
Thomas Holzmann

Image-Based Urban 3D Reconstruction

DOCTORAL THESIS

to achieve the university degree of

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Prof. Dr. Horst Bischof

Institute for Computer Graphics and Vision

Graz University of Technology

Dr. Florent Lafarge

Inria Sophia Antipolis Mediterranee

Graz, Austria, Feb. 2019

The greatest enemy of knowledge is
not ignorance, it is the illusion of
knowledge.

Stephen Hawking (1942 - 2018)

iii

Abstract

Having overlapping images from a scene, there exist mature 3D reconstruction techniques

to reconstruct the scene geometry. These approaches can use a high amount of high-

resolution images and are able to reconstruct point clouds or surface models representing

the underlying geometry with high accuracy. However, the resulting reconstructions are

very often noisy, which leads to visually unappealing results and non-compact models,

which need to be described with a big amount of data.

For several applications like mapping services or construction industry, well regularized

and visually appealing reconstructions of urban environments are demanded. These recon-

structions should also be representable in a compact way in order to be able to transmit,

process and visualize them efficiently. In this thesis, two methods are proposed tackling

this problem. These methods are able to create well regularized 3D reconstructions of

urban environments, which can be represented in a compact way.

The first method is a slicing-based approach: It partitions the scene into horizontal

slices and computes a 2D outline for every slice. Then, using the computed slice outlines,

an irregularly shaped volumetric cell decomposition is created covering the whole scene.

Finally, an inside/outside labeling for every cell is computed by solving an energy mini-

mization problem with energy terms covering visibility information, vicinity to input data

and detected line segments. As a result, this method delivers compact building models

consisting of planar surfaces and sharp edges.

The second method is a more generic reconstruction method, which is based on a tetra-

hedralization of the scene. Planes are detected within the scene and incorporated in the

tetrahedralization. For this, a plane detection algorithm using 3D lines is proposed which

improves the plane detection results especially for poorly textured urban environments.

Then, an energy minimization problem is solved, which labels each tetrahedron as inside

or outside. As energy terms, visibility-based energy and semantic class-dependent terms

are used, which favor Manhattan-like structures at buildings and a smooth reconstruction

of the surroundings. As a result, this method delivers visually appealing reconstructions

v

vi

of urban scenes containing buildings reconstructed by planar surfaces and sharp edges,

and surroundings of buildings reconstructed by a smooth surface.

In our experiments, we compare the results of the proposed methods with state-of-the-

art methods and show in detail the effects of the individual contributions. We show that

the slicing-based approach creates very compact and regularized building models which

still cover the most important details. Further, we show that this method is very robust

to erroneous input data and can produce regularized results even if the input contains

large errors. We show that the proposed tetrahedra-based method generates visually

appealing and compact 3D reconstructions of urban environments containing buildings

modeled mainly by planes and having sharp outlines while still being able to reconstruct

fine details whereas comparable methods either create over-smoothed or over-simplified

results.

Kurzfassung

Mit dem aktuellen Stand der Technik entsprechenden 3D Rekonstruktionsmethoden kann

ausgehend von überlappenden Bildern einer Szene die Szenengeometrie rekonstruiert wer-

den. Diese Methoden können eine hohe Anzahl von hochauflösenden Bildern verarbeiten

und Punktwolken oder Oberflächenmodelle erstellen, die die zugrundeliegende Geometrie

mit hoher Genauigkeit widerspiegeln. Jedoch sind die resultierenden Rekonstruktionen

oft verrauscht, was zu visuell nicht ansprechenden Ergebnissen und zu nicht kompakten

Modellen führt. Diese müssen wiederrum mit einer großen Menge an Daten beschrieben

werden.

Für verschiedene Anwendungen (z.B. für Kartierungsdienste oder in der Baubranche)

sind gut regularisierte und visuell ansprechende Rekonstruktionen von urbanen

Umgebungen gewünscht. Diese Rekonstruktionen sollen auch in einer kompakten Weise

repräsentierbar sein, um sie effizient übertragen, prozessieren oder visualisieren zu

können. In dieser Dissertation werden zwei Methoden vorgestellt, die dieses Problem

behandeln. Diese Methoden können gut regularisierte 3D Rekonstruktionen von urbanen

Umgebungen erstellen, welche in einer kompakten Weise repräsentiert werden können.

Die erste Methode ist ein scheibenbasierter Ansatz: Sie unterteilt die Szene in hor-

izontale Scheiben und berechnet den 2D Umriss von jeder Scheibe. Unter Verwendung

dieser berechneten Scheibenumrisse wird folgend eine Szenenunterteilung in unregelmäßig

geformte volumetrische Zellen, die die ganze Szene beinhaltet, erstellt. Als letzter Schritt

wird durch Lösen eines Energieminimierungsproblems, das die Sichtbarkeitsinformation,

die Nähe zu den Eingangsdaten und detektierte Liniensegmente berücksichtigt, jede dieser

Zellen als innen oder außen markiert. Als Ergebnis liefert diese Methode kompakte

Gebäudemodelle bestehend aus planaren Oberflächen und scharfen Kanten.

Die zweite Methode ist eine generischere Rekonstruktionsmethode und basiert auf

einer Tetrahedralisierung der Szene. Ebenen werden in der Szene detektiert und in die

Tetrahedralisierung eingearbeitet. Da punktbasierte Ebenendetektoren in schlecht tex-

vii

viii

turierten urbanen Umgebungen nicht immer zufriedenstellend funktionieren, verwendet

unsere vorgeschlagene Ebenendetektionsmethode 3D Linien, welche in solchen Umgebun-

gen konsistenter rekonstruiert werden können. Als nächster Schritt wird ein Energiemi-

nimierungsproblem gelöst, das jeden Tetraeder als innen oder außen markiert. Als Energi-

eterme werden sichtbarkeitsbasierende Energie und semantische klassenabhängige Terme

verwendet, die Manhattan-ähnliche Strukturen bei Gebäuden und eine glatte Rekonstruk-

tion der Umgebung der Gebäude bevorzugen. Diese Methode liefert visuell ansprechende

Rekonstruktionen von urbanen Szenen als Ergebnis, in denen Gebäude hauptsächlich mit

planaren Oberflächen und scharfen Kanten und die Umgebungen von Gebäuden mit glat-

ten Oberflächen repräsentiert sind.

In den Experimenten vergleichen wir Ergebnisse von den vorgestellten Methoden mit

anderen, dem neuesten Stand der Technik entsprechenden Methoden und diskutieren

die Effekte der individuellen Beiträge dieser Arbeit. Wir illustrieren, dass der scheiben-

basierende Ansatz sehr kompakte und regularisierte Gebäudemodelle erstellt, welche noch

immer die wichtigsten Details enthalten. Weiters zeigen wir, dass diese Methode sehr ro-

bust gegenüber fehlerhaften Eingangsdaten ist und auch regularisierte Ergebnisse erzeugen

kann, wenn die Eingangsdaten große Fehler beinhalten. Wir zeigen, dass die vorgeschla-

gene tetraederbasierende Methode visuell ansprechende und kompakte 3D Rekonstruk-

tionen von urbanen Umgebungen erzeugt. In diesen werden Gebäude hauptsächlich als

Ebenen und mit scharfen Kanten repräsentiert und gleichzeitig auch feine Details rekon-

struiert, wohingegen vergleichbare Methoden entweder zu stark geglättete oder zu verein-

fachte Ergebnisse erzeugen.

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

First I would like to thank Prof. Horst Bischof for giving me the opportunity to pursue a

PhD degree under his supervision. Further, I want to thank Ass.-Prof. Friedrich Fraun-

dorfer for his continuous assistance and many fruitful discussions. In general, it was a

pleasure to pursue a PhD in such an inspiring atmosphere at the ICG and having many

people with different specializations within the area of computer vision around me.

Then, I also want to thank my second examiner, Florent Lafarge, for taking the time

to read my thesis and come the long way to Graz for attending my defense. It is an honor

having him as an examiner, as several research ideas presented in this thesis were inspired

by his work.

More general, I want to thank my colleagues at ICG (and especially my office colleagues

and all aerial vision group members) not only for research discussions but also for the social

factor at the institute. It was great talking with you also about random stuff within the

coffee breaks or during other social activities.

I also want to thank Martin R. Oswald from ETH Zurich. Together with him, several

ideas were developed which led to publications during my studies. Further, I want to thank

Stefan Kluckner from Siemens. During the time working together with him at Siemens,

he motivated me for pursuing a PhD at the ICG.

Last but not least, I want to thank my family and friends who always supported me

during my studies. Especially, I want to thank Gudrun for supporting me all the time

and going with me through all the highs and lows of my PhD time while simultaneously

founding a family and giving birth to our daughter Lara.

This work has mainly been funded by the Austrian Science Fund (FWF) in the project

V-MAV (I-1537). In addition, I further received funding from the following institu-

tions/companies during my time as PhD student: From the Austrian Research Promo-

xi

xii

tion Agency(FFG) within the project FreeLine (Bridge1, 843450), the European Union

for working on the 3D-pitoti project (Seventh Framework Programme, 600545) and from

Sony for working on the project SemanticSfM.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Outline . 6

2 Image-Based 3D Reconstruction 7

2.1 Basics and Notation . 7

2.1.1 Camera Model . 8

2.1.2 Two-View Geometry . 10

2.2 Structure-from-Motion . 12

2.2.1 Feature Extraction and Matching . 13

2.2.2 Geometric Verification . 13

2.2.3 Incremental SfM . 14

2.2.4 Global SfM . 14

2.2.5 Example Pipelines . 15

2.3 Multi-View Stereo Reconstruction . 15

2.4 Line Reconstruction . 16

2.5 Surface Reconstruction . 17

2.5.1 Poisson Surface Reconstruction . 17

2.5.2 Tetrahedralization-Based Methods 20

2.5.2.1 Delaunay Triangulation . 20

2.5.2.2 Surface Reconstruction . 20

2.5.3 Methods Using a Signed Distance Function 23

2.6 Summary . 23

xiii

xiv

3 Related Work 25

3.1 Reconstruction Using a Scene Hypothesis 25

3.2 Shape Priors Incorporated in Generic Reconstruction Methods 28

3.3 Semantic Scene Reconstruction . 30

3.4 Summary . 31

4 Slicing for Building Reconstruction 33

4.1 Method Overview . 34

4.2 Input Data . 35

4.3 Horizontal Slicing and Cell Decomposition 36

4.3.1 Horizontal Slicing . 36

4.3.2 Binary Labeling . 37

4.3.3 Slice Combination . 38

4.4 Volumetric Cell Labeling as an Energy Minimization Problem 40

4.5 Summary . 44

5 Shape Priorization in Tetrahedra-Based Methods 45

5.1 Method Overview . 47

5.2 Plane Detection . 48

5.2.1 Point-Based Plane Detection . 49

5.2.2 Line-Based Plane Detection . 49

5.2.2.1 Line Triple Detection . 50

5.2.2.2 Line Triple Clustering . 50

5.2.2.3 Inlier Detection and Outline Estimation 51

5.2.2.4 Plane Filtering . 51

5.2.3 Plane-Based Denoising . 51

5.3 Tetrahedralization of the Scene . 51

5.4 Tetrahedra Subdivision . 52

5.4.1 Tetrahedra Intersected by Plane . 52

5.4.2 Consistency Adoptions . 52

5.4.3 Margin Tetrahedra . 52

5.5 3D Reconstruction Using Tetrahedral Occupancy Labeling 55

5.6 Visibility-Based Energy Computation . 56

5.6.1 Unnormalized Energy Formulation 56

5.6.1.1 Unary Costs . 56

5.6.1.2 Pairwise Costs . 56

5.6.2 Normalized Energy Formulation . 56

5.6.3 Computation of Visibility Information 58

5.6.3.1 Using Pre-Computed Visibility Information 58

5.6.3.2 Visibility Computation Using Depth Maps 59

5.7 Plane-Aware Regularization . 60

xv

5.7.1 Manhattan Regularity Term . 60

5.7.2 Level of Detail Term . 61

5.7.3 Plane Intersection Artifacts Removal 61

5.8 Semantically Aware Urban Reconstruction 62

5.8.1 Semantic Segmentation . 62

5.8.2 Input Data Subdivision and Semantic Preprocessing 63

5.8.3 Semantically Varying Smoothness Terms 64

5.9 Summary . 65

6 Experiments 67

6.1 Input Data . 67

6.1.1 Block Building . 68

6.1.2 House . 69

6.1.3 Residential Area . 70

6.2 Implementation Details . 71

6.3 Default Parameters . 71

6.4 Results and Comparisons . 72

6.4.1 Runtimes . 75

6.5 Method-Specific Detailed Evaluations . 78

6.5.1 Slicing-Based Method . 78

6.5.1.1 Parameter Selection . 78

6.5.1.2 Block Building . 79

6.5.1.3 Long Building . 82

6.5.1.4 Non-Manhattan Building 83

6.5.1.5 Runtime Discussion . 85

6.5.2 Plane-Based Regularization Method 85

6.5.2.1 Block Building . 86

6.5.2.2 Building Complex . 88

6.5.2.3 House . 89

6.5.2.4 Indoor . 90

6.5.2.5 Entry-P10 . 90

6.5.2.6 Runtime Breakdown . 91

6.5.3 Semantically Aware Regularization Method 94

6.5.3.1 Plane Detection Using Lines 94

6.5.3.2 Normalized Visibility-Based Energy Term 95

6.5.3.3 Semantic 3D Data . 98

6.5.3.4 Semantic Priors . 99

6.5.3.5 Simplification as Post-Processing 99

6.6 Summary . 100

xvi

7 Conclusions 105

7.1 Summary . 105

7.2 Outlook . 107

A List of Acronyms 111

B List of Publications 113

B.1 2018 . 113

B.2 2017 . 114

B.3 2016 . 115

B.4 2015 . 116

B.5 2014 . 117

Bibliography 119

List of Figures

1.1 Example reconstructions form commercial reconstruction pipelines 2

1.2 Reconstruction in Google Maps . 3

1.3 Reconstruction from Matterport . 4

2.1 Pinhole camera model . 8

2.2 Epipolar geometry . 10

2.3 Example SfM result . 13

2.4 Reconstruction from PMVS2 . 16

2.5 Line reconstruction . 17

2.6 Poisson surface reconstruction . 18

2.7 Oriented points and Poisson indicator function 18

2.8 Voronoi diagram and Delaunay triangulation 21

2.9 Visibility-based energy computation . 22

2.10 Delaunay triangulation-based reconstruction 22

3.1 Illustrations from (Schnabel et al., 2007) . 26

3.2 Illustrations from (Xiao et al., 2014) . 27

3.3 Illustrations from (Lafarge et al., 2013) . 29

3.4 Illustrations from (Häne et al., 2013) . 30

4.1 Meshed dense and slicing-based regularized model 35

4.2 Method overview of slicing-based method 35

4.3 Slice boundary detection . 36

4.4 Slice labeling . 37

4.5 Volumetric cell decomposition and slice extrusion 39

4.6 Constrained Delaunay triangulation . 39

4.7 Line detections and backprojected facet . 42

xvii

xviii LIST OF FIGURES

4.8 Line distance computation . 43

5.1 Textured results of the tetrahedra-based method 46

5.2 Overview of the processing pipeline of the tetrahedra-based method 47

5.3 Line-based plane detection . 50

5.4 Tetrahedra intersected by plane - overview intersection cases 53

5.5 Tetrahedra intersected by plane - consistency adaptions 3-point intersection 54

5.6 Tetrahedra intersected by plane - consistency adaptions 4-point intersection 54

5.7 Tetrahedra intersected by plane - subdivision of margin tetrahedra 55

5.8 Normalized visibility-based energy computation 57

5.9 Manhattan regularity term . 60

6.1 Images of the Block Building . 68

6.2 Images of the House dataset . 69

6.3 Ground truth point cloud . 69

6.4 Point clouds of evaluation scenes . 70

6.5 Images of the Residential Area dataset . 70

6.6 Results of commercial reconstruction pipelines 72

6.7 Results and comparisons with state-of-the-art 74

6.8 Ground truth point errors . 76

6.9 Meshed dense reconstruction and regularized model of Block Building . . . 79

6.10 Results of Block Building with PMVS2 . 80

6.11 Results of Block Building with SfM . 81

6.12 Images of Long Building . 82

6.13 Results of Long Building . 83

6.14 Back side of Long Building . 84

6.15 Images of Non-Manhattan Building . 84

6.16 Results of Non-Manhattan Building . 85

6.17 Comparison of generic reconstruction to plane-based regularization method 86

6.18 Results with varying level of detail of Block Building 87

6.19 Comparison to others on Block Building . 88

6.20 Comparison to others on Building Complex 89

6.21 Plane-based regularization method with different level of detail settings . . 90

6.22 Comparison to others on House dataset . 91

6.23 Comparison to others on Indoor dataset . 92

6.24 Comparison to others on Entry-P10 dataset 93

6.25 Runtime plane-based regularization method 93

6.26 Results of semantically aware method . 94

6.27 Comparison of line-based and point-based plane detection 95

6.28 Comparison of line-based plane detection to others 96

6.29 Error visualization of normalized and unnormalized visibility-based energy . 98

LIST OF FIGURES xix

6.30 Evaluation of individual changes of visibility-based energy 101

6.31 Semantically labeled images . 102

6.32 Semantically labeled point clouds . 102

6.33 Comparison of results with/without semantics 103

6.34 Simplification as post-processing . 103

List of Tables

6.1 Error comparisons with state-of-the-art . 73

6.2 Runtimes . 77

6.3 Quantitative comparison of plane detection 97

6.4 Errors of normalized and unnormalized visibility-based energy 97

6.5 Errors of individual changes of visibility-based energy 99

xxi

1
Introduction

Contents

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Outline . 6

1.1 Motivation

The research area of image-based 3D reconstruction has a long history and was originally

developed as a sub-discipline of geodesy, namely photogrammetry. As the physicist Do-

minique Francois Arago (1786 - 1853) presented the invention of photography in 1839

to the Académie Française, he already mentioned the possibilities for measuring using

photographic images. 20 years later, first trials were made to use images for topographic

purposes. Subsequently, several researchers investigated in the topic of using images for

measuring applications during the second half of the 19th century. At the end of the 19th

century, photogrammetry was already used for creating measurements from historic mon-

uments or mountains and glaciers. Starting from the beginning of the 20th century, aerial

images were used for photogrammetry in order to create topographic maps of cities [2, 20].

In the late 1960s, a new research field, namely computer vision emerged in which

experts in the field of artificial intelligence aimed to make a computer see. Initially, this

problem was thought to be solved within a student summer project. 52 years later, we now

know that this problem cannot be solved that easily. In contrast to the already existing

field of digital image processing, computer vision aimed at understanding the whole scene

in 3D.

Several algorithms which are still the basis for algorithms used today were developed

in the consecutive decades. For example, early work was done on edge extraction, line

labeling, stereo correspondence search, optical flow or Structure from Motion (SfM). In

1

2 Chapter 1. Introduction

Figure 1.1: Example reconstruction results from commercial reconstruction software: Agisoft [1]
(left) and Pix4D [75] (right). Using images taken from an Unmanned Aerial Vehicle (UAV) as
input, these two commercial 3D reconstruction pipelines can reconstruct the scene accurately and
with high detail. However, especially at poorly textured façades, the reconstructed surface gets
very noisy. Further, edges of the building are reconstructed very smooth and not as sharp edges,
with would be favored for buildings with planar shapes.

the 1990s, the field started using full global optimization for camera calibration, which

was later recognized as being the same as the bundle adjustment technique used in the

area of photogrammetry [88].

With this long history in the field of computer vision and photogrammetry, the re-

search area of image-based 3D reconstruction has reached a high level of maturity. Having

this knowledge, reconstruction pipelines evolved, with which it is possible to reconstruct

big scenes with high accuracy from hundreds or even thousands of high resolution im-

ages. Typical 3D reconstruction pipelines consist of several processing steps: In the first

step, which is called SfM , the relative camera poses are computed using sparse keypoint

matches. Then, a Multi-View Stereo (MVS) approach is applied, which computes dense

depth information for every camera. The depth information from all cameras is consecu-

tively projected and fused in 3D to get a dense point cloud representation of the scene.

Finally, a surface mesh can be generated using the dense point cloud in order to get a

surface representation of the scene.

Nowadays, there exists software for 3D reconstruction which includes all these steps

within the processing pipeline: There exist commercial products (e.g., Agisoft [1],

Pix4D [75]) and open-source solutions (e.g., Colmap [83]), which take images as input

and reconstruct large-scale scenes as dense point clouds or surface models, as can be seen

in Figure 1.1.

However, due to errors and clutter in image-based measurements and the lack of infor-

mation at parts of the scene (e.g., at untextured surfaces like white façades, see Figure 1.1),

such reconstruction techniques often produce noisy or incomplete point clouds and sur-

faces. Further, to describe such a noisy reconstruction with 3D points or a surface, a huge

amount of data (i.e., many points or vertices/faces) is needed.

1.1. Motivation 3

Figure 1.2: Reconstruction of Manhattan in Google Maps [25]. Within Google Maps it is possible
to visualize 3D reconstructions of whole cities. For this, a compact representation of the recon-
structed surface is required which is still accurate and, simultaneously, visually appealing. Image
taken from [25].

For many applications like, for example, visualization of urban environments, visually

appealing urban reconstructions having little noise, planar surfaces and sharp edges are

demanded. Additionally, it should be possible to represent the reconstruction with a small

amount of data to be able to process, transmit, visualize and store the reconstructions

in an efficient way. Further, an adjustable level of detail of the final reconstruction is

desired: It should be possible to represent the whole scene just by a small set of geometric

primitives, in case a lightweight representation for simple transmission and further pro-

cessing is wanted. However, in case a more detailed representation of the scene is desired,

it should be easily possible to change this level of detail of the reconstruction. Probably

the most famous example of large-scale urban 3D reconstruction and visualization of ur-

ban environments is Google Maps [25], which includes reconstructions of whole cities and

visualizes them (see Figure 1.2) within a web browser. To achieve a good user experience,

it needs reconstruction techniques to produce visually appealing and still accurate models

which are also compact in order to easily process the data, transmit it via the Internet

and visualize it within a browser.

There exist several other application scenarios where similar requirements are defined:

For example, with the increasing accuracy and popularity of image-based 3D reconstruc-

tion techniques and the availability of low-cost scanning devices, the construction industry

includes 3D reconstruction techniques for planning, building and verification purposes into

project work cycles. They aim to correct and update original building plans which are

often either not available or outdated. Having abstracted and simplified reconstructions

of buildings eases this processing step. Further, real estate companies aim to create vi-

4 Chapter 1. Introduction

Figure 1.3: Reconstruction of an indoor scene with Matterport [59]. Matterport creates 3D
models from indoor and outdoor scenes using an active 3D scanning device, like a structured light
or a laser scanner. After being processed, the user can explore the scene using a VR device or in
the browser. Image from Pennsylvania Craftsman Home, taken from [59].

sually appealing reconstructions of their offered houses such that potential customers can

virtually walk around and into houses. For all these applications, compact models similar

to ones created by CAD software is desired.

Another application scenario is the currently emerging field of Virtual Reality (VR) or,

more general, computer games: Many companies now aim at creating virtual environments

from the real world with the goal to simulate real-world environments or just to ease the

process of modeling large scenes. In order to be usable and processable, one cannot just

use a detailed reconstruction containing millions of points and faces. A more compact yet

still accurate representation is necessary, which can be easily stored and processed.

Usually, state-of-the-art image-based 3D reconstruction pipelines create detailed recon-

structions using images as input. However, they are not well suited for creating compact

and yet visually appealing reconstructions. Other commercial solutions use active 3D

scanners in order to reconstruct indoor and outdoor environments for being visualized

later on in the browser or with a VR device (see Figure 1.3). However, they also do not

solve the problem of creating visually appealing and, simultaneously, compact 3D models

even though they are using expensive sensors for capturing.

For such applications, up to our knowledge no available software solution exists which

takes only images as input and produces visually appealing and compact 3D reconstruc-

tions while still having high reconstruction accuracy. This motivated us to investigate in

this topic and elaborate reconstruction techniques to fulfill these requirements.

1.2. Contributions 5

1.2 Contributions

In this thesis, we contribute with urban 3D reconstruction techniques, which create visu-

ally appealing and compact reconstructions of urban environments as result. Such urban

environments contain buildings and surroundings of buildings including vegetation, streets

and pavement. We define the following criteria for a visually appealing urban 3D recon-

struction, which are usually not tackled by current 3D reconstruction approaches:

• Planar shape prior: When planar and nearly planar surfaces exist in the scene (e.g.,

façades, roofs), they should also be reconstructed as planar surfaces.

• Straight building outlines: Edges of buildings should be straight and represented by

a straight line (i.e., no noisy edges).

• Detailed buildings and smoothed surroundings: As for several applications (e.g., real

estate companies) detailed building reconstructions are required, details should be

kept while regularizing with a plane prior. Simultaneously, the surrounding of build-

ings does not necessarily be reconstructed with high details but with a smoothed,

visually appealing surface.

We contribute with a slicing-based method, which aims to model buildings using the

assumption that they can be represented as a set of stacked horizontal slices. It does this

by partitioning the scene into horizontal slices, creates irregularly shaped volumetric cells

using the slices and computes an inside/outside labeling of the volumetric cells by solving

an energy minimization problem using Graph Cuts [10]. Additionally, it uses line cues to

improve the reconstruction. As a result, this method delivers compact and geometrically

abstracted building models containing mainly planar surfaces and sharp edges. However,

the surrounding of buildings is usually not modeled with this method.

Further, we contribute with a method which makes usage of the more general assump-

tion that big parts of the scene can be represented by detected planes in the scene. This

method partitions the scene into tetrahedra and computes an inside/outside labeling of

every tetrahedron. Detected planes in the scene are integrated within the tetrahedral cell

decomposition and additionally semantic information is used to treat different parts of

the scene differently. We contribute with a plane detection algorithm, which uses 3D line

segments as input, which improves the detection result in poorly textured urban scenes.

Additionally, we contribute with a normalized visibility-based energy formulation which

eases the combination of multiple energy terms within an energy minimization problem.

As a result, the tetrahedra-based method is able to deliver visually appealing reconstruc-

tions of buildings and their surroundings, where the building parts are mainly represented

by planar surfaces and sharp edges, and the surroundings by smooth surfaces. As a post-

processing step, data reduction can be done without loosing accuracy in order to create

compact representations of the scene.

6 Chapter 1. Introduction

1.3 Outline

In Chapter 2 we describe the basic algorithms to compute relative poses of cameras and

sparse point clouds, to compute dense point clouds and line reconstructions, and finally

how to compute surface models. Next, in Chapter 3 we discuss in detail related work

within the area of urban 3D reconstruction. In Chapter 4 and Chapter 5 we describe

our proposed methods for creating urban 3D reconstructions and in Chapter 6 a detailed

evaluation of all the contributions is presented and results are compared with other state-

of-the-art methods. Finally, we discuss conclusions in Chapter 7.

2
Image-Based 3D Reconstruction

Contents

2.1 Basics and Notation . 7

2.2 Structure-from-Motion . 12

2.3 Multi-View Stereo Reconstruction 15

2.4 Line Reconstruction . 16

2.5 Surface Reconstruction . 17

2.6 Summary . 23

Due to the long history of image-based 3D reconstruction, mature reconstruction meth-

ods evolved which are able to reconstruct scenes with different representations like point

clouds or surface models. Usually, a reconstruction pipeline contains several processing

steps: In the first step, the goal is to compute the camera poses from which input images

were taken, and simultaneously reconstruct the scene geometry (which is called Structure

from Motion (SfM)). Having this information, it is possible to do further processing steps

in order to get a more precise geometry reconstruction: One can reconstruct a dense point

cloud using a Multi-View Stereo (MVS) algorithm or a reconstruction consisting of 3D

line segments. Using this more precise geometry, it is then possible to create a surface

model of the whole scene.

In this chapter, we first discuss some basics and notation conventions used in image-

based 3D reconstruction. Then, we review all the above mentioned processing steps used

in 3D reconstruction pipelines in more detail.

2.1 Basics and Notation

In this section, we discuss some basic conventions and notations used for image-based

3D reconstruction. We describe a camera model commonly used and its parametrization.

7

8 Chapter 2. Image-Based 3D Reconstruction

𝑋
𝑋

𝑍

𝑌

𝐶 p
x

y
x

Camera
center

Image plane

Principal axis

𝑍

𝑌

𝐶
f

p

fY/Z

Figure 2.1: Illustration of the pinhole camera model. Left, one can see the camera center placed
at the origin with the image plane in front of it. The 3D point X is projected to the 2D point x on
the image plane. Right, the mapping using similar triangles is illustrated, with which a mapping
from a 3D point to a point on the image plane can be computed.

Then, we discuss the two-view geometry relation, which is used to estimate relative poses

between cameras.

