 0.007 -0.009 0.107 0.109 0.205

S. steer (mixed µmax) 0.027 0.003 -0.032 0.253 0.216 0.283

DLC (mixed µmax) -0.024 -0.058 -0.073 0.132 0.163 0.266

Rand. (mixed µmax) 0.106 0.078 0.064 0.383 0.329 26.414

Experiment

Sinus. (high µmax) 0.052 0.023 0.001 0.536 0.431 0.401

S. steer (high µmax) 0.226 0.256 0.065 0.516 0.541 0.380

Rand. (low µmax) -0.146 -0.249 -1.249 1.701 1.205 33.348

Table 4.8.: Statistical analysis of the estimated µmax from ave, nao and ekf in simu-
lations and experiments: MVE means mean value of estimation error and
RMS denotes root mean square of estimation error. Besides, Sinus., S. steer,
DLC, Rand. denote sinusoidal steer, step steer, double lane change, random
maneuver, respectively.

MVE (µmax) RMS (µmax)

ave nao ekf ave nao ekf

Simulation

Sinus. (mixed µmax) 0.023 0.007 -0.020 0.132 0.130 0.160

S. steer (mixed µmax) -0.024 -0.045 -0.059 0.208 0.216 0.233

DLC (mixed µmax) 0.014 -0.021 -0.052 0.265 0.263 0.274

Rand. (mixed µmax) 0.139 0.108 0.221 0.279 0.266 0.574

Experiment

Sinus. (high µmax) 0.207 0.201 0.154 0.364 0.362 0.355

S. steer (high µmax) 0.198 0.196 0.124 0.396 0.408 0.389

Rand. (low µmax) -0.155 -0.208 -0.198 0.388 0.395 0.418
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4. Tire-road friction coefficient estimation with tire self-aligning torque

4.5. Simulation and experiment results

4.5.1. Simulation results of the tire-road friction estimation

In this section, based on a nonlinear single track model including lateral load transfer,

which is the same as the one used for the observer design, four different maneuvers —

sinusoidal, step steer, double lane change as well as a random maneuver — are simulated

to show tire-road friction coefficient estimation results among AVE, NAO and EKF. An

EKF based on the work in [85]6 is chosen for comparison, because linearization based

methods (like EKF) are widely used in µmax estimation with lateral dynamics [85, 52, 20].

For AVE, the estimated front axle lateral force results are additionally demonstrated.

The basic information of the three methods is listed in Table 4.3. It can be noticed that

though the state variables used for estimation are different among AVE, NAO and EKF,

the states illustrated in the figures (both in simulations and experiments) are the same7

for a better comparison. The settings of AVE, NAO and EKF for both simulations and

experiments are listed in Table 4.4, Table 4.5 as well as Table 4.6, respectively.

The simulation results of four maneuvers are illustrated in Fig. 4.11, Fig. 4.12, Fig. 4.13

as well as Fig. 4.14, separately. Besides, Table 4.7 and Table 4.8 show the statistical

analysis (mean value of estimation error (MVE) and root mean square of estimation er-

ror (RMS8)) of xf and µmax estimation results from AVE, NAO and EKF, respectively.

As can be seen, in AVE, the front axle tire lateral force can be estimated well in all four

maneuvers. Besides, by comparing Fyf estimation result under different frequency in si-

nusoidal maneuver (there is also a part of sinusoidal maneuver in random maneuver ), it

can be noticed that, the higher the frequency in the sinusoidal maneuver is, the less accu-

racy the estimation result is. In the step steer and double lane change maneuver, F̂yf,ave

is observed with small delay at first due to sudden change of front wheel steering angle

and then converges to the real values. Regarding µmax estimation, results from AVE and

NAO demonstrate better stability property compared to those from EKF. Meanwhile,

NAO and AVE as well as EKF (under stable situation) show similar performance w.r.t.

RMS. In sinusoidal and step steer maneuvers, µmax estimation results from AVE and

6In [85], the authors originally did not use ay as measurement. For a fair comparison, ay is introduced
as an extra measurement in the application and the single track model is transformed into a form
with αf and µmax as state variables.

7xf =
αf

µmax
, 1
θ

= µmax
8It has to be mentioned that the RMS is calculated based on the whole time range of one maneuver.

Hence, the RMS of µmax can be quite large if the road condition changes and the µmax estimator is
not activated due to too less excitation. However, these situations occur for AVE, NAO and EKF
and thus the comparison of RMS among these methods is still valuable.
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NAO can converge slightly faster than those from EKF and afterwards show similar

accuracy. W.r.t. RMS, these three methods only illustrate slight difference. It can be

noticed that, in sinusoidal maneuver in Fig. 4.11 (around the 4th second), the µmax,ave

and µmax,nao are not updated until some excitation level is reached, though during this

time period the real µmax changes. This is contributed by the tire-road friction excitation

detection block (AVE) and the tire-road friction output decision block (NAO), where the

criteria are formulated (described in section 4.3.3.1 and section 4.4.3.2.2, respectively)

for guaranteeing reliable µmax estimation. µmax,ekf is also frozen for short time around

the 4th second due to the activation of condition for freezing µmax. In the double lane

change maneuver, from 0 s to 5 s under a low friction condition of 0.4, µmax,ave and

µmax,nao are observed accurately and converge slightly faster than µmax,ekf . From 5 s

to 10 s, the µmax is changed to 0.7, and all µmax,ave, µmax,nao as well as µmax,ekf do not

react directly until the other half of double lane change is conducted. It can be noted

that µmax,nao and µmax,ekf achieve similar performance and are both slightly better than

µmax,ave, this is because there is relative large estimation error in Fyf,ave, leading to

inferior µmax,ave. W.r.t. RMS, AVE(0.265), NAO(0.263) and EKF(0.274) demonstrate

close results. In random maneuver, with a poor initial guess, µmax,ekf diverges during

the whole time period while µmax,ave, µmax,nao are always stable, demonstrating large

attraction domain of AVE and NAO. The estimation of µmax,ave shows similar perfor-

mance with µmax,nao from 0 s to 8 s, afterwords, µmax,nao performs slightly better than

µmax,ave since Fyf,ave estimation error becomes large.

In summary, w.r.t. simulations with no measurement noise under nominal system, both

AVE and NAO can guarantee stability of µmax estimation in a wider range of vehicle

operations than EKF. Besides, w.r.t. root mean square of estimation error (RMS) of

µmax, AVE and NAO shows similar performance with EKF (in stable situations).

4.5.2. Vehicle experiment results of the tire-road friction estimation

The vehicle experiments are conducted both in Nardò [5] (concrete test track) and Ar-

jeplog [4] (grinded ice test track) with a racing car called Roding Roadster, see Fig.

4.15, with validated vehicle parameters available in Appx. A. The real values of front

axle tire lateral force, µmax as well as xf are obtained as follows: for the front axle tire

lateral force, it is represented by
Izω̇+lrmay

l cos δ which is deduced from a single track model.

The actual friction coefficients are inferred from full brake9 on the concrete test track
9The tire-road friction coefficient obtained from the vehicle longitudinal and lateral dynamics may be

slightly different. But, in this thesis, it is assumed that they are the same.
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Figure 4.11.: Sinusoidal maneuver from high friction (vx = 20 m/s) to low friction
road condition (vx = 15 m/s): wheel steering angle amplitude is 0.03 rad,
frequency is 0.25 Hz.
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Figure 4.12.: Step steer maneuver from low friction to high friction road condition: vx =
15 m/s. Under low friction road condition, the wheel steering angle jumps
from 0 to 0.03 rad and then from 0.03 rad to 0.05 rad under high friction
road condition.
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Figure 4.13.: Double lane change maneuver from low friction to medium friction road
condition: vx = 10 m/s.

76



4.5. Simulation and experiment results

0 5 10 15 20
 t (s)

-0.5

0

0.5

ω
 (

ra
d/

s)

yaw rate

0 5 10 15 20
 t (s)

-5

0

5

 a
y
 (

m
/s

2 )

lateral acceleration

0 5 10 15 20
 t (s)

-200

0

200

τ
zf

 (
N

m
)

total aligning torque

0 5 10 15 20
 t (s)

-100
0

100
200
300

 F
y
f,

 e
rr

or
 (

N
)

 F
yf

 estimation error

0 2 4 6 8 10 12 14 16 18 20
 t (s)

-4000
-2000

0
2000
4000

 F
y
f (

N
)

 F
yf

 estimation

 F
yf,  real

 F
yf, ave

0 2 4 6 8 10 12 14 16 18 20
 t (s)

-5

0

5

 x
f (

°)

 x
f
 estimation

0 2 4 6 8 10 12 14 16 18 20
 t (s)

0

0.5

1

µ
m

ax

µ
max

 estimation
real
ave
nao
ekf

Figure 4.14.: Random maneuver from high friction to low friction, finally to medium
road condition: vx = 12 m/s.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

Figure 4.15.: test racing car Roding Roadster. ©Foto: thyssenkrupp.

and lateral limit handling on the grinded ice test track, respectively. The actual lateral

velocity is measured using a speed sensor [18] on concrete test track and is replaced by

simulated lateral velocity based on a well parametrized nonlinear single track model10

(considering lateral load transfer) on the grinded ice test track. Combining the inferred

µmax with measured lateral velocity, xf is obtained. The rest of the signals applied in

the proposed method are obtained as follows: signals like lateral acceleration and yaw

rate are directly measured; The wheel steering angle of front left and right is obtained

based on measured steering wheel angle and a lookup table; The longitudinal velocity is

measured by a speed sensor [18]. For the front axle total aligning torque, at first the tie

rod forces are measured with strain gauge sensors, then the equation (3.18) is applied to

calculate the total aligning torque. Furthermore, the settings for AVE, NAO as well as

EKF for experiments can refer to Table 4.4, Table 4.5 and Table 4.6, respectively. It can

be noticed that the gains for AVE and NAO are quite different in simulations and ex-

periments, which are determined based on the balance between estimation convergence

rate and sensitivity of estimation results to noise as well as uncertainties. Besides, the

covariance of the process and observation noise in EKF for simulations and experiments

are decided by considering noise level and model uncertainties.

