
Leo Novosel, BSc

Usage of Cloud Services in Modern
Bookkeeping Applications

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Nikolai Scerbakov
Institute of Interactive Systems and Data Science

Graz, April 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Graz,

Date Signature

iii

Kurzfassung

Der Digitalisierungstrend is schon seit langer Zeit stark present, aber die
Möglichkeiten die es mit sich bringt sind noch nicht vollständig erschöpft. In
den letzten Jahren neigt die Industrie immer mehr dazu die kosteneffiziente
und skalierbare Lösungen einzusetzen, und versucht immer öfter die Ak-
tivitäten, die nicht teil des Kerngeschäftes sind, auszulagern, besonders die
IT-Infrastruktur. Die Cloud-Dienste und das Software as a Service-Modell
spielen dabei eine wichtige Rolle. Bei Verwendung von Cloud-Diensten
müssen sich die Unternehmen nicht mehr um die Kosten und Instandhal-
tung von Hardware und Software kümmern, während das Software as a
Service-Modell hoch skalierbare und einfach verteilbare Software Lösungen
ermöglicht. Das Ziel dieser Arbeit ist zu analysieren wie diese Technologien
verwendet werden können um die buchhalterische Abläufe zu vereinfachen
indem sie in eine Webanwendung für Buchhaltung integriert werden. Die
Arbeit erforscht die typische Anforderungen im Buchhaltungsbereich, und
diskutiert die technische Implementation entsprechender Funktionalität
der notwendig ist um digitale Handelsdokumente (z.B. Rechnungen) zu
bearbeiten und zu speichern, weil diese oft dem Buchhaltung in Papier-
form zur verfügung gestellt werden müssen, was sowohl Zeit- als auch
Platzaufwendig ist. Ein grosser Teil dieser Arbeit ist fokussiert auf die
Implementation, während zusätzlich Quellcode Teile der entwickelten We-
banwendung bereitgestellt und diskutiert werden.

v

Abstract

The trend of digitalization has been present for a long time now, but it’s
possibilities have not yet been utilized to their full potential yet. In the
past few years the industry has started to turn to more cost efficient and
scalable solutions, and also often tries to outsource the non-core activities,
especially the ones concerning the IT infrastructure. The cloud services and
the Software as a Service model play a great role in this transformation. By
using the cloud services, companies do not have to worry about the cost
and maintenance of the hardware and the software anymore, while the Soft-
ware as a Service model facilitates highly scalable and easily distributable
software solutions. This thesis aims to analyze how these technologies can
be utilized to simplify the bookkeeping processes by integrating them in a
bookkeeping web application. The thesis investigates the typical business
requirements in a bookkeeping environment and discusses the technical
implementation of the corresponding functionality needed to process and
store commercial documents in a digital format, due to the fact that the
commercial documents such as invoices often need to be made available to
the bookkeeper or accountant in a paper form, which is both space- and
time-consuming. The majority of the thesis focuses on the implementa-
tion details while additionally providing code pieces taken from the web
application that was developed within the scope of this thesis.