2.1.1 Camera Model

One of the camera models frequently used is called the pinhole camera, which is a special-

ization of the general projective camera. According to [31], a mapping of 3D scene points

to image coordinates is defined as follows: Considering a central projection and defining

as center of projection the origin of an Euclidean coordinate system, a point in space with

coordinates X = (X,Y, Z)T is mapped to a point on the plane Z = f , which is called

the image plane or focal plane. This mapped point on the image plane is computed by

intersecting the image plane with a line joining the point X with the center of projection

C, which is called camera center or optical center. The line going perpendicularly through

the image plane and originating at the camera center is called principal axis or princi-

pal ray, and the point where the principal axis intersects with the image plane is called

principal point p. Figure 2.1 illustrates these geometric relations.

Using similar triangles, one can compute a mapping between a 3D point to a 2D point

on the image plane (also see Figure 2.1):

(X,Y, Z)T 7−→ (fX/Z, fY/Z)T , (2.1)

which is a mapping from Euclidean 3-space R3 to Euclidean 2-space R2.

By using the projection described in Equation 2.1, it is assumed that the origin of the

coordinates in the image plane is at the principal point. However, in practice there is an

offset and, hence, a mapping

(X,Y, Z)T 7−→ (fX/Z + px, fY/Z + py)T , (2.2)

2.1. Basics and Notation 9

where (px, py)T are the coordinates of the principal point, can be defined. By expressing

this equation in homogeneous coordinates, one gets the following equation:
X

Y

Z

1

 7−→
 fX + Zpx
fY + Zpy

Z

 =

 f px 0

f py 0

1 0

X

Y

Z

1

 . (2.3)

When writing,

K =

 f px
f py

1

 , (2.4)

then Equation 2.3 can be written as

x = K[I | 0]Xcam, (2.5)

where x is the 2D point on the image plane and Xcam is the 3D point expressed in the

camera coordinate frame. Further, [I | 0] defines the 3x3 identity matrix concatenated with

a 3x1 zero vector and the matrix K is called the camera calibration matrix or intrinsic

calibration matrix.

Contrary to the 3D point Xcam, which is expressed in the camera coordinate frame,

points in space are usually expressed in the world coordinate frame. This two coordi-

nate frames are related via a rotation and a translation, also known as extrinsic camera

calibration.

Having X̃ representing an inhomogeneous 3-vector representing the coordinates of a

point in the world coordinate frame, and X̃cam representing the same point in the camera

coordinate frame, then there exists a transformation X̃cam = R(X̃− C̃), which transforms

the point X̃ in the world coordinate frame into the camera coordinate frame. C̃ represents

the coordinates of the camera center in the world coordinate frame, and R is a 3×3 rotation

matrix representing the orientation of the camera coordinate frame. Writing this equation

in homogeneous coordinates, one gets

Xcam =

[
R −RC̃
0 1

]
X

Y

Z

1

 =

[
R −RC̃
0 1

]
X. (2.6)

By combining this equation with Equation 2.5, the mapping of a 3D point in the world

coordinate frame onto the image plane can be computed:

x = KR[I | − C̃]X, (2.7)

10 Chapter 2. Image-Based 3D Reconstruction

𝐶 𝐶′

𝑋 𝑋

x x’ x

Epipolar plane 𝜋

𝑋?

𝑋?

e e’
l’

Epipolar line for x

Figure 2.2: Illustration of the epipolar geometry relations. Left, one can see that the points
on the image plane x and x’ are coplanar with their corresponding 3D point X and the camera
centers C and C ′. Right, the relationship between the image point x in the left image and the
corresponding epipolar line l′ in the right image is illustrated: The image point x backprojected
to 3D has to lie on a ray, which projects onto the epipolar line l′ going through the epipole e′.

where R and C̃ are called the external or extrinsic camera parameters.

2.1.2 Two-View Geometry

Having two overlapping views acquired by a camera, it is possible to reconstruct 3D

information using the images by triangulating corresponding structure from both images.

For this, the geometric relation between both views need to be known. The epipolar

geometry is the intrinsic projective geometry between two views and describes this relation.

It is independent of scene structure and only depends on the cameras’ internal parameters

and relative pose. In the following, we discuss this epipolar geometry constraint in detail

and derive the fundamental matrix from it. Finally, we describe algorithms which are used

to estimate the fundamental matrix from point correspondences.

Epipolar Geometry. As described in [31], the epipolar geometry between two views is

essentially the geometry of the intersection of the image planes with the pencil of planes

having the baseline, which is the line joining the two camera centers, as axis. This geometry

is motivated by considering the search for corresponding points in two images.

Having a 3D point X and corresponding 2D points on the image planes, x and x’, it

can be observed that these points and the camera centers are coplanar (see Figure 2.2,

left). This plane is called epipolar plane, the epipole is the point of intersection of the line

joining the camera centers with the image plane, and the epipolar line is the intersection

of an epipolar plane with the image plane. Hence, a corresponding point for a point in

one image in the second image has to lie exactly on the corresponding epipolar line (see

Figure 2.2, right).

2.1. Basics and Notation 11

Fundamental Matrix. The algebraic representation of this geometric relationship is

the fundamental matrix F . It is a 3 × 3 matrix of rank 2 with 7 degrees of freedom and

satisfies the relation

x′TFx = 0 (2.8)

for two points x and x′ lying on the first and second image plane. Obviously, having one

point fixed, the second one does not have to be on an exact, pre-defined location but has

to lie on a point along a line. For example, having a point x, the corresponding point

x′ in the second image has to be on the epipolar line l′. Hence, the epipolar line can be

constructed with the equation

l′ = Fx, (2.9)

where l′ is the epipolar line on the second image plane and x a point on the first image

plane. Further, the fundamental matrix satisfies the equation

det(F) = 0. (2.10)

A specialization of the fundamental matrix is the essential matrix E. In comparison

to the fundamental matrix, the essential matrix assumes calibrated camera points (i.e.,

points being multiplied by the intrinsic calibration matrix K).

There exist several algorithms for calculating the fundamental matrix F (or their spe-

cialization, the essential matrix E) from point correspondences of two images, from which

the relative pose between two cameras can be extracted. Depending on the algorithm, a

different number of points is needed. For example, a well known algorithm for estimating

the fundamental matrix is the normalized 8-point algorithm as described in [31]. Another

method for estimating the essential matrix, assuming a calibrated camera setup, is the

5-point algorithm presented in [68]. Such an algorithm is then usually used within a Ran-

dom Sample Consesus (RANSAC) [19] scheme, where many hypotheses for the relative

orientation are created and scored by a robust statistical measure over all points in two

or more views.

5-Point Algorithm. The 5-point algorithm [68] is the currently most frequently used

algorithm in order to estimate the relative pose of views within an SfM system and,

therefore, will be discussed briefly in the following. It is based on computing the coefficients

of a tenth degree polynomial in closed form followed by finding its roots. Hence, the

algorithm delivers at most 10 solutions.

For this algorithm, an additional property of the essential matrix that the two nonzero

singular values are equal, is used. This leads to the following cubic constraints [68]:

EETE − 1

2
trace(EET)E = 0, (2.11)

which an essential matrix has to satisfy.

12 Chapter 2. Image-Based 3D Reconstruction

Having 5 point correspondences, each point leads to a constraint of the form

q′TEq = 0, (2.12)

which is the constraint for the essential matrix defined the same way as for the fundamental

matrix in Equation 2.8. This constraint can also be written as

q̃T Ẽ = 0, (2.13)

where

q̃ = [q1q
′
1 q2q

′
1 q3q

′
1 q1q

′
2 q2q

′
2 q3q

′
2 q1q

′
3 q2q

′
3 q3q

′
3]
T (2.14)

Ẽ = [E11 E12 E13 E21 E22 E23 E31 E32 E33]
T . (2.15)

When stacking the vectors q̃ for all five points, a 5 × 9 matrix can be retrieved. Then,

four vectors X̃, Ỹ , Z̃, W̃ are computed, which span the right nullspace of this matrix.

These four vectors correspond directly to four 3×3 matrices X, Y , Z, W and the essential

matrix has to be of the form

E = xX + yY + zZ + wW (2.16)

for the scalar values x, y, z, w. As these four scalars are defined only up to a common scale

factor, it is assumed that w = 1. By inserting Equation 2.16 into the 10 cubic constraints

in Equation 2.11 and performing Gauss-Jordan elimination, an equation system can be

obtained, which can be transformed into a 3 × 3 matrix B containing polynomials in z.

The determinant of this matrix B

〈n〉 ≡ det(B) (2.17)

is the tenth degree polynomial 〈n〉. The real roots of 〈n〉 deliver the variable z, for which

the variables x and y can be found using the equation system B. The essential matrix can

finally be computed by using Equation 2.16. Consequently, the relative pose parameters,

namely rotation and translation, can be computed. For a detailed description on how to

solve this problem in an efficient way, we refer the reader to [68].

2.2 Structure-from-Motion

Having multiple overlapping images from a scene, it is possible to simultaneously esti-

mate the corresponding camera poses and the scene structure. This process is called SfM .

Usually, local image features are used to register the camera views to each other and,

using an optimization called Bundle Adjustment, consistent camera poses with their cor-

responding sparse scene representation are computed. Generally, there exist two types of

SfM algorithms: The first one is incremental SfM, which is the standard approach. It

2.2. Structure-from-Motion 13

Figure 2.3: Result of a SfM system. One can see the sparse point cloud reconstruction of a
building and the registered views with which these points were reconstructed. Images were taken
from an Unmanned Aerial Vehicle (UAV) equipped with a camera.

starts with two initial images and incrementally adds additional single views to the scene

reconstruction. The second one is global SfM, which considers all views at the same time.

Figure 2.3 shows a result of an SfM system. In the following, we will discuss the individual

processing steps of an SfM pipeline in more detail.

2.2.1 Feature Extraction and Matching

The first step of an SfM pipeline is the extraction of local features of every image. Very of-

ten, SIFT [57] is used, as it has shown to be very robust to scale and rotation changes. How-

ever, it is also possible to use other local feature descriptors like SURF [6] or lightweight

ones like ORB [80]. Having detected local features in every image, these features are then

matched against features in other images. Assuming an unordered image sequence, this

has to be done with every other image in the sequence in order to find overlapping image

pairs. As doing this in a brute-force way is very costly in terms of computation time, this

procedure can be accelerated by using a vocabulary tree [69], which estimates a smaller

set of visually similar images on which the matching can finally be done in a brute-force

way.

2.2.2 Geometric Verification

The feature matches retrieved from the previous step might not be consistent in terms

of the geometric relation between the corresponding cameras. Hence, in the geometric

14 Chapter 2. Image-Based 3D Reconstruction

verification, the relative poses between all camera pairs having matched features are com-

puted. As this is usually done in a robust way using the 5-point algorithm (as described

in Section 2.1.2), features classified as outliers at the relative pose estimation step are

rejected for further processing steps.

2.2.3 Incremental SfM

Having verified feature matches as input, the camera poses and the corresponding sparse

scene representation are computed using SfM . Incremental SfM first tries to find a good

initial image pair having a good geometric relation (i.e., sufficiently big baseline, good

triangulation angle, sufficient number of verified matches). Then, further images are

added by using an absolute pose estimation algorithm solving the Perspective-n-Point

(PnP) problem. In comparison to relative pose estimation algorithms which compute the

relative pose between two camera views (as described in Section 2.1.2), an absolute pose

estimation algorithm estimates the absolute pose of a camera given a set of 3D scene

points. A frequently used absolute pose estimation algorithm is P3P [23], which solves

the perspective n-point problem with n = 3 i.e., it is able to estimate a camera pose using

three 3D points.

Having added several cameras to the scene, geometric inconsistencies may arise for sev-

eral reasons: First, every triangulated 3D point has a specific uncertainty due to measure-

ment noise and specific geometric properties of the stereo pair used for triangulation (e.g.,

a small baseline leads to a higher depth uncertainty). Therefore, when having additional

observations of this point, the back-projection of the 3D point in the new camera might

not be consistent anymore with the triangulated 3D point. Further, the intrinsic camera

calibration might not be correct and therefore introduces an error in the system. Con-

sequently, due to this potential error sources, the estimated extrinsic camera calibration

(i.e., the estimated camera pose) might not be correct. Therefore, an additional optimiza-

tion step called bundle adjustment [31] is performed, where the triangulated 3D points

and the extrinsic and intrinsic camera parameters are optimized jointly by minimizing the

overall reprojection error, which is the Euclidean distance of a 3D point back-projected in

an image to the actual image measurement which should represent the 3D point.

After a final bundle adjustment, incremental SfM results in optimized extrinsic and

intrinsic camera parameters and corresponding optimized 3D points.

2.2.4 Global SfM

In comparison to incremental SfM , global SfM considers all the camera poses at once.

Given the relative poses between cameras, all the global camera parameters and optionally

the corresponding 3D structure are optimized in one optimization procedure. Very often

this optimization procedure is separated into two steps, where the first step computes

the global rotation of each view and the second step computes the camera translations,

together with the structure or not.

2.3. Multi-View Stereo Reconstruction 15

Global SfM has the advantage that the quality of the final reconstruction does not

depend on the selection of an initial pair. Further, it does not suffer from drift due to

the accumulation of errors caused by sequentially added images and form the difficulty to

handle cycle closures of the camera trajectory. However, the space and time requirements

for global SfM can get very large, as the minimization covers all cameras at once and is

based on the structure and the reprojection errors [64].

2.2.5 Example Pipelines

There exist several open-source and commercial implementations of SfM pipelines: For

example Colmap [83] is an open-source 3D reconstruction system and includes one of the

currently best performing SfM systems. Further open-source implementations include

Theia [87], OpenMVG [65], Bundler [85], and OpenSfM [58]. There also exist mature

commercial products including an SfM pipeline, for example Agisoft PhotoScan [1] or

Pix4D [75].

2.3 Multi-View Stereo Reconstruction

Having the camera parameters (intrinsic and extrinsic) and a sparse scene reconstruction

estimated using Structure-from-Motion, it is possible to compute a denser point-based

scene reconstruction using a MVS algorithm. An MVS algorithm usually aims to find

correspondences for every point in an image in all overlapping images, which results in an

MVS depth map for every view or already a dense 3D point cloud of the scene.

A widely used MVS algorithm is PMVS2 [22], which reconstructs a semi-dense point

cloud given calibrated cameras as input. The main idea of the algorithm is to enforce local

photometric consistency and global visibility constraints within an iterative match, expand

and filter procedure. There also exists an extension to this approach named CMVS [21],

which decomposes the input set of images into a set of image clusters of manageable size as

a preprocessing step. Using this extension, it is possible create semi-dense reconstructions

of large-scale scenes. An example result can be seen in Figure 2.4.

Sure [79] is another widely used MVS approach. In a first step, this algorithm undis-

torts the images and rectifies them pair-wise. Then, suitable image pairs are selected and

matched using a technique similar to Semi-Global Matching (SGM) [32]. The main idea of

SGM is to do pixelwise matching of mutual information and using a global, 2D smoothness

constraint by combining many 1D constraints. Compared to the original implementation,

the proposed version in [79] is implemented in a more time and memory efficient way. In

a final triangulation step, the disparity information from several stereo views is fused and

3D points or depth images are computed. By exploiting the information of several views,

the accuracy of the depth estimates can be improved.

Another technique commonly used in MVS is plane sweeping, as it can be done on more

than two images within one processing step: For the plane sweeping algorithm, a plane

16 Chapter 2. Image-Based 3D Reconstruction

Figure 2.4: Semi-dense point cloud result from PMVS2 [22]. It can be observed that the point
cloud is denser as in Figure 2.3. However, especially at poorly textured parts (e.g., at white
façades) only few points could be reconstructed.

is swept through space and features from each image are backprojected on the successive

positions of the plane [13]. As drawback, this technique does not produce smooth depth

maps but just computes depth values on the swept plane. To overcome this issue, there

exist several methods in the literature. For example, Häne et al. [28] propose a patch prior

modeling the local surface structure. This prior is then used as a regularization term for

the depth maps in order to fill holes between planes and at untextured areas.

More recently, PatchMatch-like methods became popular. The basic idea of these

methods is to propagate sparse or random depth measurements over the whole image using

multiple sweep iterations. Several methods also select corresponding matching views in a

pixel-wise manner. Using the potential propagated depth value, a pixel is backprojected

into multiple views and an error measure is computed to evaluate the depth [84, 98]. As

these methods can be easily parallelized, they can also be implemented efficiently on a

GPU.

2.4 Line Reconstruction

Instead of representing the scene with a point cloud, it is also possible to reconstruct

line segments representing the scene. Especially at poorly textured environments (like

urban scenes, which often contain untextured walls and façades), it is difficult to match

point features over multiple images and, hence, it is difficult to reconstruct scene structure

using these features. However, very often line segments can be detected in the images and

triangulated to represent the scene as 3D line segments.

A recent method for line-based 3D reconstruction is Line3D++ and was presented

in [33]. This method assumes given camera poses as input, detects lines in 2D using the

2.5. Surface Reconstruction 17

Figure 2.5: Line reconstruction created wit Line3D++ [33]. Compared to a sparse point cloud
reconstruction, the scene geometry can be reconstructed much better using line segments.

Line Segment Detector (LSD) [27] and finally uses the 2D lines to reconstruct 3D lines.

One has to mention that even though LSD contains the word line in its name, it actually

detects edges. Hence, also the 3D lines reconstructed by Line3D++ [33] are originating

from edges in the images.

An example result of Line3D++ is depicted in Figure 2.5: Compared to a result of an

SfM pipeline (as depicted in Figure 2.3), the line-based reconstruction can represent the

scene with much more details using less primitives. Compared to the MVS result depicted

in Figure 2.4, the reconstruction has not the same level of density. However, for computing

a MVS point cloud a higher computational effort is needed and, more importantly, a line

set gives more abstracted geometric information of the scene than an unstructured point

cloud.

2.5 Surface Reconstruction

Having reconstructed 3D information of the scene in the form of a point set, the next step

in a 3D reconstruction pipeline is usually to reconstruct the surface of the scene. In this

section, we discuss some surface reconstruction algorithms which are frequently used in

current 3D reconstruction systems.

2.5.1 Poisson Surface Reconstruction

The Poisson surface reconstruction algorithm proposed in [43] takes a point set with its

corresponding normals as input and produces a watertight triangular mesh as output by

approximating a 3D indicator function χ and reconstructing the surface by extracting an

appropriate isosurface from this function (example result is depicted in Figure 2.6).

18 Chapter 2. Image-Based 3D Reconstruction

The indicator function χ has the value 1 at locations inside the model, and 0 outside

the model. In [43] the relationship between oriented points (i.e. points with given normals

defined as vector field ~V) sampled from the surface of a 3D model and the indicator

function of the model is analyzed: The gradient of the indicator function is zero almost

everywhere, except near the surface of the model (see Figure 2.7), where it is equal to the

inward surface normal.

Figure 2.6: Example result of Poisson surface reconstruction [43] using the point cloud from
Figure 2.4 as input. The 3D scene is reconstructed as a watertight, smooth surface. However, due
to missing input samples at some parts of the façade, spurious artifacts looking like bubbles arise.
Further, this approach is not able to reconstruct sharp edges (e.g., at building edges).

Hence, the problem of computing the indicator function can be reduced to the problem

of finding the scalar function χ whose gradient best approximates the vector field ~V defined

by the input samples.

0

0

0

0
0

0 0 0

0

0

0

0

0

0

0
1

1

1
1

1

1
1

1

Oriented points Indicator gradient Indicator function Surface
~V ∇χM χM ∂M

Figure 2.7: Using the oriented points, the indicator gradient and subsequently the indicator
function can be calculated. Finally, the surface is reconstructed by extracting an appropriate
isosurface.

2.5. Surface Reconstruction 19

The Poisson reconstruction creates a watertight, triangulated surface by approximating

the indicator function. The key challenge, the computation of the indicator function, can

be done by utilizing the relationship between the gradient of the indicator function and

the integral of the surface normal field.

The gradient field convolved with a smoothing filter F̃ is defined as

∇(χM ∗ F̃)(q0) =

∫
∂M

F̃p(q0) ~N∂M (p)dp, (2.18)

where χM is the indicator function of a solid M with boundary ∂M . The smoothing

filter F̃ is introduced to avoid unbounded values at the surface boundary due to the

piecewise constant indicator function. ~N∂M (p) is the inward surface normal at p ∈ ∂M ,

and F̃ (q) = F̃ (q − p) is the translation of the smoothing filter F̃p(q0) to the point p. A

proof of this relationship can be found in [43].

As the surface geometry is not known until now, the surface integral cannot be evalu-

ated. However, using the information of the input set of oriented points, it is possible to

approximate the integral over several patches with a discrete summation. This is defined

as follows:

∇(χM ∗ F̃)(q0) =
∑
s∈S

∫
Ps

F̃p(q) ~N∂M (p)dp

≈
∑
s∈S
|Ps|F̃s.p(q)s. ~N ≡ ~V (q), (2.19)

where s ∈ S is an input sample. Using the input set S to partition the solid boundary

∂M in patches Ps ⊂ ∂M , the integral of the patch Ps can be approximated by scaling the

value of the sample s.p to the area of the patch.

Subsequently, we want to solve χ̃ such that

∇χ̃ = ~V . (2.20)

As ~V is generally not integrable, an exact solution does not generally exist. However, a

least-squares solution can approximate the integral. For this, the divergence operator is

applied to form the Poisson equation

∆χ̃ = ∇ · ~V . (2.21)

For more information on how to solve this Poisson equation, we refer the reader to [43].

Finally, the isosurface can be extracted using, for example, a Marching Cubes method

as described in [56].

20 Chapter 2. Image-Based 3D Reconstruction

2.5.2 Tetrahedralization-Based Methods

Another possibility for reconstructing the surface of a scene is to compute a 3D Delaunay

triangulation, labeling each tetrahedron as inside or outside and extracting the final surface

as the interface of inside and outside labeled cells. A frequently used algorithm following

this paradigm was proposed by Labaut et al. [48]: Their proposed approach uses the

visibility information of every point as main information, sets up an energy minimization

problem for labeling each cell as inside or outside and solves it using Graph Cuts [10]. As

input, they use a point set with visibility information (i.e., which point is visible in which

camera) and as output they compute a watertight triangular mesh of the scene. In this

section, we will explain this approach in more detail.

2.5.2.1 Delaunay Triangulation

When having an input point set, as a first step a Delaunay triangulation of the whole

scene is computed. This results in an irregular discretization of space in tetrahedra, where

the size of the discretized units is related to the density of the underlying point cloud.

As described in [8], a Delaunay triangulation can be defined by its dual, the Voronoi

diagram which is defined as follows: Having a point set P = p1, ..., pn in Rd, the Voronoi

cell associated to a point pi, denoted by V (pi), is the space that is closer to pi than to

any other point in P. The Voronoi diagram, denoted by Vor(P), is the partition of space

induced by the Voronoi cells V (pi).

The Delaunay triangulation Del(P) of the point set P is defined as the counterpart of

the Voronoi diagram. All points p and q with a non-empty intersection of their Voronoi cells

V (p) and V (q), have a connecting edge in the 2D Delaunay triangulation and a connecting

facet in the 3D case. Figure 2.8 illustrates a 2D point set with its corresponding Voronoi

diagram and Delaunay triangulation.

The algorithmic complexity of the Delaunay triangulation of n points is O(n log n) in

2D and O(n2) in 3D. However, it has been proven that the complexity in 3D drops to

O(n log n) when the points are distributed on a smooth surface, which is the case in the

application for surface reconstruction [48].

2.5.2.2 Surface Reconstruction

After partitioning the whole scene into tetrahedra, the goal is to label each tetrahedron as

inside or outside of the object. Having these labels, a surface mesh can be finally extracted

as the interface between inside and outside labeled cells.

A common technique to solve the labeling problem of the volumetric cells is to formu-

late it as energy minimization problem and solve it using Graph Cuts [10], with which it

is possible to compute a globally optimal solution of this binary labeling problem.

There exist several slightly different energy formulations used for this reconstruction

problem in the literature (for example: [38, 48, 50, 63]). All of them are using visibility

2.5. Surface Reconstruction 21

Figure 2.8: The Voronoi diagram (gray edges) of a set of 2D points (red dots) and its dual, the
Delaunay triangulation (blue edges).

information as a main source of information (i.e., in which cameras a reconstructed point

is visible in) and further add additional energy terms enforcing, for example, photometric

consistency and surface smoothness [48] or a specific definition of surface quality [50].

However, as [63] pointed out, these additional energy terms do not lead to a significant

improvement on surface reconstruction quality and a small constant pairwise cost added

to all facets even performs the best.

In the following, we will describe the energy formulation proposed in [48] in more

detail, which contains the same definition of the visibility-based energy than the methods

described in [50, 63]. The overall energy is defined as:

E(`) = Evis(`) + λphotoEphoto(`) + λareaEarea(`), (2.22)

where ` is the labeling of the cell graph, Ephoto is the photo consistency term, which

measures how well the given labeling ` matches the different input images in which it

is seen, and Earea is the area term which encourages surface smoothness. Both have

their corresponding positive weights, λphoto and λarea and are pairwise smoothness terms.

Most importantly, the visibility term Evis(`) defines unary and pairwise terms depending

on the visibility information of every point. For computing the visibility-based energy,

a ray is cast from every point to every camera it is visible in. Cells behind the visible

point get finite weights assigned for being inside, cells containing cameras and infinite cells

get infinite weights assigned for being outside. Further, facets intersected by the ray get

pairwise terms assigned to penalize ray conflicts for every camera to point correspondence.

22 Chapter 2. Image-Based 3D Reconstruction

Camera

OUTSIDE

INSIDE

𝒄𝟏 𝒄𝟐

𝒄𝟑

𝒄𝟒
𝒄𝟓

Figure 2.9: Visibility-based energy computation as originally defined in [48]. Ray casting is used
to compute the visibility terms: The cell where the camera is located in (c1) is labeled as outside
by adding infinite weights. Then, every facet (green) which is intersected by the line of sight (red)
gets pairwise costs assigned in one direction. Finally, the cell behind the vertex (c5) is labeled as
inside by adding finite weights.

Figure 2.10: Result of a Delaunay triangulation-based method [63]. Compared to a Poisson
surface reconstruction as in Figure 2.6, the mesh contains more details but also more noise and
clutter.

The pairwise costs are only added in one direction, since faces cannot exist in front of a

measured point. Figure 2.9 illustrates the visibility-based cost computation.

Having solved the energy minimization problem defined in Equation 2.22 by using

Graph Cuts, a watertight surface mesh can be extracted as the interface between inside

and outside labeled cells (see Figure 2.10).

2.6. Summary 23

2.5.3 Methods Using a Signed Distance Function

There exist several methods which use a Truncated Signed Distance Function (TSDF)

within a regular discretization of the scene, namely, a voxel grid, in order to reconstruct

the surface [15]. A TSDF stores the distance to the surface to be reconstructed in a

signed way (i.e., positive in front of a surface, negative behind) and truncates this value

at a pre-defined distance.

A method using a TSDF which became popular simultaneously with cheaply available

RGBD sensors is KinectFusion [67]: This method uses the depth map from an RGBD

sensor in order to create the TSDF in the voxel grid. The zero crossing of the TSDF

can then be extracted as the final surface. Even though the original paper uses an RGBD

sensor for creating input data, this method is not restricted to such sensors. One could

also use RGB images, compute their poses using SfM (see Section 2.2) and depth maps

using an MVS algorithm (see Section 2.3) and use this as input.

In comparison to the method discussed in the previous section, this method uses reg-

ularly shaped volumetric cells (voxels) as main representation, whereas the method from

the previous section uses irregularly shaped tetrahedra. An advantage of using a regular

discretization of the scene is that it can be parallelized easily and, hence, can be efficiently

implemented on a GPU. However, it has the drawback of not being scalable to big scenes

due to the regular discretization.

To overcome this issue, several extensions exist to this method: For example, Infini-

tam [77] uses voxel block hashing to cope with bigger scenes. The core idea is to drop

empty voxels from outside the truncation band and to represent only relevant parts of the

volume (i.e., voxels near the surface). This is achieved by using a hash lookup of subblocks

of the volume, where all voxels not accessed with the hash lookup table are not stored.

Another possibility to cope with large scenes is to use an octree representation of the

scene. In an octree structure, the scene is not represented by regularly sampled voxels.

Instead, the volumetric grid has a fine resolution near structure and a coarse resolution

where no information exists. Hence, the representation of the whole scene is less memory

consuming and bigger scenes can be processed. There exist several approaches which use

a TSDF within an octree structure [42, 97].

2.6 Summary

In this chapter, we discussed basic methods used in image-based 3D reconstruction and ex-

plained commonly used subsequential processing steps within a 3D reconstruction pipeline.

We have demonstrated that there exists mature reconstruction methods which produce

surface models of scenes. Even though some methods produce visually appealing and

smoothed reconstructions, it could be observed, however, that none of these standard

generic 3D reconstruction methods fulfill our defined goals for visually appealing urban

scene reconstructions containing planar surfaces and smooth edges. In the following chap-

24 Chapter 2. Image-Based 3D Reconstruction

ter we will discuss methods which were specifically designed for reconstructing urban

scenes and where some of them target similar goals than our work does.