On the concrete test track, Fig. 4.16 demonstrates a sinusoidal maneuver with a 0.2

Hz steering input and constant velocity 20 m/s. Fig. 4.17 shows step steer maneuver

10Due to sensor reasons the lateral velocity can not be well measured on the grinded ice test track, which
is however not important, because attention is only paid to tire-road friction coefficient estimation
in this study. Furthermore, tire parameters are already identified by a test truck in Switzerland (for
parameters of Fy) and by vehicle tests in Nardò Italy (for parameters of Mz), separately. Therefore,
the only function of the lateral velocity on the grinded ice test track is to become a reference value
for comparing with estimated xf .
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Figure 4.16.: Sinusoidal maneuver on high friction road condition: vx = 20 m/s with
frequency 0.2 Hz.
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Figure 4.17.: Step steer maneuver on high friction road condition: vx = 25 m/s.
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Figure 4.18.: Random steering maneuver on low friction road condition: vx is slow vary-
ing around 12 m/s from 0 to 25 s, then changes to 7 m/s and stay around
it.
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Figure 4.19.: Self-aligning torque parametrization for normal forces 4858 N and 2500
N on nominal tire-road condition µ0 = 1 with a constant radius (30 m)
circular driving maneuver.

with a constant velocity of 25 m/s. Both maneuvers illustrate similar estimation results

from AVE, NAO and EKF w.r.t. root mean square of estimation error (RMS) of xf and

µmax shown in Table 4.7 and Table 4.8, respectively. In Fig. 4.16, F̂yf,ave is estimated

accurately with low estimation error. And x̂f is over-estimated by AVE, NAO and EKF

at first, then converges to the real one, among which xf,ave is the noisiest. Besides, µ̂max

can be estimated accurately by AVE, NAO and EKF with similar convergent rate. In

Fig. 4.17, the F̂yf,ave estimation quality is not as good as that in sinusoidal maneuvers,

especially around the 5th second, because the signal quality of yaw rate and lateral

acceleration is worse than that in sinusoidal maneuver. The x̂f increases faster than the

real one from zero to around 3◦ for AVE, NAO and EKF between 0 s to 3 s, because the

tire-road friction estimation results are frozen this time. For AVE, due to the indirect

measurement y(xf , t) selection rule, gains ka and kb are set to zero, while for NAO

and EKF, the conditions for freezing µ̂max are still satisfied. Thus, x̂f is estimated

with underestimated µ̂max in AVE, NAO and EKF. Afterwards, xf,ave, xf,nao and xf,ekf

converge to the real value. µ̂max results from AVE, NAO and EKF are similar, but

results from EKF can converge a little bit faster. The readers may feel confused why so
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4.6. Discussion

large excitation is needed to estimate the µmax on concrete test track, this is because

racing car tires are utilized, with tire lateral force and self-aligning torque characteristics

being linear until quite large tire slip angle, see Fig. 4.19. From this figure it can be

noticed that the value of tire slip angle with respect to peak point of tire self-aligning

torque is roughly −2.8◦. However, in both of these experimental maneuvers, peak value

of real xf
11 does not reach −2.8◦. So, such excitation is necessary for tire-road friction

coefficient estimation on the concrete test track.

On the grinded ice test track, Fig. 4.18 shows a random steering maneuver, in which vx

is slow varying around 12 m/s from 0 to 25 s and then changes to 7 m/s and stays around

it. Fig. 4.18 demonstrates that the estimation errors of F̂yf,ave are small. Besides, x̂f

and µ̂max demonstrate good stability property from AVE and NAO but not from EKF.

More specifically, in Fig. 4.18, x̂f from EKF diverges between 29 s and 38 s, so does the

µ̂max from EKF (around 29 s and 38 s separately). On the contrary, both x̂f and µ̂max

from AVE and NAO are stable and show similar performance.

In summary, w.r.t. experiments, both AVE and NAO can guarantee stability of µmax

estimation in a wider range of vehicle operations than EKF. Besides, µmax estimation

results from AVE and NAO achieve similar accuracy with those from EKF (in stable

situation) w.r.t. RMS.

4.6. Discussion

In this chapter, two methods (AVE and NAO) were proposed for estimating µmax based

on tire self-aligning torque with vehicle lateral dynamics. In these methods, the origin of

the observers’ error dynamics are both asymptotically stable12 for (x̃f , θ̃) ∈ (Θ1−Θ1)×
(Θ2 − Θ2) 13 with Θ1 and Θ2 being {xf ∈ R| − xs ≤ xf ≤ xs} and {θ ∈ R|0.8 ≤ θ ≤
10}14 separately, demonstrating that the two observers work in a wide range of vehicle

operations. Besides, both AVE and NAO are able to run in real time. Furthermore, the

sensors applied for observers design are from mass produced vehicles except for tie rod

force sensors, which, however, are unnecessary if EPS or AFS available in mass produced

vehicles are installed. Finally, by comparing the proposed two methods with EKF under

11On the concrete test track, since µmax is equal to 1, xf is actually equivalent to the tire slip angle.
12In NAO, the origin of the error dynamics is exponentially stable, which is stronger than asymptotically

stable, i.e. exponential stability implies asymptotic stability.
13In AVE, the equilibrium (x̃f , θ̃) is asymptotically stable for (x̃f , θ̃) ∈ (Θ1 − R)× (Θ2 − R), indicating

that (x̃f , θ̃) ∈ (Θ1 −Θ1)× (Θ2 −Θ2) is contained in this region of attraction.
14θ = 1

µmax
.
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4. Tire-road friction coefficient estimation with tire self-aligning torque

various simulations and experiments, it can be shown that 1) both AVE and NAO can

guarantee stability of µmax estimation in a wider range of vehicle operations than EKF;

2) In terms of root mean square of µmax estimation error (RMS), the performance from

AVE, NAO and EKF (in stable situation) is similar. Therefore, the criteria presented in

the objective for tire-road friction estimation algorithms in this thesis are satisfied.
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5. Tire-road friction coefficient estimation

without tire self-aligning torque

This chapter describes a method to estimate µmax without utilizing the tire self-aligning

torque information and this method is named as method III. It proposes an innovative

scheme consisting of a non-convex optimization part and an integration part. The non-

convex optimization is only utilized to estimate side slip angle and µmax as initial value

for integration, thus, there is sufficient time left for finding the global optima through

adaptive resolution based grid-search. During the search of the global optima, the inte-

gration was applied based on previously obtained initial value to calculate side slip angle

and µmax. This can be realized since the derivative of side slip angle is measurable and

the derivative of µmax is assumed to be zero. Therefore, by interweaving discrete time

solution of the optimization and continuous integration of derivatives from sensor data,

the scheme allows for sufficient time for finding the global optima. Meanwhile, despite

of the non-convex optimization, the observation scheme is able to run in real time. One

advantage of the proposed observer is that, under no model uncertainty and measure-

ment noise influence, the estimation error does not grow even when the system lacks

observability. When observability requirement is satisfied, global asymptotic stability of

the observer can also be guaranteed. The estimation results from the proposed observer

and a linearization based observer1 (lbo) are finally compared under various tire-road

conditions with simulations and experiments. The results showed that method III per-

forms overall better than lbo w.r.t. root mean square of estimation error (RMS) and

can always guarantee stability in a wide range of vehicle operations while lbo cannot.

1Here, a linearization based observer (lbo) is utilized for comparison with the proposed observer.
This is because lbo is widely implemented for simultaneously side-slip angle and tire-road friction
estimation[37, 67, 68].



5. Tire-road friction coefficient estimation without tire self-aligning torque

5.1. Vehicle and tire model

5.1.1. Vehicle model

With the side slip angle β and yaw rate ω as state variables, single track model (3.1) can

be written as

β̇ =
ay(αf , αr, µmax)

vx
− ω, (5.1)

ω̇ =
lfFyf (αf , µmax) cos δ

Iz
− lrFyr(αr, µmax)

Iz
,

µ̇max = 0,

where

ay =
Fyf cos δ + Fyr

m
, αf = β +

lfω

vx
− δ, αr = β − lrω

vx
.

The system outputs that can be measured are collected as y = [ay ω]T . Besides [vx δ]
T

are regarded as external measurable signals.

5.1.2. Tire model

A modified TMsimple for calculating the tire lateral force is utilized in this chapter, such

that better solutions of the proposed algorithm in the applications can be obtained. The

modified TMsimple is described as follows:

Fy = −K sin[B(1− e
−|α|
A )sign(α)] |α| ≤ −A ln(1− π

2B
),

Fy = −Ksign(α) |α| > −A ln(1− π

2B
), (5.2)

with

K = Ymax(Fz, µmax),

B = π − arcsin
Y∞(Fz, µmax)

Ymax(Fz, µmax)
Y∞(Fz, µmax) ≤ Ymax(Fz, µmax), (5.3)

A =
KB

dY0(Fz)
,

where −A ln(1− π
2B ) is the absolute value of wheel slip angle corresponding to the peak

point of lateral force. Descriptions of Ymax(Fz, µmax), Y∞(Fz, µmax) as well as dY0(Fz)
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Figure 5.1.: Difference between modified TMsimple and its original version. The corre-
sponding value of α w.r.t. the peak Fy is A ln (1− π

2B )

can refer to (3.9). The difference between modified TMsimple and its original version is

illustrated in Fig. 5.1

5.2. Method III: optimization based real time tire-road friction

coefficient estimation

Various approaches have been developed for tire-road friction estimation. The state-of-

the-art is presented in section 2.2, but how to design an observer which guarantees sta-

bility in wide range of vehicle operations is still an open question. Some researchers pro-

posed utilizing optimization based observers, such as moving horizon estimation (MHE)

[112, 128] or nonlinear recursive least squares (NRLS) [31, 9], to estimate tire-road fric-

tion coefficient. However, as the optimization process in these methods is non-convex,

there is no guarantee to find the global minimum without an accurate initial guess. Con-

sequently, the observation error can be excessively large in some situations. Global op-

timization algorithms like differential evolution [111] (DE), particle swarm optimization

[63] (PSO) are usually able to obtain the optimum solution of non-convex optimization

independent of initial guess, but the inferior real time capability of these methods is a

great barrier for their application on the tire-road friction estimation.

Hence, in this research, an innovative optimization based framework to simultaneously

estimate tire-road friction coefficient and side slip angle is proposed. The observation
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5. Tire-road friction coefficient estimation without tire self-aligning torque

problem is formulated as a non-convex optimization. A novelty of the framework is that

the side slip angle and tire-road friction coefficient can be real time accurately estimated

without a good initial guess for the non-convex optimization. A key observation is that

the time derivative of side slip angle can be computed based on measurement and the time

derivative of µmax is assumed to be zero. This allows the observed variables to be updated

at a relatively low frequency w.r.t. the solution of the optimization problem. During

the interval between each two neighbouring updating time, the observer estimates the

side slip angle and tire-road friction coefficient by integrating sensor information based

on the last update. To find the global optima approximately, a grid search method is

implemented for solving non-convex optimization.

5.2.1. Notion of T -observability

To facilitate the analysis of the observer performance, the notion of T -observability is

defined.

Definition 5.2.1. Let ιi(t0), i = 1, 2 be two initial states of system (2.16) and yi(t) be

the output corresponding to the trajectory ιi(t). Then the system (2.16) is T -observable

w.r.t ι at time t′ > t0 + T for some positive T , if y1(t) = y2(t), ∀t ∈ [t′ − T, t′] implies

ι1(t′) = ι2(t′).