vii

Contents

Abstract v

1 Introduction 1
1.1 Document Management System 3

1.2 Technology Overview . 4

1.2.1 Internet and the World Wide Web 4

1.2.2 Hypertext Markup Language 5

1.2.3 Cascading Style Sheets 5

1.2.4 Client-side Scripting with JavaScript 6

1.2.5 Server-side Scripting with PHP 7

1.2.6 Asynchronous Web Applications with AJAX 7

1.3 Cloud Services . 8

1.3.1 Dropbox . 10

1.3.2 Google Drive . 11

1.3.3 Microsoft OneDrive . 12

1.4 Bookkeeping . 13

1.4.1 Double-entry Bookkeeping 15

1.4.2 Legal Framework . 20

1.5 Business Requirements and Integration of Cloud Services . . 21

1.5.1 Creation of shared Document Repositories 21

1.5.2 Uploading Documents 22

1.5.3 Viewing and Downloading Documents 23

1.5.4 Collaborative Editing of Accounting Data 24

2 Architecture and Functionality 25
2.1 Presentation Layer . 25

2.2 Business Logic Layer . 28

2.2.1 User Management . 29

2.2.2 Repository Management 30

ix

Contents

2.2.3 Utility Services . 36

2.3 Data Layer . 37

3 Implementation 39
3.1 Database . 39

3.1.1 Data Model . 39

3.1.2 Database abstraction with PHP Data Objects 51

3.2 User Management . 53

3.2.1 Roles . 53

3.2.2 Privileges . 55

3.2.3 Account Creation . 59

3.2.4 Signing In to Application 61

3.2.5 Signing Out of Application 63

3.3 Repository Management . 64

3.3.1 Creation of Document Repository 65

3.3.2 Connecting to a Document Repository 66

3.3.3 Repository User Management 68

3.3.4 Accounting Data Fields 71

3.3.5 Accounting Data Layouts 75

3.3.6 Parameter Tables . 77

3.4 Document and Accounting Data Management 81

3.4.1 Fetching the contents of a Document Repository . . . 82

3.4.2 Directory Creation . 85

3.4.3 Document Upload . 86

3.4.4 Viewing the Document 88

3.4.5 Document and Directory Deletion 90

3.4.6 Editing the Accounting Data 91

3.4.7 Versioning of the Accounting Data 93

3.4.8 Creating the Accounting Records 94

3.4.9 Viewing the Books . 96

3.4.10 Using the Comment System 98

3.5 Settings . 100

3.5.1 General Settings . 100

3.5.2 User, Repository and Authorization Overview 101

3.5.3 Application Log . 101

4 Conclusion 103

x

Contents

Bibliography 105

xi

List of Figures

1.1 Dropbox web interface . 11

1.2 Microsoft OneDrive web interface 13

1.3 Basic structure of a balance sheet 15

1.4 Basic account structure . 16

1.5 Basic structure of the balance sheet accounts 17

1.6 Basic structure of the profit and loss accounts 18

1.7 General outline of the Austrian unified account system (EKR) 19

2.1 OAuth 2.0 authorization process flow 32

3.1 Repository privileges dashboard 58

3.2 Account creation form . 60

3.3 Password reset form . 63

3.4 Sign out icon . 64

3.5 Repository placeholder . 65

3.6 Repository dashboard . 68

3.7 Repository user management interface within the repository
dashboard . 69

3.8 Repository user authorization dialog 70

3.9 Repository accounting data fields dashboard 72

3.10 Repository data field creation dialog 73

3.11 Repository accounting data layouts dashboard 75

3.12 Repository accounting data layout creation dialog 76

3.13 Repository parameter tables dashboard 79

3.14 Repository parameter tables creation dialog 80

3.15 Repository page . 82

3.16 Directory creation dialog . 85

3.17 File upload dialog . 87

3.18 Directory deletion . 91

xiii

List of Figures

3.19 Accounting data panel . 92

3.20 Accounting data revisions dialog 93

3.21 Accounting records panel . 94

3.22 General ledger on the books page 97

3.23 Comments panel . 99

3.24 User settings . 100

3.25 User overview . 101

3.26 Application log . 102

xiv

1 Introduction

Bookkeeping concerns itself with recording of every financial transaction
within a business (Bragg, 2011). These transactions include, amongst others,
payments, purchases and sales. The basic principle states that no record
should be made without the existence of the related commercial documen-
tation. The quality of the recorded information about the transactions is not
only important because of the potential legal obligation to keep business
records, but also because they are summarized into financial reports that
can give an important insight into the economic situation of the business.
Depending on the size and needs of an organization, the complexity of the
bookkeeping process and the recorded information can vary. Bigger compa-
nies usually do their own bookkeeping within their accounting departments,
but a smaller businesses often use services of an external accountant (Quinn,
2010). Nowadays, almost all bookkeeping processes and tasks are carried
out by using accounting applications, but a great deal of commercial docu-
ments such as invoices are still being issued only in a paper form, so there
is a great effort involved in storing them and making them available to an
accountant.

With the rapid progress in information technologies over the last decade, the
interest in their utilization within enterprises has also increased immensely.
The trends in the information industry have not only made way for the
development of new sales and marketing channels (Chao, 2016), but they
have also allowed the enterprises to become more adaptive to the constantly
changing conditions on the market. Although the information systems have
become an integral and irreplaceable part of the business, and much of the
business processes are already digitalized, the issuing of digital commercial
documents is not yet widely present despite the fact that the necessary
technologies have been available for quite a while now.

1

1 Introduction

In order to tackle this issue, the legislators have undertaken the endeavor
to support the digitalization of commercial documents. In the European
Union, the foundation for this trend was laid in the Directive 2010/45/EU.
Its purpose is to provide the legal guidelines that allow the equal treatment
of paper and electronic invoices, and therefore increase the efficiency and
decrease the complexity of business transactions within the European Single
Market (Bundesministerium für Finanzen, 2017b). The Austrian legislator
has implemented the directive with the 2012 Tax Amendment Act, and
since 1. July 2013 allows issuing of electronic invoices either as a PDF or
a text document, or even as scan of a paper invoice. Such invoices can be
then made available either per email or as a download. The prerequisites
for a validity of these commercial documents include the authenticity of
the origin, content integrity and human readability. The methods and tech-
nologies used to ensure the prerequisites are basically freely selectable, so
the authenticity and integrity can, for instance, be ensured by using the
digital signature. When considering the benefits of electronic invoices over
their paper counterpart, the legal retention period also needs to be taken
under consideration. In Austria, the invoices must be kept available for 7

years from the date of issue (Bundesministerium für Finanzen, 2017a). The
retention period may vary from country to country, but the mere fact that
the invoices must be kept for a longer period of time introduces another
challenge, namely providing the necessary storage space. Therefore, the fact
that the electronic invoices can be easily made available over the internet
and do not require practically any physical storage space, makes them a
great alternative to a more traditional use of paper invoices.

Due to the low cost and high availability, the cloud storage services have
become increasingly popular over the last few years, so they offer them-
selves as a logical choice when considering the digital storage possibilities.
What makes them especially attractive is the fact that through their usage
the storage service can be outsourced, so the provision of the necessary
infrastructure or security and reliability issues are all being managed by an
external provider. In addition to this, a combination of a cloud storage and
a web based application can provide a software solution that is accessible
solely through the client’s web browser, and needs no local installation.

The goal of this thesis is not to reinvent the, often very complex, book-
keeping or accounting applications, but to investigate how especially cloud

2

1.1 Document Management System

storage services in combination with a Software as a Service (SaaS) delivery
model can be used to improve the daily bookkeeping processes by pro-
viding means to process and store commercial documents. It will also be
investigated which interfaces modern cloud storage services offer in order
to integrate them into a web application. To this purpose, the necessary
business requirements will be analyzed, and a web application developed,
which demonstrates, how cloud service functionality can be integrated to
fulfill them. The application will be designed primarily to serve as a digital
document archive and a interface between the accountant and the client,
and in its basic form is not meant to replace a fully fledged bookkeeping
application.