3
Related Work

Contents

3.1 Reconstruction Using a Scene Hypothesis 25

3.2 Shape Priors Incorporated in Generic Reconstruction Methods 28

3.3 Semantic Scene Reconstruction 30

3.4 Summary . 31

In the past years, several works were presented focusing on creating visually appealing

and compact 3D reconstructions of urban environments. Many of them follow the idea that

the scene to be reconstructed can be approximated by a specific set of primitives. Hence,

as long as the scene follows this scene hypothesis defined by the primitive set, it can be

correctly reconstructed in a compact way. Others use detected primitives and incorporate

them into a generic reconstruction method in order to be able to reconstruct arbitrary

scenes while still including shape priors within the reconstruction process. Finally, there

exist methods which use semantic information in order to set class-specific shape priors

and simultaneously improve the reconstruction and the semantic labeling.

3.1 Reconstruction Using a Scene Hypothesis

Different works focus on reconstructing scenes with a very specific scene prior and, hence,

work well for these specific scenes but do not generalize well to others. The most basic

approach reconstructing a scene with a scene prior is to represent the whole scene as

geometric primitives. Further, an additional optimization step can be done to generate

a consistent set of primitives. In this section, we will first discuss basic primitive fitting

approaches and will subsequently discuss slightly more generic algorithms which, however,

are still restricted to a specific scene hypothesis.

There exist several approaches for detecting basic primitives in the scene. For example,

the method of Schnabel et al. [82], is able to detect a set of previously defined primitives

25

26 Chapter 3. Related Work

(a) Original (b) Random colors (c) Colored by type (d) Bitmaps

Figure 3.1: RANSAC-based primitive detection proposed in [82]. In a) one can see the input scan
consisting of approx. 500K points. In b), points belonging to detected shapes are grouped and
randomly colored and in c) the points are colored according to the type of the shape they have
been assigned to: planes are red, cylinders green, spheres yellow, cones purple and tori are grey.
In d), a bitmap constructed by using their proposed connected component computation is shown,
which provides a rough reconstruction of the object. Figure taken from [82].

within a point cloud by using a RANSAC-based [19] scheme. Having these primitives,

it is possible to represent objects or a whole 3D scene (see Figure 3.1). Another work

using RANSAC fitting for simple primitives is introduced in Li et al. [54]. This approach

does not only fit primitives locally, but also applies a global optimization on the locally

detected primitives, which improves the robustness of the algorithm and delivers a more

consistent primitive set.

The vast majority of works that search for primitives in point cloud data, however,

focus on detecting or fitting planes: Sanchez et al. [81] presented an system for planar

3D modeling of building interiors from point cloud data generated by range scanners.

Using a RANSAC-based approach, they can detect and model large-scale structures like

ceilings and floors, as well as small-scale structures like staircases. Arikan et al. [5] focus

on detecting planes in an input point cloud along with their boundary polygons and

then searches for local adjacency relations among parts of the polygons. These adjacency

relations are then used to create a polygonal reconstruction which simultaneously fits to

the input point cloud. In [18], Dzitsiuk et al. presented a plane detection approach which

runs in real-time on robotic devices. In their work, they use RANSAC and least squares for

plane candidate generation. Then, they incorporate detected planes in a Signed Distance

Function (SDF) in order to create a cleaner and more complete reconstruction of the scene.

In the work of Oesau et al. [71], shape detection and regularization is done in tandem. A

sparse set of seeds in the input point cloud is first sampled. Then planes are detected by

doing region growing.

Nan and Wonka [66] proposed an approach where they fit planes and intersect all the

detected planes with each other to generate a possible set of faces for the final reconstruc-

tion. The final surface is generated by solving an optimization problem using all these

face candidates. For reconstructing buildings from aerial images, Zebedin et al. [96] use

sparse line features and dense depth maps. As resulting reconstruction, they represent

3.1. Reconstruction Using a Scene Hypothesis 27

Figure 3.2: Reconstruction of a whole museum (The Frick Collection) using the method of [94]
Top: Stacked 2D CSG models for individual slices. Middle: Optimized 3D CSG models (leads
to less jagged or misaligned models). Bottom: The final model, where the individual parts are
merged. Figure taken from [94] .

whole buildings with planes and surfaces of revolution.

Another widely used assumption in urban scene reconstruction is to only look for

axis-aligned piecewise planar structures in a purely orthogonal arrangement, commonly

known as the Manhattan-world assumption. Monszpart et al. [61] use this assumption of

axis-aligned piecewise planar structures. They focus on the reconstruction of man-made

scenes and detect a regular arrangement of planes. Then, they use a selection scheme

which balances between data fitting and the simplicity of the arrangement of planes.

Another work from Li et al. [53] uses detected planes to create a set of axis-aligned boxes

that approximate the geometry of a building. They first detect planes using the method

from [82] and restrict the plane set to a Manhattan-like orientation to be able to extract

boxes out of the plane set. Finally, they apply a global optimization method on the box

set in order to get an optimized selection of boxes representing the building.

Focusing on indoor scenes and using laser scan points as input, Xiao and Furukawa [94]

proposed to use an inverse Constructive Solid Geometry (CSG) approach to model scenes

as piecewise planar surfaces. They partition rooms or whole buildings into horizontal

slices and compute an inverse CSG for every slice. In their paper, they showed whole

museums reconstructed with their approach, which were textured afterwards using RGB

images. Figure 3.2 shows example geometry results from a museum. Oesau et al. [70]

proposed a slicing-based modeling approach for indoor scenes, where the whole scene is

partitioned into horizontal slices and vertical structures like walls are detected by using

a Hough transform. Using these detected structures, the whole scene gets partitioned

into volumetric cells which are labeled as inside or outside using Graph Cuts [10]. Us-

ing panoramic RGB-D images as input, Ikehata et al. [40] reconstruct indoor scenes as

structured models, which are 3D models containing structure elements like room, wall and

28 Chapter 3. Related Work

objects. Such models are very compact and can also be used to extract floorplans from

buildings.

Several of the methods discussed in this section are able to detect a set of planes or

other primitives within the scene, as long as the input data is accurate and dense enough.

Several, however, might miss primitive detections in case of weakly reconstructed surfaces,

which can happen frequently in image-based reconstructions (e.g., at poorly textured

façades). Further, such methods usually just aim to detect simple primitives, as detecting

higher-order primitives within a RANSAC scheme becomes computationally expensive.

Also, applying only primitive detection on a scene cannot create a complete reconstruction

of a generic scene, but rather approximates parts of the scene which comply with the

primitive definitions. Other methods discussed in this section are able to reconstruct

specific, pre-defined scene geometries in a well regularized way. However, they are not

intended to generalize to an arbitrary input scene and, hence, will not work well on an

arbitrary scene geometry.

3.2 Shape Priors Incorporated in Generic Reconstruction

Methods

When modeling the scene geometry with pre-defined primitives or geometric assumptions,

it might not be possible to model all scene geometries correctly. Hence, several methods do

not aim to explicitly model the input scene with detected primitives but aim to incorporate

detected primitives into a global optimization scheme of a generic reconstruction method.

In the works of Labatut et al. [49] and Lafarge et al. [51, 52] primitives are incorporated

within a tetrahedral representation of the scene. Similarly as described in Section 2.5.2, an

optimal inside/outside labeling of tetrahedra is computed, which is then used to create a

watertight surface mesh as result. More specifically, Lafarge et al. [51] use detected planes

to create a structured point set, which is used to preserve the structural elements under a

Delaunay triangulation. The final reconstruction contains both structured canonical parts

and free-form parts. To incorporate detected planes into the Delaunay triangulation, they

modify the input point cloud so that the induced planar facets are included in a scene

triangulation fulfilling the Delaunay requirement (see Figure 3.3). [52] follows a similar

idea: They detect various types of primitives in the scene (planes, spheres, cylinders, cones,

and tori) and describe irregular elements with meshes. In a final optimization step, they

sample both meshes and 3D-primitives by using a Jump-Diffusion-based algorithm [26],

which combines probabilistic and variational mechanisms. As a result, this approach

delivers a hybrid model consisting of mesh parts and primitive parts. In Labatut et

al. [49], shapes are robustly extracted from a dense point cloud. Then, Binary Space

Partitioning (BSP) trees are used to partition the whole scene into volumetric cells using

the detected primitives. The BSP tree is then approximated by a Delaunay triangulation,

which also includes points not being inlier of a detected primitive. Their hybrid surface

3.2. Shape Priors Incorporated in Generic Reconstruction Methods 29

Figure 3.3: After detecting planes, the plane inlier points having a maximum distance of ε to the
detected plane (blue plane) are removed from the point set and new points on the plane surface
are created in order to enforce the Delaunay triangulation to include the detected plane. Image
taken from [51].

reconstruction finally outputs a compact segmented model of the scene, where it is also

possible to adjust the amount of details in the final reconstruction (i.e., how strong the

algorithm should follow the detected primitives).

In [76], Pollefeys et al. presented a real-time 3D reconstruction system for urban

environments. The presented system is mostly generic, but plane sweeping directions for

stereo and a depth map hole filling leverage urban structure assumptions. Duan and

Lafarge [17] present a work on city reconstruction from satellite images. Starting from

a super-pixel segmentation, the algorithm assigns each of the super-pixels a height value

and a semantic label, resulting in a very efficient algorithm which allows arbitrary building

ground shapes reconstructed with a so-called 2.5D representation. This representation

does not store the full 3D information for each reconstructed part, but just the position

and the elevation on the ground plane, which is sufficient for many applications. However,

overhanging structures like bridges or or overhanging roofs cannot be described in 2.5D.

Similarly, Zhou and Neumann [100] propose a 2.5D building modeling algorithm, where

they incorporate global regularities within the reconstruction process. Their results have

high quality in terms of geometry and human judgement.

In Arefi et al. [4], buildings are reconstructed using Lidar data as input. They propose

an approach which automatically generates 3D building models based on the definition

of Level Of Detail (LOD) in the CityGML standard [44]. In this standard, 5 LODs are

defined: LOD0 contains the 2.5D terrain model, LOD1 the building block model without

roof structure, LOD2 the building model including the roof structure, LOD3 the building

model including detailed architecture and LOD4 additionally includes the interior model.

The approach in [4] models the buildings up to level LOD2. In [91], Verdie et al. also

present a method to reconstruct different LODs from urban scenes. They use surface

meshes generated from multi-view stereo systems as input, then they classify the input,

abstract the different scene parts and reconstruct the desired LOD .

The methods presented in this section are more generic and several of them are able to

30 Chapter 3. Related Work

Figure 3.4: Semantic reconstruction of [29] (left) compared to reconstruction without semantics
(right). By setting shape priors depending on semantics and by jointly optimizing semantics and
scene geometry, the semantic reconstruction delivers a more complete scene geometry and more
complete semantic labels. Image taken from [29].

reconstruct arbitrary scenes while still incorporating shape priors within the reconstruction

process. However, as these methods do not use semantic information (except some works

which use it in a very simple or implicit form), they cannot set class-specific shape priors

which could be beneficial for urban scenes containing strongly geometrically varying scene

parts like, for example, buildings and trees.

3.3 Semantic Scene Reconstruction

Recently, several methods incorporated semantic information in the 3D reconstruction

process in order to simultaneously improve the semantic labeling and the 3D reconstruc-

tion.

Häne et al. [29, 30] first learn appearance likelihoods and class-specific geometry priors

for surface orientations. Then, using these priors, unary and pairwise potentials are defined

and used within a voxel-based volumetric segmentation framework. By jointly optimizing

over the geometric and semantic properties, they interact with each other yielding to

an improved dense reconstruction and labeling (see Figure 3.4). In Cherabier et al. [11]

this approach is extended for being able to handle a higher number of semantic labels.

The scene is partitioned into several blocks, where each is then processed separately.

In order to be able to process more labels, only labels present in a currently processed

block are considered. In [7], an extension to this work for large-scale reconstructions was

proposed. Instead of a regular voxelization of the scene, an octree representation was used,

which significantly reduced the memory and computation time needed. Consequently,

it is possible to reconstruct whole cities with this approach. A similar approach was

proposed by Richard et al. [78]: Instead of using an octree representation, they used a

tetrahedralization of the scene, which, as described in Section 2.5.2, significantly reduces

the memory footprint in comparison to a regular voxelization. In [12], Cherabier et al.

presented a 3D reconstruction framework which embeds variational regularization into

a neural network. Their approach is able to learn semantic and geometric relationships

end-to-end from data with using a lightweight network which can be trained with little

3.4. Summary 31

data. Compared to similar variational reconstruction approaches like [30] not having

incorporated a neural network, it does not need manual and scene-dependent parameter

tuning.

All these methods incorporate shape priors into the scene reconstruction using semantic

information. However, they are not aiming at creating visually appealing and compact

models, but focus more on improving the reconstruction and semantic label accuracy

and completeness. In our work, we focused more on reconstructing scenes in a visually

appealing and compact way with a sufficiently high accuracy.

3.4 Summary

In this chapter, we discussed related work in the area of urban 3D reconstruction and

complementary fields. We discussed approaches using a scene hypothesis, which work well

when the scene follows a specific scheme (for example, Manhattan-world assumption), but

still might not work well on generic scenes. Several of them directly use a detected primi-

tive set to represent the whole scene geometry. Others use detected primitives as input and

apply an additional optimization in order to generate a consistent reconstruction. Next, we

discussed methods which incorporate shape priors within a generic reconstruction frame-

work. These methods use a generic reconstruction method but favor specific geometric

shapes in order to regularize the resulting reconstruction. Hence, they are generally able

to reconstruct generic scenes, but might favor pre-defined geometric properties. Finally,

we discussed semantic scene reconstruction methods, which work on generic scenes and

favor semantic class-dependent geometric properties.

Even though several of the discussed methods show impressive results, they do not fully

aim at fulfilling our goals of creating visually appealing and compact 3D reconstructions

of urban scenes originating from images. Such reconstructions should contain a detailed

representation of the buildings containing planar surfaces and sharp edges whereas the

surrounding should be represented by a smooth surface.

In the next chapters, we will tackle these problems and present two methods for urban

scene reconstruction suitable for geometric scene abstraction and for creating visually

appealing reconstructions of urban scenes.

4
Slicing for Building Reconstruction

Contents

4.1 Method Overview . 34

4.2 Input Data . 35

4.3 Horizontal Slicing and Cell Decomposition 36

4.4 Volumetric Cell Labeling as an Energy Minimization Problem 40

4.5 Summary . 44

Using standard 3D reconstruction techniques, it is possible nowadays to generate dense

point clouds which can be meshed afterwards to create a surface accurately representing

the reconstructed scene. For example, one can use open source Structure from Motion

(SfM) pipelines (as described in Section 2.2) to estimate the camera poses and compute

a sparse point cloud representing the scene. Afterwards, an Multi-View Stereo (MVS)

algorithm as described in Section 2.3 can be used to densify the point cloud. Finally,

surface reconstruction techniques like the ones described in Section 2.5 produce a detailed

mesh representing the reconstructed scene.

However, due to measurement uncertainties in various steps of the reconstruction pro-

cess, such 3D reconstructions are noisy, contain clutter or oversmoothed surfaces and

bubbles. Therefore, they might not appear visually appealing even though they have a

high reconstruction accuracy. Additionally, the amount of data used to process, store and

transmit such models is quite high, as they can contain millions of points modeling the

reconstructed noisy surfaces, which might be problematic for applications using 3D maps

which just have limited resources available. Therefore, for many processing and viewing

applications, a regularized, more compact representation is desired. This should be a

representation excluding the noise and clutter from a dense reconstruction and should be

as near as possible to reality if desired, but it should also be possible to generate more

abstract models, that don’t cover details but represent the geometric structure well.

In this chapter, we present a 3D reconstruction algorithm, which creates regularized 3D

33

34 Chapter 4. Slicing for Building Reconstruction

building models consisting of geometric primitives from image-based 3D reconstructions.

The proposed regularization will remove small details which are likely to be noise and

will describe the input mesh with a small set of vertices and faces. Simultaneously to the

data reduction, the regularized model should describe the scene in a proper way, i.e. that

planar surfaces in the scene are actually planes in the regularized model and not a noisy

surface similar to a plane.

Based on the method described in [35], we first divide the dense model into multiple

horizontal slices, which are parts of the model bounded by dominant horizontal structures.

Then, we compute an inside/outside labeling for each slice using the visibility information

of each point in the slice. Using the outlines of the labeling per slice, we compute an

irregularly shaped cell decomposition of the whole scene. Finally, we optimize the model

by solving an energy minimization problem. In this optimization, the level of regularization

can be adjusted. We introduce a smoothness term based on detected line segments in the

images, which improves the reconstruction results, especially in areas where the input

model contains noisy surfaces (as presented in [34]). An example result can be seen in

Figure 4.1.

Due to the nature of the proposed approach using slicing, a mainly Manhattan-like

scene containing buildings with flat roofs and vertical façades is assumed as input. Espe-

cially sloped surfaces cannot be modeled correctly with this approach, as these structures

are just approximated with stairway-like structures resulting from the individual slices.

In the following sections, we will first give a method overview (Section 4.1) and describe

the input data used (Section 4.2). Then, we will describe the main algorithm consisting

of horizontal slicing and cell decomposition (Section 4.3) and volumetric cell labeling

(Section 4.4). Finally, we summarize the chapter in Section 4.5.

4.1 Method Overview

In this section, we give a brief overview of the processing pipeline starting from the input

data and enumerating the consecutive processing steps, which deliver a geometrically

abstracted 3D model as result. A schematic overview can be seen in Figure 4.2. First, we

separate the meshed input point cloud into horizontal slices and compute an inside/outside

labeling for every slice. Using the outlines of the inside labeled regions of all slices, we

create an irregularly shaped volumetric cell decomposition of the whole scene. Finally, we

generate an optimized inside/outside labeling of the volumetric cells by solving an energy

minimization problem. For this, visibility information and detected 2D line segments are

used. As a result, our system outputs geometrically abstracted 3D models from buildings.

4.2. Input Data 35

Figure 4.1: Meshed dense 3D reconstruction and resulting regularized model. Left: A 3D building
reconstruction created from aerial images taken by an Unmanned Aerial Vehicle (UAV). The
camera poses and initial 3D structure were computed with SfM , then a dense model was computed
with Sure [79] which was finally meshed using Poisson surface reconstruction [43] (visualized with
vertex coloring). Such a mesh can be used as input for our approach. Right: Resulting regularized
model from our pipeline, textured with [93]. We deliver clean and smooth surfaces whereas the
meshed dense point cloud contains a lot of noise.

Figure 4.2: Overview of the processing pipeline. We take any meshed point cloud with arbitrary
density with the corresponding camera positions and image informations as input. We separate
the input model into horizontal slices and compute an inside/outside labeling for each slice. Using
visibility information and detected lines in images, we compute an optimized regularized 3D model.

4.2 Input Data

As input data, we take a meshed point cloud and its corresponding camera information

(i.e., the position of the camera views). Our approach works on meshed dense point clouds,

but also on meshed sparse point clouds (e.g., a meshed result from SfM). An example dense

36 Chapter 4. Slicing for Building Reconstruction

Figure 4.3: Illustration of the slice boundary detection in the input point cloud. Using only input
points which have a normal similar to the ground plane (black dots), modes are estimated in the
z-direction using Mean Shift [14]. The resulting mode centers are used as slice boundaries (red
lines).

building model can be seen in Figure 4.1.

4.3 Horizontal Slicing and Cell Decomposition

This section describes the separation of the input model into horizontal slices, the compu-

tation of an inside/outside labeling for each slice and the creation of an irregularly shaped

cell decomposition of the whole scene.

4.3.1 Horizontal Slicing

As a first step, we detect horizontal structures and separate the model at these structures

into horizontal slices. For this, we first need to detect the gravity direction. As we assume

that the ground plane is the dominant plane and perpendicular to the gravity direction, we

do this by plane fitting: We try to find a plane for which the most points in the scene have

a small Euclidean distance to it. However, we could also use different methods to estimate

the gravity direction of the scene (e.g., by using inertial measurements). As we usually

work with Manhattan-like scenes, we found out that it is beneficial for some processing

steps to align the model with the Manhattan world directions. Therefore, we also detect

the most dominant plane perpendicular to the ground plane and align the model to these

directions. However, one has to mention that our approach works on any scenery and is

not limited to Manhattan-like scenes. Though, if the scene geometry assumptions are not

fulfilled (e.g., at sloped roofs), more artifacts like stairway-like structures arise.

Having estimated the ground plane, we estimate dominant horizontal structures by

applying mode estimation using Mean Shift [14]. For this, we just select points with

a normal similar to the normal of the ground plane, which are the points describing

4.3. Horizontal Slicing and Cell Decomposition 37

Figure 4.4: Slice labeling. Intermediate processing steps of the processing of a slice in the middle
of a simple building. Left : An illustration of the free space scores of the slice. The more cameras
see the specific area, the more intensive the pixel is red. In case of no visibility: The farther
away this area is from a visible part, the more intensive the pixel is blue. Right: The resulting
inside/outside labeling.

horizontal structure, and apply the mode estimation along this dimension, which is the

z-direction of the scene. The mean shift bandwidth is defined as:

bandwidth =
height

d
, (4.1)

where height is the 3D model height and d is an adjustable parameter with which the level

of detail in the vertical direction can be adjusted. An illustration of the mode detection

in the point cloud is depicted in Figure 4.3.

4.3.2 Binary Labeling

Next, the model is separated into several slices at the detected horizontal structures and

for each slice, a 2D inside/outside labeling is computed. For this, we need to compute

a free space score for each position in the slice. The free space score is positive in areas

which could be seen by cameras and negative in areas which could not be seen.

To compute a 2D free space score for each position in the slice (illustrated in Fig. 4.4),

we first compute the free space score for each voxel of a voxel grid spanned over the whole

scene. Therefore, we cast rays from each voxel vxyz to all camera centers C. If a ray from

vxyz to a camera c ∈ C does not intersect the input mesh, vxyz is visible in c. The score

that vxyz is in free space is defined as

p(vxyz = outside|visibility) =
{# cameras vxyz is visible in}
{max # visible cameras}

, (4.2)

38 Chapter 4. Slicing for Building Reconstruction

where {max # visible cameras} is the maximum number of visible cameras for a voxel

vxyz.

For all the voxels vxyz ∈ V which have not been visible in any camera view, we define the

score that vxyz is in occupied space by calculating the distance of vxyz to the next voxel

v′xyz that is in free space, i.e. p(v′xyz = outside|visibility) > 0:

p(vxyz = inside|visibility) =
min(dist(vxyz, v

′
xyz),maxDist)

maxDist
, (4.3)

where dist(·) calculates the Euclidean distance between the voxel centers and maxDist,

which is a predefined maximum distance, truncates this distance. Hence, this formula

is closely related to the truncated signed distance function [95] which is used in several

surface extraction algorithms (see Section 2.5).

Given the free space scores for each voxel, we can easily define the scores for each pixel

bxy in the 2D slice plane by averaging the scores of the voxels:

p(bxy = free|visibility) =
∑
z

p(vxyz = free|visibility)

n
, (4.4)

where n is the voxel dimension in z-direction of the slice. The score that a pixel is occupied

is defined in the same way.

Finally, we obtain an optimal inside/outside labeling of the 2D slice plane by solving

an energy minimization problem using Graph Cuts [10], where we directly use the defined

free space scores as data term.

For the creation of the geometric 3D model, we just need the outline of the inside-

labeled pixels. Though, as the outline is a polygonal line including every pixel as point

and we favor simple representations, a simplification of the polygonal outline is applied

before continuing with further processing steps. We used the Ramer-Douglas-Peucker

algorithm [16] for this task, which produces a simplified polygonal line which can be easily

extruded to 3D.

Having this polygonal 2D outlines and the slice boundaries, we already have a very

compact 3D representation of every slice, which, however, still need to be combined in a

reasonable way to get a regularized 3D model of the whole building.

4.3.3 Slice Combination

By extruding the labeling from each slice to 3D (as illustrated in Figure 4.5), we already get

an initial 3D model. However, as each slice is just optimized separately and no optimization

has been done in the z-direction, the vertical surfaces are not smooth. Therefore, we need

an additional 3D optimization step, for which we use irregularly shaped volumetric cells,

which represent all important structures from the individual slices.

To get a cell decomposition of the whole scene, we project the outlines of the inside

labeled parts of all slices onto the ground plane and compute a Constrained Delaunay

4.3. Horizontal Slicing and Cell Decomposition 39

Figure 4.5: Left: Volumetric Cells. Vertical cut of a volumetric cell representation of a simple
model consisting out of two slices. The black lines are the volumetric cells spanned over the whole
scene and the red lines are the outlines of the extruded slices approximating the point cloud (blue
dots). A graph is spanned over the whole scene setting cells with a shared facet as neighbors (green
lines). Right: Top-view of binary labeling of both slices. As you can see, a noisy point cloud leads
to slightly varying object outlines in each slice. The dashed line represents the vertical cut seen in
the left image.

Figure 4.6: 2D Constrained Delaunay Triangulation of outlines of all slices projected to the
ground plane. As one can see, many similar lines are included near the building walls (thicker
lines because of several very near lines) due to noise in the input mesh. All triangles are extruded
between all slice boundaries to create a volumetric cell decomposition of the whole scene.

Triangulation (CDT) [74] including this lines (see Figure 4.6). The CDT guarantees

that the projected outlines remain lines in the triangulation. Finally we extrude the

computed triangles between all slice boundaries to get an irregularly shaped volumetric

cell decomposition of the whole scene (as illustrated as black lines in Figure 4.5, left).

This volumetric representation includes all important scene structures (all slice outlines)

and is very compact (low number of volumetric cells), which is beneficial for the final

optimization procedure.

40 Chapter 4. Slicing for Building Reconstruction

4.4 Volumetric Cell Labeling as an Energy Minimization

Problem

In the final step, we create a regularized labeling of all volumetric cells labeled as inside

or outside. As a result, we can create 3D reconstructions consisting of geometric blocks,

for which the degree of regularization can be adjusted depending on the smoothness pa-

rameters.

We formulate this optimization step as an energy minimization problem. In addition to

a smoothness term which depends on the input mesh surface, we introduce a smoothness

term which uses lines detected in the input images to create a regularized transition from

inside label to outside label.

The energy to minimize is defined as:

E(L) =
∑
p∈I

Edata(L(p)) +
∑

p,q∈N
Esmooth(L(p), L(q)), (4.5)

where I denotes the set of all volumetric cells, N is the neighborhood of every cell and

L is the (binary) labeling. The neighborhood relation is defined by the volumetric cell

complex: all cells that share a common facet are neighbors. The data terms, Edata(L(p)),

are defined as the summed up free space scores contained in the volumetric cell normalized

by the cell size. The smoothness terms, Esmooth(L(p), L(q)), are a combination of two

smoothness terms and defined as:

Esmooth(L(p), L(q)) = λmeshEsmesh
(L(p), L(q)) + λlinesEslines

(L(p), L(q)). (4.6)

Esmesh
(L(p), L(q)) is the smoothness term which depends on the mesh surface, i.e. it is

likely that a labeling transition happens if the input mesh surface is near the facet between

the cells p and q and unlikely otherwise. More precisely, this smoothness term depends on

the amount of points near the facet of adjacent cells. Using a constantly upsampled point

cloud on the input mesh surface, we count the points which are near this facet. With

this approach, it is unlikely that two cells, which have a dominant structure, e.g. a wall,

between them, get smoothed into an equally labeled group and it is likely that two cells

without structures between them get smoothed into the same group. We calculate the

neighbor weights as

Esmesh
(L(p), L(q)) =

 0 if L(p) = L(q)
1

1+
{# points near facetp,q}

area of facetp,q

else , (4.7)

where {# points near facetp,q} is the amount of points which have a smaller Euclidean

distance to the facet than a predefined distance which is defined in relation to the model

size.

4.4. Volumetric Cell Labeling as an Energy Minimization Problem 41

The result has the value

0 < Esmesh
(L(p), L(q)) ≤ 1, (4.8)

where Esmesh
(L(p), L(q)) is near 0 when lots of points are near the adjacent facet, which

means there exist scene structures. In this case, no smoothing is wanted and due to

Esmesh
(L(p), L(q)) ≈ 0, the smoothness penalty is near 0. Esmesh

(L(p), L(q)) is 1, when

no point is near the adjacent facet, which means that the total smoothness penalty is

completely adjusted by λ.

The second smoothness term, Eslines
(L(p), L(q)), is a term based on lines detected

in the input images. Assuming an initial estimate of the model (i.e., having an initial

estimate for all cells for being inside or outside), all facets connecting two adjacent cells

in the volumetric cell decomposition get backprojected into the images to compute a line-

based smoothness score:

Eslines
(L(p), L(q)) =

0 if L(p) = L(q)

facetScore(p, q) else if visible

1 else

, (4.9)

where facetScore(p, q) computes a line-based score for the facet connecting cell p and q

and visible means that at least one vertex of the facet is on the surface ot the currently

estimated model and visible by a camera. Therefore, a score gets also computed for facets

which are currently not visible but have a connection to the visible model surface.