Remarks. If T can be chosen arbitrarily small, the definition of T-observability is equal

to the traditional definition of observability for a dynamic system [108]. Hence, the

T-observability in this thesis is a looser condition for observability.

5.2.2. Observer design

5.2.2.1. An optimization based observer

Rewrite (5.1) concisely as

β̇ = f1(x, t),

ω̇ = f2(x, t),
(5.4)

where x = [β µmax]T . The expression of both f1 and f2 can be obtained by comparing

(5.1) with (5.4). Besides, denote [f1(x, t) f2(x, t)]T as f(x, t). Since the components2

in f1(x, t) are all measurable, f1(x, t) is actually indirectly measured. Let the indirect

2They are ay, ω, vx.
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5.2. Method III: optimization based real time tire-road friction coefficient estimation

measured signal of f1(x(t), t) be f1m(t). With measurement error ignored, there is

f1(x(t), t) = f1m(t).

Let

Φ = [βl, βr]× [µmax,l, µmax,r]

be the domain of all possible values of (β, µmax). Pick a positive number T as the

optimization horizon, whose role will soon be clear.

What is particular about the problem in study is that the derivative of both unknown

variables are either known or measurable. As a matter of fact, the value of β̇(t) can be

measured and according to the assumption µ̇max(t) = 0 whenever µmax(t) is continuous.

Consequently, if the value of β(t − T ) is known, β(t) can be obtained by integrating

f1m(t) over time.

For t ≥ 0, 0 ≤ τ ≤ t and p = [pβ pµmax ]T ∈ Φ, define

β̄t(τ |pβ) = pβ −
∫ t

t−τ
f1m(s)ds

µ̄max,t(τ |pµmax) = pµmax (5.5)

x̄t(τ |p) = [β̄t(τ |pβ) µ̄max,t(τ |pµmax)]T

Then given pβ = β(t) and pµmax = µmax(t), there are

β̄t(τ |pβ) = β(t− τ)

µ̄max,t(τ |pµmax) = µmax(t− τ). (5.6)

Introduce the following error functions e1, e2 :

e1(t|p) =

∫ t

t−T

(
f1m(s)− f1(x̄t(t− s|p), s)

)2

ds (5.7)

e2(t|p) =

∫ t

t−T

(∫ q

t−T
f2(x̄t(t− s|p), s)ds− ω(q) + ω(t− T )

)2

dq

Remarks. Error function e1(t|p) represents the integration of squared difference between

the measured f1m(t) and f1(x, t) from vehicle model along the optimization horizon T .

Besides, e2(t|p) expresses the integration of squared difference between the measured yaw

rate and the one deduced from vehicle model along the optimization horizon T .
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5. Tire-road friction coefficient estimation without tire self-aligning torque

Then, it comes the cost function J :

J(t|p) = e1(t|p) + w · e2(t|p) (5.8)

where w is the weight that reflects the importance of e2 relative to e1. It is easy to see

that if pβ, pµmax are the true values of β(t) and µmax(t) respectively, then there must be

J(t|p) = 0. Therefore one can find the set P(t) that contain the true value of x(t) by

solving the equation J(t|p) = 0. However this equation may not even have a solution in

practice as modelling errors and measurement noises are inevitable. Therefore, instead,

the following optimization problem is considered:

P(t) = Arg min
p∈Φ

J(t|p), (5.9)

which is normally a non-convex optimization problem and is solved with a grid search

based method, which will be introduced later. Now, the proposed observer is introduced.

Define D(t) as the smallest rectangular that contains P(t) and define a sequence of

discrete time tk, k = 1, 2, .... defined as tk = k∆t, where ∆t is the update period of

D(t) from the optimization problem. Let β̂(t) and µ̂max(t) be the estimated value of β

and µmax at time t respectively. The observer dynamics is described by the following

equations for any t ∈ [tk, tk+1):

x∗k−1 = Arg min
p∈D(tk−1)

||p− xr(tk−1)||, (5.10)

βr(t) = β∗k−1 +

∫ t

tk−1

f1m(s)ds,

µmax,r(t) = µ∗max,k−1,

˙̂x(t) = −Kε · x̃r(t) + ẋr(t), (5.11)

where x∗k−1 = [β∗k−1 µ∗max,k−1]T which is supposed to be the best solution of x at time

tk−1 from non-convex optimization, xr = [βr µmax,r]
T which is estimated by integrating

the measurements based on x∗k−1, x̂ = [β̂ µ̂max]T which is the filtered signal of xr without

phase delay, x̃r = x̂−xr, xr(tk−1) = x∗k−2 + [
∫ tk−1

tk−2
f1m(s)ds, 0]T , Kε is a positive definite

matrix as the feedback gain. ẋr(t) = [f1m(t) 0]T for any t ∈ (tk, tk+1), otherwise, ẋr(t) =
xr(t)−xr(t−∆s)

∆s , where ∆s is the sampling time.

The overall diagram of observation process can be seen in Fig. 5.2. At the beginning

of each interval [tk−1, tk), the computing unit collects all the data from the sensors and

finish solving the optimization problem in (5.10) before time tk. Therefore at tk, the
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Figure 5.2.: Illustration of the observation process. The variable at the root of a hollow
arrow will converge to the variable pointed by that arrow under certain
conditions.

value of x∗k−1 should already be available. It can be deduced that x∗k−1 = x(tk−1) if

the system is T -observable at tk−1, which implies that the solution of (5.10) at tk−1

is unique. For the observer to operate in real-time, it is crucial that ∆t is sufficiently

large for solving the optimization problem defined in (5.10). After obtaining x∗k−1 at tk,

xr(t) is deduced based on x∗k−1 as well as the integration of the measured signal ẋ(t). In

reality, the model uncertainty, measurement noise and other disturbance will result in

jumps in the xr(t) signal at each tk. To alleviate this problem, we introduce x̂ as the

filtered signal of xr, such that the estimated states x̂ is continuous. Finally, the whole

observer is summarized in a compact way in Fig. 5.3.

5.2.2.2. Stability and convergence

If the modelling and measurements are assumed to be perfect, then it can be deduced

that the observation scheme described above possesses some important properties re-

garding the stability and convergence of the estimation error. Lyapunov stability of the

estimation error can be guaranteed even when the system lacks observability. In the

more favorable situation where the trajectory is T -observable at tk for each positive inte-

ger k, global asymptotic stability follows. In the following, these issues will be discussed

in detail.

At first, introduce the error variables: e
(a)
k = x∗k − x(tk), e

(b)(t) = xr(t)− x(t) and recall

x̃r(t) = x̂(t)− xr(t). The estimation error satisfies x̃(t) = x̂(t)− x(t). Then it follows

x̃(t) = x̂(t)− x(t) = e(b)(t) + x̃r, ∀t ≥ 0, (5.12)
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Grid search based nonconvex optimization 

Real time capable observer

The smallest rectangular

covers

Figure 5.3.: Summary of the proposed observer

ẋr(t) = ẋ(t), ∀ t = (tk, tk+1). (5.13)

It follows from 5.13 that for k ∈ N

ė(b)(t) = 0, t ∈ (tk, tk+1). (5.14)

The following is also true

˙̃xr(t) = −Kεx̃r(t). (5.15)

Since Kε is positive definite, it follows that x̃r = 0 is globally asymptotically stable.

Let ’diam’ denote the diameter of a set. Then we have following properties.

Proposition 5.2.1. For all k ∈ N+, ||e(a)
k || ≤ ||e

(a)
k−1||. If there exits a number k0 such

that Diam(D(tk0)) ≤ r, where r is some positive constant, then ||e(a)
k || ≤ r for any k > k0

.
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Proof. First notice that at any tk+1, the following always holds:

xr(tk+1) = x∗k + x(tk+1)− x(tk), (5.16)

therefore,

e
(a)
k = e(b)(tk+1). (5.17)

Now consider two situations. In the first situation, suppose xr(tk) ∈ D(tk), then accord-

ing to (5.10), x∗k is set to xr(tk) at t = tk+1, which implies e
(a)
k = e(b)(tk). Further using

(5.17),

e
(a)
k = e(b)(tk) = e

(a)
k−1 (5.18)

is obtained. In the second situation, suppose xr(tk) 6∈ D(tk), then from (5.10) it is easy

to deduce that

||x(tk)− x∗k|| < ||x(tk)− xr(tk)||,

which means that

||e(a)
k || < ||e

(b)(tk)|| = ||e
(a)
k−1||. (5.19)

It follows from (5.18) and (5.19) that the sequence ||e(a)
k ||, k = 0, 1, ...,+∞ is non-

increasing.

Suppose k0 as specified in Proposition 5.2.1 exits. Since both x(tk0) and x∗k0 are in D(tk0)

and Diam(D(tk0)) ≤ r, there is ||e(a)
k0
|| ≤ r. Since the sequence ||e(a)

k || is non-increasing,

||e(a)
k || ≤ r for any k > k0 is deduced.

Proposition 5.2.2. The equilibrium x̃ = 0 is stable. Furthermore, it is globally asymp-

totically stable for initial time t = t0 if there exists tkε ≥ T + t0, such that the system is

T -observable w.r.t x at t = tkε.

Proof. According to (5.12), there is

x̃(t) = e(b)(t) + x̃r.

Since the sequence ||e(a)
k || is non-increasing, further noticing (5.14), (5.17) and that
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x̃r = 0 is globally asymptotically stable, it can be deduced that x̃ = 0 is globally stable.

Furthermore, if the system is T -observable w.r.t x at t = tkε , there is ||e(a)
kε
|| = 0,

indicating ||e(b)(tkε+1)|| = 0. According to Proposition 5.2.1, the sequence ||e(b)(tk)|| is

also non-increasing, further combining (5.14), it can be thus deduced that the equilibrium

x̃ = 0 is globally attractive. Since the equilibrium x̃ = 0 is also globally stable, it can be

concluded that equilibrium x̃ = 0 is globally asymptotically stable.

Proposition 5.2.2 shows that the estimation error of x can be guaranteed not growing

even if the system trajectory lacks observability. This can be achieved because the

update law for x∗k specified by (5.10) relies on integration of the sensor information

during the period of time when the system trajectory lacks observability. In reality the

sensor and computation error is inevitable, so one cannot rely on open-loop integration

for too long time. It is crucial that the system recovers observability from time to time

for an accurate observation.

It can be noted that while observability is lost, it is usually not easy to guarantee a

non-increasing estimation error using some other schemes even without model uncer-

tainties and disturbances. For instance, those methods [101] based on strict Lyapunov

functions for time-varying systems usually require persistent excitation conditions. If

the persistence of excitation is lost, then the Lyapunov function candidate may have

positive time-derivatives, which indicates that the estimation error may actually grow

over time.