1.1 Document Management System

Document management system (DMS) is, in a context of information tech-
nology, a software application that provides functionality needed to store,
search and process digital documents. The documents that are issued in
a paper form can also be introduced into the system, but they have to be
digitalized by using a scanner (Brooks, 2004), or some other method first.

When considering a web based DMS, the overall required functionality
can be clearly divided between the document management and the web
technologies (Balasubramanian and Bashian, 1998). The requirements for
the efficient document management include managing of a large amount
of documents, supporting of roles, provision of access control, recording of
attributes as well as enabling of the workflow and version control, while
the web technologies take responsibility for the provisioning of the user
interface including the navigation, delivery of multiple media formats and
provisioning of the attribute searching functionality.

Ginsburg divides the processes within a DMS into the foreground and the
background ones (Ginsburg, 2000). The foreground processes are defined
by the actors and their actions, while the data processing functionality
resides in the background. The acting roles can be the author, the editor
and the reader. The author typically performs actions such as creation,
upload and update of the documents, the editor can give a clearing for the

3

1 Introduction

documents before publishing, and the reader usually performs actions such
as searching for the document and reading it, as well as adding annotations
and metadata. The document metadata is a very important concept in the
document management because it adds additional information and thereby
enhances the data content, while the annotation system can be used to
provide appraisals or additional notes.

1.2 Technology Overview

This chapter aims to provide an overview of the terms that are used through-
out the thesis, and give an insight into technologies that was used for
implementation.

1.2.1 Internet and the World Wide Web

Internet is a global computer network of networks in which the data is
interchanged by using the Internet Protocol Suite (W3C, 2017a). The two
most important protocols within the suite are the Transmission Control
Protocol and the Internet Protocol (TCP/IP). The World Wide Web (WWW),
on the other hand, is only one of many services available on the internet. It
can be defined as an information space in which the resources are identified
by the Uniform Resource Identifiers (URI) and interconnected by means
of hypertext links (Jacobs and Walsh, 2004). A resource can be anything
that is identifiable by a URI, for instance, a web page or an image. The
most important protocol that is used for communication purposes and data
transfer on the WWW is the Hypertext Transfer Protocol.

The Hypertext Transfer Protocol, or shorter HTTP, is a stateless protocol
for distributed hypertext information systems (Fielding and Reschke, 2014).
The protocol is based on the request-response principle which operates by
exchanging messages between the HTTP client and HTTP server over a
previously established connection. Being stateless means that there is no
interdependency between the requests, so each request is handled separately

4

1.2 Technology Overview

and without regard to any of the previous ones. Typical HTTP communi-
cation consists of a client (e.g. web browser) sending a request message to
the server in order to retrieve a resource identified by a Uniform Resource
Identifier. The server receives the request and sends the requested resource
to the client in response.

This thesis uses the term web page (or just page) to refer to any HTML
document, from a simple static web page to an interactive web application
that is using both client-side as well as server-side scripting.

1.2.2 Hypertext Markup Language

The Hypertext Markup Language (HTML) is the standard markup language
when it comes to creating web pages and web applications. It is used to
define the structure of a document by using markup. Each HTML document
consists of a tree of elements, and each element is denoted with a start tag
and an end tag. The available elements provide means to include text, tables,
lists, images, forms and even video and audio (W3C, 2017b). The documents
can be linked to other documents or resources by means of hypertext links.
Once the HTML document is received from the server, the web browser
displays it’s content to the user and parses it’s code into a Document Object
Model (DOM) tree, which is an in-memory representation of the document
(Faulkner et al., 2016). The usage of the DOM interface is very crucial when
developing complex web applications, this topic will be discussed more
detailed in chapters 1.2.4 and 1.2.6.

1.2.3 Cascading Style Sheets

Cascading Style Sheets (CSS) is a style sheet language used for describing
the presentation of an HTML document. More precisely, it’s main goal is to
provide a style for structured documents and thus separate the structure of
the document from it’s presentation (Bos, 2016). With the rapid increase of
different devices that are nowadays used to access the web, it has become
increasingly important to provide an appropriate presentation for each of
them, especially in regard to the differences in screen sizes and resolution,

5

1 Introduction

and this is exactly what CSS facilitates (W3C, 2017b). By using a wide variety
of CSS selectors each element of the HTML document can be individually
styled. The CSS properties that can be modified include layout (e.g. position),
colors (e.g. background-color), and font properties.

Together with HTML, CSS forms a solid basis for creating web applications,
but in order to implement the advanced functionality, addition of both
client-side and server-side scripting is needed.

1.2.4 Client-side Scripting with JavaScript

With Dynamic HTML (DHTML), a concept was introduced that uses a set
of existing technologies in order to allow creation of dynamic web content.
This concept usually consist of HTML, CSS, ECMAScript - a scripting
language widely known as JavaScript, and the Document Object Model. The
Hypertext Markup Language is used for the page layout, Cascading Style
Sheets for presentation, JavaScript as a client-side scripting language, and
the Document Object Model interface allows the dynamic manipulation of
the page content, layout and presentation (Goodman, 2006).