To compute the facet score based on lines, first line segments are detected using the

Line Segment Detector (LSD) [27]. Then, for every facet, cameras are selected for which

the camera centers are nearly coplanar to the facet: The maximum allowed angle between

facet and camera center is set to 25 deg. This improves the influence of the smoothness

term for facets, which belong actually to the model surface but are in the middle of a

façade in the images. Figure 4.7 illustrates this problem.

In the selected cameras for a facet, the distance from the detected line segments to

each facet edge is computed. Therefore, we search for the nearest line detection with a

similar direction than the facet edge: The maximum allowed angle between a detected line

and facet edge is set to 10 deg. With this restriction, just lines are used that are similar

to the structure of the facet.

For all facets with lines with similar direction, we search for the line which has the

smallest normal distance to the facet edge. If this distance is above a threshold, it is

truncated. The threshold for this maximum line distance is adjusted by the parameter

maxLineDist (which we set to 70 pixels) and is computed as maxLineDist normalized

by the camera distance to the current facet and the model size:

truncV al =
maxLineDist

normalizedCamDist
. (4.10)

42 Chapter 4. Slicing for Building Reconstruction

Figure 4.7: Camera view with detected lines and backprojected facet. Left: Backprojected facet
(blue) is not near detected lines, even though it is on the surface of the building. Therefore, this
view is not used for the line criterion, as the camera center is not near to coplanar with the facet.
Right: Detected facet (blue, hardly visible) and camera are nearly coplanar and the facet is nearer
to detected lines, as it is aimed to be for a facet being on the surface of the building. Therefore,
this view is used for facet score computation.

normalizedCamDist is defined as:

normalizedCamDist =
camDist

avgModelSize
, (4.11)

where avgModelSize is the mean of the maximum x- and y-extension of the input model

and camDist is the distance of the camera to the facet in arbitrary scale retrieved by

SfM . This is necessary, as we don’t have a fixed (or metric) scale in our reconstructions

and want to enforce a similarly scaled camera distance for all models.

The normalization by normalizedCamDist depicted in Equation 4.10 is beneficial, as

the normalized truncation value truncV al now is scaled according to the camera distance,

meaning that distances are not only defined in pixel space anymore. This facet-to-line

distance truncation significantly improves the results, as it lets the optimization focus on

relevant, nearby lines and ignore far away lines.

Consequently, the truncated distance of a facet to a line (illustrated in Figure 4.8) is

computed by

truncFacetDist = min(facetDist, truncV al) normalizedCamDist, (4.12)

where facetDist is the normal distance of a backprojected facet to a line, which gets

truncated by truncV al. Then, the computed truncated facet-to-line distance gets addi-

tionally multiplied by normalizedCamDist to transform the distance again from pixel

to a normalized scale: If a camera is farther away, one pixel is a bigger distance than in

a near camera. To get the total facet-to-line distance for the facet backprojected in one

camera, we compute the average of all facet edges.

The final facet score, which is calculated using all cameras which fulfill the above

4.4. Volumetric Cell Labeling as an Energy Minimization Problem 43

Image

3D Model

fa
ceD

ist

tru
n
cV
a
l

Figure 4.8: Line distance computation. All visible facets are projected into the suitable images.
If, as illustrated, the projected surface of the model of the current iteration (blue) is near a detected
line (red), this surface will likely stay the same also in the next iteration. Contrary, if the current
surface has a high distance to a detected line, as can be seen at the right side of the projection,
the surface will probably get shifted towards the detected line in the next iteration. If the distance
is too high (left side), it gets truncated.

mentioned requirements, is defined as:

facetScore =

{
avgFacetDist
maxLineDist if #validCams > 0

1 else
, (4.13)

where

avgFacetDist =

∑
validCams truncFacetDist

#validCams
(4.14)

and maxLineDist is the parameter also used in Equation 4.10.

Therefore, the facetScore defined in Equation 4.13 is normalized between 0 and 1,

where 0 means the facet is near to structures (lines) in the images, and 1 means that the

facet is far from structures.

As we just compute facet scores for facets which have a connection to the currently

estimated visible space, we need to do several iterations of the energy minimization step

defined in Equation 4.5. In the first iteration, the line smoothness term is disabled (λlines
is set to 0), and an initial model is estimated. Starting from the second iteration, also

the line smoothness term is used. We empirically observed that 4 iterations are usually

enough to let the model converge to a solution. When doing more iterations, the result

does not change significantly.

Finally, we get an optimized inside/outside labeling containing all the irregularly

shaped volumetric cells. From this labeling, models consisting of geometric blocks can

be created, which contain well regularized vertical surfaces (e.g., façades) even when using

erroneous input data.

44 Chapter 4. Slicing for Building Reconstruction

4.5 Summary

In this chapter, we presented a method for creating regularized building models from

image-based 3D reconstructions. By using horizontal slicing, creating irregularly shaped

volumetric cells using the detected slices and labeling each cell as inside or outside, this

method creates abstracted models of buildings containing planar surfaces and sharp edges.

However, as horizontal slicing is an integral part of this method, only shapes fulfilling

this geometric constraint can be modeled adequately, whereas shapes not fulfilling this

constraint (e.g., sloped surfaces) can only be approximated by staircase-like structures. In

Section 6.5.1, a detailed evaluation of this approach will be presented. In the next chapter

we will introduce a method which does not have such geometric restrictions and can be

applied on any generic scene, while still incorporating shape priors for buildings within a

final reconstruction step.

5
Shape Priorization in Tetrahedra-Based Methods

Contents

5.1 Method Overview . 47

5.2 Plane Detection . 48

5.3 Tetrahedralization of the Scene 51

5.4 Tetrahedra Subdivision . 52

5.5 3D Reconstruction Using Tetrahedral Occupancy Labeling . . 55

5.6 Visibility-Based Energy Computation 56

5.7 Plane-Aware Regularization . 60

5.8 Semantically Aware Urban Reconstruction 62

5.9 Summary . 65

In the previous chapter we presented a building reconstruction method which is able

to produce visually appealing and geometrically abstracted models of buildings following

specific geometric properties. However, several shapes like, for example, sloped or rounded

surfaces can not be reconstructed well with this method. Further, the method does not

aim to reconstruct the surroundings of buildings.

In order to overcome these limitations, we present a hybrid method between generic 3D

reconstruction and plane-based urban reconstruction in this chapter [36, 37]: In contrast to

many works that focus only on urban structure reconstruction, our approach is able to deal

with a mixture of urban and generic surface structures. Our method robustly deals with

noisy, missing and outlier data by computing a consistent watertight surface of arbitrary

topology via volumetric occupancy labeling of tetrahedra via graph-cuts. We present

a unified 3D reconstruction framework to jointly favor planar surfaces and orthogonal

structures - without explicitly enforcing a Manhattan structure, as well as enforcing user-

specified smoothness and level of detail properties.

Similarly as for the method presented in the previous chapter, the following criteria are

targeted in order to create a visually appealing urban 3D reconstruction: We aim to model

45

46 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

Figure 5.1: Results of the proposed approach textured with [93]. One can observe that planar
parts in the scene (façades, windows, roof) are represented by planar surfaces and building edges
where two façades intersect each other are represented by straight lines. Note that holes in the
model are due to missing visibility information during texturing.

planar and nearly planar surfaces at building parts (e.g., façades, roofs) as exactly planar

surfaces. Doing this, edges of buildings can consecutively be represented as straight lines

(i.e., no noisy edges). Simultaneously, the surrounding of buildings does not necessarily

be reconstructed with high details but with a smoothed, visually appealing surface.

These criteria do not only define a visually appealing reconstruction, but make it also

easier to reduce the amount of data in a post-processing step (i.e., points lying on a planar

surface can be diminished without changing the surface).

To apply these criteria, we use semantic priors in the reconstruction process to treat

building and surrounding scene parts differently [36]. For building parts, we incorporate

plane priors in order to achieve planar surfaces and straight outlines while still keeping

important details. For non-building parts, we impose a smooth surface by reestimating

a smoother 3D representation of the scene, setting class specific sparsification parameters

and smoothness terms. We partition the scene into volumetric cells using a Delaunay

triangulation and provide a consistent and minimal approach to account for previously

detected planes in the tetrahedral labeling graph by splitting the tetrahedra into smaller

ones and adapting the graph and corresponding cost values accordingly. Finally, we per-

form Graph Cut-based inside/outside labeling and compute a watertight polygonal mesh

5.1. Method Overview 47

Input Data +
Preprocessing

Plane
Detection

Scene
Triangulation

Inside/Outside
Cell Labeling

Mesh
Extraction

Figure 5.2: Overview of our processing pipeline First planes are detected using the input 3D data.
Then, a Delaunay triangulation of the whole scene incorporating the detected planes is created.
Finally, a mesh is extracted from the triangulation by computing an optimized inside/outside
labeling of the tetrahedra.

resulting from the interface of inside and outside labeled cells of the triangulation. The

priors of our method are very generic which makes it well suited for reconstructing any

mixture of urban and nature scenes as well as both indoor and outdoor scenarios. In

order to reduce the amount of data needed, mesh simplification can be applied in a post-

processing step without loosing accuracy. Figure 5.1 visualizes textured results of our

approach.

In the following, we will first give a method overview (Section 5.1). In Section 5.2 we

will discuss tow plane detection algorithms, which either use a point cloud or a set of line

segments as input. In Section 5.3 we briefly describe the tetrahedralization of the scene

and in Section 5.4, we describe how previously detected planes can be incorporated into

the tetrahedralization. In Section 5.5 we describe how to define the energy which is used

within the energy minimization to compute the final tetrahedral occupancy labeling and

in Sections 5.6 and 5.7 we discuss the individual energy terms in more detail. Finally, in

Section 5.8 we describe how to incorporate semantic information within the reconstruction

process and in Section 5.9 we give a summary of the chapter.

5.1 Method Overview

In this section, we give a coarse overview of our processing pipeline and subsequently

describe each part in detail in the next sections.

In order to be able to reconstruct generic scenes and simultaneously incorporate a plane

prior into the reconstruction process, our method is build upon a well-known generic sur-

face reconstruction method: As originally introduced by Labatut et al [48], our method

uses tetrahedra for the volumetric partitioning of the scene and has the visibility informa-

tion of each reconstructed 3D point as the main source of information. To stay generic

but introduce the possibility to set a plane prior within the reconstruction process, we

48 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

incorporate detected planes within the tetrahedralization of the scene and, hence, make

them selectable in the final surface reconstruction step. By adding a smoothness prior

favoring this planar structure, the amount of smoothing w.r.t. planes can be adjusted.

Our proposed method stays generic, as it is still able to reconstruct scenes with arbitrary

shapes, but includes an adjustable plane prior within the reconstruction process, which

can be also applied just to specific semantic classes.

A schematic overview of our pipeline is depicted in Figure 5.2. As a result, our approach

delivers beautiful, visually appealing 3D models from urban scenes where buildings have

planar surfaces and straight edges while still containing relevant details embedded in a

smoothed surrounding.

Taking images from a scene as input, we first compute the camera poses using Struc-

ture from Motion (SfM) and a dense point cloud using a Multi-View Stereo (MVS) al-

gorithm. As further optional preprocessing steps, a line-based 3D reconstruction, dense

depth maps for every camera and semantically labeled images can be computed and used

in the pipeline.

As a first step, planes are detected in the scene. Having a line-based 3D reconstruction

available as input, 3D line segments are used to detect planes. In case no 3D lines are

available, planes are detected using a RANSAC plane detection scheme within the 3D

point cloud.

Then, a Delaunay triangulation of the scene is computed and planes are incorporated

within the triangulation. In order to guarantee that the planes are included in the trian-

gulation, tetrahedra intersected by a plane are split into multiple smaller ones.

Finally, the cells of the triangulation are labeled as inside or outside by solving an

energy minimization problem in order to create a watertight mesh surface as result. The

proposed shape prior favors Manhattan-like surfaces within the optimization, which leads

to planar surfaces and sharp edges while still not being restricted to a Manhattan world

or other geometric scene assumptions.

Having semantic labels available, the different scene parts can be handled differently

within the reconstruction framework in order to create a smooth reconstruction of the

surrounding and a detailed but prior-based smoothing of the buildings.

5.2 Plane Detection

As a first step in our processing pipeline, we detect planes in the scene, which can be

incorporated in the reconstruction framework in a subsequent step. In this section, we

describe two plane detection algorithms, where the first detects planes within a point cloud

and the second one uses 3D line segments as input.

As we could not get complete plane detections in urban environments (i.e., detecting

all façades/roofs of a building) using point-based methods due to the lack of reconstructed

points at poorly textured surfaces, we investigated in using 3D lines within a plane detec-

tion algorithm. Compared to the point-based approach, the proposed line-based approach

5.2. Plane Detection 49

has the advantage that only few line segments needs to be available to detect a plane.

This leads to a more complete plane detection result especially at poorly textured surfaces

in urban environments (e.g., at façades).

5.2.1 Point-Based Plane Detection

In the following we describe a plane detection algorithm which uses a point cloud as input

and is a RANSAC-based [19] approach, which detects multiple planes until a predefined

percentage of the whole point cloud is included as inlier in one of the planes. The algorithm

iteratively takes a random set of three points to compute a plane hypothesis. The inlier

points supporting the plane hypotheses are defined as points with a maximum distance

of dinlier to the plane, which is computed as the median minimum point-to-point distance

of the whole point cloud multiplied by 5. If in the current iteration the #inliers is bigger

than from all previous iterations, the number of successive iterations needed to guarantee

a correct plane estimate by 99% is re-estimated according to [19] and the current estimate

is stored as current best estimate. This procedure is iterated until convergence. Given a

plane estimate, the supporting inliers are removed from the point cloud. and the algorithm

is executed again until 75% of all points are supporting one of the planes in the plane set.

For every plane, point clusters on the computed plane are estimated using Mean

Shift [14]. and, for every cluster, an oriented bounding box is computed. Finally, there

are several plane segments for every detected plane defined by the bounding boxes around

the detected clusters.

In comparison to the line-based approach, the point-based plane detection has the

advantage that it is also able to detect planes in generic scenes, where no reconstructed

lines set with a specific arrangement is available (e.g., at ground with grass). However, it

misses important planes at buildings where surfaces are frequently reconstructed with a

low point density due to missing texture.

5.2.2 Line-Based Plane Detection

A very common approach to detect planes in 3D is to use a RANSAC-based algorithm

with a point cloud as input (as described in Section 5.2.1 or in [82]). However, especially

in urban environments where scene parts like façades might be poorly textured, these

approaches fail due to missing reconstructed 3D points. In comparison, 3D lines are more

likely to be detected at building façades, as some high-gradient elements like windows or

building outlines usually exist. Hence, we are using this 3D line information to improve

plane detection in urban environments. As our goal is to reconstruct a well smoothed

surrounding of the building, we just use lines labeled as building and ignore all the others

in case semantic information is available.

Assuming to have a 3D reconstruction consisting of line segments, we first detect line

triples which already describe a plane hypothesis. Then we cluster the triples which are

coplanar and in vicinity. Finally, we detect all inlier lines from the plane hypothesis.

50 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

Figure 5.3: Line triple detection (left), line clustering (middle) and plane inlier detection (right).
Several line triples (left, two depicted in green and red) can be detected on one plane and get
clustered to form a plane hypothesis (middle). Finally, all line segments defined as inliers are
added to the plane hypothesis and the final plane parameters are estimated.

Figure 5.3 illustrates the subsequent processing steps. Note that we are assuming a metric

scale for the described setting of parameters in this section.

5.2.2.1 Line Triple Detection

As we explicitly want to model man-made scenes frequently having rectangular outlines,

we search for perpendicular coplanar line pairs which can be used to describe a plane.

Additionally, we only accept line pairs which have a small distance between each other.

For the coplanarity and perpendicularity tests we accept errors up to αerror = 5 deg,

and the normal distance from start/end point of the line segment to the computed plane

hypothesis must not be bigger than dinlier = 0.15 m. The distance between start/end

point of the two line segments must not be bigger than 1.5 m and we ignore line segments

shorter than 0.8 m. In order to perform an early removal of spurious planes, we search for

a third supporting line which has to be coplanar with the line pair and with small distance

to the pair. We just accept the line pair if such a third line exists. Note that line segments

can also be part of several line triples, which is beneficial for lines which are exactly, e.g.,

at corners of a house.

5.2.2.2 Line Triple Clustering

After having estimated plane hypotheses by detecting line triples, several hypotheses can

be nearly identical. Therefore, we cluster line triples which represent the same planar

surface. We cluster line triples by first checking if the triples are nearly coplanar (i.e.,

normals of plane hypotheses with enclosing angle smaller αerror, normal distance from

line triple (i.e., start/end point of its segments) to the current plane hypothesis lower than

dinlier). From these coplanar line triples, we greedily add all line triples to a cluster which

have a maximum distance of the line projections on the plane of 12 m to the previous line

triple. After having clustered the triples, the lines are sampled and the sampled points

are used to reestimate the plane using Singular Value Decomposition (SVD).

5.3. Tetrahedralization of the Scene 51

5.2.2.3 Inlier Detection and Outline Estimation

Finally, we detect all inlier (i.e., lines segments being nearly coplanar in terms of angle

αerror and distance dinlier) which have a distance of the line projections on the plane

smaller than 1.2 m. We estimate an outline of the plane by computing a bounding box

around all inlier segments and reestimate the plane parameters with all inliers using SVD .

5.2.2.4 Plane Filtering

Having estimated the planes, we filter out plane segments which are included in another

plane hypothesis (i.e, having the same plane parameters and the outline is included).

Additionally, we filter out planes which don’t have sufficient supporting 3D data (i.e.,

points and sampled line segments, see Section 5.8.2) within dinlier normal distance. These

planes are usually erroneous detections due to a specific line segment arrangement.

5.2.3 Plane-Based Denoising

We consider all inlier 3D data within the distance dinlier to the plane as noisy samples

of the plane. To remove this small noise, we project all inlier onto the plane surface.

Opposed to a dense over-sampling of the plane as proposed in [51] to enforce the plane

to be part of the tetrahedralization, this roughly maintains the original density in the

3D data. Further, such a dense over-sampling is not necessary for our approach, as the

tetrahedra get cut by the detected planes to for this purpose (see Section 5.4).

5.3 Tetrahedralization of the Scene

In order to get a volumetric decomposition of the whole scene volume, a Delaunay Trian-

gulation is constructed using the input 3D data.

The tetrahedralization T via Delaunay triangulation of a point set is defined as fol-

lows [8]: Given a point set P = {p1, ..., pn}, the Voronoi cell associated to each point pi is

the region surrounding the point pi in which every point is closer to pi than to any other

point in P. The Delaunay triangulation Del(P) of P is defined as the geometric dual

of the Voronoi diagram. Thus, there is an edge between two points if and only if their

corresponding Voronoi cells have a non-empty intersection. Such a Delaunay triangulation

leads to a partition of the convex hull of P into d-dimensional simplices, corresponding

to triangles in 2D and to tetrahedra in 3D space. A more detailed description of the

Delaunay triangulation can be found in Section 2.5.2.1.

Using a Delaunay triangulation is motivated by its property defined in [3]: Having a

sufficient densely sampled surface represented by a point cloud P, a good approximation

of the real surface is contained in Del(P). Hence, by selecting an appropriate set of facets

from Del(P), a good estimate of the real surface can be computed.

52 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

5.4 Tetrahedra Subdivision

After removing the noise of plane inlier data by moving them onto the plane (Section 5.2.3)

and applying a Delaunay triangulation afterwards (Section 5.3), the plane surfaces are not

necessarily part of the tetrahedralization. We therefore compute intersections of planes

and tetrahedra and subdivide them into multiple ones to ensure that all planes are rep-

resented as facets in the tetrahedralization. Note that in contrast to [51] that augment

the tetrahedralization with a densely sampled representation of every plane, our approach

minimizes the amount of added points and tetrahedra. In this section, we discuss in detail

how we consistently subdivide tetrahedra in order to ensure that all planes are part of the

tetrahedralization.

5.4.1 Tetrahedra Intersected by Plane

For every edge which intersects a plane segment, we subdivide all incident cells of this

edge by dividing the cell along the plane. However, a cell division into two parts is

not sufficient as cells need to be further subdivided into multiple tetrahedra and kept

consistent with their neighbor cells. Therefore, we define subdivision schemes for all

possible intersection cases of a cell by a plane (see Figure 5.4). Depending on its neighbors,

the correct subdivision orientation is selected and, if necessary, the subdivision is adapted

to be consistent with all neighbors. Note that the triangulation might not fulfill the

Delaunay property after the tetrahedra subdivision, but we do not require this property

in the forthcoming processing steps.

5.4.2 Consistency Adoptions

When an intersected cell has two or more already divided cells as neighbor, the default

subdivision scheme from Figure 5.4 may not lead to a consistent triangulation. Therefore,

the subdivision scheme needs to be adapted depending on the adjacent cells. In some

cases, this may lead just to a differently oriented subdivision with the same amount of

resulting cells. However, there exist cases where the subdivision results in more cells (up to

12). These more sophisticated consistency adaptions only happen at 3-point and 4-point

intersections (as illustrated in Figure 5.4). A subset of these adaptions can be seen in

Figure 5.5 and Figure 5.6. At a vertex intersection, an adaption might also be necessary.

However, just a simple one: Only the newly inserted edge needs to be flipped.

5.4.3 Margin Tetrahedra

Cells not directly intersected by a plane but adjacent to a subdivided cell must also be

subdivided in order to keep the whole triangulation consistent.

Depending on the adjacent facet of the subdivided neighbor cell (i.e., if the neighboring

facet is divided or not), the margin cells need to get divided differently:

5.4. Tetrahedra Subdivision 53

0

1

2

3

(a) 3-point intersection

0

1

3

2

(b) 4-point intersection

0

1

2

3

(c) Edge intersection

0

1

2

3

(d) Vertex intersection

Figure 5.4: Intersection cases and subdivision schemes of tetrahedra intersected by a plane. De-
pending on the amount of edge intersection points and their locations, the cell needs to be divided
differently. The cut by the plane is illustrated with green edges, additional edges which need to be
inserted are illustrated in red. In (a) and (b) there is an edge-plane intersection which results in
a new vertex for each intersection. Four new cells are created in (a) and six new cells are created
in (b). In (c), the cell-plane intersection follows exactly an edge. Therefore, just one new vertex
and two new cells are created. In (d), the cell-plane intersection comprises one cell vertex. The
cell gets divided into three new cells by adding two new vertices.

• If a cell has more than two divided neighboring facets, this cell also needs to

be subdivided as if it would be intersected by the plane.

• If a cell has only one intersected neighbor with a not divided adjacent facet,

this cell does not need to be subdivided. Only the neighbor relationship needs to be

updated.

• If a cell has one divided neighboring facet, this cell has to be divided into three

new cells, which are consistent to the neighbor. Figure 5.7 (left) illustrates this

54 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Figure 5.5: Consistency adaptions of cells with 3-point intersection. Edges to be changed
in order to stay consistent with neighbors are depicted in blue. In the first two subdivision schemes
from left, only one edge and its corresponding cells need to be changed. No additional change in
the internal structure is necessary. In the third subdivision scheme from left, also only one edge
needs to be changed to stay consistent to its neighbors. However, to stay consistent within the
new cell structure, a new vertex needs to be inserted in the middle of the cell and finally the cell
gets divided into 9 cells (instead of four). In the figure to the right, two edges need to be changed
to stay consistent with the neighbors. Also in this case an additional vertex needs to be inserted
in the middle of the cell and the cell gets divided into 9 cells. For the other subdivision schemes
with two changed edges, the internal structure does not need to be changed.

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

0

1

3

2

Figure 5.6: Consistency adaptions of cells with 4-point intersection. Edges to be changed
in order to stay consistent with neighbors are depicted in blue. Top row: Subdivision schemes,
where only one edge and its corresponding cells need to be changed to stay consistent with the
neighbors. In the first two schemes from left, no additional change in the internal structure is
necessary. In the first two schemes from right, also the internal (newly created) edge lying on the
plane needs to be changed. Bottom row: In the first two schemes from left, two outer edges need
to be changed. To stay consistent internally, an additional vertex and edge needs to be inserted
on the intersection plane. Hence, the cell gets divided into 12 cells (instead of 6). In the first two
schemes from right, three outer edges need to be changed. To stay internally consistent, also the
internal edge lying on the plane needs to be changed. For the other subdivision schemes with two
and three changed edges, the internal structure needs not be changed.

5.5. 3D Reconstruction Using Tetrahedral Occupancy Labeling 55

subdivision.

• If a cell has no intersected neighbor, but contains a newly created vertex in an

edge (i.e., an incident cell of an edge was intersected by the plane), the cell has to

be divided into two cells. Figure 5.7 (right) illustrates this subdivision scheme.

0

1

2

3

0

1

2

3

Figure 5.7: Subdivision schemes of margin tetrahedra. Left: Margin tetrahedron adjacent
to an intersected cell. The cell gets divided into three cells. Right: Margin tetrahedron incident
to an intersected edge. The cell gets divided into two cells.

5.5 3D Reconstruction Using Tetrahedral Occupancy La-

beling

We aim to compute a dense watertight surface as the interface between two disjoint sets

labeling every tetrahedron in the scene as either inside or outside. Hence, the surface is

fully described by a binary labeling ` : T → {0, 1}. To this end, we formulate the following

energy minimization problem which expresses each of our goals with a particular energy

term:

minimize
`

EVis(`) + αManEMan(`) + αLoDELoD(`) . (5.1)

Each of these terms enforces or favors a different property. In particular, EVis scores

the visibility of tetrahedra, EMan favors Manhattan-like solutions and ELoD allows for level

of detail adjustment. The corresponding weights αMan, αLoD ∈ R≥0 balance the impact of

each term. All energy terms are non-negative, submodular and a globally optimal solution

can thus be computed via Graph Cuts [10]. The energy terms defined in Equation 5.1 will

be discussed in detail in Section 5.6 and Section 5.7: In Section 5.6 we will present two

formulations for the visibility-based energy term EVis(`) and in Section 5.7 we will discuss

the Manhattan regularization term EMan(`) and its counterpart, the level of detail term

ELoD(`).

56 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

5.6 Visibility-Based Energy Computation

In this section, we describe two visibility-based energy formulations used in our approach,

which correspond to EVis(`) in Equation 5.1. First, we describe a commonly used unnor-

malized energy formulation (Section 5.6.1), then we describe the introduced normalized

energy formulation (Section 5.6.2), which eases the combination with other energy terms.

Finally, we describe two methods for retrieving the visibility information from the input

point cloud.

5.6.1 Unnormalized Energy Formulation

For each cell and for each facet, costs are computed based on available visibility infor-

mation for every point or vertex in the triangulation. In this section we briefly describe

a commonly used formulation of these costs, which are the dominant information in the

final optimization. For a detailed description we refer the reader to Section 2.5.2.

These visibility-based costs EVis(`) are defined as described in [48]. We define unary

costs providing a point-wise prior on the cell occupancy, as well as pairwise costs which

locally favor or penalize labeling transitions. The costs defined in this section are also

used in [37] and are illustrated in Figure 2.9.

5.6.1.1 Unary Costs

The unary costs derived from the visibility information are defined as follows: Every

cell containing a camera and every infinite cell is labeled as outside by adding infinite

weights. Contrarily, every point which is directly behind a vertex (seen from the camera)

is labeled as inside. For this, the cell behind the point gets a finite weight for each camera

where the point is visible in. Here, we explicitly avoid using infinite weights, since point

measurements are prone to noise and may contain outliers.

5.6.1.2 Pairwise Costs

The pairwise costs are set to penalize ray conflicts for every camera to point correspon-

dence. The pairwise costs are only added in one direction, since faces cannot exist in front

of a measured point. Hence, every intersection of a camera-to-point ray with a facet gets a

constant penalty. In addition to the visibility-based costs, we add constant pairwise costs

as a simple regularization term. Although more complicated regularization terms exist in

literature (e.g., the beta skeleton term [50]), adding constant costs has shown to be the

simplest and most effective regularization term [63].

5.6.2 Normalized Energy Formulation

Visibility-based energy terms as described in the last section tend to be very hard to

normalize, as the magnitude of the energy depends on the density of the point cloud,

5.6. Visibility-Based Energy Computation 57

Camera

OUTSIDE

OUTSIDE
INSIDE

𝒄𝟏 𝒄𝟐

𝒄𝟑

𝒄𝟒
𝒄𝟓

Figure 5.8: Normalized visibility-based energy computation. We use ray casting to compute the
visibility terms: The cell where the camera is located in (c1) is labeled as outside by adding infinite
weights. Then, every facet (green) which is intersected by the line of sight (red) gets pairwise costs
assigned in both directions. Finally, the cell in front of the visible vertex (c4) is labeled as outside
by adding finite weights and the cell behind the vertex (c5) is labeled as inside by adding finite
weights.

the number of cameras the current tetrahedron is visible in and the visibility information

of the surrounding. However, having an unnormalized energy is very problematic when

trying to combine it with other energy terms.