5.2.2.3. Grid-search based optimization

The optimization problem defined in (5.9) is non-convex in some situations, especially

when the vehicle is performing in areas of nonlinear dynamics [8]. As a result, any local

optimization methods, such as Sequential Quadratic Programming (SQP) [89], may be

trapped in local optima and thus fail to find the global optima. Global non-convex

optimization is in general challenging. Stochastic optimization methods, like Differential

Evolution [111] (DE), Particle Swarm Optimization [63] (PSO), are possibly good choices.

However, if the optimization time or iteration steps are fixed, these methods usually

cannot guarantee to output the optimal solution. Therefore, in this work a grid-search

method [92] is utilized to approximate the solution of the optimization problem. Grid-

search is an exhaustive searching method, so the required search time for obtaining global

optima can be calculated. Though it suffers from the curse of dimensionality, there are
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only two dimensions in this problem.

The grid-search method is applied as follows:

Considering a balance between numerical precision and computation efficiency, a double

discretization is implemented. At first, the parameter domain Φ is discretized into a grid

with adaptive resolution and the value of the cost function is evaluated at each vertex

of the grid to find the optimal solution. Once the parameter node corresponding to the

optimal solution is found, one may choose a smaller region Φ1 ∈ Φ that contains the best

node. A discretization of the region Φ1 with higher resolution can be made for further

searching the final optimal solution. This procedure can be carried out iteratively.

The details of the grid-search algorithm are described in Fig.5.4 and Fig.5.5. In Fig.5.4,

the parameter domain Φ is discretized with adaptive resolution. Firstly begin with how

the grid is adaptively discretized. As is known, at tk−1, for a fixed Fyf (tk−1) without

being zero, the absolute value of the corresponding αf,l(tk−1) based on linear tire model

is smaller than αf (tk−1) from nonlinear tire model, see Fig. 5.6. Thus, on the basis of

these two front tire slip angles, there are different side slip angles βcl and β shown in the

following

βcl(tk−1) = αf,l(tk−1)−
lfω(tk−1)

vx(tk−1)
+ δ(tk−1), (5.20)

β(tk−1) = αf (tk−1)−
lfω(tk−1)

vx(tk−1)
+ δ(tk−1), (5.21)

where both βcl(tk−1) and β(tk−1) are calculated based on single track model. Subse-

quently, by subtracting (5.21) from (5.20),

βcl(tk−1)− β(tk−1) = αf,l(tk−1)− αf (tk−1). (5.22)

is deduced. The following observer is utilized to estimate αf,l(tk−1),

α̇f,l = (a− b)(cos δ)Cfαf,l + bmay − ω − δ̇, (5.23)

which is based on (4.3b) in section 4.2.2, where Cfαf,l is used to replace the front axle

lateral force Fyf , and Cf refers to front axle cornering stiffness based on linear single

track model. Finally, there is following property:

βcl(tk−1) ≤ β(tk−1) αf,l(tk−1) ≥ 0,

βcl(tk−1) > β(tk−1) αf,l(tk−1) < 0. (5.24)
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αf,l(tk−1) ≥ 0 αf,l(tk−1) < 0

βr βr

βl βl

βcl(tk−1) βcl(tk−1)

∆β11

∆β12

µmax,r µmax,rµmax,l µmax,l∆µmax,1

Figure 5.4.: Discretization of Φ with adaptive resolution.

This property is further explained in Appx. D. Therefore, when αf,l(tk−1) is larger than

or equal to zero, the real side slip angle β(tk−1) should be also larger than or equal to

βcl(tk−1) and thus the nodes in the corresponding areas with higher resolution (∆β12)

are evaluated as shown in Fig. 5.4, and vice versa.

After the parameter node corresponding to the optimal solution in Φ is found, a smaller

region Φ1 ∈ Φ shown in Fig. 5.5 is chosen that contains the best node to further

search the more accurate solution with higher resolution (∆β2, ∆µmax,2). Considering

the measurement noise, model uncertainty as well as observability influence on the cost

evaluations, the whole nodes (within Φ1) whose costs are smaller than k times of the

new evaluated minimum cost are collected. Then, among these nodes the minimum

and maximum β as well as µmax are chosen, which form the boundary of D(tk−1) ∈ Φ1.

Finally, in D(tk−1) the node x∗k−1 closest to the xr(tk−1) is chosen which is calculated

by integration based on the selected node from last grid-search.

5.3. Simulation and experiment results

5.3.1. Simulation results

In this part, based on a nonlinear single track model including lateral load transfer, four

different maneuvers — sinusoidal, step steer, double lane change as well as a random

maneuver — are simulated to show the tire-road friction estimation results, which is

analogue to the procedure explained in the section 4.5 dealing with methods including
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Figure 5.5.: Discretization of Φ1 with higher resolution.
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Figure 5.6.: Linear and nonlinear tire model characteristics. For a given tire lateral force,
the tire slip angles of the linear tire model are consistently smaller than those
of the nonlinear tire model.
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5. Tire-road friction coefficient estimation without tire self-aligning torque

the tire self-aligning torque. In the following simulation, the proposed optimization

based observer is abbreviated as opti. Besides, a linearization based observer (lbo) 3

from [37] is introduced as a comparison. The settings conducted for the opti and lbo for

simulations can refer to Table 5.1 and Table 5.2, separately. It can be noted that the

optimization horizon in simulation is 0.35 s, and the update period of the optimization

result is 0.1 s, indicating that the grid-search optimization should be finished within 0.1

s. With respect to the discretization in Φ, the length of edge in β direction consist of

∆β11 = 0.015 rad and ∆β12 = 0.004 rad, and the length of edge in µmax direction is 0.1.

It has to be mentioned that search length of β means the diameter of the β set in Φ1 in

the second discretization, so is the search length of µmax in Φ1
4. Furthermore, the nodes

with cost function smaller than k times of the minimum cost5 constitute D(t).

The simulation results are illustrated in Fig. 5.7 — Fig. 5.10 for the different maneuvers.

Besides, Table 5.3 and Table 5.4 show the statistical analysis (mean value of estimation

error (MVE) and root mean square of estimation error (RMS)) of the estimated β and

µmax from opti and lbo. As can be seen, opti can guarantee stability of µmax and β

estimation in a wider range of vehicle operations than lbo. Besides, opti can estimate

µmax and β overall better than lbo (in stable situation) in terms of RMS. In Fig. 5.7,

β from opti can converge to the real β within 1 s while β from lbo needs more than 2

s. For µmax estimation, opti can estimate the real value much faster than lbo, especially

on low friction road condition where opti takes 1 s while lbo up to 8 s. W.r.t. RMS,

results from opti are approximately the same (β) and half (µmax) of those from lbo,

respectively, demonstrating the higher accuracy. In Fig. 5.8, the step steer maneuver

doesn’t offer persistent excitation for lbo, so both β and µmax have deviation to the real

values. But this excitation is already enough for opti to obtain good estimation results,

which is also illustrated by the statistical analysis from Table 5.3 and Table 5.4. In Fig.

5.9, opti estimates β as good as lbo. However, w.r.t. µmax estimation, opti can still

accurately obtain the real results both on high and low friction road conditions while

lbo can not on low friction road condition. Besides, µmax from lbo converges slower than

that from opti on high friction road condition. What interesting is that RMS of µmax

from lbo is slightly better than that from opti, this is because between 4.5 s and 6 s

both µmax estimation results from opti and lbo are frozen and estimated µmax from lbo

is coincidently close to the real value, leading to lower RMS. In Fig. 5.10, the real µmax

3The lbo is widely implemented for simultaneously side-slip angle and tire-road friction estimation[37,
67, 68].

4An example is given to explain the search length in detains: let Φ1 = [βε,l, βε,r] × [µε,l, µε,r], then
search length of β and µmax in the second discretization are βε,r − βε,l and µε,r − µε,l, respectively.

5Based on the evaluation of nodes in Φ1.
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changes from high friction to low friction, finally jump to the medium road condition.

From 0 to 5 s, both opti and lbo cannot estimate µmax accurately, because the excitation

is too small, leading to the tire force staying in the quasi-linear region. From 5 s to 12

s, the road condition decrease to 0.3, which brings the tire force into highly nonlinear

region, resulting in the instability of lbo. However, opti performs still quite well. Even

when the road condition finally jumps to 0.5, lbo is still not able to fast converge to the

real µmax while opti can always reach the real one quite fast.

Table 5.1.: Parameters for the proposed optimization method.

Simulation Experiment

General
parameters

Sampling time: 0.01 s Sampling time: 0.01 s

Optimization horizon T : 0.35 s Optimization horizon T : 1 s

Update period ∆t : 0.1 s Update period ∆t : 0.1 s

First dis-
cretization
in Φ

βl = −0.15 rad, βr = 0.15 rad βl = −0.15 rad, βr = 0.15 rad

µmax,l = 0.05, µmax,r = 1.15 µmax,l = 0.05, µmax,r = 1.15

∆β11 = 0.015 rad, ∆β12 = 0.004 rad ∆β11 = 0.015 rad, ∆β12 = 0.004 rad

∆µmax,1 = 0.1 ∆µmax,1 = 0.1

Second dis-
cretization
in Φ1

Search length of β: 0.035 rad Search length of β: 0.035 rad

Search length of µmax: 0.3 Search length of µmax: 0.3

∆β2 = 0.0005 rad ∆β2 = 0.001 rad

∆µmax,2 = 0.03 ∆µmax,2 = 0.03

k = 1.05 k = 1.2

Filter

Kε =

 min(10, 0.03sign(β̃r)

β̃r
) 0

0 3

 Kε =

 min(10, 0.3sign(β̃r)

β̃r
) 0

0 3

for final

results
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5. Tire-road friction coefficient estimation without tire self-aligning torque

Table 5.2.: Basic information of observer from [37]

Observer Simulation Experiment

lbo
˙̂vy = ay − ωvx + kvy(ay − ây(v̂y, µ̂max))

˙̂µmax = kµ
∂ây
∂µ̂max

(
∂ây
∂v̂y

)−1(ay − ây(v̂y, µ̂max))

kvy = 0.08

kµ = 7

kvy = 0.15

kµ = 4

Table 5.3.: Statistical analysis of the estimated side slip angle from opti and lbo in sim-
ulations and experiments: MVE means mean value of estimation error and
RMS denotes root mean square of estimation error.