One of the key technologies within DHTML is the scripting language,
and the JavaScript is the most commonly used one (W3C, 2017c). It is an
interpreted high-level scripting language that is also known as ECMAScript
due to the fact that the standardization of the language was submitted to
European Computer Manufacturer’s Association (ECMA) (Flanagan, 2011).
Being a client-side scripting language, the Javascript code is sent by the
server alongside HTML document and executed on the client-side i.e. in the
user’s web browser. The code itself can be embedded in a HTML document,
or loaded from the external source files. One of the most important features
of JavaScript is the ability to register an event handler function that is bound
to a certain event such as a mouse click or a key press. So by using the
abilities of a client-side scripting language such as JavaScript in combination
with DOM and CSS, a new functionality can be added to static HTML
documents making them more interactive. This facilitates creation of web
applications with a responsive and customizable user interface.

6

1.2 Technology Overview

1.2.5 Server-side Scripting with PHP

Scripts executed on the client-side do not always provide the necessary
functionality needed in a web application, such as access to the file system
or a database. It is only the feature set of the server-side scripting languages
that allows the creation of web applications with such level of complexity.
As the name implies, the code of the server-side scripting languages is
executed on the server and stays hidden from the user at all times, only
the result is sent to the client once the server is done with processing. This
result can be anything from a HTML or XML document to a graphic or a
PDF file.

PHP, a recursive acronym of Hypertext Preprocessor, is an open source
scripting language. It was initially developed by Rasmus Lerdorf in 1994,
and has been improved and expanded ever since. The language is most com-
monly used for server-side scripting i.e. development of web applications,
but can also be used for command line scripting or development of desktop
applications by using the GIMP-Toolkit (GTK). A major advantage is the fact
that PHP is both cross-platform compatible as well as supported by many
modern servers such as Apache or Microsoft’s Internet Information Server.
It can be installed either as a server module where supported, or executed
by using the Common Gateway Interface (CGI) and FastCGI respectively
(Achour, Betz, and Dovgal, 2017).

Some of the PHP’s most important features include a support for a wide
range of databases, including all the major ones such as MySQL, Oracle
or PostgreSQL, and an existence of a standard PHP library (SPL). The
standard PHP library contains a collection of classes and interfaces that
implement often used functionality such as database layer abstraction and
error handling (Tatroe, MacIntyre, and Lerdorf, 2013).

1.2.6 Asynchronous Web Applications with AJAX

Both client- and server-side scripting can be combined together in order to
provide more functionality in a web application and a better user experience.
One potential drawback of combining these two techniques is the fact that

7

1 Introduction

each time a script needs to be executed on the server-side, the client has to
send a new HTTP request, causing the page the user is currently viewing
to reload. This problem can be tackled by sending the request to the server
asynchronously. The technology, or more precisely, a set of technologies that
allows this kind of approach is called AJAX, which is short for asynchronous
JavaScript and XML.

The term AJAX was originally devised by Jesse James Garrett, and it initially
contained following technologies (Powers, 2007):

• Extensible HTML (XHTML) for page structure and Cascading Style
Sheets for presentation

• Extensible Markup Language (XML) as a data format and Extensible
Stylesheet Language Transformation (XSLT) for data presentation

• Document Object Model for dynamic manipulation of page elements
• XMLHttpRequest object for the client-server communication
• JavaScript as a client-side scripting language that binds all of the

components together

The central element is the XMLHttpRequest object. It allows the client to
send the HTTP request asynchronously i.e. in the background, without
blocking the user interaction and having to reload the entire page once the
HTTP response comes back from the server. The other important component
is the JavaScript. On one side, it is used for client-server communication by
means of XMLHttpRequest, and on the other side, by using JavaScript and
DOM manipulation, each of the elements on the page can be populated in-
dividually and on demand, which makes the web application more effective
and more responsive. The last core component of AJAX is the data format.
Although XML was initially designated as the data format, there are other
formats that can be used as well, such as JavaScript Object Notation (JSON)
or HTML.

1.3 Cloud Services

Cloud computing can be considered to be a result of the advancement in the
technology, and the change in the user behavior and expectations (Barton,

8

1.3 Cloud Services

2014). It has become very popular over the last decade, not only because of
the fact that the technology has allowed the users to become more mobile
so they prefer to have mobile access to their data and applications, but also
because of the demand for more scalable solutions that do not require much
investment in the infrastructure. Therefore, the key characteristics of the
cloud computing include outsourcing of the IT resources and their usage as
a service, easy online access, high scalability and usage-based pricing.

Generally, cloud computing services can be divided into three service levels
regarding the resource that is being provided to the client, and four delivery
models that define how that resource is being provided.

A widely accepted cloud computing service model consists of three levels
(Barton, 2014):

1. Software as a Service
2. Platform as a Service
3. Infrastructure as a Service

Infrastructure as a Service (IaaS) represents the bottom level, which consists
of services that provide infrastructure resources such as processing, storage
and network capacities, while the client has a freedom to decide which
operating system and applications are going to be deployed on top of the
provided service. The availability of the resources, which can be defined in
the service level agreement (SLA), lies within the responsibility of the service
provider. The middle level is represented trough Platform as a Service (PaaS).
This service model aims to provide the client with the software environment
that can be used for application development or customization, while the
top level model - Software as a Service (SaaS), provides the client with an
access to a standardized application which is provided as a service and
charged for a particular time-period or on a per-use basis.

The cloud service delivery, on the other hand, can be divided into four
models (Barton, 2014):

1. Public Cloud - the cloud service infrastructure is both owned and
operated by an external service provider.

2. Private Cloud - the cloud service is in-sourced and operated by the
service user. Alternatively can either infrastructure be outsourced

9

1 Introduction

(Hosted Private Cloud) or both infrastructure and operation (Managed
Private Cloud), but the access is usually very restricted.