Therefore, we propose a normalized energy formulation [36], which is slightly better in

terms of accuracy and, more importantly, has a normalized magnitude with which a more

intuitive combination with additional energy terms is possible.

Inspired by [48] and [38], the energy terms are based on ray casting from every vertex

to every camera the vertex is visible in. Unary costs are assigned to cells intersected by a

ray adjacent to the visible vertex (i.e., before and behind the vertex), to infinite cells and to

cells including a camera, and pairwise costs are assigned to facets intersected by rays (see

Figure 5.8). Opposing to [48], we do not only assign pairwise terms in one direction but

in both, and we additionally add unary costs in front of a visible vertex. This has shown

to significantly improve the result when using normalization afterwards (as demonstrated

in Section 6.5.3.2). In order to generate normalized cost terms, our general idea is the

following: The visibility-based energies should change significantly when the terms are

still low and additional information is added, but the influence of additional visibility

information when already sufficient information is available should be decreased. Hence,

it should have a significant effect if a point is visible by 1 or 5 cameras, but the effect

should be reduced if the visibility is changed from 21 to 25 cameras.

The normalized unary terms for cells directly in front of and behind visible vertices

are defined as follows:

Eunary(t) = (1− e−
#rays
limitu)limitu, (5.2)

where t defines the current tetrahedron, #rays define the number of rays intersecting the

tetrahedron and limitu is the energy limit approached asymptotically.

58 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

The normalized pairwise terms for every facet are defined as follows:

Epairwise(f) = (1− e−
#rays
limitp)limitp, (5.3)

where f defines the current facet, #rays define the facet’s number of ray intersections

and limitp defines the energy limit. The limits of the unary and pairwise energies need

to be set so that additional energy information is not ignored too early. Additionally, the

pairwise terms need to be allowed to become stronger, as otherwise at large facets at holes

or below roofs the unary term might spuriously dominate and, hence, artifacts might arise.

We found out empirically that a setting for limitu = 8 and limitp = 24 is a good choice

for most scenes.

These improved visibility-based energy terms are non-negative and submodular. The

output is a normalized energy having maximum unary and pairwise terms, which is crucial

for combining it with additional energy terms and, hence, makes it possible to easier find

scene-independent parameter settings.

5.6.3 Computation of Visibility Information

In order to compute the visibility-based costs for the whole scene, one needs the visibility

information for every 3D point, i.e. one has to know for every point in which view it is

visible in. In this section, we discuss two methods for computing this information.

5.6.3.1 Using Pre-Computed Visibility Information

Having MVS point clouds as input, it is possible to directly use the visibility information

delivered by the MVS algorithm (as applied in [37]). No visibility computation needs to

be done for the input point cloud and, hence also no depth maps are needed as input.

However, when subdividing tetrahedra (see Section 5.4), new vertices are created which

have no visibility information assigned. Hence. the visibility-based energy computed for

the original, undivided tetrahedra needs to be propagated to the newly created ones.

Energy Propagation at Tetrahedra Subdivision. Using the visibility-based unary

and pairwise costs described in Section 5.6.1 or in Section 5.6.2, it is necessary to have

visibility information available for each point (i.e. camera-point correspondences). When

using a fused MVS point cloud with included visibility information as input, there is no

known visibility information for the points created by the tetrahedra subdivision. Hence,

the visibility-based cost need to be computed using the original tetrahedralization and

propagated to the subdivided cells. In the following, we describe the propagation for

unary and pairwise energy terms.

For the unary costs we assign the original cost scaled by the volume of the new tetra-

hedron:

Eunary(t) = Eunary(torig)
vt
vtorig

, (5.4)

5.6. Visibility-Based Energy Computation 59

where t is the new tetrahedron and vt its corresponding volume, torig and vtorig are the

original tetrahedron and its corresponding volume, respectively.

For the pairwise costs the weight is scaled according to the area of the facet, if the

facet of a new cell is part of a facet of the old cell:

Epairwise(f) = Epairwise(forig)
af
aforig

, (5.5)

where f, forig and af , aforig are the new and original facets with their corresponding areas.

The pairwise costs for all other facets (i.e., facets inside of the old cell), the biggest

facet from the original cell with a sufficiently small enclosing angle with the new facet is

selected and scaled according to the area.

In order to select a corresponding original facet for new facets not lying on an original

one, we retrieve all facets with an enclosing angle smaller than 0.3 rad (approx. 17.2 deg)

and take the biggest one of the retrieved facets. If no facet fulfilling this property exists,

we increase the maximum enclosing angle by 0.1 rad until an appropriate facet is found.

With this propagation scheme, the unary costs overall stay the same and the pairwise

costs are propagated from facets which are as similar as possible to the new facets and,

by taking the biggest one, carry as much as possible information.

When using depth maps for visibility computation (as described in the next section)

this cost propagation step is not necessary, as the visibility-based costs get computed on

the final triangulation having already the subdivided tetrahedra included.

5.6.3.2 Visibility Computation Using Depth Maps

To compute visibility-based energy terms, the knowledge of the visibility information of

every 3D point (i.e., camera-point correspondences) is necessary. Hence, most of the meth-

ods following visibility-based cost computations similar to Labatut et al. [48] assume that

the visibility information is known. However, when tetrahedra are subdivided, new points

without visibility information are created. Additionally, input 3D information without

visibility information cannot be used. Hence, we propose to compute this information for

all 3D points using depth maps. Using this method, no visibility cost propagation for

subdivided tetrahedra (as proposed in the previous section) is necessary.

Assuming to have dense depth maps for every camera, we project every 3D point

into all cameras. If the point is within the image boundaries and in front of the camera,

we compare the actual distance of the point to the camera with the depth value in the

depth map (using nearest neighbor). If the depth difference is small enough (i.e., smaller

than 0.03 m), we assume that the current point is actually visible in this camera and

store this camera-point correspondence. Having this estimated visibility information, the

visibility-based cost terms can be computed for all tetrahedra including the subdivided

ones.

60 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

EMan(`) = 0 EMan(`) = 1 EMan(`) = 0

Figure 5.9: Manhattan regularity term for neighbor facets with different angles. When a facet
(blue) has coplanar neighboring facets (left) or perpendicular neighboring facets (right), EMan is
0. When a facet has neighboring facets with an enclosing angle of 135 deg or 45 deg, EMan is at
its maximum.

5.7 Plane-Aware Regularization

In this section, we introduce new regularization terms which allow a continuous choice

between generic 3D reconstructions and reconstructions in which the pre-detected planes

and Manhattan-like structures are increasingly replacing surface noise and details of the

surface structure.

In Section 5.7.1 we will describe the introduced Manhattan regularity term, which

enforces the final reconstruction to be aligned with the detected planes. In Section 5.7.2,

we will introduce the level of detail term, which is the counterpart of the Manhattan term

and brings big smoothed out elements back. Finally, in Section 5.7.3, we will discuss an

artifacts removal strategy used.

5.7.1 Manhattan Regularity Term

Similar to [52], we introduce a regularity term which favors orthogonal and parallel scene

structures. The following term favors label transitions with Manhattan-like surface struc-

tures, i.e., neighboring facets with enclosing angles similar to 0 or multiples of 90 degrees.

More exactly, this term penalizes facets which cannot be part of a Manhattan-like surface

structure:

EMan(`) =
∑
f∈T

1{`t1 6=`t2}
af
3

∑
e∈f

min
g∈Ne

{∣∣ sin (2∠(f, g)
)∣∣} , (5.6)

where f denotes a facet in the tetrahedralization T , 1{·} is the indicator function, `t1 and

`t2 are the labels of the adjacent tetrahedra of facet f , af the area of f , e are the edges

of f and Ne are all incident facets of edge e. An illustration of the term is depicted in

Figure 5.9.

As a major advantage, the term favors Manhattan-like structures, but does not strictly

enforce them and is therefore applicable to any kind of surface type. Moreover, the term

acts completely local and the surface does not need to be aligned with any world coordinate

axis.

5.7. Plane-Aware Regularization 61

5.7.2 Level of Detail Term

In order to control the amount of detail which is removed by the Manhattan term and due

to the favoring of pre-detected planes, we introduce another term controlling the amount

of removed structure according to its size. For instance, we want to remove the noise on a

building roof but keep the chimney. To achieve this, we introduce a new term penalizing

the volume deviation of the plane-aware reconstruction including the Manhattan regularity

term with respect to the original non-regularized reconstruction. Using a visibility-based

energy defined in Section 5.6, the original generic 3D reconstruction without favoring

planes is defined as

`Vis = arg min
`

[EVis(`)]. (5.7)

A natural error measure to control structure removal upon plane replacement is the volume

difference between the two models. We hence define the level of detail term as follows:

ELoD(`) =
∑
t∈T

vt 1{`t 6=`Vis
t } , (5.8)

where t defines a tetrahedron in the tetrahedralization T , 1{·} is the indicator function,

`t is the labeling of t, and vt denotes the volume of tetrahedron t. This term acts as

the counterpart of the Manhattan regularity term: While the Manhattan regularity term

removes details not supported by any plane, this term allows to control the amount of

details to be removed.

5.7.3 Plane Intersection Artifacts Removal

These terms work well in most cases, but artifacts may arise near plane intersections,

typically along sharp edges in the scene like building outlines. Cells which contain a unary

term voting for being inside while actually being outside of the object may exist enclosed

by two planes due to noise within the 3D reconstruction. However, as some of the cells’

facets are lying on the planes and, hence, are not penalized by the Manhattan term, the

smoothness term is not strong enough to enforce sharp edges.

To avoid such artifacts, we reduce the influence of the unary and pairwise terms in

scene parts around plane intersections. For every tetrahedron for which its centroid point

has a normal distance d to the plane intersection smaller than 3dinlier (with dinlier being

the plane inlier distance defined in Section 5.2), we update the unary costs by:

E(t) = Eorig(t)

(
1− exp

(
−d2

3d2inlier

))
, (5.9)

with t being the tetrahedron to update and Eorig(t) being the initial unary cost before the

update.

Similarly, the pairwise costs at facets are updated. For all facets of tetrahedra which

are within the distance of 3dinlier to the plane intersection and are located on one of the

62 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

planes, we update the pairwise costs accordingly:

E(f) = Eorig(f)

(
1− exp

(
−d2

3d2inlier

))
, if f ∈ planes, (5.10)

where Eorig(f) are the initial pairwise costs of the facet f and planes is the set of all

planes.

Using these cost updates, the influence of inside labeled cells violating the smoothness

constraints is reduced and the surface is enforced more intensively to follow the planes in

the vicinity of plane intersections.

5.8 Semantically Aware Urban Reconstruction

Using the reconstruction techniques discussed in the previous sections, it is possible to

create reconstructions of urban environments consisting of planar surfaces and sharp edges.

However, the Manhattan regularity term (introduced in Section 5.7.1) might smooth parts

of the scenery not consisting of planar surfaces (like, for example, vegetation) in a wrong

way which might lead to artifacts. Further, when focusing on reconstruction of urban

environments, one might want to have well smoothed reconstructions of the surroundings

of buildings containing less clutter and noise and a smooth surface while simultaneously

having buildings reconstructed with planar surfaces and sharp edges while still containing

many details.

Using semantic information, it is possible to handle different parts of the scene dif-

ferently [36]. More precisely, we apply preprocessing steps depending on the semantic

classes of the scenery. Then, we use different smoothness terms for different scene parts

in order to reconstruct buildings with a Manhattan prior, while the surrounding should

be represented by a smooth surface.

5.8.1 Semantic Segmentation

The goal of the semantic segmentation is to get the 3D reconstruction semantically en-

hanced to be able to perform automated decisions throughout our processing pipeline. To

achieve this goal we follow the work of [60] to perform pixel-wise semantical segmentation

of the input images. To transfer the labels from 2D to 3D, each 3D point is back projected

according to its visibility to 2D and a final majority voting determines the label of the 3D

point.

For the semantic segmentation of the input images we use a Fully Convolutional Neural

Network (FCN) [55] to get pixel-wise segmentations. The network presented in [55] is

adjusted to represent the number of output classes required for our task. We define

five output classes, namely: street/pavement, building, vegetation, sky and clutter. As

our intermediate aim is to semantically enhance the 3D reconstruction, we need a pixel

accurate segmentation of the input images where the segmentation boundaries are aligned

5.8. Semantically Aware Urban Reconstruction 63

with the objects present. Thus, the receptive field of the FCN of 32 px and the final

up sampling by a factor of eight are too coarse to achieve this goal. We extend the

2D segmentation network by adding a Conditional Random Field as Recurrent Neural

Network (CRFasRNN) as presented in [99]. The Conditional Random Field exploits the

probabilities of the FCN and refines them by taking binary constraints into account. This

enforces label changes being aligned with edges.

Having the pixel-wise semantic segmentation of the input images, we propagate this

information to 3D: Assuming 3D points with visibility information, we back project every

point into every image in which it is visible in and compute a point label by majority

voting. For getting labels of the 3D lines, we sample every line with points and compute

a label for every point as explained above. The most frequent label within the sampled

points defines the line label.

5.8.2 Input Data Subdivision and Semantic Preprocessing

Depending on the semantic label, we initially subdivide the scene into two parts which

will be processed differently: For the building part we keep all available 3D information.

For the non-building part we sparsify the input data, compute a Poisson surface and use

the sampled Poisson surface which results in a smoother, visually appealing reconstruction

(e.g., less spurious peaks at vegetation). In the final optimization, the subdivided parts

are combined again in order to create a reconstruction of the whole scene.

As we want to have a point cloud representation of the building part which covers

all important details, we add all input points and additionally add points from sampled

building line segments to the scene (line sampling distance 0.05 m). Adding the sampled

line points especially helps at poorly textured scene parts where few reconstructed points

are available. This enriched point cloud is subsequently used for triangulation (as described

in Section 5.3).

In contrast to the building part, we want a very smooth representation of the surround-

ings of the building. Hence, we first sparsify these classes: For the clutter class we just

keep every fifth point, for street/pavement and vegetation we keep every third point and

we remove all sky points. Then, we compute a Poisson surface [43] using these selected

points. As Poisson surface reconstruction needs points with its corresponding oriented

normals as input, we compute the normals in case no precomputed ones are available.

For this, we use Principal Component Analysis (PCA) in order to compute unoriented

normals and estimate the orientation using an algorithm similar to [39]. For details about

Poisson surface reconstruction we refer the reader to Section 2.5.1. For the triangulation of

the scene and subsequent reconstruction steps, we don’t use the original street/pavement,

vegetation and clutter points but a sampled point representation of the computed Poisson

surface. This results in a much smoother surface of this part of the scene in the final

reconstruction.

Using this preprocessed point cloud, a Delaunay Triangulation is created (as described

64 Chapter 5. Shape Priorization in Tetrahedra-Based Methods

in Section 5.3), which naturally combines both representations into one tetrahedral cell

complex.

5.8.3 Semantically Varying Smoothness Terms

As has been discussed in Section 5.5, the final 3D reconstruction is computed by energy

minimization minimizing visibility-based cost terms, a Manhattan smoothness term and

a Level of Detail term. When using semantic information, we rephrase Equation 5.1 for

setting class-specific energy terms:

minimize
`

EVis(`) + EClass(`) , (5.11)

where EVis(`) is the visibility-based energy and EClass(`) are class-specific energy terms,

which will be explained in more detail in this section.

Depending on the semantic class facets and cells in the triangulation are assigned to,

additional energy terms are added. First, we compute the class dependence for every facet

and cell by computing a majority vote using all their corresponding vertices. Then, scene

parts get assigned different energy terms depending on their semantic labels.

The energy terms assigned to building parts favor Manhattan-like structures but si-

multaneously aim to keep important details and were already discussed in detail in Sec-

tion 5.7.1 and Section 5.7.2: They consist of a Manhattan regularity term EMan, which

favors label transitions with Manhattan-like surface structures (i.e., neighboring facets

with enclosing angles similar to 0 or multiples of 90 degrees), and a level of detail term

ELoD, which punishes volumetric errors with respect to the unregularized model. Hence,

ELoD is the counterpart to EMan and brings back smoothed out details which are not sup-

ported by planes. Using these energy terms, we strongly favor planar and Manhattan-like

structure while still keeping sufficiently big details.

For non-building parts, our goal is to get a reconstruction which is as smooth as

possible. Therefore, we just add an area smoothness term Earea as defined in [48]. This

term should remove spurious artifacts.

Hence, the class-specific energies are defined as follows:

EClass(`) =

{
αManEMan(`) + αLoDELoD(`) if building

αareaEarea(`) else
, (5.12)

where αMan, αLoD and αarea define the amount of smoothing.

Having the semantic information incorporated into the reconstruction process, it is

possible to reconstruct the surrounding of the buildings more smoothly due to the inter-

mediate Poisson surface representation and the used area term. Further, less spurious

artifacts arise at the surroundings, as the Manhattan regularity term is only applied at

the building parts. However, the regularization of the buildings stays approximately the

same, as the Manhattan regularity term and the level of detail term are applied to these

5.9. Summary 65

scene parts the same way than without semantics.

5.9 Summary

In this section, we presented a 3D reconstruction method which creates visually appealing

reconstructions of urban scenes. First, planes are detected in the scene by a point-based

plane detection algorithm or by using a line-based plane detection algorithm which im-

proves the plane detection result especially in poorly textured environments. The planes

are incorporated within a tetrahedra-based reconstruction framework where semantic in-

formation is used to set shape priors accordingly to get a detailed reconstruction of build-

ing parts containing planar surfaces and sharp edges and a smoothed reconstruction of

the surroundings. Further, we introduced a normalized energy formulation used within

the reconstruction process, which eases the combination of multiple energy terms. In

Section 6.5.2 and Section 6.5.3 we present a detailed evaluation of this method contain-

ing evaluation with different parameter settings and comparisons to other state-of-the-art

methods.

6
Experiments

Contents

6.1 Input Data . 67

6.2 Implementation Details . 71

6.3 Default Parameters . 71

6.4 Results and Comparisons . 72

6.5 Method-Specific Detailed Evaluations 78

6.6 Summary . 100

In this chapter, we show quantitative and qualitative comparisons of the proposed

approaches to other state-of-the-art methods. Further, we evaluate the individual contri-

butions of the proposed approaches and give detailed parameter studies.

First, we describe the input data used for the main experiments. Next, we discuss

implementation details in Section 6.2 and define default parameter settings in Section 6.3.

In Section 6.4, we show results of the proposed approaches and others and evaluate them

quantitatively and qualitatively. In Section 6.5 we discuss method-specific detailed evalu-

ations, which contain parameter studies, additional results and evaluations of individual

contributions. Finally, in Section 6.6 we summarize the chapter.

6.1 Input Data

In this section, we describe the three main evaluation datasets used in this thesis in

detail. This datasets contain urban scenes including buildings and were acquired using

an Unmanned Aerial Vehicle (UAV) equipped with a Sony Alpha 6000 camera capturing

images with a resolution of 24.3 MPixel. For two datasets, also ground truth 3D data was

acquired using a total station.

For all datasets, we used our own Structure from Motion (SfM) implementation using

images only as input to compute the camera poses. To obtain metric input, we scaled the

67

68 Chapter 6. Experiments

Figure 6.1: Input images of the Block Building. As one can see, this simple building consists
mainly of planar façades, including several windows and poorly textured surfaces.

SfM reconstruction using measured fiducial markers in the scene. In case no markers were

available, we manually scaled it to an approximate metric scale.

Having the SfM result as input, we used several densification methods within our ex-

periments: We computed a dense point cloud using PMVS2 [22] or Sure [79] and computed

a 3D line reconstruction using Line3D++ [33].

As input meshes for the slicing-based method, we computed a Poisson mesh [39] with

Meshlab [92] using the oriented dense points as input.

As the tetrahedra-based method may also need additional input information, we com-

puted dense depth maps using PlaneSweepLib [28] and detected line segments in images

using the Line Segment Detector (LSD) [27].

Below, we will give a detailed overview of the three main datasets. Other additional

datasets used for method specific evaluations in Section 6.5 will be introduced at the

individual experiments.

6.1.1 Block Building

The first dataset, in the following referred as Block Building, contains 232 images and

shows a scene including a building shaped like a single block and surroundings containing

mainly streets and vegetation. On the roof of the building, there are additionally some

installations and a smaller block with an exit onto the roof. The façades of the building

contain many windows and poorly textured parts. Figure 6.1 shows example input images.

The dense point cloud reconstruction used in the main evaluation in Section 6.4 was

computed with PMVS2, which resulted in 1.4M points and can be seen in Figure 6.4

(left).

For this dataset, no ground truth 3D data and no measured fiducial markers were

available and, hence, we manually scaled it to metric scale.

6.1. Input Data 69

Figure 6.2: Input images of the House dataset. The main part of this dataset is a single family
house, surrounded mainly by vegetation, pavement and a swimming pool.

House Residential Area

Figure 6.3: Ground truth point cloud captured with a total station. Even though the ground
truth was captured from several view points, it is not complete at all parts: E.g., big parts of the
roof are missing at both datasets and the façade on the left side of the house is missing in the
House dataset.

6.1.2 House

The next dataset, in the following referred as House, contains a scene with a single family

house surrounded mainly by vegetation and pavement. From this scene, 233 images were

acquired and a dense point cloud was computed with Sure [79] and downsampled to 900K

points. This point cloud is visualized in Figure 6.4 (middle) and example input images

are depicted in Figure 6.2.

For this dataset, ground truth 3D data was acquired using a total station and measured

fiducial markers where used to convert the reconstruction to a metric scale. In Figure 6.3

(left), the ground truth point cloud is visualized.

70 Chapter 6. Experiments

Block Building House Residential Area

Figure 6.4: Point clouds of all three evaluation scenes. At the House dataset (middle), one can
observe that some parts of the scene like the façade on the left side of the house is reconstructed
very sparsely due to missing texture. Also at the Block Building (left) dataset, some parts are not
reconstructed well due to a white façade and many windows.

Figure 6.5: Input images of the Residential Area dataset. The main part of this dataset contains
two houses within a residential area surrounded by vegetation, pavement, street and a small lake
in front of a house.

6.1.3 Residential Area

The Residential Area dataset contains a scene with several family houses within a resi-

dential area, where two of these houses are covered well with imagery. These two houses

are surrounded by pavement, a street, a small lake and vegetation. From this scene 446

images were acquired and a dense point cloud was computed using PMVS2 consisting of

3.6M points, which can be seen in Figure 6.4 (right). In Figure 6.5, example input images

are depicted.

Also for this dataset, ground truth 3D data was acquired using a total station and

measured fiducial markers where used to convert the reconstruction to a metric scale. In

Figure 6.3 (right), the ground truth point cloud is depicted.

6.2. Implementation Details 71

6.2 Implementation Details

In this section, we list libraries used in our implementation and give some implementation

details.

The proposed algorithms are mainly implemented in C++. The implementation uses

OpenCV [72] for various image processing steps, the Graph Cut implementation from Olga

Veksler [45] [10] [9] and CGAL [89] for the 3D Delaunay triangulation, the 2D constrained

Delaunay triangulation and the Poisson meshing (used for the surroundings of the buildings

when using semantic information).

The semantic segmentation network is realized in the Caffe framework [41]. For ini-

tialization we exploited the weights of the PASCAL-Context network [73] and performed

a transfer learning of the network based on 27 labeled training images (16 manually la-

beled, 11 taken from eTRIMS dataset [46]) that were augmented in scale (0.8, 1.0, 1.2),

rotation [deg] (0, 90, 180, 270) and mirroring. Additionally, the augmented images were

cropped to patches of 256 × 256 px to easily fit to GPU memory. In total we resulted in

a training database of 32,016 image patches. The training itself has been performed in

stages to consecutively train the FCN32s, FCN16s, FCN8s and FCN8s with CRFasRNN.

Each stage was trained for 400,000 iterations using Stochastic Gradient Descent with a

momentum of 0.99, weight-decay of 0.0005 and a learning rate of 1e−9, 1e−10, 1e−12 and

1e−12 for each stage respectively.

6.3 Default Parameters

In the following, we define default parameters for the slicing-based method described

in Chapter 4 and define two sub-methods and its corresponding parameters for the

tetrahedra-based method described in Chapter 5, which are used consecutively in this

chapter.

For the slicing-based method, we use both the line and mesh smoothness terms and

set λlines = 0.5 and λmesh = 0.5. Further, we set the mean shift parameter d depending on

the scene: If a scene contains few vertical structure (like the Block Building dataset) we

set d = 50, if it contains more horizontal/sloped structure (like the House and Residential

Area dataset), we increased this parameter to d = 80 in order to generate more slices and

to approximate sloped surfaces in a more detailed way.

For the tetrahedra-based method, we define two sub-methods which use different mod-

ules of the method and will be evaluated individually:

The first sub-method will be denoted as plane-based regularization method in

the following sections. It uses point-based plane detection (as described in Section 5.2.1),

the unnormalized visibility-based energy formulation as described in Section 5.6.1, pre-

computed visibility information (as described in Section 5.6.3.1) and no semantic infor-

mation. This is the same setting as used in [37]. As parameters, we set αMan = 250K for

all three datasets. We set αLoD = 375K for the Block Building and αLoD = 250K for the

72 Chapter 6. Experiments

Agisoft [1] Pix4D [75]

Figure 6.6: Results from commercial reconstruction pipelines of the House dataset. Compared to
the reconstruction of the proposed approach (see Figure 6.26), Agisoft and Pix4D do not generate
planar surfaces and straight edges, as they use no shape or semantic priors. The façades and roofs
are noisy and some scene parts are smoothed too much and become rounded (e.g., building edges,
chimney).

House and Residential Area dataset.

The second sub-method will be denoted as semantically aware method in the fol-

lowing sections. It uses line-based plane detection (as described in Section 5.2.2), the

normalized visibility-based energy formulation as described in Section 5.6.2, visibility in-

formation computed using depth maps as described in Section 5.6.3.2, and semantic in-

formation as described in Section 5.8. This setting was also used in [36]. For the three

presented datasets the parameters were set as follows: For datasets House and Residential

Area, the parameter set was αMan = 1000, αLod = 500. For the dataset Block Building, the

parameters were set differently to impose a stronger plane prior as this dataset contains

more noise near to planar surfaces (αMan = 2500, αLod = 1250). αarea was set to 0.5 for

all datasets.

6.4 Results and Comparisons

In this section, we compare reconstruction results from the proposed methods with generic

3D reconstruction algorithms and with specialized urban reconstruction approaches.

Additionally, we show reconstruction results from two commercial reconstruction

pipelines in Figure 6.6. One can observe that these approaches are not explicitly designed

for creating visually appealing urban reconstructions. Up to our knowledge there do not

exist commercial products which produce results following our goal definitions, which

are 3D reconstructions from urban scenes containing planar surfaces and sharp edges at

building parts and ideally also a smooth reconstruction of the surroundings.

In Figure 6.7, results from proposed approaches and state-of-the-art reconstruction

algorithms are depicted. All of the aim to create visually appealing 3D reconstructions

having specific predefined properties: The Poisson surface reconstruction produces smooth

6.4. Results and Comparisons 73

surfaces, which results in rounded edges. Additionally, it cannot handle missing data very

well and creates spurious artifacts. Polyfit [66] heavily depends on the (point-based)

plane detection result and reconstructs non-planar parts not very well, as it just relies on

detected planes and uses only the plane surfaces to create an optimized surface model.

The slicing-based method lacks the ability to model sloped surfaces. Hence, sloped roofs

in the House and Residential Area dataset can only be approximated by stairway-like

structures. Further, as the ground in the House dataset is also slightly sloped and, hence,

the ground plane is detected wrongly, the horizontal slicing of the scene does also not work

ideally. However, for well suited scenes like the Block Building, this method produces well

regularized 3D models. The plane-based regularization method incorporates plane priors

into a generic reconstruction method and aims to reconstruct planar parts of the scene as

perfectly planar surfaces. However, some planar surfaces are not detected correctly and

due to the unpredictability of the visibility-based energy it is hard to set the smoothness

energy weights correctly. This might lead to artifacts like smoothed out wall parts or

whole buildings. As this approach has no semantic class specific smoothing, also the

surroundings of buildings are smoothed heavily according to a plane prior and, hence,

some parts (like, e.g., vegetation) are smoothed too aggressively and artifacts looking like

slices might arise. In comparison, the semantically aware approach uses a more complete

plane set as shape prior and imposes planar surfaces just on buildings. Due to the improved

visibility-based energy formulation it is easier to set correct smoothness term weights and,

hence, to avoid over-smoothing. The representation of the surroundings is smooth while

still not over-smoothed.