MVE (β◦) RMS (β◦)

opti lbo opti lbo

Simulation

Sinusoidal (mixed µmax) -0.029 -0.055 0.150 0.158

Step steer (mixed µmax) -0.015 -0.076 0.065 0.103

Double lane change (mixed µmax) -0.015 -0.012 0.065 0.040

Random (mixed µmax) -0.009 -0.090 0.098 0.212

Experiment

Step steer (high µmax) 0.101 0.252 0.266 0.319

Slope steer (high µmax) -0.236 -0.206 0.352 0.288

Random (low µmax) 0.447 0.159 0.773 0.379

Slope steer (low µmax) -0.376 0.059 0.635 0.191
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Table 5.4.: Statistical analysis of the estimated µmax from opti and lbo in simulations and
experiments: MVE means mean value of estimation error and RMS denotes
root mean square of estimation error.

MVE (µmax) RMS (µmax)

opti lbo opti lbo

Simulation

Sinusoidal (mixed µmax) -0.004 -0.069 0.126 0.219

Step steer (mixed µmax) -0.008 -0.162 0.166 0.235

Double lane change (mixed µmax) 0.042 0.012 0.095 0.076

Random (mixed µmax) 0.040 -0.426 0.150 0.582

Experiment

Step steer (high µmax) 0.155 0.361 0.271 0.400

Slope steer (high µmax) 0.424 0.346 0.488 0.438

Random (low µmax) -0.070 -0.479 0.368 0.531

Slope steer (low µmax) -0.255 -0.746 0.488 0.746
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Figure 5.7.: Sinusoidal maneuver from high friction (vx = 20 m/s) to low friction
road condition (vx = 15 m/s): wheel steering angle amplitude is 0.05 rad,
frequency is 0.25 Hz.
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Figure 5.8.: Step steer maneuver from low friction to high friction road condition: vx =
15 m/s. Under low friction road condition, the wheel steering angle jumps
from 0 to 0.05 rad and then from 0.05 rad to 0.07 rad under high friction
road condition.
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Figure 5.9.: Double lane change maneuver from low friction to medium friction road
condition: vx = 12 m/s.
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Figure 5.10.: Random maneuver from high friction to low friction, finally to medium
road condition: vx = 12.5 m/s.

5.3.2. Experiment results

As explained in section 4.5.2, the vehicle experiments are conducted both in Nardò [5]

(concrete test track) and Arjeplog [4] (grinded ice test track) with a racing car called

Roding Roadster. The resources of measurements and references as well as other details

can be found in section 4.5.2. What has to be mentioned is that, due to the speed sensor

failure, the reference lateral veloctiy in the grinded ice test track is replaced by that

from a well parametrized nonlinear single track model. The parameters and settings

conducted for the opti and lbo for experiments can be found in Table 5.1 and Table

5.2, separately. It can be noted that, compared to the optimization horizon (0.35 s) in

simulation, it is set to 1 s in the experiment, such that the influence of model uncertainty

and measurement noise on the estimation results can be better reduced. The other

settings for optimization in the experiments are similar to those in simulation, except for

∆β2 = 0.001 rad and k = 1.2 as well as Kε =

[
min(10, 0.3sign(β̃r)

β̃r
) 0

0 3

]
. The reasons for

the setting differences are as follows: W.r.t. ∆β2, it is set in experiments larger than that

in simulations for reducing calculation burden caused by the long optimization horizon,

such that the estimated side slip angle and µmax from optimization can be updated in

each ∆t; For k, theoretically speaking, even it is set to 1, the real (β, µmax) should be
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5. Tire-road friction coefficient estimation without tire self-aligning torque

within the region D(t). However, due to the influence of the measurement noise and

model uncertainty, the real (β, µmax) may jump out of the region D(t) if k is 1 or set too

small. Thus in the experiments, k is set larger than that in simulations for guaranteeing

D(t) to contain the real (β, µmax); W.r.t. Kε as gain matrix for observer, the settings in

Kε should be correspondingly adapted for better estimation considering the measurement

noise and model uncertainty.

The experimental results are depicted in Fig. 5.11 and Fig. 5.12 for the concrete test

track, and Fig. 5.13 and Fig. 5.14 for the grinded ice test track. Besides, Table 5.3 and

Table 5.4 show the statistical analysis (mean value of estimation error (MVE) and root

mean square of estimation error (RMS)) of β and µmax estimation results from opti and

lbo, respectively. It can be concluded that opti can guarantee stability in a wider range

of vehicle operations than lbo. Besides, in terms of RMS, opti can estimate tire-road

friction coefficient much better than lbo both on high and low friction road condition;

On the contrary, opti performs overall similar as lbo in side slip angle estimation on high

friction road condition but worse than lbo on grinded ice test track. On the concrete test

track, in Fig. 5.11, opti can estimate tire-road friction (RMS 0.271) and side slip angle

(RMS 0.266◦) better than those (RMS 0.400 (µmax) and 0.319◦ (β)) from lbo, especially

from 8 s to 12 s, during which the tire-road friction estimation from opti is still good

while that from lbo becomes inferior. In Fig. 5.12, both opti and lbo perform well.

From 10 s on, lbo illustrates even slightly faster convergent ratio than opti in tire-road

friction estimation. On the grinded ice test track, in Fig. 5.13, opti can always output

a stable tire-road friction coefficient while lbo cannot. Around 20 s, estimation result of

µmax in lbo diverges and doesn’t converge to vicinity of real value until at 40 s. What

interesting is lbo with RMS (0.379◦) can estimate side slip angle better than opti with

RMS (0.773◦). A possible explanation is that, when the tires come into highly saturate

region, the cost function (5.8) is sensitive to the variation of the tire-road friction while

robust to the tire slip angle (so is the side slip angle). Consequently, combined with

model uncertainty and measurement noise, the size of D(t) in opti may be augmented,

especially the length of β, leading to the increase of estimation error in β. In Fig. 5.14,

similar performance like in Fig. 5.13 is shown, i.e. opti can estimate tire road friction

better than lbo, while lbo can observe side slip angle better than opti.
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Figure 5.11.: Step steer maneuver on high friction road condition: vx = 25 m/s.
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5. Tire-road friction coefficient estimation without tire self-aligning torque
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Figure 5.12.: Slope steer on high friction road condition: vx = 12.5 m/s.

5.4. Discussion

In this chapter, a method (method III) was proposed for estimating µmax based on

vehicle lateral dynamics without self-aligning torque information. When the system

is T -observable from time to time (much weaker condition than traditional observable

definition), the estimation error of side-slip angle and tire-road friction coefficient is

globally asymptotically stable, demonstrating that the observer works in a wide range

of vehicle operations. Besides, under no model uncertainty and measurement noise

influence, the estimation error does not grow even when the system lacks observability.

Furthermore, the proposed framework of this observer guarantee that it is able to run in

real time. Moreover, the sensors applied for the observer design are from mass produced

vehicles. Finally, by comparing the method III with a linearization based observer (lbo)
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under various simulations and experiments, it is demonstrated that: 1) the method III

can guarantee stability of estimation in a wider range of vehicle operations than lbo; 2)

W.r.t. root mean square of estimation error (RMS), the performance from method III is

overall better than that from lbo in µmax estimation. Therefore, the criteria presented

in the objective for tire-road friction estimation algorithms in this thesis are satisfied.
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Figure 5.13.: Random steering maneuver on low friction road condition: vx is slow vary-
ing around 12 m/s from 0 to 25 s, then changes to 7 m/s and stay around
it.
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Figure 5.14.: Slope steer on low friction road condition: vx = 5.5 m/s.
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6. Summary

6.1. Conclusion

The acquisition of an accurate tire-road friction coefficient can significantly augment

the performance and reliability of the existing vehicle dynamics control like ABS, ESC,

offering the potential to further decrease loss-of-control accidents. Moreover, as the

automation of driving advances, the automated system needs to take the responsibility

from the driver to adapt the driving style to the change of road conditions. However, as

presented in the state of the art, it is extremely difficult to estimate TRFC accurately and

reliably in real time based on vehicle systems. One drawback of TRFC estimation is the

need of installing additional sensors which gain costs of vehicles (mainly for cause-based

methods). Another shortcoming is that few methods can mathematically guarantee the

stability of µmax estimation in wide range of vehicle operations, leading to no guarantee

of accuracy and reliability in µmax estimation (mainly for effect-based methods).

The presented research deals with developing observers for estimating TRFC based on

vehicle lateral dynamics with sensors available on the current mass produced vehicles.

The observers are real time capable and asymptotically stable in a wide range of vehicle

operations. Besides, they were validated by simulations and experiments in various

maneuvers. The proposed observers can be classified into two branches of methods

for TRFC estimation depending on the availability of tire self-aligning torque (TSAT).

The first branch contains two methods with TSAT information: the method I is a

nonlinear adaptive observer with an indirect measurement based on estimated total

aligning torque and front axle lateral force, while the method II proposed a more

advanced nonlinear adaptive observer with no need to estimate front axle lateral force.

In the second branch, a method III without TSAT information is presented. This

method proposed an optimization based observer, with guarantee on real time capability

and finding the global optima. The more detailed summary of the whole research is as

follows:



6. Summary

The chapter 1 (Introduction) initially introduced current situations of road traffic fa-

talities and its influence on the victims and world economics. Then, the significance

of TRFC estimation for conventional and automated vehicles in improving road safety

was discussed. Finally, the objective, outline and contributions of this research was

presented.

The chapter 2 (Background) started to describe some basics about TRFC. Then the

state of the art of TRFC estimation was provided. Emphasis was laid on the effect-based

methods, especially on the vehicle dynamics based methods and then it was concluded

that the TRFC estimation based on vehicle lateral dynamics is actually a nonlinear

observer design problem. Thus, methods for nonlinear state and parameter estimation,

focusing on nonlinear adaptive observers, were subsequently summarized. Therein, dif-

ferent nonlinear adaptive observers were introduced based on the structure of dynamic

systems and the other observers were briefly reviewed with their mechanism, pros and

cons. Afterwords, why it is difficult to design observers for TRFC estimation was ex-

plained. Finally, the key ideas of how to tackle this nonlinear parameter estimation

problem in this research were presented.

The chapter 3 (Vehicle model) introduced a nonlinear single track model with a steering

system utilized for TRFC estimation. The single track model was expressed with yaw

rate and lateral velocity as state variables considering lateral load transfer. Besides,

the tire model TMsimple and TMeasy were chosen to model tire lateral force and tire

self-aligning torque, respectively, based on the comparison among magic formula, brush

model as well as TMsimple/TMeasy. Furthermore, the steering system was modelled

by a second order differential equation with available tie rod force measured by steering

gauge sensors. Finally, the process of how to utilize the tie rod force to estimate front

axle total aligning torque was demonstrated.

The chapter 4 (Tire-road friction coefficient estimation with tire self-aligning torque)

demonstrated two methods.