3. Hybrid Cloud - a combination of multiple private and public cloud
infrastructures.

4. Virtual Private Cloud - a public cloud which is configured for an
individual user in order to provide a certain degree of isolation, for
instance by using a VPN connection.

The cloud services used for the implementation of the web application
within the scope of this thesis provide storage resources through the IaaS
model, and are being delivered through a public cloud service. The imple-
mented web application, on the other hand, can be delivered by using the
SaaS model, or more precisely, by providing the access to the application
through a web browser.

1.3.1 Dropbox

Dropbox is a cloud storage service operated by the company Dropbox, Inc.
(Dropbox Inc., 2017a). The service offers both file system synchronization for
the offline access as well as online access over the web browser (Figure 1.1).
In case of the file system synchronization, the Dropbox client application
needs to be downloaded and installed locally. The installed application
creates a designated folder in the local file system, and every file that is
moved into that folder gets automatically synchronized with the cloud
storage. This way the user can easily synchronize his or her files over
multiple devices. Additionally, the service also offers a version history in
case a file was deleted or it needs to be restored to a previous version.

For the purpose of integration of the cloud service into existing applications,
the Dropbox provides application programming interface (API) and software
development kits (SDK) for multiple programming languages such as Java,
Python and Objective-C. Additionally there are also third-party libraries
available that support other programming languages as well (Dropbox Inc.,
2017b). By using the API, the applications can use Dropbox functionality
such as file upload, download, deletion, folder listing and other. For the
authentication of the third-party applications with the Dropbox service, the

10

1.3 Cloud Services

OAuth2 protocol is used. The OAuth2 authorization process and the usage
of the Dropbox application programming interface (API) will be discussed
in more detail in the chapter 3.

Figure 1.1: Dropbox web interface

1.3.2 Google Drive

Drive is a cloud storage service offered by Google (Google, 2017b). Just as
the service form Dropbox, the Google Drive offers both file system synchro-
nization for offline access by using the client application, as well as an online
web interface for the file management. By using the synchronization, the
uploaded files become available across all of the connected devices. Drive
also offers file versioning, which allows the user to revert to a previous
file version if needed. Additionally, Google Drive features an intelligent
search functionality that can recognize objects in the images and text in the
scanned documents.

11

1 Introduction

One further interesting feature is the possibility to scan documents with a
mobile device. A photo of a document that is taken with the mobile device
gets hereby instantly uploaded to the cloud storage and converted to a PDF
format.

Google also extends the functionality of the Drive by seamlessly integrating
the Google applications Docs, Sheets and Slides, which allow creation and
collaborative editing of documents, spreadsheets and presentations which
are then automatically saved to the cloud storage.

For the integration of the Drive into existing third-party applications, Google
offers API client libraries for several programming languages including Java,
Python, Objective-C and PHP (Google, 2017a). The authentication of the
application is conducted by using the OAuth2 process.

1.3.3 Microsoft OneDrive

OneDrive is a cloud storage service from Microsoft (Microsoft, 2017a).
For the upload of the files into the cloud storage, Microsoft offers local file
system synchronization much like Dropbox by using the desktop application
currently available for Windows and OS X, and an online web access (Figure
1.2) where the files can also be uploaded by a drag and drop. For the offline
integration, the OneDrive application uses a dedicated folder. The contents
of the local dedicated folder can be synchronized across multiple devices.

12

1.4 Bookkeeping

Figure 1.2: Microsoft OneDrive web interface

For OneDrive integration purposes, Microsoft offers both Graph SDKs for
programming languages such as PHP, Python and Ruby, as well as a REST
API (Microsoft, 2017b). The authentication of the third-party applications
can be achieved by using the OAuth2 process.

1.4 Bookkeeping

Bookkeeping (also financial accounting or external accounting) is first and
foremost dedicated to providing the information to the interested parties
that are external to the company, with two of the most important ones
being the tax authorities and the creditors (Bauer, 2017). The creditors will
want to make sure that the provided capital will be returned, while the tax
authorities, amongst other things, use the information about the company’s
profit as a basis for the tax calculation.

13

1 Introduction

The three constituent parts of the external accounting are the record keeping,
the inventory and the annual financial statement.

Being a part of the external accounting, the record keeping needs to make
sure that the provided information is uniform, and in accordance with
the legal regulations that define the structure and content of the financial
reports. According to section 190 of the Austrian Commercial Code (UGB),
the companies are required to keep records of each individual business
transaction in accordance to generally accepted accounting principles, and
in such a way so that each business transaction can be traceable regarding
to its origin and processing. That means that the records need to be both
chronologically and systematically organized.

The inventory is the listing of all assets (both fixed and current) as well as
all debts at one specific point in time. The legal framework regarding the
inventory is found in the section 191 UGB. It states, amongst others, that
the inventory must be created at the end of every fiscal year.

The annual financial statement is the third and last part of the external ac-
counting. Within its context, the Austrian legislator requires the preparation
of a balance sheet and a profit and loss statement (section 193 UGB). A bal-
ance sheet is a summary of all the company’s assets on one side and capital
(liabilities and owner’s equity) on the other (Figure 1.3), while the profit
and loss statement provides information regarding all the revenues and
expenses within a fiscal year. In addition to balance sheet and a profit and
loss statement, corporations must also provide an annex and a management
report. This does not apply to companies with an annual revenue less than
700.000,- Euro (section 189 UGB).