In Table 6.1 error metrics for two datasets with respect to the ground truth are de-

picted and in Figure 6.8 these errors are visualized on the ground truth data. It can be

House Residential Area

µ [m] σ[m] µ [m] σ[m]

Poisson [43] 0.165 0.237 0.101 0.157

Polyfit [66] 0.515 0.352 0.304 0.375

Slicing-based 0.623 0.427 0.323 0.398

Plane-based regularization 0.137 0.237 0.415 0.385

Semantically aware 0.126 0.233 0.055 0.086

Table 6.1: Error statistics compared to the ground truth. We computed the minimal Euclidean
distances of the ground truth points to the surface reconstructions with a maximum distance of 1
m and depicted the mean and standard deviation for all points in this table. On both datasets,
the proposed semantically aware method has the lowest error. The slicing-based method has high
errors on both datasets, as it in general does not model the ground surrounding the buildings and
can only approximate the sloped roofs. Polyfit also has high errors on both datasets, as it does
not reconstruct the whole scene but just (parts of) buildings well. The plane-based regularization
method has the highest error on the Residential Area dataset due to a wrongly smoothed out
building. Poisson produces over-smoothed (i.e., no sharp edges) results, but has comparable errors.

74 Chapter 6. Experiments

P
oi

ss
on

[4
3]

P
ol

y
fi

t
[6

6
]

S
li

ci
n

g-
b

as
ed

P
la

n
e-

b
as

ed
re

g.
S

em
.

aw
ar

e

House Residential Area Block Building

Figure 6.7: Results and comparison with state-of-the-art methods. From top to bottom: Poisson
meshes [43] computed from the input point clouds, results of Polyfit [66], the proposed slicing-
based method, the proposed plane-based regularization method and the proposed semantically
aware method. The Poisson mesh looks visually appealing, but often produces rounded edges
and spurious surfaces like bubbles at missing data. Polyfit is not able to reconstruct all buildings
sufficiently well. As it depends on planes detected from point clouds, undetected surfaces were just
not included in the possible solution set and spurious planes lead to erroneous reconstructions. The
slicing-based method models the Block Building very well. However, at the other two datasets the
sloped roof can only be approximated by stairway-like structures. The plane-based regularization
method regularizes parts of the scene well with its included plane prior. However, at some parts
of the scene not all planes were detected and, hence, planar surfaces remain noisy. Further, due to
an unpredictable visibility-based energy term it is difficult to set correct weights for smoothness
terms. Hence, some parts of the scene can be smoothed out very quickly. The semantically aware
method creates 3D models with planar surfaces at façades/roofs while still keeping the building
details like chimneys and reconstructs the surroundings with a smooth surface.

6.4. Results and Comparisons 75

observed that the error metrics for the semantically aware method are the best for both

the House and Residential Area data set. Apparently, the plane prior incorporated within

the reconstruction process handles noise and clutter better than, for example, a smooth

Poisson surface. Similarly, it can be seen that the proposed semantically aware method

has visually low errors on both datasets.

For the methods we compared against, we used the following parameter settings: For

Poisson surface reconstruction, which was computed using Meshlab [92], we set octree

depth to 9. For Polyfit we used default parameters. We also tried to vary the parameters,

but the results did not improve significantly.

6.4.1 Runtimes

In the following, we compare the runtimes of the methods used in the evaluation. For

Poisson, Polyfit and the slicing-based method, the computations were performed on an

Intel Core i7-4820k @ 3.7 GHz containing 4 CPU cores (8 threads) equipped with 48 GB

RAM. The semantically aware and the plane-based regularization method were executed

on a server with 2x Intel Xeon E5-2680 v2 running at 2.8 GHz with 10 CPU cores (20

threads) each and 264 GB of RAM. Within our methods, some highly demanding parts

in terms of computation time (e.g., the visibility casting) make use of multithreading.

All the below mentioned runtimes are measured assuming precomputed input data

(i.e., dense point cloud, 3D line reconstruction, 2D semantic labels, dense depth maps).

However, one exception is the slicing-based approach, which runs the 2D line segment

detection on demand.

In Table 6.2 the runtimes are depicted. It can be observed, that Poisson meshing has

the lowest runtime. Polyfit has comparable high runtimes on two datasets. Especially at

the Residential Area dataset, it ran longer than a week to produce some results. Further,

the plane-based regularization method was significantly slower than the semantically aware

method. This is due to the point-based plane detection in the plane-based regularization

method, which first of all is slower in detecting planes, but also detects more and more

spurious planes. This leads to more cell cutting and more cells for which the energies need

to be computed and minimized. However, for both sub-methods most of the computation

time was needed for visibility-based energy computation and cell cutting.

76 Chapter 6. Experiments

P
oi

ss
on

[4
3]

P
ol

y
fi

t
[6

6]
S

li
ci

n
g-

b
as

ed
P

la
n

e-
b

as
ed

re
g.

S
em

.
aw

ar
e

House Residential Area

Figure 6.8: Ground truth point errors measured as the minimum euclidean distance from ground
truth points to the 3D surface mesh of the results. Blue means low error, red means high error.
The maximum error is defined as 1m. For the House dataset (left column), it can be observed that
the plane-based regularization method has a slightly lower error below the roof and at vegetation
compared to Poisson. Polyfit has a much higher error, as it does not succeed in reconstructing
the building and the surrounding with an adequate accuracy. For the Residential Area dataset
(right column), the plane-based regularization method has the highest error, as it smooths out
one building nearly completely and also has big errors at the second building. Also Poisson has
significantly higher errors compared to the semantically aware approach, especially at walls and
roofs. For both datasets, the slicing-based method does not model the surroundings of buildings
and can only approximate sloped roofs. Hence, it has high errors.

6.4. Results and Comparisons 77

Bl. Building House Res. Area

Poisson [43] 0.4 0.4 0.6

Polyfit [66] 647.3 1.8 16309.9

Slicing-based 50.4 80.4 924.8

Plane-based regularization 337.1 63.6 903.5

Semantically aware 59.7 13.3 153

Table 6.2: Runtimes of the evaluated methods in minutes. Poisson meshing is the fastest on
all datasets, while Polyfit is very slow on two datasets. The proposed approaches often have
comparable runtimes.

78 Chapter 6. Experiments

6.5 Method-Specific Detailed Evaluations

In this section, we show individual, detailed evaluations of the three methods used in the

previous section. We give detailed parameter studies, evaluate the effects of the individual

contributions and show additional results and comparisons.

6.5.1 Slicing-Based Method

The slicing-based method, as presented in Chapter 4, creates geometrically regularized 3D

models from buildings which finally consist of smooth and clean surfaces instead of a noisy

mesh, as in the input data. It can handle input meshes with different quality and input

density, where especially on meshed point clouds including some errors (e.g., a point cloud

created from SfM) our introduced line-based smoothness term improves the quality of the

resulting 3D model compared to using only the mesh-based smoothness term. Finally, we

deliver optionally textured output models, which can be variably regularized and contain

smooth surfaces where meshed point clouds, in contrast, contain a lot of noise and clutter.

In the following, we will show additional results of the proposed slicing-based method

and the effects of different parameter settings. Further, we will demonstrate the benefits

of the introduced line-based smoothness term. In addition to a meshed dense point cloud,

we also used the resulting sparse point cloud from SfM meshed with our implementation

of [48] as input for some of the following experiments.

6.5.1.1 Parameter Selection

We changed three parameters during our experiments. First, we set the Mean Shift param-

eter d (as described in Section 4.3) depending on the desired level of detail in the vertical

direction. If only few horizontal elements should be represented by the final model, one

can set d lower to produce less slices. If many small structuring elements should be rep-

resented in the final model, one should set d higher to produce more slices and cover all

horizontal elements. Usually, we set this parameter between 40 and 50, but sometimes it

is also beneficial to set it higher (e.g., as in the experiments in Section 6.4, where sloped

structures exist in the scene).

The two smoothness parameters λmesh and λlines define the amount of regularization.

The selection of a good value for λmesh heavily depends on the quality of the input mesh: If

we use a nearly error-free input mesh just including a little bit of noise, it is recommended

to set λmesh higher in comparison to λlines. Contrary, if the input mesh contains big errors

we suggest to set λmesh lower, as otherwise the regularized output may be influenced too

much from the erroneous mesh. λlines should be set according to the amount of errors

which should be corrected with this line-based smoothness term. For an erroneous mesh,

one should set λlines to a higher value, for a mesh containing just few errors, one should

set λlines to a lower value. We usually set λmesh between 0.2 and 0.8 and λlines between

0.1 and 0.5.

6.5. Method-Specific Detailed Evaluations 79

Figure 6.9: Meshed dense 3D reconstruction and resulting regularized model of the block building.
Left: A 3D building reconstruction, for which a dense point cloud was reconstructed with Sure [79],
which was finally meshed using Poisson surface reconstruction [43] (visualized with vertex coloring).
Such a mesh can be used as input for our approach. Right: Resulting regularized model from our
pipeline with line+mesh smoothing, textured with [93]. We deliver clean and smooth surfaces where
the meshed dense point cloud contains a lot of noise. The parameters were set to: λmesh = 0.4,
λlines = 0.1 and d = 50.

Further, we compared two variants of our approach, which uses different smoothness

terms in Equation 4.6: One just uses the mesh-based smoothness term, which is equal

to setting λlines = 0. This is identical to the method presented in [35] and is depicted

as mesh-only smoothing. The proposed method, which uses both smoothness terms in

Equation 4.6, was originally presented in [34] and is depicted as line+mesh smoothing.

When using mesh-only smoothing, we observed that setting λmesh = 3.5 is a good

compromise for all of our test data: With this setting, important parts of the buildings

were still not smoothed out, while the overall result is regularized well.

6.5.1.2 Block Building

This simple building, which has already been introduced in Section 6.1, consists out of

one block with some additional installations on the roof and some small roofs on the side.

Due to this simple, Manhattan-like structure, it is well suited for the proposed approach.

For this dataset, we used a meshed sparse SfM point cloud in addition to PMVS2 [22]

and Sure [79] data as input.

As Sure delivers the most accurate point cloud, also the results from our pipeline

using Sure data as input are the most convincing ones. You can see the textured result

and the corresponding input data in Figure 6.9. Using dense Sure input data, only a

little smoothing was necessary to get smooth surfaces and the line smoothness parameter

does not significantly improve the result. Therefore we set especially the line smoothness

parameter comparably low, as setting the mesh smoothness term already results in a well

80 Chapter 6. Experiments

PMVS2 [22] + Poisson [43]

Line+mesh smoothing

λmesh = 0.5, λlines = 0.5, d = 50

Mesh-only smoothing

λmesh = 1.0, d = 50

Figure 6.10: Results for the Block Building with PMVS2. Top: The input data created with
PMVS2 and Poisson surface reconstruction. As one can see, this reconstruction contains more
noise and clutter and is incomplete compared to the Sure reconstruction in Figure 6.9. Bottom
left: The result of line+mesh smoothing, which contains less artifacts (green dotted and red dashed
circle) compared to the mesh-only smoothing (bottom right). The parameters for both were chosen
to create smooth and clean façades while simultaneously keeping most of the structural details.

regularized model. The Mean Shift parameter d was set so that all important horizontal

structures were detected (e.g., small roof above entrance, installations on roof).

The results from our pipeline using meshed PMVS2 data as input can be seen in

Figure 6.10. Line+mesh smoothing (bottom left) has a smoother surface compared to the

mesh-only smoothing approach (bottom right) especially in the area in the red dashed and

green dotted circle. In the red dashed circle, a tree was fused with the building in the input

model. Therefore, using mesh-only smoothing, the optimization found the optimal solution

6.5. Method-Specific Detailed Evaluations 81

SfM + Labatut et al. [48] meshing

Line+mesh smoothing

λmesh = 0.2, λlines = 0.5, d = 50

Mesh-only smoothing

λmesh = 3.5, d = 50

Figure 6.11: Results for the Block Building with pure SfM. Top: The input data, which is the SfM
point cloud meshed by Labatut et al. [48]. This reconstruction is very noisy and also contains quite
big wrong parts. Bottom left: Nevertheless, our approach with line+mesh smoothing estimates
still smooth surfaces. Though, some details are missing compared to Figure 6.10. Bottom right:
Even though the smoothing is already quite strong, which leads to smoothing artifacts (e.g., in the
green dotted circle), the mesh-only smoothing still follows the erroneous mesh strictly (e.g., in the
red dashed circle).

by including the tree within the output model. Instead, when using line+mesh smoothing,

a line could still be detected in the images at the boundary of the building and therefore

the optimization pulled the result towards the correct solution. In the green dotted circle,

the mesh-only smoothing also follows the noisy mesh surface, where line+mesh smoothing

delivers a cleaner surface. We selected the parameters to keep important parts of the

building (e.g., when setting λmesh for mesh-only smoothing higher, the small low building

in front of the Block Building would vanish due to over-smoothing).

82 Chapter 6. Experiments

Figure 6.12: Input images of the Long Building. The building mainly consists out of 2 block
parts with different height.

In order to show that our approach can also handle very noisy meshes created from

sparse point clouds, we meshed the resulting point cloud from SfM with Labatut et al. [48]

and used this data as input for our pipeline. In Figure 6.11, the input mesh and results

from our approach are shown. Our approach with line+mesh smoothing (bottom left)

delivers smooth surfaces and still contains some small details. In contrast, the mesh-only

smoothing (bottom right) still follows the erroneous mesh too strictly at some parts (e.g.,

in the red dashed circle), even though the smoothing is already at its limits, which leads

to some smoothing artifacts (e.g., in the green dotted circle). If we increase the smoothing

(i.e. increase the value for λmesh), more and more artifacts arise while the error in the red

dashed circle will stay.

6.5.1.3 Long Building

This building consists of two parts with two different heights. Input images can be seen

in Figure 6.12. For this dataset, we just used meshed PMVS2 [22] data as input.

In Figure 6.13, results from our approach with two smoothing variants are printed. As

not enough images were captured for the seen side of the building, there are big errors

in the reconstruction (top left). The mesh-only smoothing approach (bottom left) cannot

correct these errors properly (e.g., at the part in the red dashed circle). When enforcing

more smoothing (i.e.using a higher value for λmesh), the result gets even worse as this

approach follows the erroneous mesh. Contrary, the line+mesh smoothing approach (right)

approximates a planar surface (which is the geometric structure of the façade) better, as it

uses additional information from the original input images. In the top right of the figure,

the same result as in bottom right is depicted visible from another viewing direction and

textured afterwards with [93]. Due to a wrong geometry in the lower left part, several

faces could not be textured and are therefore white in this reconstruction. This happens

due to the noisy PMVS2 data, with which we could not estimate a correct geometry for

this part. However the other parts look good which indicates that the estimated geometry

6.5. Method-Specific Detailed Evaluations 83

PMVS2 [22] + Poisson [43] Line+mesh smoothing, textured with [93]

Mesh-only smoothing

λmesh = 3.5, d = 40

Line+mesh smoothing

λmesh = 0.8, λlines = 0.5, d = 40

Figure 6.13: Results for the Long Building. As one can see, the input data (top left) has errors in
the mesh. This occurred due to insufficient image data of this part of the building. Because of this
errors, the mesh-only smoothing (bottom left) cannot regularize this part well (red dashed circle),
where line+mesh smoothing (bottom right) makes a better approximation of the real façade. At
top right, the same result from line+mesh smoothing from another viewing direction and textured
with [93] is depicted.

is correct.

In Figure 6.14, another part of the building of the results presented in Figure 6.13

is visible. The mesh-only smoothing approach (right) has irregularities on the surface

(e.g., in the red dashed circle), as it follows the surface of the noisy mesh. Contrary,

the line+mesh smoothing (left) delivers a much smoother, planar surface similar to the

original façade.

6.5.1.4 Non-Manhattan Building

This dataset contains a more complex building. In difference to the other buildings shown

in our experiments, it does not have a Manhattan-like outline and contains sloped surfaces.

In Figure 6.15, one can see example input images.

The regularized result and the dense input reconstruction computed with Sure [79] can

be seen in Figure 6.16. Non-rectangular outlines of the building are not a problem for the

algorithm, as any outline gets approximated by a polygonal line. Also sloped structures

84 Chapter 6. Experiments

Line+mesh smoothing Mesh-only smoothing

Figure 6.14: Back side of the Long Building of the same results as illustrated in Figure 6.13.
As one can see, line+mesh smoothing (left) delivers a smoother façade compared to mesh-only
smoothing (right).

Figure 6.15: Input images of the Non-Manhattan Building. This building contains non-
Manhattan-like façades and sloped surfaces.

are approximated by stairway-like structures. To get a more detailed approximation one

could lower the the Mean Shift bandwidth (i.e. higher the value for d) in order to get more

slices and hence a finer stairway approximation. In general, one has to mention that this

is a difficult building, where also vegetation is very near or fused with the building, which

makes it difficult at some parts to estimate correct building boundaries without additional

semantic information. Therefore, some details are missing in the regularized model.

6.5. Method-Specific Detailed Evaluations 85

Figure 6.16: Result from the Non-Manhattan Building Left: Input mesh created with Sure [79]
and Poisson meshing [43] (vertex coloring). Right: Resulting regularized model with line+mesh
smoothing. Sloped surfaces are approximated with stairway-like structures, non-Manhattan-like
outline is approximated by a polygonal line. The parameters were set to: λmesh = 0.4, λlines = 0.2
and d = 50.

6.5.1.5 Runtime Discussion

As for line+mesh smoothing, compared to mesh-only smoothing, additionally line seg-

ments needs to be detected and multiple iterations of optimization needs to be done, it

has a higher runtime. Though, the runtime highly depends on the structure of the 3D

model (e.g., number of slices, ratio free/occupied space voxels, number of images used

for line detection) and therefore it can vary significantly between different models (as has

already been shown in Section 6.4.1). The runtime at the Block Building model with

PMVS2 input data and line+mesh smoothing was 50.4 minutes (included line detection

took 4.2 minutes), whereas the runtime with mesh-only smoothing was 34.9 minutes.

6.5.2 Plane-Based Regularization Method

In this section, we show additional results and parameter studies of the plane-based reg-

ularization method, which is a sub-method of the tetrahedra-based method described in

Chapter 5. This sub-method has already been defined in Section 6.3 and uses point-based

plane detection (as described in Section 5.2.1), the unnormalized visibility-based energy

formulation as described in Section 5.6.1, pre-computed visibility information (as described

in Section 5.6.3.1) and no semantic information. This is the same setting as used in [37].

We additionally evaluated this plane-based regularization method on multiple urban

outdoor and indoor datasets and compared it to further state-of-the-art methods. We

show that our method yields comparable results while being more flexible than others and

that the level of detail of the reconstruction can be adjusted easily with the parameter

αLoD.

For all the experiments, we selected αMan = 250K, as with this setting the whole

reconstruction just consists of planar surfaces in combination with a low value for αLoD (as

86 Chapter 6. Experiments

Labatut et al. [48] Plane-based regularization, Plane-based regularization,
αLoD = 375K textured (using [93])

Figure 6.17: Comparison of a generic 3D reconstruction approach (Labatut et al. [48], left) to
our plane-based regularization method with plane fitting and level-of-detail adjustment (middle
and right (textured)). Our method produces sharp edges and planar surfaces while simultaneously
keeping details like the structures on the roof.

depicted, for example, in Figure 6.18). When comparing against the slicing-based approach

from Chapter 4, we used the same parameter settings as in the main evaluation (defined in

Section 6.1). When comparing against Labatut et al [48], we were only using the visibility-

based energy described in [48] in combination with a constant penalty as described in [63].

This method can be seen as the base method of the plane-based regularization method,

as it uses the same visibility-based energy but does not use a plane prior. Further, we

compared against Li et al. [53] and Monszpart et al. [61], which both detect planes having

a Manhattan-like orientation and aim to model the scene using these planes.

In sum, our method can be seen as a hybrid approach where the user can define the

smoothness and level-of-detail continuously between no regularization such as Labatut et

al. [48] and very strong regularization and simplification such as Li et al. [53].

6.5.2.1 Block Building

Again we are using the Block Building dataset, which consists of a block shaped building

with some additional details on the roof. Therefore, it is well suited to show different

reconstruction results when adjusting αLoD. In comparison to the main experiments, we

used a denser point cloud also created by PMVS2 [22] for this experiments containing

approx. 5.2M points. Figure 6.17 shows a (textured) result and a result of Labatut et

al. [48]. Our method produces well regularized results and generates models with sharp

edges and planar surfaces while still containing details which were not supported by any

plane.

In Figure 6.18, we compare results with varying αLoD to the result of the slicing-based

method (Chapter 4). For high αLoD (bottom left) more details are kept in the recon-

struction, while for low αLoD (bottom right) mostly only plane supported faces are kept.

Compared to the slicing-based method described in Chapter 4, the simplification of planar

6.5. Method-Specific Detailed Evaluations 87

Input image Slicing-based method

Plane-based regularization, Plane-based regularization,
αLoD = 375K αLoD = 25

Figure 6.18: Results with varying level of detail on the Block Building dataset. For high values
αLoD, many details of the reconstruction from Labatut et al. [48] which are not supported by
a plane are still included in the reconstruction. Contrarily, when setting αLoD low, mostly only
plane-supported surfaces are kept. Compared to the proposed plane-based regularization method,
the slicing-based method (on the same input) approximates planar surfaces well but misses details
on the roof.

surfaces is similar, but structures on the roof are represented with more details by this ap-

proach. It is worth mentioning that the slicing-based method cannot deal with slanted roof

sections and will also simplify non-building geometry like vegetation or irregular ground

structure.

In Figure 6.19, we further qualitatively compare the proposed method with the method

of Li et al. [53] and Labatut et al [48]. It can be observed that Li et al. [53] heavily

simplifies the geometry while our approach delivers planar surfaces at planar parts and

detailed reconstructions at non-planar parts.

88 Chapter 6. Experiments

Labatut et al. [48] Plane-based regularization,
αLoD =250K

Li et al. [53] without / with point cloud

Figure 6.19: Comparison of results on the Block Building dataset captured from the back side of
the building compared to Figure 6.18 and Figure 6.17. In comparison to Labatut et al. [48] which
does not use any shape priors, the proposed plane-based regularization approach simplifies the
geometry of surfaces along planar primitives, while keeping any desired level of detail. The strict
Manhattan assumption of Li et al. [53] heavily simplifies the scene and leaves little or no control
to adjust the level of detail.

6.5.2.2 Building Complex

Next, we evaluated on the dataset Building Complex. This dataset consists of four similarly

shaped buildings mainly composed of planar surfaces. The input point cloud was created

by PMVS2 [22] and consists of approx. 3.4M points. In Figure 6.20, an input image and

results of our method are illustrated in comparison to others. As one can see, the planar

surfaces on the building surface and on the ground floor are reconstructed well with the

proposed method. Previously detected planar structures are used to denoise and simplify

the scene. The effects are clearly visible in comparison to Labatut et al. [48] which does

not aim to simplify surface structures in urban environments. In contrast, Li et al. [53]

makes strong (Manhattan) assumptions about the scene and can only deal with orthogonal

planar structures.

6.5. Method-Specific Detailed Evaluations 89

Input image Labatut et al. [48]

Plane-based regularization, Plane-based regularization,
αLoD = 250K with texture [93]

Li et al. [53] Li et al. [53] + point cloud

Figure 6.20: Comparison of results on the Building Complex dataset. While the result
without shape priors (Labatut et al. [48]) contains a lot of noise, the result of the proposed plane-
based regularization method produces planar surfaces and sharp edges. Due to a lower point
density at surfaces in between the buildings, no planes were detected in these parts and they hence
remain noisy. The results of Li et al. [53] over-simplify the geometry and several empty parts
between the buildings are not correctly identified, because the method is very sensitive to noise.

6.5.2.3 House

For this experiment, we are using the already introduced House dataset, which is a fam-

ily house containing a sloped roof with chimneys. In Figure 6.21, one can observe the

varying level of detail, which is especially well observable at the chimneys. Additionally,

an example input image and a result from Labatut et al. [48] can be seen in Figure 6.21.

In Figure 6.22, further views of this dataset are depicted and shown in comparison to

state-of-the-art methods [53, 61].

90 Chapter 6. Experiments

Input image Labatut et al. [48]

Plane-based regularization, Plane-based regularization,
αLoD =250K αLoD =500K

Figure 6.21: The plane-based regularization method with different level of detail settings in
comparison to Labatut et al. [48] on the House dataset. For a low level of detail (bottom left), the
chimneys are not reconstructed while for high level of detail (bottom right) they are included in
the reconstruction.

6.5.2.4 Indoor

We also evaluated on an Indoor dataset, which is a reconstruction of a hall with planar

walls, some tables and chairs. Again, this is a semi-dense reconstruction created with

PMVS2 [22] and consists of approx. 4.6M points. Results and a comparison with other

methods can be found in Figure 6.23. While Li et al. [53] over-simplifies the geometry by

only fitting boxes, Monszpart et al. [61] did not produce any meaningful results on our

datasets.

6.5.2.5 Entry-P10

Finally, we compared our method with the method proposed by Lafarge et al. [52] using the

Entry-P10 dataset [86]. This dataset consists of 10 images captured at ground level. We

used the provided camera poses and computed a semi-dense point cloud using PMVS2 [22]

consisting of approx. 0.4M points. As can be seen in the results in Figure 6.24, the

6.5. Method-Specific Detailed Evaluations 91

Labatut et al. [48] Li et al. [53]

Monszpart et al. [61] Plane-based regularization

Figure 6.22: Qualitative comparison to other methods on the House dataset. While Labatut et
al. [48] provides a detailed reconstruction but does not simplify any geometry, Li et al. [53] is not
able to represent all scene parts with simple boxes (for example, sloped roofs cannot be modeled).
The results of Monszpart et al. [61] did not produce a meaningful result on this dataset. The
proposed plane-based regularization method provides a hybrid reconstruction between primitive-
fitted planar parts and generic reconstruction for the free-form parts.

proposed plane-based regularization method smooths the planar surfaces very well while

still keeping most of the important details of Labatut et al. [48]. Compared to Lafarge et

al. [52], our method delivers a comparable regularization of the planar surfaces.

6.5.2.6 Runtime Breakdown

The runtime heavily depends on the amount of input points and cameras and varies from

approx. 5 minutes for the Entry-P10 dataset (0.4M points, 10 cameras) to approx. 9.5

hours for the Block Building dataset (5.2M points, 232 cameras). Though, as most of

the processing time is needed for preprocessing steps, the final optimization can be rerun

with different parameters within less than one minute. A breakdown of the runtime can

be found in Figure 6.25. The runtimes for the other methods compared against in this

section were as follows: Li et al. [53] was in the range of 10 seconds, and Monszpart et

al. [61] more than 16 hours and the runtimes of the slicing-based approach was already

mentioned in Section 6.4.1 and was approx. 50 minutes for the Block Building dataset.

92 Chapter 6. Experiments

Input image

Labatut et al. [48] Li et al. [53]

Monszpart et al. [61] Plane-based regularization

Figure 6.23: Qualitative comparison to other methods on the Indoor dataset. While Labatut
et al. [48] does not simplify any geometry, Li et al. [53] over-simplifies the scene with only very
few boxes. The results of Monszpart et al. [61] were not useful on our datasets as detected planes
did not well align with the geometry. Our plane-based regularization approach provides a hybrid
reconstruction between primitive-fitted planar parts and generic reconstruction for the free-form
parts.

6.5. Method-Specific Detailed Evaluations 93

Input image Labatut et al. [48]

Plane-based regularization, Lafarge et al. [52]
αLoD = 1500K

Figure 6.24: Results of the Entry-P10 dataset [86]. While the result without shape priors
(Labatut et al. [48]) contains a very noisy façade, the proposed approach with plane-based regular-
ization reconstructs a completely planar surface and simultaneously keeps most of the significant
details. The proposed approach also produces a comparable planar regularization of the façade
to [52]. The image for Lafarge et al. is taken from [52].

Plane Comp.
43.3min

Triang./Graph Creation.
13.3min

Visibility Casting
261.7min

Cell Cutting
151.7min

Manhattan Term Comp.
15min

Plane Int. Downw.
80min

Graph Cut
0.7min

Total: 573.3 min

Figure 6.25: Runtime breakdown for an execution on the Block Building dataset, which has a
total runtime of approx. 9.6 hours (573.3 min). Most of the processing time is needed for visibility
casting and cell cutting. Important processing parts are depicted in red and blue, remaining small
processing parts (e.g., data loading, LoD weight computation) are depicted in white.

94 Chapter 6. Experiments

Figure 6.26: Results of the proposed approach textured with [93]. One can observe that planar
parts in the scene (façades, windows, roof) are represented by planar surfaces and building edges
where two façades intersect each other are represented by straight lines. Note that holes in the
model are due to missing visibility information during texturing.