In method I, a framework was proposed to estimate TRFC with asymptotic stability

and robustness guarantee using total aligning torque (including self-aligning torque) in

the vehicle front axle during steering. Firstly, a novel strategy was proposed to estimate

the front axle tire lateral force which performs better than the classical unknown input

observer (UIO). Then, combined with an indirect measurement based on the estimated

total aligning torque and front axle tire lateral force, a nonlinear adaptive observer

was designed to estimate TRFC with asymptotic stability guarantee. To increase the
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6.1. Conclusion

robustness of the estimation result, criteria were proposed to decide when to update the

estimated TRFC.

Though method I is simple to implement, the indirect measurement is singular when total

aligning torque approaches zero. Meanwhile, front axle lateral force needs to be extra

estimated. Therefore, a method II, aiming at eliminating aforementioned shortcomings,

is proposed. It presented a nonlinear adaptive observer to estimate TRFC with no

need to estimate front axle lateral force. Firstly, the vehicle lateral dynamics model is

transformed into a lower-triangular form with yaw rate, xf (front axle tire slip angle

above TRFC) and TRFC as state variables. Then, for non-affine parametrized systems

in such a form, a nonlinear adaptive observer was proposed and its estimation error was

proved to be exponentially stable by constructing a strict Lyapunov function. Finally, the

design procedure was applied to the TRFC estimation problem with proper modifications.

It has to be mentioned that the proposed nonlinear adaptive observer is universally

applicable if other dynamic systems featuring the same system form (a lower-triangular

form) satisfy the corresponding assumptions for this observer.

The TRFC estimation results among method I and method II as well as Extended

Kalman Filter (EKF) were demonstrated and compared in both simulations and ex-

periments. The results showed that both method I and method II can guarantee

stability of TRFC estimation in a wider range of vehicle operations than EKF. Further-

more, in terms of root mean square of TRFC estimation error (RMS), the performance

from method I, method II and EKF (in stable situation) is overall similar. Moreover,

method I and method II are both real time capable.

The chapter 5 (Tire-road friction coefficient estimation without tire self-aligning torque)

proposed a method without utilizing tire self-aligning torque. Though estimating TRFC

with tire self-aligning torque is attractive, the availability and signal quality of tire self-

aligning torque cannot always be assured. Hence, the identification of TRFC without

tire self-aligning torque was also investigated. A method III was thus introduced:

Method III is an optimization based observer. This observer proposed an innovative

scheme consisting of a non-convex optimization part and an integration part. The non-

convex optimization is only utilized to estimate side slip angle and TRFC as initial value

for integration, thus, there is sufficient time left for finding the global optima through

adaptive resolution based grid-search. During the search of the global optima, the inte-

gration was applied based on previously obtained initial value to calculate side slip angle

and TRFC. This can be realized since the derivative of side slip angle is measurable
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and the derivative of TRFC is assumed to be zero. Therefore, by interweaving discrete

time solution of the optimization and continuous integration of derivatives from sensor

data, the scheme allows for sufficient time for finding the global optima. Meanwhile,

despite of the non-convex optimization, the observation scheme is able to run in real

time. One advantage of the proposed observer is that, under no model uncertainty and

measurement noise influence, the estimation error does not grow even when the system

lacks observability. When observability requirement is satisfied, global asymptotic sta-

bility of the observer can also be guaranteed. The estimation results from the proposed

observer and a linearization based observer (lbo) were finally compared under various

road conditions with simulations and experiments. The results showed that method

III performs better than lbo (in stable situations) w.r.t. root mean square of TRFC

estimation error and can always guarantee stability in a wide range of vehicle operations

while lbo cannot.

In summary, the present research proposed three different methods to estimate tire-road

friction coefficient based on the sensors from mass produced vehicles. These methods

can be divided into two branches depending on the availability of tire self-aligning torque

which can support estimating TRFC with less excitation requirement from driver com-

pared with purely tire lateral force. All these methods can work in real time and operate

in a wide range of vehicle states with accuracy and reliability guarantee. Therefore, these

algorithms may be applied for increasing the performance and reliability of the existing

vehicle dynamics control and advanced functions in the automated vehicles, and thus

accelerate the progress of bringing automated vehicles on the market.

6.2. Outlook

Based on the presented research, the following advices could further improve the tire-road

friction coefficient estimation results.

6.2.1. Consideration of uncertainty in tire cornering stiffness

The presented research assumed the tire cornering stiffness is accurately known and only

related to tire normal force. Actually, it is highly influenced by tire inflation pressure,

tire tread-depth and tire temperature as well as other factors [106], which will affect

the TRFC estimation result [101]. According to [101], 10% under- or overestimation of

tire cornering stiffness brings about roughly 10% estimation error of TRFC. Therefore,
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in future work, it is necessary to propose a real time capable and reliable method for

updating the tire cornering stiffness. For this, an expression, to account for its variations

in the tire inflation pressure, tire tread-depth, tire temperature as well as some other

factors measured by tire based sensors [106], should be investigated. Some maneuver-

dependent adaptive observers may be a good compensation for better accuracy of tire

cornering stiffness [104, 82].

6.2.2. Combination of longitudinal and lateral dynamics

For TRFC estimation, the researchers usually only focus on maneuvers with purely longi-

tudinal and lateral dynamics, which already cover many situations. However, combined

longitudinal and lateral dynamics exists, for instance, during aggressive lane change, the

driver may not only steer the wheels but also brake, resulting in highly combined vehicle

dynamics. In this situation, the tire model for purely lateral dynamics does not hold any-

more, because the generated tire slip ratio in longitudinal dynamics will already highly

affect the tire characteristics in the lateral force. Besides, the longitudinal force during

steering will also exert extra lateral force and yaw moment on vehicle, leading to varia-

tion of lateral dynamics. Omitting these influences may bring estimation errors of TRFC.

Therefore, combined vehicle dynamics in TRFC estimation will be also considered for

the future work.

6.2.3. Introduction of more sensors and techniques

With the development of automated vehicles, more sensors, such as GPS, tire force

sensors, camera, will be installed on the car. Based on these information, the velocity

estimation process is independent of the tire model, eliminating the largest uncertainties

in the real application[88]. Therefore, the tire model is only used to fit the obtained tire

slips and forces for tire-road friction estimation. Besides, the Car-to-X techniques are

able to receive historical friction data from the connected cars and data from weather

stations[91], which can offer relative reliable friction condition of the current road when

there are not enough excitation for vehicle-dynamics based TRFC estimation. Mean-

while, with this technology it will be possible to predict the TRFC of the oncoming road,

allowing for modification of the driving style. Therefore, introducing these sensors and

new techniques will significantly enhance the TRFC estimation accuracy and reliability

in the future.
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A. Vehicle and tire parameters

identification and validation

The vehicle utilized in this research is a racing car called Roding Roadster, see fig. A.1.

Its parameters presented in Table A.1 (except for steering system parameters) and Table

A.2 (except for tire self-aligning torque parameters of front tires) are identified and

validated in a previous projects with the industrial partner thyssenkrupp presta [87].

Therein, the parameters of the lateral tire forces in front and rear axles are obtained

by a test truck called “Mobile Tire Testing Laboratory” at the University of Applied

Science Biel in Switzerland, see Fig. A.2. In this section, based on vehicle dynamics test

in Nardò, the parameters of steering system and front tires’ self-aligning torque will be

identified and validated.

Figure A.1.: test racing car Roding Roadster. ©Foto: thyssenkrupp.



A. Vehicle and tire parameters identification and validation

Table A.1.: Vehicle parameters (except for steering system parameters) identified by An-
dreas Mitterrutzner [87]

Parameters Symbol Value Unit

Vehicle mass m 1376 kg

Vehicle’s moment of inertial (round z axle) Iz 1900 kgm2

Wheel base l 2.495 m

Front track wf 1.62 m

Rear track wr 1.61 m

Distance of front axle to center of gravity lf 1.384 m

Distance of rear axle to center of gravity lr 1.111 m

Height of centre of gravity hg 0.415 m

Rotational inertial coefficient of steering system Js 1.1 kgm2

Damping coefficient of steering system ks 26.9 Nm/(rad/s)

Mechanical trail dc 0.0339 m

Figure A.2.: test truck for lateral tire force parametrization [87].
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Table A.2.: Tire parameters of Roding Roadster, front tires: Michelin 225/40/ZR18, rear
tires: Michelin 265/35/ZR18. The identification and validation of the lateral
tire force parameters for front and rear tires are conducted in [87] while the
parameters of self-aligning torque in front tires are carried out in this study.

Parameters Symbol Front tires Rear tires

Nominal tire load Fz,nom 2500 N 3000 N

Extra tire load Fz,2nom 4858 N 4926 N

Peak force Ymax(Fz,nom, µ0) 3380 N 4300 N

Nominal tire-road
µ0 1 1

friction coefficient

Peak force Ymax(Fz,2nom, µ0) 5700 N 6110 N

Initial stiffness dY 0(Fz,nom) 55200 N/rad 73950 N/rad

Initial stiffness dY 0(Fz,2nom) 96000 N/rad 107900 N/rad

Saturation force Yinf (Fz,nom, µ0) 2600 N 2900 N

Saturation force Yinf (Fz,2nom, µ0) 4000 N 4100 N

Initial normalized
(nL)0(Fz,nom) 0.3355 no data

pneumatic trail

Initial normalized
(nL)0(Fz,2nom) 0.3627 no data

pneumatic trail

Overshot wheel
s0
y(Fz,nom, µ0) 0.1219 rad no data

slip angle

Overshot wheel
s0
y(Fz,2nom, µ0) 0.128 rad no data

wheel angle

Saturated wheel
sEy (Fz,nom, µ0) 0.25 rad no data

slip angle

Saturated wheel
sEy (Fz,2nom, µ0) 0.225 rad no data

slip angle

Vertical stiffness cz 295000 N/m no data

Unloaded tire radius r0 0.3186 m no data
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A. Vehicle and tire parameters identification and validation

A.1. Tire self-aligning torque, steering system parameters

identification and validation

Three steps are taken to identify and validate the tire self-aligning torque and steer-

ing system parameters based on the steering system shown in Fig. A.3 and its state

equations1 in (A.1).

Jsδ̈ + ksδ̇ = τg(t)− τzf (t),

τg(t) = Fl(t)Ll(δ)− Fr(t)Lr(δ), (A.1)

τzf (t) = Mzfl +Mzfr + (Fyfl + Fyfr)dc,

where Js is the rotational inertia coefficient, ks the damping coefficient, δ the front wheel

steering angle, τzf (t) the total aligning torque, τg(t) the aligning torque caused by Fl(t)

and Fr(t) which are the tie rod forces on the left and right sides measured by strain gauge

sensors, Ll(δ) and Lr(δ) are the vertical distances between the tie rod to the kingpin

separately which vary with steering angle and a lookup table is already pre-created, Mzfl

and Mzfr the front left and right tire self-aligning torque separately, Fyfl the front left

tire lateral force, Fyfr the front right tire lateral force, dc the mechanical trail of front

tires which is assumed to be the same for both front left and right tires and is measured

in advance. It has to be mentioned that the contribution of jacking torque coefficient

here can be omitted since the jacking torque caused by the vertical load on the right and

left wheels are mutually cancelled [85].