14

1.4 Bookkeeping

Figure 1.3: Basic structure of a balance sheet

1.4.1 Double-entry Bookkeeping

The double-entry bookkeeping is a method that allows the representation of
the information required by the external accounting. The method requires
that per each business transaction at least two accounting records are made,
a debit entry to one account, and a corresponding credit entry to another
account. As a result, the sum of credits across all accounts must always be
equal to the sum of debits at all times. The accounting record contains the
information regarding the accounts that have been affected by the business
transaction as well as the individual amounts that have been booked to each
of these accounts.

Additionally, each business transaction must also be listed twice, once in
the journal, which is chronologically sorted, and once in the general ledger,
which is systematically organized into accounts. A business transaction, in
this context, is considered to be any transaction that changes the structure
and value of assets, liabilities or owner’s equity.

15

1 Introduction

Also, the double-entry bookkeeping allows for the profit to be calculated in
two ways, either by using the profit and loss statement, or by calculating
the equity difference between the closing balance and the opening balance
and adding the private withdrawals while deducting the deposits. The
profit calculation period is the fiscal year, which usually corresponds to the
calendar year (i.e. 12 months).

One of the central concepts of the double-entry bookkeeping is the account.
The account can be considered to be a two sided calculation field. This
account form is called the T-account, and is used for educational purposes
only. The amounts that are to be added are recorded on one side, while the
amounts that are to be subtracted are recorded on the other. Hence, the left
side is the debit side, and the right side is the credit side (Figure 1.4). The
difference between the sum of the debit amounts and the sum of the credit
amounts is called the balance. The credit balance is placed on the debit side,
while the debit balance is placed on the credit side.

Figure 1.4: Basic account structure

The double-entry bookkeeping differentiates between two types of accounts:

16

1.4 Bookkeeping

the balance sheet accounts, and the profit and loss accounts. The balance
sheet accounts are accounts that are derived from the individual positions
in the balance sheet. The profit and loss accounts, on the other side, are
used to represent all the different factors that have influence on the owner’s
equity and are therefore indirectly derived from the owner’s equity position
in the balance sheet (Bauer, 2017).

If the balance sheet account is derived from the assets, then the opening
assets and the assets increases are to be recorded to the debit side of the
account, while the assets decreases and the final assets are to be recorded to
the credit side. If the account is derived from the liabilities then the records
should be made exactly the other way around (Figure 1.5).

Figure 1.5: Basic structure of the balance sheet accounts

The profit and loss accounts are also divided into two groups: the expense
accounts and the revenue accounts. The expenses are recorded to the debit
side of an expense account, while the revenues are recorded to the credit
side of a revenue account (Figure 1.6).

17

1 Introduction

Figure 1.6: Basic structure of the profit and loss accounts

In order to unify and simplify the bookkeeping process, the Austrian unified
account system (EKR) provides a proposition about how accounts can be
uniformly designated and organized, hence, the EKR is a basic proposition
on how the company’s chart of accounts might look like. Basically, according
to EKR, the accounts are divided into 10 account classes ranging from 0 to
9, and each class is further divided into 10 account groups ranging from 00

to 99 (Figure 1.7).

18

1.4 Bookkeeping

Figure 1.7: General outline of the Austrian unified account system (EKR)

Generally, the process of Double-entry bookkeeping can be divided into five
steps (Bauer, 2017):

1. Creation of an inventory and the opening balance sheet - The inven-
tory contains all assets and debts, and is used to calculate the owner’s
equity by deducting the debts from the assets. It also forms the ba-
sis for the opening balance sheet as well as the opening accounting
records. The opening balance sheet contains the assets, liabilities and
owner’s equity that are present in the beginning of the accounting
period.

2. Creation of the opening accounting records - In order to be able
to record the occurring business transactions within the accounting
period, the positions in the opening balance sheet have to be divided
into individual balance sheet accounts. If the balance sheet contains
assets or liabilities at the beginning of the accounting period, than the
corresponding opening account records have to be created.

19

1 Introduction

3. Creation of the accounting records for the occurring business trans-
actions - During the accounting period, all business transactions have
to be recorded. The Double-entry bookkeeping requires that at least
two accounting records are made per business transaction, a debit
one and a credit one. One such business transaction can affect either
balance sheet accounts only (i.e. owner’s equity is not affected), or one
balance sheet account and one profit and loss account (i.e. the profit
and loss statement is affected, and by that also the owner’s equity).

4. Creation of the final accounting records - At the end of the account-
ing period all balance sheet accounts have to be closed off to the closing
balance account. These records form the basis for the opening balance
sheet in the next accounting period. The profit and loss accounts, on
the other hand, are closed off to the special profit and loss account
(P&L account). The balance of this P&L account is then transferred to
the owner’s equity account and then closed off to the closing balance
account.

5. Creation of the annual financial statement - Creation of the annual
financial statement containing the balance sheet and the profit and
loss statement as required in the section 193 UGB.

1.4.2 Legal Framework

Generally, there are two major legal frameworks that regulate the obligatory
elements of external accounting, one regarding the commercial regulations,
and other regarding the tax regulations (Bauer, 2017).

The commercial regulations in Austria are primarily defined in the Austrian
Commercial Code (UGB). According to the section 189 of the UGB all of the
corporations and companies with an annual revenue higher than 700.000,-
Euro are required to keep records.