6.5.3 Semantically Aware Regularization Method

In this section, we show additional results and present parameter studies and evaluations

for individual contributions of the semantically aware method, which is a sub-method

of our the method described in Chapter 5. This sub-method has already been defined in

Section 6.3 and uses line-based plane detection (as described in Section 5.2.2), the normal-

ized visibility-based energy formulation as described in Section 5.6.2, visibility information

computed using depth maps as described in Section 5.6.3.2, and semantic information as

described in Section 5.8. This setting was also used in [36].

In the following we evaluate the line-based plane detection algorithm, the normalized

visibility-based energy and the effect of semantic priors and visualize in detail the semantic

3D data. Finally, we show the effect of mesh simplification as post-processing step.

In Figure 6.26 results from the proposed approach textured with [93] are depicted.

The results look visually appealing, contain planar surfaces and sharp edges while still

containing details at non-planar building parts whereas the surroundings of the buildings

are represented by smooth surfaces.

6.5.3.1 Plane Detection Using Lines

In this experiment, we compare our proposed plane detection algorithm using lines with

point-based plane detection algorithms.

Figure 6.27 shows the subsequent processing steps and the result of the line-based

approach and a state-of-the-art RANSAC-based plane detection algorithm proposed by

Schnabel et al. [82]. For comparison, we used the implementation of [82] in CGAL [89].

We changed the default parameters to make the results comparable to our approach: We

set the inlier distance to 0.15m as in the line-based approach and reduced the minimum

supporting points per plane to 0.5% to generate more plane hypotheses. When reducing

the minimum supporting points even more, more spurious planes get detected. Hence, this

parameter setting has shown to be a good trade-off between amount of detected planes and

6.5. Method-Specific Detailed Evaluations 95
S
ch

n
a
b
el

[8
2
]

L
in
e-
b
a
se
d

Figure 6.27: Comparison of the proposed line-based and the point-based plane detection method
of Schnabel et al. [82]. In the left column, one can see 3D input data (top: 3D points, bottom:
3D line segments): Especially at the front façade the point cloud has very few points while the
line representation still contains some lines (e.g., at windows and at building edges). In the middle
column, points and lines corresponding to extracted planes are illustrated (randomly colored). One
can observe that the point-based approach detects planes at densely sampled surfaces well while
missing sparsely reconstructed surfaces. The proposed line-based approach also detects planes
which are just represented with few line segments. In the right column, one can see plane segments
created by fitting bounding boxes around the inlier data on the plane surfaces. In the result of
the point-based approach, spurious plane segments become visible while the line-based approach
mainly contains the planes of the building.

accurately detected planes for our datasets. As can be seen in the results in Figure 6.27,

Schnabel et al. [82] misses out important façade planes due to missing 3D points and

detects several spurious planes whereas the line-based approach detects a more complete

plane set due to the availability of line structure on the façades.

In Figure 6.28, the proposed line-based plane detection algorithm is qualitatively com-

pared against [82] and the point-based approach presented in Section 5.2.1. In comparison

to Schnabel et al. [82], the approach from Section 5.2.1 does not use point normals and,

hence, results in worse detections. However, both point-based methods miss important

planes. In Table 6.3, the plane detection algorithms are quantitatively compared by the

number of detected planes and the completeness of detections w.r.t. the ground truth.

One can see that the line-based approach has the highest completeness. Even though it

detects more planes than the method of Schnabel et al., it detects less spurious ones (see

Figure 6.28).

6.5.3.2 Normalized Visibility-Based Energy Term

In this experiment, we show that the normalized visibility-based energy formulation pro-

posed in Section 5.6.2 slightly improves the reconstruction accuracy while simultaneously

being easier to handle in combination with other energy terms. We evaluated the proposed

energy term on the Residential Area dataset and, additionally, on the Fountain-P11 [86]

96 Chapter 6. Experiments
H

o
u

se
B

lo
ck

B
u

il
d

in
g

R
es

id
en

ti
al

A
re

a

Line-based (Sec. 5.2.2) Schnabel et al.[82] Point-based (Sec. 5.2.1)

Figure 6.28: Visual comparison of proposed line-based plane detection with point-based plane
detection of [82] and the point-based method described in Section 5.2.1. Every plane segment is
visualized as two triangles. Circles mark planes detected by the proposed line-based approach
(green), but not detected by the point-based approaches (red). At the House and the Residential
Area dataset several façades were not detected by the point-based approaches which were detected
by the line-based approach. At the Block Building, small planes at the constructions on the roof
are detected by the proposed line-based approach, where the point-based approaches do not detect
any planes. In general, the point-based approaches detect more spurious planes (especially the
method from Section 5.2.1) but also more planes at the ground (less lines reconstructed at the
ground).

dataset. In Figure 6.29, results and visualized errors are depicted and in Table 6.4 error

metrics are printed with just using visibility-based energies (i.e., without additional energy

terms). One can observe that the visual results are similar. For both datasets, the error

metrics are very similar but slightly better for the proposed, normalized visibility-based

energy formulation.

When looking at the result of Residential Area using just visibility-based energy, it can

be seen that some surfaces are very noisy. Hence, regularizing some parts with plane priors

and using a smooth surface approximation for others like vegetation is very beneficial for

creating visually appealing models.

In addition to the overall energy evaluation, we evaluate each individual change in the

6.5. Method-Specific Detailed Evaluations 97

House Res. Area Bl. Building

#planes compl. #planes compl. #planes

Line-based (Sec. 5.2.2) 47 0.748 52 0.864 56

Schnabel et al.[82] 17 0.428 19 0.598 15

Point-based (Sec. 5.2.1) 14 (110) 0.316 24 (150) 0.434 14 (160)

Table 6.3: Quantitative comparison of point-based and line-based plane detection approaches. In
this table one can see a comparison in terms of number of detected planes and completeness w.r.t.
the ground truth for datasets where ground truth was available. The completeness is defined as the
ratio of ground truth points which are within the plane detection inlier distance of 0.15m to the
detected plane segments. For this, a filtered ground truth is used, which just contains the building
parts of the scene. For the point-based plane detection method (last row), not only the detected
planes but also the number of plane segments which are created by subdividing the detected planes
(see Section 5.2.1) are depicted in brackets. As can be seen, the line-based approach (top row) has
the highest completeness for both datasets.

Residential Area Fountain-P11 [86]

µ [m] σ[m] µ [m] σ[m]

Energy from [48] 0.035 0.071 0.037 0.146

Proposed (Sec. 5.6.2) 0.034 0.069 0.034 0.135

Table 6.4: Errors of the proposed normalized visibility-based energy terms compared to the
visibility-based energy in [48] corresponding to Figure 6.29. In the evaluation on the Residen-
tial Area dataset, the error is slightly lower (error definition see Table 6.1) while being normalized,
which is crucial for combining it with other energies. Also in the evaluation on the Fountain-
P11 [86] dataset, the error of the proposed formulation is slightly lower (error definition see [86]).

visibility-based energy term compared to Labatut et al. [48] separately and show its effects

on the Fountain-P11 [86] dataset.

In Figure 6.30 and Table 6.5 visualized errors and corresponding error and completeness

values are depicted. We name the results corresponding to the added energy formulation

part w.r.t. Labatut et al. [48] described in Section 5.6.2: unary defines the additional

unary term in front of a visible vertex, facet means that the pairwise energy terms at facets

were assigned in both directions (as opposed to one direction in [48]) and for normalization

the proposed energy normalization from Equation 5.2 and Equation 5.3 was applied. It

can be seen visually (Figure 6.30 middle rows right) and on the error metrics in Table 6.5

that the result gets worse when just applying the normalization on the original energy and

slightly improves when adding the facet weights in both directions and adding the unary

term in front of a visible vertex. The combination of all three energy formulation changes,

though, delivers the best result in terms of accuracy. Only the completeness is better with

normalization only, as then the mesh is just oversmoothed and, hence, the most pixels in

the depth map are covered by depth measurements.

To summarize, by adding all three proposed energy formulation changes, we get the

98 Chapter 6. Experiments

E
n

er
gy

fr
om

[4
8]

P
ro

p
os

ed
(S

ec
.

5
.6

.2
)

Residential Area Fountain-P11 [86]

Figure 6.29: Visualization of results and errors of proposed normalized visibility-based energy
terms compared to the visibility-based energy in [48]. Left: Evaluation on the Residential Area
dataset. Visually, the result of the proposed energy is very similar. Right: Error visualization
of the Fountain-P11 [86] dataset. Blue means low error, red high error. Also on this dataset, the
visualized errors have no big differences (error definition see [86]). For error measures, we refer to
Table 6.4

best result in terms of accuracy and, simultaneously, deliver a normalized energy which

has significant advantages when combining it with additional energy terms.

6.5.3.3 Semantic 3D Data

In this section, we give a more detailed insight into the semantic image labelings which

we compute and finally fuse into a semantic 3D point cloud.

In Figure 6.31 input images and the corresponding semantically labeled images for

all three datasets are illustrated. In Figure 6.32 the semantically labeled input point

clouds can be seen. One can observe that the point clouds are generally more consistently

labeled due to the redundancy from multiple image labels for one 3D point. However,

some artifacts at building edges arise, which can be explained by the depth maps used

for visibility computation: We are using depth maps in half resolution and with a strong

smoothness prior. Additionally, we are using nearest neighbor when back-projecting a 3D

point into the depth maps. Hence, when 3D points are slightly noisy but still have visibility

in the depth maps, it may happen that they get back-projected to the background and,

6.5. Method-Specific Detailed Evaluations 99

µ [m] σ[m] completeness

Labatut et al. [48] 0.0366 0.1458 0.966

+unary 0.0357 0.1434 0.967

+unary+normalization 0.1076 0.2521 0.967

+unary+facet 0.0340 0.1351 0.967

+facet 0.035 0.1376 0.966

+normalization 2.6905 1.2447 0.977

+normalization+facet 2.6901 1.2443 0.977

+unary+normalization+facet 0.0338 0.1346 0.966

Table 6.5: Error statistics compared to the ground truth. µ defines the mean and σ the standard
deviation of depth values of the result and the ground truth model projected into all cameras.
Completeness defines the coverage of the projected models in the camera views compared to the
ground truth (both defined in [86]). In terms of accuracy, the proposed approach (i.e., adding
all three changes in the energy formulation) delivers the best error metrics. Only in terms of
completeness other results are slightly better with the tradeoff of lower accuracy and no normalized
energy.

hence, get assigned the label of the background (which might be, e.g., sky or vegetation).

6.5.3.4 Semantic Priors

In Figure 6.33 it can be observed that when using no semantics (same as treating everything

as building), the surroundings of buildings are noisy and less visually appealing. Also, more

data needs to be used to describe the noisy mesh, while with semantics a sparser Poisson

reconstruction describes the surroundings. Further, artifacts may arise as the Manhattan

regularity term is applied everywhere even though it might not be suited to smooth e.g.

vegetation.

6.5.3.5 Simplification as Post-Processing

Due to the planarity of big parts of the resulting mesh of the proposed method, the amount

of faces in the mesh can be significantly reduced without changing the surface geometry.

In Figure 6.34, results of applying Quadric Edge Collapse [24] as post-processing step are

depicted. As the maximum error of Quadric Edge Collapse was set to 10−13 (i.e., nearly

zero), only edges on planar surfaces were removed. It can be observed that even though

the mesh surface did not change at all, the amount of data was extremely reduced. This

property of the results of our approach is highly beneficial for further processing steps like

texturing, but also visualizing and transmitting the reconstructions becomes easier.

100 Chapter 6. Experiments

6.6 Summary

In this chapter, we presented a detailed evaluation of the urban reconstruction methods de-

veloped in this thesis. We first discussed the input data in Section 6.1 and default parame-

ters in Section 6.3 and then presented results with quantitative and qualitative comparisons

to other methods in Section 6.4: We showed that compared to the slicing-based method

presented in Chapter 4, the tetrahedra-based method presented in Chapter 5 could also

handle buildings containing sloped structures and could reconstruct fine-grained structures

with more detail. Additionally using semantic information, the tetrahedra-based method

was able to reconstruct a smoothed surface for the surroundings of a building, while the

building parts consisted of planar surfaces and sharp edges.

Then we discussed method-specific detailed evaluations in Section 6.5: In Section 6.5.1

we presented additional results for the slicing-based approach. It could be observed, that

this approach can create regularized and abstracted reconstructions of buildings fulfilling

a specific geometric constraint and that especially the introduced line-based smoothness

term improves the reconstruction result when having noisy and erroneous input data.

In Section 6.5.2 and Section 6.5.3, we showed additional results and evaluations of two

sub-methods of the tetrahedra-based method, where different plane detection algorithms,

energy definitions and additionally semantic information were used. Finally, applying a

post-processing step, the tetrahedra-based reconstruction result could be extremely sim-

plified without loss of accuracy, which is an important property for further processing

steps.

6.6. Summary 101

Labatut et al. [48] +facet

+unary +normalization

+unary + norm. +norm.+ facet

+unary + facet +unary + norm.+ facet

Figure 6.30: Evaluation of the individual changes compared to [48] in the visibility-based energy
on the Fountain-P11 [86] dataset. As can be seen, when using the normalization without the other
two changes, the error is significantly higher due to an oversmoothing of the mesh. All other error
images look visually similar.

102 Chapter 6. Experiments
In

p
u

t
Im

a
ge

S
em

.
L

ab
el

s

Figure 6.31: Semantically labeled input images from the House (left), Residential Area (middle)
and Block Building (right) datasets. The pixels are labeled as sky (blue), building (red), vegetation
(green), road/pavement (brown) and clutter (black). The labeling is not always perfectly correct.
However, due to the redundancy, the 3D points have less labeling errors (see Figure 6.32).

Figure 6.32: Semantically labeled point clouds from the House (top left), Block Building (top
right) and Residential Area (bottom) datasets. The 3D points are labeled as sky (blue), building
(red), vegetation (green), road/pavement (brown) and clutter (black). Due to the redundancy
from multiple image labelings, the point cloud labeling is usually more consistent compared to the
single image labelings.

6.6. Summary 103

H
o
u

se
R

es
.

A
re

a

without semantics with semantics

Figure 6.33: Comparison of results computed with/without semantic information. As can be seen
in the detail examples of two datasets, the reconstructed surface of the surroundings of buildings
is more noisy without semantics. Due to the Poisson reconstruction and the different smoothness
terms, the surroundings get reconstructed much smoother and with less points (i.e. less data) when
using semantics. Also, detected planes are removed in the surroundings, as just building lines are
used for plane detection. These changes due to semantics contribute to a more visually appealing
final reconstruction.

House, r = 0.154 Res. Area, r = 0.081 Block Building, r = 0.054
#faces = 698K/107K #faces = 4569K/371K #faces = 2190K/118K

Figure 6.34: Simplification as post-processing. Every subfigure consists of the resulting mesh of
the proposed approach (left) and the mesh simplified by Quadric Edge Collapse [24] in a lossless
way (right) (i.e., restricting the edge collapse to a quadric error of 10−13). Below, reduction
factors and #faces before/after simplification are depicted. Due to the perfect planarity of the
building parts, faces can be merged without changing the surface geometry of the mesh. Though,
non-building parts stay untouched as they are not perfectly planar. Very low reduction factors
r =

#facessimpl

#facesorig
(i.e., high compression) can be reached for all models. In comparison, when

applying Quadric Edge Collapse on Poisson meshes in Figure 6.7, the best reduction factor was
0.929 (#faces = 393k/365K) at House. Quadric Edge Collapse was performed with VCGlib [90].

7
Conclusions

Contents

7.1 Summary . 105

7.2 Outlook . 107

This thesis has addressed the problem of creating visually appealing 3D reconstruc-

tions of urban scenes using images as input. Such visually appealing models should con-

tain buildings modeled with planar surfaces and sharp edges embedded in a smoothly

reconstructed surrounding. Further, the level of detail of the reconstruction should be ad-

justable by changing a parameter. In this thesis, we presented two methods which tackle

this problem in different ways.

In the following, a summary and the key findings of our work are presented in Sec-

tion 7.1 and an outlook for potential future research directions and problems still occurring

with the current methods is presented in Section 7.2.

7.1 Summary

In this thesis, we initially stated that even though mature 3D image-based reconstruction

techniques exist, they are not capable of creating visually appealing and yet accurate re-

constructions of urban scenes which simultaneously can be represented in a compact way.

Most of the reconstruction systems either produce compact but oversmoothed reconstruc-

tions containing no sharp edges, or reconstructions which contain too many fine-grained

details originating from noisy, image-based measurements, which leads to a non-compact

representation and noisy surfaces (i.e., no planar surfaces, sharp edges). As such compact

and regularized reconstructions, however, are desired for several use cases, this motivated

us to investigate more deeply in this topic.

We developed two urban reconstruction techniques whereas the first one is a slicing-

based approach which can model arbitrary building scenes with a simple and yet visually

105

106 Chapter 7. Conclusions

appealing representation. Buildings are modeled with planar surfaces and sharp edges even

when the input 3D data is very noisy. However, specific scene structure like sloped surfaces

cannot be modeled exactly with this approach and, further, it is not possible to model

scene parts with fine-grained details. Therefore, we investigated in a second, Delaunay

triangulation-based method, which uses a more generic volumetric partitioning of the

scene which can represent any structure. We advanced a well-known 3D reconstruction

technique and incorporated plane priors within the optimization in order to reconstruct

buildings with planar surfaces and sharp edges while still containing details at parts which

could not be represented by planes. Further, we incorporated semantic information within

the reconstruction process and introduced a line-based plane detection algorithm, which

improves the plane detection results at poorly textured urban environments.

The slicing-based approach works by first partitioning the input 3D data into sev-

eral horizontal slices bounded by dominant horizontal structure. Then, for every slice an

inside/outside labeling, which is a 2D labeling of every slice, is created. Having this in-

side/outside labeling, the slice outlines can be identified as the transition of these labeled

parts. By extruding the outlines between the slice boundaries, an initial 3D model can

be generated. However, this 3D model is not normalized in the vertical direction and,

hence, the vertical surfaces are not planar and the edges are not sharp. To overcome

this issue, an additional optimization step is applied: The scene is partitioned into irreg-

ularly shaped volumetric cells defined by the slice outlines and slice boundaries and an

inside/outside labeling of these cells is computed using Graph Cuts. Additionally, we used

lines detected within the input images to formulate an smoothness term, with which it

is possible to produce a more smoother building outline even at parts with missing 3D

input data. In our experiments, we have shown that this approach delivers compact and

clean 3D models of buildings covering the most important geometric details. We have

shown that the proposed line-based smoothness term additionally improves the result at

poorly reconstructed building parts and that the proposed approach can handle build-

ings with arbitrary building outlines and is not restricted to a Manhattan world scenery.

This approach delivers stacked slices or, more general, 3D blocks as output, which is very

similar to models created by CAD software. However, our experiments have also shown

that the proposed approach has difficulties to model sloped surfaces, which can only be

approximated by staircase-like structures. Further, fine details are not modeled with the

presented approach.

In order to be able to reconstruct more generic scenes with arbitrary levels of detail,

we developed a second method for urban 3D reconstruction. This method is based on a

tetrahedralization of the scene, where every tetrahedron gets assigned a label as inside or

outside by solving an energy minimization problem using Graph Cuts and the final surface

is extracted as the transition between cells labeled as inside or outside. In order to enforce

planarity in the reconstruction, planes are detected in the scene and incorporated within

the tetrahedralization to be selectable in the final optimization. Additional energy terms

are proposed to favor a planar reconstruction and to adjust the final level of detail of the re-

7.2. Outlook 107

construction, namely the Manhattan term and the level of detail term. As plane detection

using a point cloud as input delivered poor results at weakly textured urban environ-

ments, we introduced a line-based plane detection algorithm: We observed that even if no

3D points are reconstructed at some surfaces within urban environments, still sufficient 3D

line segments could be reconstructed in order to correctly detect planes within the scene.

Using this line-based plane detection resulted in a more complete set of detected planes.

Further, we proposed a normalized energy formulation of the visibility-based energy terms,

which eases the combination with further energy terms like the proposed additional energy

terms. As introduced shape priors should not be the same at every part of the scene in

the reconstruction process, we additionally used semantic information in order to enforce

shape priors depending on the scene classes. In our experiments, we demonstrated that

we can vary the level of detail of the reconstruction by varying the introduced energy

terms and that the proposed line-based plane detection algorithm improves the plane de-

tection result at poorly textured urban environments. We have shown that the introduced

normalized visibility-based energy slightly improves the reconstruction quality with the

advantage of having a normalized magnitude, which is crucial for combining it with other

energy terms. Further, we demonstrated that an overall more visually appealing recon-

struction result can be achieved when using semantic information. Finally, we have shown

that by applying a post-processing step a very compact representation of the resulting 3D

reconstructions can be created without any loss of accuracy.

We compared the results of the proposed approaches with state-of-the-art generic re-

construction methods and methods specifically designed for urban reconstruction and have

shown that the proposed approach produces more complete, more visually appealing and

more accurate results than the methods for comparison.

7.2 Outlook

The proposed methods create visually appealing reconstructions of urban environments

containing planar surfaces and sharp edges at building parts and optionally a smooth

reconstruction at the surroundings. Even though the proposed methods work well and are

sufficient for many scenes, there is, of course, still room for improvement.

A weakness of our methods is that they are currently not scalable to large-scale scenes

containing several buildings or bigger city parts: Even though both methods use irregularly

shaped volumetric cells adapting to the scene structure, they are both using a global opti-

mization technique which, at a certain size of the scene, will be practically uncomputable.

Hence, a partitioning of the scene into several blocks which are processed separately and

finally fused together again would be beneficial. One could use semantic information to

cluster the input data in order to get processing blocks containing connected building parts

and transitions from one processing block to the adjacent one in the surroundings part.

However, then artifacts might arise in the transition area of multiple blocks. To overcome

such problems at the tetrahedra-based method, one could use a method similar to the one

108 Chapter 7. Conclusions

proposed in Mostegel et al. [62]: They apply an additional Graph Cut optimization at the

overlapping regions in order to get a consistent mesh of several submeshes. Using such a

method, it would be possible to process scenes of unlimited size with an approximately

constant memory footprint.

A potential extension for the tetrahedra-based method would be to use additional

shape priors for different semantic classes. For example, one could also use a plane prior

for streets. Further, a sphere and tube prior for trees could be introduced. This could

be done by fitting such primitives within the scene [82], and incorporating them into the

triangulation, like it is currently done with planes (see Section 5.4). Then, an additional

smoothness term similar to the Manhattan regularization term described in Section 5.7.1

would need to be defined. A simple possibility would be to penalize facets not lying on

the detected primitive and being labeled as vegetation (in the case of a tree). Similarly,

depending on the architectural type of buildings, one could also introduce additional shape

priors for buildings like spheres, tubes, cones or surfaces of revolution. By adjusting the

additionally introduced smoothness terms, one could enforce the reconstruction to follow

nearly everywhere detected primitives in order to create a very abstracted representation of

the whole scene while still being able to reconstruct scene parts which are not represented

by a primitive.

Another possibility would be to learn shape priors for individual classes: Inspired by

Häne et al. [29], one could aim to learn class-specific favored neighboring relationships

of facets, which would result in individual smoothness terms for every class. Further,

by using a multi-label optimization technique (like the alpha expansion algorithm [45]),

learned class adjacency priors could be incorporated within the optimization process. For

example, it should be learned and defined as a smoothness prior that a street should not be

on top of a house, but adjacent to grass. By using such class-dependent smoothness terms,

the reconstruction should become more accurate and, simultaneously, class-specific shape

priors should be enforced. As also the semantic labels would be optimized in combination

with the reconstruction process, also the semantic labeling accuracy would be improved.

One could also think about combining the two proposed methods to get the advantages

of both: The slicing-based approach delivers very well regularized building models and

is also able to cope with low input data density. Though, it does not reconstruct the

surroundings of buildings and fine-grained details well. Contrary, the tetrahedra-based

method is based on a generic 3D reconstruction method and, hence, is able to reconstruct

an arbitrary scene with many details. However, in order to produce well regularized

reconstructions, it needs already detected primitives in the scene as input. Hence, the

simple representation of the slicing-based approach consisting of geometric primitives could

be incorporated within the tetrahedralization. Then, this primitive-based representation

is selectable and can be enforced within the tetrahedra-based method while fine grained

details are still reconstructible.

A further potential source of geometric primitives would be shape proposals created by

a Convolutional Neural Network (CNN): Inspired by [47], one could learn shape proposals

7.2. Outlook 109

from objects in the scene having a point cloud as input. The simplest idea would be to

learn a box-like representation for buildings. These geometric primitives could then be

incorporated within the tetrahedralization. In the final optimization, these shapes would

be selectable and could be enforced by setting a smoothness prior.

To conclude, there is still room for improvement in order to create a generic image-

based 3D reconstruction system for urban scenes creating compact and visually appealing

reconstructions. In general, we think that this topic will gain importance in the future as

more and more applications for 3D data arise where this data should be processable and

visualizable on various devices. Hence, compact and yet accurate models are required.

A
List of Acronyms

BSP Binary Space Partitioning

CAD Computer Aided Design

CDT Constrained Delaunay Triangulation

CGAL Computational Geometry Algorithms Library

CMVS Clustered Multi-View Stereo

CNN Convolutional Neural Network

CPU Central Processing Unit

CRFasRNN Conditional Random Field as Recurrent Neu-

ral Network

FCN Fully Convolutional Neural Network

GB Gigabyte

GHz Gigahertz

GPU Graphics Processing Unit

LOD Level Of Detail

LSD Line Segment Detector

MPixel Megapixel

MVS Multi-View Stereo

ORB Oriented FAST and Rotated BRIEF

P3P Perspective-Three-Point

PCA Principal Component Analysis

PMVS2 Patch-Based Multi-View Stereo

PnP Perspective-n-Point

RAM Random Access Memory

RANSAC Random Sample Consesus

RGB Red-Green-Blue

RGBD Red-Green-Blue-Depth

SDF Signed Distance Function

111

112 Chapter A. List of Acronyms

SfM Structure from Motion

SGM Semi-Global Matching

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

SVD Singular Value Decomposition

TSDF Truncated Signed Distance Function

UAV Unmanned Aerial Vehicle

VR Virtual Reality

B
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following peer-

reviewed publications. For the sake of completeness of this Thesis, they are listed in

inverse chronological order along with the respective abstracts.

B.1 2018

Deep 2.5D Vehicle Classification with Sparse SfM Depth Prior for Auto-

mated Toll Systems

Georg Waltner, Michael Maurer, Thomas Holzmann, Patrick Ruprecht, Michael Opitz,

Horst Possegger, Friedrich Fraundorfer, and Horst Bischof

In: Proceedings of the 21st IEEE International Conference on Intelligent Transportation

Systems (ITSC)

November 2018, Maui, USA

Abstract: Automated toll systems rely on proper classification of the passing vehicles.

This is especially difficult when the images used for classification only cover parts of the

vehicle. To obtain information about the whole vehicle. we reconstruct the vehicle as

3D object and exploit this additional information within a Convolutional Neural Network

(CNN). However, when using deep networks for 3D object classification, large amounts

of dense 3D models are required for good accuracy, which are often neither available nor

feasible to process due to memory requirements. Therefore, in our method we reproject the

3D object onto the image plane using the reconstructed points, lines or both. We utilize

this sparse depth prior within an auxiliary network branch that acts as a regularizer during

training. We show that this auxiliary regularizer helps to improve accuracy compared to

2D classification on a real-world dataset. Furthermore due to the design of the network,

at test time only the 2D camera images are required for classification which enables the

113

114 Chapter B. List of Publications

usage in portable computer vision systems.

Related Chapters: -

Semantically Aware Urban 3D Reconstruction with Plane-Based Regu-

larization

Thomas Holzmann, Michael Maurer, Friedrich Fraundorfer, and Horst Bischof

In: Proceedings of European Conference on Computer Vision (ECCV)

September 2018, Munich, Germany

(Accepted for poster presentation)

Abstract: We propose a method for urban 3D reconstruction, which incorporates se-

mantic information and plane priors within the reconstruction process in order to gen-

erate visually appealing 3D models. We introduce a plane detection algorithm using 3D

lines, which detects a more complete and less spurious plane set compared to point-based

methods in urban environments. Further, the proposed normalized visibility-based energy

formulation eases the combination of several energy terms within a tetrahedra occupancy

labeling algorithm and, hence, is well suited for combining it with class specific smooth-

ness terms. As a result, we produce visually appealing and detailed building models (i.e.,

straight edges and planar surfaces) and a smooth reconstruction of the surroundings.

Related Chapters: 5, 6

B.2 2017

Plane-based Surface Regularization for Urban 3D Reconstruction

Thomas Holzmann, Martin R. Oswald, Marc Pollefeys, Friedrich Fraundorfer and Horst

Bischof

In: Proceedings of the 28th British Machine Vision Conference (BMVC)

September 2017, London, United Kingdom

(Accepted for poster presentation)

Abstract: We propose a method for urban 3D reconstruction that is a hybrid between

a volumetric 3D reconstruction approach and a plane fitting approach in order to obtain a

denoised and compact representation of the scene. In our hybrid approach, a single global

optimization, using visibility as main information, defines whether the final reconstructed

surface should align with a detected plane or rather follow the details of the input data.