The three steps are as follow:

1. A steady state maneuver — constant circular radius driving (30 m) with slowly

increasing longitudinal velocity — is conducted to identify the parameters of front

tires’ self-aligning torque. This will work because the dynamics of steering system

is not activated under steady state maneuver;

2. After obtaining the parameters of front tires’ self-aligning torque, several dynamic

maneuvers are carried out to parametrize the steering system;

3. Finally, several dynamic maneuvers are implemented to validate the parametriza-

tion results performed in the above two steps.

The maneuvers for identifying and validating the tire self-aligning torque and steering

system parameters are listed in Table A.3.

1These state equations or similar ones are utilized by many other work, such as in [10].

XXII



A.1. Tire self-aligning torque, steering system parameters identification and validation

Steering rackdc

δ

Mzfl

MzfrFyfl
Fyfr

dc

Ll LrFl Fr

δ

Figure A.3.: Steering system

Table A.3.: list of maneuvers for identifying and validating self-aligning torque and steer-
ing system parameters.

Maneuver Number Description Purpose Road Condition

Cr-30m-lft-MD-001
steady state
steer

tire self-aligning torque
nominal µ0

parametrization

Oc-90-06g-02 sinusoidal steer steering system
parametrization

nominal µ0
StepRight-70-04g-01 step steer

OC-50-04g-02 sinusoidal steer
model validation nominal µ0

StepLeft-70-04g-01 step steer

A.1.1. Tire self-aligning torque parameters identification

Firstly a constant circular radius (30 m) maneuver is utilized with slowly increasing lon-

gitudinal velocity shown in Fig. A.4 to identify the tire self-aligning torque parameters.

With this steady state maneuver, the steering system in (A.1) can be simplified into

0 = τg(t)− τzf (t),

τg(t) = Fl(t) ∗ Ll(δ)− Fr(t) ∗ Lr(δ), (A.2)

τzf (t) = Mzfl +Mzfr + (Fyfl + Fyfr)dc.

Here, Fl(t) and Fr(t) can be directly measured and a table of Ll(δ) and Lr(δ) varying
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A. Vehicle and tire parameters identification and validation
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Figure A.4.: Vehicle states for self-aligning torque parametrization with a constant radius
circular driving maneuver. Maneuver Number: Cr-30m-lft-MD-001

with the wheel steering angle is used, thus τg(t) can be directly calculated. Based on

(3.1a) and Fyr = may − Fyf cos(δ), Fyf (= Fyfl + Fyfr) can be obtained with

Fyf =
lrmay + Izω̇

(lf + lr) cos(δ)
, (A.3)

where lf and lr are the distance between front and rear axle to vehicle center of gravity

(CoG) , m is the vehicle mass, ay the lateral acceleration, Iz the vehicle inertial moment,

ω the yaw rate, Fyr the rear axle tire lateral force.

After obtaining Fyf , front axle tire self-aligning torque (Mzf = Mzfl+Mzfr) is acquired

based on eq.(A.2). Subsequently, front left and right tire self-aligning torque is calculated

XXIV



A.1. Tire self-aligning torque, steering system parameters identification and validation

as follows:

Mzfl =
F

3/2
zfl

F
3/2
zfl + F

3/2
zfr

Mzf ,

Mzfr =
F

3/2
zfr

F
3/2
zfl + F

3/2
zfr

Mzf , (A.4)

where Fzfl and Fzfr are the front left and front right tires’ normal force calculated based

on (3.5) and (3.6a).

In the following, why the front left and right tire self-aligning torque can be calculated

with (A.4) will be explained. In the front axle, for the same tire slip angle and tire-road

friction coefficient, Mzfl and Mzfr can be expressed as

Mzfl = Fyfl(αf , µmax, Fzfl) · Ll(Fzfl) · (
n

L
)l(αf , µmax, Fzfl),

Mzfr = Fyfr(αf , µmax, Fzfr) · Lr(Fzfr) · (
n

L
)r(αf , µmax, Fzfr), (A.5)

with following assumptions

Fyfl(αf , µmax, Fzfl)

Fyfr(αf , µmax, Fzfr)
≈

Fzfl
Fzfr

,

Ll(Fyfl)

Lr(Fyfr)
=

F
1
2
zfl

F
1
2
zfr

, (A.6)

(nL)l(αf , µmax, Fzfl)

(nL)r(αf , µmax, Fzfr)
≈ 1,

It has to be mentioned that though normal force will influence (nL)l(αf , µmax, Fzfl) and

(nL)r(αf , µmax, Fzfr), the affect is actually very small [100]. Therefore, the ratio of front

left to front right tire self-aligning torque can be represented as

Mzfl(αf , µmax, Fzfl)

Mzfr(αf , µmax, Fzfr)
≈

F
3/2
zfl

F
3/2
zfr

, (A.7)

which deduces (A.4).

After obtaining Mzfl and Mzfr, they are normalized to the corresponding values under

nominal normal force (2500 N) and extra normal force 4858 N based on (A.7), separately.

Finally, combined with measured tire slip angle, tire self-aligning torque of the front tires
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A. Vehicle and tire parameters identification and validation
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Figure A.5.: Tire self-aligning torque parametrization for normal forces 4858 N and 2500
N on nominal tire-road condition µ0 = 1 with a constant radius (30 m)
circular driving maneuver.

is parametrized, which is shown in Fig.A.5. The corresponding parameters can refer to

Table.A.2.

A.1.2. Steering system parameters identification

After parametrizing the tire self-aligning torque, several dynamic maneuvers (a sinusoidal

and a step steer maneuver) listed in Table. A.3 are performed to identify steering system

parameters. At first, the dynamic steering system in (A.1) can be re-formulated as

A(t)Θ = y(t), (A.8)

with

A(t) = (δ̈, δ̇),

Θ = (Js, ks)
T ,

y(t) =
(
Fl(t) ∗ Ll(δ)− Fr(t) ∗ Lr(δ)

)
−
(
Fyf (αf , µ0) ∗ dc +Mzf (αf , µ0)

)
,
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A.1. Tire self-aligning torque, steering system parameters identification and validation

where Fyf (αf , µ0) and Mzf (αf , µ0) are calculated based on parametrized TMsimple

(Fyf (αf , µ0)) and TMeasy (Mzf (αf , µ0)) with measured αf under nominal µ0.

Therefore, with least squares method, these two parameters are obtained which are

Js = 1.1 kg.m2 and ks = 26.9 Nm/(rad/s).

A.1.3. Self-aligning torque and steering system validation

After identification of tire self-aligning torque and steering system parameters, several

maneuvers are performed to validate the parametrization quality. In Fig.A.6 and Fig.A.7,

it can be noticed that the total aligning torques (τzf ), yaw rate as well as lateral ac-

celeration from vehicle model and measured values conform to each other well, which

demonstrates accurate parametrization of tire self-aligning torque and steering system,

and again shows the well parametrization of vehicle and tire lateral force model from

[87].
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Figure A.6.: Validation of tire parameters and steering system with sinusoidal maneuver.
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A. Vehicle and tire parameters identification and validation
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Figure A.7.: Validation of tire parameters and steering system with step steer maneuver.
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B. Vehicle model transformation

According to (4.3), there are

ω̇ =
lFyf cos δ

Iz
− lrmay

Iz
, (B.1)

α̇f = (a− b)(cosδ)Fyf + bmay − ω − δ̇, (B.2)

where a = 1
mvx

+
l2f
Izvx

, b = 1
mvx
− lf lr

Izvx
. Then, by introducing (4.5),

Fyf =
τzf

gf (xf ) + ff (xf )dc
· ff (xf ) (B.3)

is deduced. Subsequently, Fyf is reformulated as

Fyf = −|τzf |sign(xf ) ·
( ff (xf )

gf (xf ) + ff (xf )dc
−mv

)
+ τzfmv, (B.4)

where mv = limxf→0
ff (xf )

gf (xf )+ff (xf )dc
and |τzf |sign(xf ) = −τzf , such that a monotonic con-

tinuous term with respect to xf in Fyf is generated, which is−|τzf |sign(xf )·
( ff (xf )
gf (xf )+ff (xf )dc

−
mv

)
.

Finally, replacing the Fyf in B.1 with B.4 and dividing the both side of B.2 by µmax,

ω̇ =
lτzfmv cos(δ)− lrmay

Iz
+
−|τzf |l cos(δ)

Iz
(

ff (xf )

gf (xf ) + ff (xf )dc
−mv)sign(xf )

ẋf = (a− b)(cosδ)ff (xf ) + (bmay − ω − δ̇)
1

µmax

are obtained.



B. Vehicle model transformation
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C. Some notes for method II

C.1. Parameter projection

Let the set of possible parameters be defined by Π := {θ̂ ∈ Rr|P (θ̂) ≤ 0}, where

P : Rr → R is a smooth, convex function. Let Π0 denote the interior of Π, and let Πε

be defined by Πε = {P (θ̂) ≤ ε}, where ε is a small positive value, making Πε a slightly

larger superset of Π. Consider the update function uθ̂(t, x̂, ϕ̂2, θ̂) = Proj(τ(t, x̂, ϕ̂2, θ̂)) =

ρ(t, x̂, ϕ̂2, θ̂)τ(t, x̂, ϕ̂2, θ̂), with ρ(t, x̂, ϕ̂2, θ̂) given by

� ρ(t, x̂, ϕ̂2, θ̂) = I if θ̂ ∈ Π0 or ∇θ̂P
T τ(t, x̂, ϕ̂2, θ̂) ≤ 0,

� ρ(t, x̂, ϕ̂2, θ̂) =
(
I − c(θ̂)Γ2∇θ̂P∇θ̂P

T /(∇θ̂P
TΓ2∇θ̂P )

)
if θ̂ ∈ Πε\Π0 and ∇θ̂P

T τ(t, x̂, ϕ̂2, θ̂) > 0,

where c(θ̂) = min{1, P (θ̂)/ε}, ∇θ̂P = ∂P (θ̂)

∂θ̂
, Γ2 is the symmetric positive-definite matrix

corresponding to the gain matrix in the update law.