The tax regulations concerning the external accounting, can be found pri-
marily in the Austrian Federal Fiscal Code (BAO), the Austrian Income Tax
Act (EStG) and the Austrian Turnover Tax Act (UStG).

One of the most important elements of record keeping is the receipt. The
receipt is a business document that forms the foundation for an accounting

20

1.5 Business Requirements and Integration of Cloud Services

record, so in accordance with the basic accounting principle there should be
no records made without the existence of the corresponding receipts.

The receipts can be divided into two categories: internal- and external
receipts. The internal receipts originate from within the company (e.g.
inventory records), while the external receipts originate from the external
parties (e.g. invoices, bank statement etc.).

Due to the fact that the receipts substantiate every business transaction
within the company, they need to be both well documented and well kept.
The retention period for receipts in Austria, according to section 132 BAO,
is 7 years.

1.5 Business Requirements and Integration of
Cloud Services

In this chapter the business requirements will be analyzed, and elaborated
which cloud service functionality can be used in order to meet them. The
concrete implementation of the functionality and the user interface will be
discussed in the chapter 3.

1.5.1 Creation of shared Document Repositories

For the purpose of storing documents, the client needs to be able to create
one or more document repositories. A repository is, in this case, a web
application’s internal representation of the cloud storage.

In order to define a repository within the web application, the client will
need to perform three steps:

1. Select a cloud storage service (i.e. Dropbox, Google Drive or OneDrive)
2. Enter a name for the new repository
3. Authenticate the web application

21

1 Introduction

The authentication will be conducted by using the OAuth 2.0 authentication
scheme, being that all three cloud services considered in this thesis support
it.

Once the application is authenticated, the user will see a new repository
tile in the overview page. By selecting a repository in the overview, the web
application will establish a connection to the underlying cloud service, and
the user will be able to access the documents from within the repository
page. The design of the overview- and the repository page will be discussed
in the chapter 3.

Furthermore, the client will have to have a possibility to give clearing to
other users with appropriate roles (e.g. the accountant), in order for them to
be able to access the repository from within the web application.

1.5.2 Uploading Documents

As already mentioned earlier, a lot of commercial documents (e.g. invoices)
are nowadays still issued in a paper form only. In order for the accountant
to be able to process these documents and make appropriate records, the
client needs to make them available first. One possibility would be to
scan the documents and save them either in a Portable Document Format
(PDF), or in one of the popular image formats such as JPEG. The advantage
of this method is that the documents that are digitalized in this manner
still maintain their validity, but are much easier to transfer and store for
archiving purposes. The documents that are already issued in one of the
supported digital formats can be uploaded directly, and without any need
for a transformation.

The upload functionality for the client is given both through the web ap-
plication, as well as through the regular upload channels supported by the
cloud storage service. The accountant, on the other hand, can upload the
documents solely through the web application, which previously needs to
be authorized to access the client’s cloud service account as described in
chapter 1.5.1. Although the upload functionality is given trough the regular
cloud storage upload channels such as web interface or a local file system
synchronization, this way of uploading document raises one critical issue. In

22

1.5 Business Requirements and Integration of Cloud Services

order to be able to keep track of a document even if it is moved or renamed,
the web application will have to assign a unique identifier to the containing
file. One possibility would be to generate a unique id and rename the file
during the upload. Additionally the unique id can be associated with a
calculated checksum of the file and its other properties such as the time of
last modification. By using this approach the files would remain uniquely
identifiable within the application even if they are moved to a different
cloud storage.

For browsing and uploading purposes, the web application’s user interface
will provide a simple file manager that will represent the file system struc-
ture of the cloud storage repository. By using the file manager, the user will
be able to navigate the file system, create folders if needed, and upload
documents. The extent of the functionality that is provided to each user is
defined through their role within the system. There are at least two roles
that will initially need to be defined: the client role and the accountant role,
but further roles can be added later if the need for other combination of
granted privileges emerges. Roles and privileges will be discussed in the
chapters 3.2.1 and 3.2.2, respectively.

1.5.3 Viewing and Downloading Documents

Once the documents have been uploaded to the repository, they are automat-
ically visible both to the accountant and the client. In order for accountant
to record the transaction, the commercial document needs to be clearly read-
able. With the digitally generated documents (e.g. invoices) this should not
be a problem, but if the uploaded document is a scan of a paper document
then it needs to be ensured that the document is readable, for this is also a
prerequisite for its validity.

The uploaded documents will be made available for viewing within the web
application through the cloud service’s download functionality. The user
can navigate to a wanted document by using the file manager, and once the
document is selected, it will automatically be downloaded and displayed.
For this purpose a PDF viewer will be integrated into the user interface,
so an external application will not be needed. This way the user can have

23

1 Introduction

the file manager, the current document, and the transaction record data all
displayed within a single view. The privilege of viewing the documents will
be granted to both client as well as accountant role.

1.5.4 Collaborative Editing of Accounting Data

Accounting data defines which information about the business transaction
are to be recorded. These can, for instance, include a unique reference
number, issue date, affected account, amount, and other. In order for the
web application to be able to adapt to client’s needs, the accountant will
have a possibility to define the extent of the information that can be recorded
on a per client basis. This means that the application needs to provide a user
interface that allows definition and creation of data fields that are stored
in the database. In addition to this, a possibility to create views will be
provided in order to be able to sort the data fields according to a preferred
workflow, or not display certain fields at all if needed. For parameterization
purposes, the accountant will be able to create parameter tables that are
displayed as dropdown elements in the user interface. This will prevent
the user from entering a possibly invalid information into accounting data
field.