Our method is based on an established tetrahedral occupancy labeling approach which

we taylor for urban reconstruction by adding the possibility to favor an alignment of

B.3. 2016 115

the surface with detected planes. We further add novel regularization terms that favor

Manhattan-like structures and which allow to control the level of detail of the output

model. A variety of experiments demonstrate state-of-the-art performance and show that

our approach is suitable for both indoor and outdoor environments.

Related Chapters: 5, 6

A Detailed Description of Direct Stereo Visual Odometry Based on Lines

Thomas Holzmann, Friedrich Fraundorfer and Horst Bischof

In: Communications in Computer and Information Science (CCIS), vol 693

August 2017

Abstract: In this paper, we propose a direct stereo visual odometry method which

uses vertical lines to estimate consecutive camera poses. Therefore, it is well suited for

poorly textured indoor environments where point-based methods may fail. We introduce

a fast line segment detector and matcher detecting vertical lines, which occur frequently in

man-made environments. We estimate the pose of the camera by directly minimizing the

photometric error of the patches around the detected lines. In cases where not sufficient

lines could be detected, point features are used as fallback solution. As our algorithm

runs in real-time, it is well suited for robotics and augmented reality applications. In our

experiments, we show that our algorithm outperforms state-of-the-art methods on poorly

textured indoor scenes and delivers comparable results on well textured outdoor scenes.

Related Chapters: -

B.3 2016

Regularized 3D Modeling from Noisy Building Reconstructions

Thomas Holzmann, Friedrich Fraundorfer and Horst Bischof

In: Proceedings of the 4th International Conference on 3D Vision (3DV)

October 2016, Stanford, USA

(Accepted for poster presentation)

Abstract: In this paper, we present a method for regularizing noisy 3D reconstructions,

which is especially well suited for scenes containing planar structures like buildings. At

horizontal structures, the input model is divided into slices and for each slice, an in-

side/outside labeling is computed. With the outlines of each slice labeling, we create an

irregularly shaped volumetric cell decomposition of the whole scene. Then, an optimized

116 Chapter B. List of Publications

inside/outside labeling of these cells is computed by solving an energy minimization prob-

lem. For the cell labeling optimization we introduce a novel smoothness term, where lines

in the images are used to improve the regularization result. We show that our approach can

take arbitrary dense meshed point clouds as input and delivers well regularized building

models, which can be textured afterwards.

Related Chapters: 4, 6

Direct Stereo Visual Odometry Based on Lines

Thomas Holzmann, Friedrich Fraundorfer and Horst Bischof

In: Proceedings of the 11th International Conference on Computer Vision Theory and

Applications (VISAPP)

February 2016, Rome, Italy

(Accepted for oral presentation)

Best Paper Award

Abstract: We propose a novel stereo visual odometry approach, which is especially

suited for poorly textured environments. We introduce a novel, fast line segment detector

and matcher, which detects vertical lines supported by an IMU. The patches around lines

are then used to directly estimate the pose of consecutive cameras by minimizing the

photometric error. Our algorithm outperforms state-of-the-art approaches in challenging

environments. Our implementation runs in real-time and is therefore well suited for various

robotics and augmented reality applications.

Related Chapters: -

B.4 2015

Performance Evaluation of Vision-Based Algorithms for MAVs

Thomas Holzmann, Rudolf Prettenthaler, Jesus Pestana Puerta, Daniel Muschick, Chris-

tian Mostegel, Gottfried Graber, Friedrich Fraundorfer and Horst Bischof

In: Proceedings of the Workshop of the Austrian Association for Pattern Recognition

(ÖAGM/AAPR)

May 2015, Salzburg, Austria

(Accepted for oral presentation)

Abstract: An important focus of current research in the field of Micro Aerial Vehicles

(MAVs) is to increase the safety of their operation in general unstructured environments.

Especially indoors, where GPS cannot be used for localization, reliable algorithms for

localization and mapping of the environment are necessary in order to keep an MAV

B.5. 2014 117

airborne safely. In this paper, we compare vision-based real-time capable methods for

localization and mapping and point out their strengths and weaknesses. Additionally, we

describe algorithms for state estimation, control and navigation, which use the localization

and mapping results of our vision-based algorithms as input.

Related Chapters: -

Graz Griffins’ Solution to the European Robotics Challenges 2014

Jesus Pestana Puerta, Rudolf Prettenthaler, Thomas Holzmann, Daniel Muschick, Chris-

tian Mostegel, Friedrich Fraundorfer, Horst Bischof

In: Proceedings of the Austrian Robotics Workshop (ARW)

May 2015, Klagenfurt, Austria

(Accepted for oral presentation)

Abstract: An important focus of current research in the field of Micro Aerial Vehicles

(MAVs) is to increase the safety of their operation in general unstructured environments.

An example of a real-world application is visual inspection of industry infrastructure,

which can be greatly facilitated by autonomous multicopters. Currently, active research is

pursued to improve real-time vision-based localization and navigation algorithms. In this

context, the goal of Challenge 3 of the EuRoC 2014 Simulation Contest was a fair compar-

ison of algorithms in a realistic setup which also respected the computational restrictions

onboard an MAV. The evaluation separated the problem of autonomous navigation into

four tasks: visual-inertial localization, visual-inertial mapping, control and state estima-

tion, and trajectory planning. This EuRoC challenge attracted the participation of 21

important European institutions. This paper describes the solution of our team, the Graz

Griffins, to all tasks of the challenge and presents the achieved results.

Related Chapters: -

B.5 2014

Geometric Abstraction from Noisy Image-Based 3D Reconstructions

Thomas Holzmann, Christof Hoppe, Stefan Kluckner, Horst Bischoff

In: Proceedings of the Workshop of the Austrian Association for Pattern Recognition

(ÖAGM/AAPR)

May 2014, Klosterneuburg, Austria

(Accepted for oral presentation)

Best Paper Prize

118 Chapter B. List of Publications

Abstract: Creating geometric abstracted models from image-based scene reconstruc-

tions is difficult due to noise and irregularities in the reconstructed model. In this paper,

we present a geometric modeling method for noisy reconstructions dominated by planar

horizontal and orthogonal vertical structures. We partition the scene into horizontal slices

and create an inside/outside labeling represented by a floor plan for each slice by solving an

energy minimization problem. Consecutively, we create an irregular discretization of the

volume according to the individual floor plans and again label each cell as inside/outside

by minimizing an energy function. By adjusting the smoothness parameter, we introduce

different levels of detail. In our experiments, we show results with varying regularization

levels using synthetically generated and real-world data.

Related Chapters: 4, 6

BIBLIOGRAPHY 119

Bibliography

[1] Agisoft PhotoScan (2018). http://www.agisoft.com/. (page 2, 15, 72)

[2] Albertz, J. (2009). 100 jahre deutsche gesellschaft für photogrammetrie, fernerkundung

und geoinformation. Geoinformation, (6):487–560. (page 1)

[3] Amenta, N. and Bern, M. (1998). Surface reconstruction by voronoi filtering. In

Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG

’98, pages 39–48, New York, NY, USA. ACM. (page 51)

[4] Arefi, H., Engels, J., Hahn, M., and Mayer, H. (2008). Levels of detail in 3d building

reconstruction from lidar data. In Proceedings of International Society for Photogram-

metry and Remote Sensing (ISPRS). (page 29)

[5] Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S. (2013). O-

snap: Optimization-based snapping for modeling architecture. ACM Trans. Graph.,

32(1):6:1–6:15. (page 26)

[6] Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features. In

Proceedings of European Conference on Computer Vision (ECCV). (page 13)

[7] Blaha, M., Vogel, C., Richard, A., Wegner, J., Schindler, K., and Pock, T. (2016).

Large-scale semantic 3d reconstruction: an adaptive multi-resolution model for multi-

class volumetric labeling. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR). (page 30)

[8] Boissonnat, J.-D. and Yvinec, M. (1998). Algorithmic Geometry. Cambridge University

Press. (page 20, 51)

[9] Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-

flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (TPAMI). (page 71)

[10] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimiza-

tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 20(12):1222–1239. (page 5, 20, 27, 38, 55, 71)

[11] Cherabier, I., Häne, C., Oswald, M. R., and Pollefeys, M. (2016). Multi-label semantic

3d reconstruction using voxel blocks. In Proceedings of International Conference on 3D

Vision (3DV). (page 30)

[12] Cherabier, I., Schönberger, J. L., Oswald, M. R., Pollefeys, M., and Geiger, A. (2018).

Learning priors for semantic 3d reconstruction. In Proceedings of European Conference

on Computer Vision (ECCV). (page 30)

http://www.agisoft.com/

120

[13] Collins, R. T. (1996). A space-sweep approach to true multi-image matching. In Pro-

ceedings of Conference on Computer Vision and Pattern Recognition (CVPR). (page 16)

[14] Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward fea-

ture space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 24(5):603–619. (page 36, 49)

[15] Curless, B. and Levoy, M. (1996). A volumetric method for building complex mod-

els from range images. In ACM Trans. on Graphics (SIGGRAPH), pages 303–312.

(page 23)

[16] Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. The Canadian

Cartographer. (page 38)

[17] Duan, L. and Lafarge, F. (2016). Towards large-scale city reconstruction from satel-

lites. In Proceedings of European Conference on Computer Vision (ECCV), pages 89–

104. (page 29)

[18] Dzitsiuk, M., Sturm, J., Maier, R., Ma, L., and Cremers, D. (2017). De-noising, sta-

bilizing and completing 3D reconstructions on-the-go using plane priors. In Proceedings

of International Conference on Robotics and Automation (ICRA). (page 26)

[19] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, 24(6):381–395. (page 11, 26, 49)

[20] Freeden, W. and Rummel, R. (2017). Photogrammetrie und Fernerkundung - Hand-

buch der Geodäsie. Springer Spektrum. (page 1)

[21] Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2010). Towards internet-

scale multi-view stereo. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR). (page 15)

[22] Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and robust multi-view stereopsis.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). (page 15,

16, 68, 79, 80, 82, 83, 86, 88, 90)

[23] Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete solution classifi-

cation for the perspective-three-point problem. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 25(8):930–943. (page 14)

[24] Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric

error metrics. In ACM Trans. on Graphics (SIGGRAPH), pages 209–216. ACM

Press/Addison-Wesley Publishing Co., New York. (page 99, 103)

BIBLIOGRAPHY 121

[25] Google (2018). Google maps. http://maps.google.com/. (page 3)

[26] Grenander, U. and Miller, M. (1994). Representations of knowledge in complex sys-

tem. J. Royal Statistical Soc., 56(4):549–603. (page 28)

[27] Grompone, R., Jakubowicz, J., Morel, J. M., and Randall, G. (2010). Lsd: A fast line

segment detector with a false detection control. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 32(4):722–732. (page 17, 41, 68)

[28] Häne, C., Heng, L., Lee, G. H., Sizov, A., and Pollefeys, M. (2014). Real-time

direct dense matching on fisheye images using plane-sweeping stereo. In International

Conference on 3D Vison (3DV). (page 16, 68)

[29] Häne, C., Zach, C., Cohen, A., Angst, R., and Pollefeys, M. (2013). Joint 3d scene re-

construction and class segmentation. In Proceedings of Conference on Computer Vision

and Pattern Recognition (CVPR). (page 30, 108)

[30] Häne, C., Zach, C., Cohen, A., and Pollefeys, M. (2016). Dense semantic 3d recon-

struction. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

pages 1730–1743. (page 30, 31)

[31] Hartley, R. and Zisserman, A. (2000). Multiple View Geometry In Computer Vision.

Cambridge University Press. (page 8, 10, 11, 14)

[32] Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual infor-

mation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

30(2):328–341. (page 15)

[33] Hofer, M., Maurer, M., and Bischof, H. (2016). Efficient 3d scene abstraction using

line segments. Computer Vision and Image Understanding (CVIU). (page 16, 17, 68)

[34] Holzmann, T., Fraundorfer, F., and Bischof, H. (2016). Regularized 3d modeling

from noisy building reconstructions. In Proceedings of International Conference on 3D

Vision (3DV), pages 528–536. (page 34, 79)

[35] Holzmann, T., Hoppe, C., Kluckner, S., and Bischof, H. (2014). Geometric abstrac-

tion from noisy image-based 3d reconstructions. In Proceedings of The 38th Annual

Workshop of the Austrian Association for Pattern Recognition (ÖAGM). (page 34, 79)

[36] Holzmann, T., Maurer, M., Fraundorfer, F., and Bischof, H. (2018). Semantically

aware urban reconstruction with plane-based regularization. In Proceedings of European

Conference on Computer Vision (ECCV). (page 45, 46, 57, 62, 72, 94)

[37] Holzmann, T., Oswald, M. R., Pollefeys, M., Fraundorfer, F., and Bischof, H. (2017).

Plane-based surface regularization for urban 3d reconstruction. In Proceedings of British

Machine Vision Conference (BMVC), volume 28. (page 45, 56, 58, 71, 85)

http://maps.google.com/

122

[38] Hoppe, C., Klopschitz, M., Donoser, M., and Bischof, H. (2013). Incremental surface

extraction from sparse structure-from-motion point clouds. In Proceedings of British

Machine Vision Conference (BMVC). (page 20, 57)

[39] Hoppe, H., DeRose, T., McDonald, T. D. J., and Stuetzle, W. (1992). Surface re-

construction from unorganized points. In ACM Trans. on Graphics (SIGGRAPH),

volume 26, pages 71–77. (page 63, 68)

[40] Ikehata, S., Yang, H., and Furukawa, Y. (2015). Structured indoor modeling. In

Proceedings of International Conference on Computer Vision (ICCV), pages 1323–1331.

(page 27)

[41] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,

S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding.

arXiv preprint arXiv:1408.5093. (page 71)

[42] Kähler, O., Prisacariu, V. A., Valentin, J. P. C., and Murray, D. W. (2016). Hierar-

chical voxel block hashing for efficient integration of depth images. IEEE Robotics and

Automation Letters, 1(1):192–197. (page 23)

[43] Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In

Proceedings of Eurographics Symposium on Geometry Processing. (page 17, 18, 19, 35,

63, 73, 74, 76, 77, 79, 80, 83, 85)

[44] Kolbe, T. H., Gröger, G., and Plümer, L. (2005). Citygml: Interoperable access to

3d city models. Geo-information for Disaster Management, pages 883–899. (page 29)

[45] Kolmogorov, V. and Zabih, R. (2002). What energy functions can be minimized via

graph cuts? In Proceedings of European Conference on Computer Vision (ECCV).

(page 71, 108)

[46] Korč, F. and Förstner, W. (2009). eTRIMS Image Database for interpreting images

of man-made scenes. Technical Report TR-IGG-P-2009-01. (page 71)

[47] Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslander, S. (2018). Joint 3d

proposal generation and object detection from view aggregation. In Proceedings of

International Conference on Intelligent Robots and Systems (IROS). (page 108)

[48] Labatut, P., Pons, J.-P., and Keriven, R. (2007). Efficient multi-view reconstruction

of large-scale scenes using interest points, delaunay triangulation and graph cuts. In

Proceedings of International Conference on Computer Vision (ICCV). (page 20, 21, 22,

47, 56, 57, 59, 64, 78, 81, 82, 86, 87, 88, 89, 90, 91, 92, 93, 97, 98, 99, 101)

[49] Labatut, P., Pons, J.-P., and Keriven, R. (2009a). Hierarchical shape-based surface

reconstruction for dense multi-view stereo. In International Workshop on 3-D Digital

BIBLIOGRAPHY 123

Imaging and Modeling (3DIM), ICCV Workshops, pages 1598–1605, Kyoto, Japan.

(page 28)

[50] Labatut, P., Pons, J.-P., and Keriven, R. (2009b). Robust and efficient surface recon-

struction from range data. Computer Graphics Forum, pages 2275–2290. (page 20, 21,

56)

[51] Lafarge, F. and Alliez, P. (2013). Surface reconstruction through point set structuring.

Computer Graphics Forum, 32(2):225–234. (page 28, 29, 51, 52)

[52] Lafarge, F., Keriven, R., Brédif, M., and Vu, H. (2013). A hybrid multiview stereo

algorithm for modeling urban scenes. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 35(1):5–17. (page 28, 60, 90, 91, 93)

[53] Li, M., Wonka, P., and Nan, L. (2016). Manhattan-world urban reconstruction from

point clouds. In Proceedings of European Conference on Computer Vision (ECCV).

(page 27, 86, 87, 88, 89, 90, 91, 92)

[54] Li, Y., Wu, X., Chrysanthou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. (2011).

Globfit: consistently fitting primitives by discovering global relations. ACM Transac-

tions on Graphics, 30(4):52:1–52:12. (page 26)

[55] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In Proceedings of Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3431–3440. (page 62)

[56] Lorensen, W. and Cline, H. (1987). Marching cubes: A high resolution 3d surface

reconstruction algorithm. In ACM Trans. on Graphics (SIGGRAPH). (page 19)

[57] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Pro-

ceedings of International Conference on Computer Vision (ICCV). (page 13)

[58] Mapillary (2018). Opensfm - open source structure from motion pipeline. https:

//github.com/mapillary/OpenSfM. (page 15)

[59] Matterport (2018). ttps://matterport.com. (page 4)

[60] Maurer, M., Hofer, M., Fraundorfer, F., and Bischof, H. (2017). Automated inspec-

tion of power line corridors to measure vegetation undercut using uav-based images. In

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sci-

ences. (page 62)

[61] Monszpart, A., Mellado, N., Brostow, G., and Mitra, N. (2015). RAPter: Rebuild-

ing man-made scenes with regular arrangements of planes. ACM Trans. on Graphics

(SIGGRAPH). (page 27, 86, 89, 90, 91, 92)

https://github.com/mapillary/OpenSfM
https://github.com/mapillary/OpenSfM
ttps://matterport.com

124

[62] Mostegel, C., Prettenthaler, R., Fraundorfer, F., and Bischof, H. (2017). Scal-

able surface reconstruction from point clouds with extreme scale and density diversity.

In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR).

(page 108)

[63] Mostegel, C. and Rumpler, M. (2012). Robust Surface Reconstruction from Noisy

Point Clouds using Graph Cuts. Technical report, Graz University of Technology, In-

stitute of Computer Graphics and Vision. https://www.tugraz.at/institute/icg/

Media/mostegel_2012_techreport. (page 20, 21, 22, 56, 86)

[64] Moulon, P., Monasse, P., and Marlet, R. (2013). Global fusion of relative motions for

robust, accurate and scalable structure from motion. In Proceedings of International

Conference on Computer Vision (ICCV). (page 15)

[65] Moulon, P., Monasse, P., Marlet, R., and Others (2018). Openmvg. an open multiple

view geometry library. https://github.com/openMVG/openMVG. (page 15)

[66] Nan, L. and Wonka, P. (2017). Polyfit: Polygonal surface reconstruction from

point clouds. In Proceedings of International Conference on Computer Vision (ICCV).

(page 26, 73, 74, 76, 77)

[67] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J.,

Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011). Kinectfusion: Real-time

dense surface mapping and tracking. In Proceedings of the 2011 10th IEEE International

Symposium on Mixed and Augmented Reality, ISMAR ’11, pages 127–136, Washington,

DC, USA. IEEE Computer Society. (page 23)

[68] Nister, D. (2004). An efficient solution to the five-point relative pose problem. In

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). (page 11,

12)

[69] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree.

In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR).

(page 13)

[70] Oesau, S., Lafarge, F., and Alliez, P. (2014). Indoor scene reconstruction using feature

sensitive primitive extraction and graph-cut. ISPRS Journal of Photogrammetry and

Remote Sensing, 90:68–82. (page 27)

[71] Oesau, S., Lafarge, F., and Alliez, P. (2016). Planar shape detection and regulariza-

tion in tandem. Computer Graphics Forum, 35(1):203–215. (page 26)

[72] OpenCV (2019). https://opencv.org/. (page 71)

[73] PASCAL-Context network (2018). http://dl.caffe.berkeleyvision.org/

pascalcontext-fcn32s-heavy.caffemodel. (page 71)

https://www.tugraz.at/institute/icg/Media/mostegel_2012_techreport
https://www.tugraz.at/institute/icg/Media/mostegel_2012_techreport
https://github.com/openMVG/openMVG
https://opencv.org/
http://dl.caffe.berkeleyvision.org/pascalcontext-fcn32s-heavy.caffemodel
http://dl.caffe.berkeleyvision.org/pascalcontext-fcn32s-heavy.caffemodel

BIBLIOGRAPHY 125

[74] Paul Chew, L. (1989). Constrained delaunay triangulations. Algorithmica, 4(1-4):97–

108. (page 39)

[75] Pix4DModel (2018). https://pix4d.com/. (page 2, 15, 72)

[76] Pollefeys, M., Nistér, D., Frahm, J., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels,

C., Gallup, D., Kim, S. J., Merrell, P., Salmi, C., Sinha, S. N., Talton, B., Wang, L.,

Yang, Q., Stewénius, H., Yang, R., Welch, G., and Towles, H. (2008). Detailed real-time

urban 3d reconstruction from video. International Journal of Computer Vision (IJCV),

78(2-3):143–167. (page 29)

[77] Prisacariu, V. A., Kahler, O., Cheng, M. M., Ren, C. Y., Valentin, J., Torr, P. H. S.,

Reid, I. D., and Murray, D. W. (2014). A Framework for the Volumetric Integration of

Depth Images. ArXiv e-prints. (page 23)

[78] Richard, A., Vogel, C., Blaha, M., Pock, T., and Schindler, K. (2017). Semantic

3d reconstruction with finite element bases. In Proceedings of British Machine Vision

Conference (BMVC), volume 28. (page 30)

[79] Rothermel, M., Wenzel, K., Fritsch, D., and Haala, N. (2012). Sure: Photogrammetric

surface reconstruction from imagery. In Proceedings LC3D Workshop, Berlin. (page 15,

35, 68, 69, 79, 83, 85)

[80] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient

alternative to sift or surf. In Proceedings of International Conference on Computer

Vision (ICCV). (page 13)

[81] Sanchez, V. and Zakhor, A. (2012). Planar 3d modeling of building interiors from

point cloud data. In ICIP, pages 1777–1780. IEEE. (page 26)

[82] Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient ransac for point-cloud shape

detection. Computer Graphics Forum, 26(2):214–226. (page 25, 26, 27, 49, 94, 95, 96,

97, 108)

[83] Schönberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In Pro-

ceedings of Conference on Computer Vision and Pattern Recognition (CVPR). (page 2,

15)

[84] Schönberger, J. L., Zheng, E., Pollefeys, M., and Frahm, J.-M. (2016). Pixelwise view

selection for unstructured multi-view stereo. In Proceedings of European Conference on

Computer Vision (ECCV). (page 16)

[85] Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring image

collections in 3d. In ACM Trans. on Graphics (SIGGRAPH). (page 15)

https://pix4d.com/

126

[86] Strecha, C., von Hansen, W., Gool, L. V., Fua, P., and Thoennessen, U. (2008). On

benchmarking camera calibration and multi-view stereo for high resolution imagery.

In Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR).

(page 90, 93, 95, 97, 98, 99, 101)

[87] Sweeney, C. (2018). Theia multiview geometry library: Tutorial & reference. http:

//theia-sfm.org. (page 15)

[88] Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science

and Business Media. (page 2)

[89] Cgal. Computational Geometry Algorithms Library (2018). http://www.cgal.org.

(page 71, 94)

[90] The VCG Library (2018). http://vcg.isti.cnr.it/vcglib/. (page 103)

[91] Verdie, Y., Lafarge, F., and Alliez, P. (2015). LOD generation for urban scenes. In

ACM Transactions on Graphics. (page 29)

[92] Visual Computing Lab, Istituto di Scienza e Tecnologie dell’Informazione, N. R. C.

o. I. (2018). MeshLab, an open source, portable, and extensible system for the process-

ing and editing of unstructured 3D triangular meshes. . http://www.meshlab.net/.

(page 68, 75)

[93] Waechter, M., Moehrle, N., and Goessele, M. (2014). Let there be color! - large-scale

texturing of 3d reconstructions. In Proceedings of European Conference on Computer

Vision (ECCV). (page 35, 46, 79, 82, 83, 86, 89, 94)

[94] Xiao, J. and Furukawa, Y. (2014). Reconstructing the world’s museums. International

Journal of Computer Vision (IJCV), 110(3):243–258. (page 27)

[95] Zach, C. (2008). Fast and high quality fusion of depth maps. In Proceedings of Inter-

national Symposium on 3D Data Processing, Visualization, and Transmission. (page 38)

[96] Zebedin, L., Bauer, J., Karner, K. F., and Bischof, H. (2008). Fusion of feature- and

area-based information for urban buildings modeling from aerial imagery. In Proceedings

of European Conference on Computer Vision (ECCV). (page 26)

[97] Zeng, M., Zhao, F., Zheng, J., and Liu, X. (2012). A memory-efficient kinectfusion

using octree. In Hu, S.-M. and Martin, R. R., editors, Computational Visual Media,

pages 234–241, Berlin, Heidelberg. Springer Berlin Heidelberg. (page 23)

[98] Zheng, E., Dunn, E., Jojic, V., and Frahm, J.-M. (2014). Patchmatch based joint

view selection and depthmap estimation. In Proceedings of Conference on Computer

Vision and Pattern Recognition (CVPR). (page 16)

http://theia-sfm.org
http://theia-sfm.org
http://www.cgal.org
http://vcg.isti.cnr.it/vcglib/
http://www.meshlab.net/

BIBLIOGRAPHY 127

[99] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,

C., and Torr, P. H. S. (2015). Conditional Random Fields as Recurrent Neural Networks.

In IEEE Computer Vision and Pattern Recognition (CVPR), pages 1529–1537. arXiv:

1502.03240. (page 63)

[100] Zhou, Q. and Neumann, U. (2012). 2.5d building modeling by discovering global

regularities. In Proceedings of Conference on Computer Vision and Pattern Recognition

(CVPR), pages 326–333. (page 29)

	Introduction
	Motivation
	Contributions
	Outline

	Image-Based 3D Reconstruction
	Basics and Notation
	Camera Model
	Two-View Geometry

	Structure-from-Motion
	Feature Extraction and Matching
	Geometric Verification
	Incremental SfM
	Global SfM
	Example Pipelines

	Multi-View Stereo Reconstruction
	Line Reconstruction
	Surface Reconstruction
	Poisson Surface Reconstruction
	Tetrahedralization-Based Methods
	Delaunay Triangulation
	Surface Reconstruction

	Methods Using a Signed Distance Function

	Summary

	Related Work
	Reconstruction Using a Scene Hypothesis
	Shape Priors Incorporated in Generic Reconstruction Methods
	Semantic Scene Reconstruction
	Summary

	Slicing for Building Reconstruction
	Method Overview
	Input Data
	Horizontal Slicing and Cell Decomposition
	Horizontal Slicing
	Binary Labeling
	Slice Combination

	Volumetric Cell Labeling as an Energy Minimization Problem
	Summary

	Shape Priorization in Tetrahedra-Based Methods
	Method Overview
	Plane Detection
	Point-Based Plane Detection
	Line-Based Plane Detection
	Line Triple Detection
	Line Triple Clustering
	Inlier Detection and Outline Estimation
	Plane Filtering

	Plane-Based Denoising

	Tetrahedralization of the Scene
	Tetrahedra Subdivision
	Tetrahedra Intersected by Plane
	Consistency Adoptions
	Margin Tetrahedra

	3D Reconstruction Using Tetrahedral Occupancy Labeling
	Visibility-Based Energy Computation
	Unnormalized Energy Formulation
	Unary Costs
	Pairwise Costs

	Normalized Energy Formulation
	Computation of Visibility Information
	Using Pre-Computed Visibility Information
	Visibility Computation Using Depth Maps

	Plane-Aware Regularization
	Manhattan Regularity Term
	Level of Detail Term
	Plane Intersection Artifacts Removal

	Semantically Aware Urban Reconstruction
	Semantic Segmentation
	Input Data Subdivision and Semantic Preprocessing
	Semantically Varying Smoothness Terms

	Summary

	Experiments
	Input Data
	Block Building
	House
	Residential Area

	Implementation Details
	Default Parameters
	Results and Comparisons
	Runtimes

	Method-Specific Detailed Evaluations
	Slicing-Based Method
	Parameter Selection
	Block Building
	Long Building
	Non-Manhattan Building
	Runtime Discussion

	Plane-Based Regularization Method
	Block Building
	Building Complex
	House
	Indoor
	Entry-P10
	Runtime Breakdown

	Semantically Aware Regularization Method
	Plane Detection Using Lines
	Normalized Visibility-Based Energy Term
	Semantic 3D Data
	Semantic Priors
	Simplification as Post-Processing

	Summary

	Conclusions
	Summary
	Outlook

	List of Acronyms
	List of Publications
	2018
	2017
	2016
	2015
	2014

	Bibliography