C.2. Details in error dynamics

The deduction process of error dynamics for designed observer is as follows:

˙̃ϕ1 = ϕ̇1 − ˙̂ϕ1

= B1(t, ω)
∂g1(ω, x)

∂x

(
f2(t, x) +B2(t, x)g2(x, θ)

)
+
∂B1(t, ω)

∂t
g1(ω, x) +

∂(B1(t, ω)g1(ω, x))

∂ω
ω̇

+Kϕ1(f1(t, ω) + ϕ̂1) +B1(t, ω)
∂g1(ω, x̂)

∂x̂

(
uτ − f2(t, x̂)−B2(t, x̂)g2(x̂, θ̂)

)
−Kϕ1ω̇ −B1(t, ω)

∂g1(ω, x̂)

∂x̂
uτ −

∂B1(t, ω)

∂t
g1(ω, x̂)− ∂(B1(t, ω)g1(ω, x̂))

∂ω
ω̇

= −Kϕ1ϕ̃1 + d1(t, ω, θ, x̃) + d3(t, ω, x̂, θ̃)

˙̃x = ẋ− ˙̂x

= f2(t, x) +B2(t, x)g2(x, θ)− uτ (t, ω, x̂, ϕ1, θ) + d4(t, ω, x̂, ϕ̃1, θ) + d5(t, ω, x̂, ϕ̂1, θ̃)



C. Some notes for method II

˙̃ϕ2 = ϕ̇2 − ˙̄ϕ2

=
∂B2(t, x)

∂t
g2(x, θ) +

∂B2(t, x)g2(x, θ)

∂x
ẋ+Kϕ2(f2(t, x̂) + ϕ̂2)

+B2(t, x̂)
∂g2(x̂, θ̂)

∂θ̂
uθ(t, x̂, ϕ̂2, θ̂)−Kϕ2 ẋ−

∂B2(t, x)

∂t
g2(x, θ̂)

−∂B2(t, x)g2(x, θ̂)

∂x
ẋ−B2(t, x)

∂g2(x, θ̂)

∂θ̂
uθ(t, x̂, ϕ̂2, θ̂)

= −Kϕ2ϕ̃2 + d2(t, x, θ̃) + d6(t, x̃, ϕ̂2, θ̂)

˙̃
θ = θ̇ − ˙̂

θ

= −uθ(t, x, ϕ2, θ̂) + d7(t, x, ϕ̃2, θ̂) + d8(t, x̃, ϕ̄2, x̂, θ̂),

where

d1(t, ω, θ, x̃) = B1(t, ω)
(∂g1(ω, x)

∂x
f2(t, x)− ∂g1(ω, x̂)

∂x̂
f2(t, x̂)

)
+
∂B1(t, ω)

∂t

(
g1(ω, x)− g1(ω, x̂)

)
+B1

(∂g1(ω, x)

∂x
B2(t, x)g2(x, θ)− ∂g1(ω, x̂)

∂x̂
B2(t, x̂)g2(x̂, θ)

)
+
(∂(B1(t, ω)g1(ω, x))

∂ω
− ∂(B1(t, ω)g1(ω, x̂))

∂ω

)
ω̇

d2(t, x, θ̃) = (
∂B2(t, x)g2(x, θ)

∂x
− ∂B2(t, x)g2(x, θ̂)

∂x
)ẋ

+
∂B2(t, x)

∂t
(g2(x, θ)− g2(x, θ̂))

d3(t, ω, x̂, θ̃) = B1(t, ω)
∂g1(ω, x̂)

∂x̂
B2(t, x̂)(g2(x̂, θ)− g2(x̂, θ̂))

d4(t, ω, x̂, ϕ̃1, θ) = uτ (t, ω, x̂, ϕ1, θ)− uτ (t, ω, x̂, ϕ̂1, θ)

d5(t, ω, x̂, ϕ̂1, θ̃) = uτ (t, ω, x̂, ϕ̂1, θ)− uτ (t, ω, x̂, ϕ̂1, θ̂)

d6(t, x̃, ϕ̂2, θ̂) = −Kϕ2

(
Kϕ2x−Kϕ2 x̂+ f2(t, x)− f2(t, x̂)

)
+Kϕ2

(
B2(t, x̂)g2(x̂, θ̂)−B2(t, x)g2(x, θ̂)

)
+
(
B2(t, x̂)

∂g2(x̂, θ̂)

∂θ̂
−B2(t, x)

∂g2(x, θ̂)

∂θ̂

)
uθ(t, x̂, ϕ̂2, θ̂)

d7(t, x, ϕ̃2, θ̂) = uθ(t, x, ϕ2, θ̂)− uθ(t, x, ϕ̄2, θ̂)

d8(t, x̃, ϕ̄2, x̂, θ̂) = uθ(t, x, ϕ̄2, θ̂)− uθ(t, x̂, ϕ̄2, θ̂) + uθ(t, x̂, ϕ̄2, θ̂)− uθ(t, x̂, ϕ̂2, θ̂)
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C.3. Proof of Proposition 4.4.1

C.3. Proof of Proposition 4.4.1

Choose Lyapunov function

Vx(t, x̃) =
1

2
x̃TΓ−1

1 x̃,

with which

1

2
λmin(Γ−1

1 )||x̃||2 ≤ Vx(t, x̃) ≤ 1

2
λmax(Γ−1

1 )||x̃||2

is deduced, indicating Vx(t, x̃) being radially unbounded. Then there is

V̇x(t, x̃) =
1

2
x̃TΓ−1

1
˙̃x+

1

2
˙̃xTΓ−1

1 x̃

≤ −k1

2

((
g1(ω, x)− g1(ω, x̂)

)T
BT

1 M
T
1 x̃+ x̃TM1B1

(
g1(ω, x)− g1(ω, x̂)

)
−x̃T 1

k1
Γ−1

1

(
f2(t, x)− f2(t, x̂) +B2(t, x)g2(x, θ)−B2(t, x̂)g2(x̂, θ)

)
−
(
f2(t, x)− f2(t, x̂) +B2(t, x)g2(x, θ)−B2(t, x̂)g2(x̂, θ)

)T 1

k1
Γ−1

1 x̃
)

+∆(x̃, ϕ̃1, θ̃)

≤ −k1p
∗
1||x̃||2 + (l4(Γ1, k1)||ϕ̃1||||x̃||+ l5||θ̃||||x̃||)||Γ−1

1 ||

= −α1||x̃||2 + β2(ϕ̃1, θ̃)||x̃||

where ∆(x̃, ϕ̃1, θ̃) =
(
d4(t, ω, x̂, ϕ̃1, θ) + d5(t, ω, x̂, ϕ̂1, θ̃)

)T
Γ−1

1 x̃, α1 = k1p
∗
1, which is a

positive scalar, β2(ϕ̃1, θ̃) = ||Γ−1
1 ||

(
l4(Γ1, k1)||ϕ̃1||+ l5||θ̃||

)
.

To derive the forementioned inequations, a projection property in Lemma E.1 of [75] is

applied, which is

−x̃TΓ−1
1 uτ (t, ω, x̂, ϕ1, θ)

= −x̃TΓ−1
1 Proj

(
k1Γ1M1

(
ϕ1 −B1(t, ω)g1(ω, x̂)

)
+ f2(t, x̂) +B2(t, x̂)g2(x̂, θ)

)
≤ −x̃Γ−1

1

(
k1Γ1M1

(
ϕ1 −B1(t, ω)g1(ω, x̂)

)
+ f2(t, x̂) +B2(t, x̂)g2(x̂, θ)

)
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C. Some notes for method II

Besides, the following inequality

x̃TM1B1

(
g1(ω, x)− g1(ω, x̂)

)
+
(
g1(ω, x)− g1(ω, x̂)

)T
BT

1 M
T
1 x̃

−x̃T 1

k1
Γ−1

1

(
f2(x)− f2(x̂) +B2(x)g2(x, θ)−B2(x̂)g2(x̂, θ)

)
−
(
f2(x)− f2(x̂) +B2(x)g2(x, θ)−B2(x̂)g2(x̂, θ)

)T 1

k1
Γ−1

1 x̃

=

∫ 1

0
x̃T
(
M1B1

∂g1(ω, x̂+ px̃)

x
+
∂gT1 (ω, x̂+ px̃)

x
BT

1 M
T
1

− 1

k1
Γ−1

1

∂(f2(t, x̂+ px̃) +B2(t, x̂+ px̃)g2(x̂+ px̃, θ))

∂x

− 1

k1

∂(f2(t, x̂+ px̃) +B2(t, x̂+ px̃)g2(x̂+ px̃, θ))T

∂x
Γ−1

1

)
x̃dp

≥
∫ 1

0
x̃T 2p1(t, ω)x̃dp = 2x̃T p1(t, ω)x̃ ≥ 2p∗1x̃

T x̃,

from [89] is also applied.
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D. Property for adaptive resolution in

method III

For the nonlinear single track model, there is following dynamic equation

α̇f = (a− b)(cosδ)Fyf (αf , µmax) + bmay − ω − δ̇, (D.1)

which is already shown in (4.3b) by assuming a constant longitudinal velocity, where

a = 1
mvx

+
l2f
Izvx

, b = 1
mvx
− lf lr

Izvx
. Now, use Cfαf,l to replace Fyf (αf , µmax), a linear

observer with αf,l as the state is obtained:

α̇f,l = (a− b)(cosδ)Cfαf,l + bmay − ω − δ̇, (D.2)

where (a− b)(cosδ) > 0. Based on (D.1) and (D.2), the following property is proved:

Property D.0.1.

βcl ≤ β if αf,l ≥ 0,

βcl > β if αf,l < 0, (D.3)

where βcl = αf,l −
lfω
vx

+ δ and β = αf −
lfω
vx

+ δ

Proof. By subtracting (D.2) from (D.1),

˙̃αf,e = (a− b)(cos δ)(Fyf (αf , µmax)− Cfαf,l) (D.4)

is deduced, where α̃f,e = αf − αf,l. As is known, Fyf (αf , µmax) can be expressed as

C̄(αf , µmax)αf , where Cf ≤ C̄f (αf , µmax) < 0. Therefore, (D.4) can be rewritten as

˙̃αf,e = (a− b)(cos δ)(C̄fαf − C̄fαf,l) + (a− b)(cos δ)(C̄fαf,l − Cfαf,l). (D.5)



D. Property for adaptive resolution in method III

Subsequently,

˙̃αf,e = (a− b)(cos δ)C̄f α̃f,e + (a− b)(cos δ)(C̄f − Cf )αf,l. (D.6)

is deduced. The equilibrium point of (D.6) is α̃f,e = (Cf/C̄f−1)αf,l, where Cf/C̄f−1 > 0

if αf,l 6= 0, otherwise, Cf/C̄f−1 = 0. Thus, it can be deduced that sign(α̃f,e) = sign(αf,l).

Combined with sign(α̃f,e) = sign(β − βcl), Property D.0.1 is proved.
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