When the document is selected by the accountant for processing, the ac-
counting data fields will appear in the user interface beside the document.
The privilege to edit the data can be defined on a per role basis, and will be
granted to the accountant role automatically. If there are more accounting
clerks responsible for a single client, they must be individually cleared to
access the repository as described in the chapter 1.5.1.

Additionally a simple commenting system will be implemented so that the
accountant- client communication can occur on a per document basis. The
commenting system can, for instance, be used by customer in order to leave
a comment for the accountant, or by the accountant to consult the client if
questions relating to document arise.

24

2 Architecture and Functionality

In this chapter the application architecture and the web services provided
through the Remote Procedure Call (RPC) interface of the web application
will be introduced and discussed.

The web application developed within the scope of this thesis is imple-
mented using the multi-tier architecture. It is comprised of three tiers or
layers: the presentation layer, the business logic layer and the data layer.

2.1 Presentation Layer

The presentation layer provides the interface for the user trough a web
browser. The user interface is implemented using the dynamic HTML pages
that use AJAX requests in order to fetch the data from the server (i.e.
Business Logic Layer). The asynchronous requests use the JSON data format
in order to communicate with the web application’s JSON-RPC interface.

Each request is implemented by using the jQuery’s ajax object that pro-
vides the necessary properties, functions and methods needed for the asyn-
chronous communication. jQuery is a cross-browser JavaScript library that
encapsulates functionality such as DOM traversal and manipulation, and
provides it’s own API.

For instance, in order to allow the user to browse trough the repository
content, the application first attaches an event handler to the DOM element
that is representing the repository directory in the user interface. As shown
in the listing 2.1, the application attaches a function to handle a click event
on the table row HTML element.

25

2 Architecture and Functionality

Listing 2.1: Attaching an event handler to a DOM element

1 $(document).on(’click’, LNAPP.gui.utils.id(LNAPP.ELEM_REPOSITORY_CONTENT_TABLE) + ’ tr’,

function () {

2 LNAPP.gui.repository.selectItem($(this).closest(’tr’));

3 if (LNAPP.gui.repository.currentItemIsFile ()) {

4 LNAPP.xhr.download(LNAPP.gui.repository.getCurrentItemPath (), LNAPP.gui.repository.

getCurrentItemName ());

5 } else {

6 LNAPP.xhr.listDirectory(LNAPP.gui.repository.getCurrentItemPath ());

7 }

8 });

When the click event occurs, the function checks whether the HTML table
row represents a file or a directory, and if the user performed a mouse
click on a directory, the function LNAPP.xhr.listDirectory will be called
in order to present the contents of the chosen cloud storage directory to the
user (Listing 2.2). The function LNAPP.xhr.listDirectory first generates a
JSON-RPC request and then sends it to the server.

Listing 2.2: Listing for the function LNAPP.xhr.listDirectory

1 LNAPP.xhr.listDirectory = function (path) {

2 ’use strict ’;

3 if (null === path) {

4 return;

5 }

6

7 var id = LNAPP.xhr.generateRPCRequestId (),

8 data = JSON.stringify ({

9 ’jsonrpc ’: LNAPP.JSON_RPC_VERSION ,

10 ’method ’: LNAPP.RPC_METHOD_REPOSITORY_LIST_DIRECTORY ,

11 ’id’: id,

12 ’params ’: {’path’ : String(path)}

13 });

14

15 $.ajax({

16 type: LNAPP.REQUEST_METHOD_POST ,

17 url: LNAPP.RPC_SERVER ,

18 data: data ,

19 success: function (data) {

20 try {

21 var response = JSON.parse(data),

22 message;

23 if (!LNAPP.xhr.validateRPCRequestId(id , response)) {

24 return;

25 }

26

27 message = LNAPP.xhr.checkRPCResponse(response);

28 if (null !== message) {

29 if (LNAPP.RC_INVALID_SESSION === message.code) {

30 window.location.href = LNAPP.PAGE_INDEX;

31 return;

32 }

33

34 if (LNAPP.RC_INVALID_ACCESS_TOKEN === message.code) {

35 window.location.href = LNAPP.PAGE_OVERVIEW + ’?token=false’;

36 return;

37 }

38

39 LNAPP.gui.actions.displayMessage(message.text);

40 return;

26

2.1 Presentation Layer

41 }

42

43 if (response.hasOwnProperty(’result ’)) {

44 if (response.result.hasOwnProperty(’message ’) && ’AI1010 ’ === response.

result.code) {

45 LNAPP.gui.repository.setCurrentDirectory(response.result.path);

46

47 // Clear the workspace

48 LNAPP.gui.actions.clearDocument ();

49 LNAPP.gui.actions.clearAccountingData ();

50 LNAPP.gui.actions.clearAccountingRecords ();

51 LNAPP.gui.actions.clearComments ();

52

53 // Reset document ID

54 $(’#document_id ’).val(null);

55

56 // Disable toolbar buttons

57 $(’.toolbar -button ’).css(’pointer -events ’, ’none’);

58

59 // Set the breadcrumbs and display the directory listing

60 $(’#application -header -title ’).html(response.result.breadcrumbs);

61 $(’#repository -content ’).html(LNAPP.gui.actions.generateDirectoryListing

(JSON.parse(response.result.directory_listing)));

62 } else {

63 LNAPP.gui.actions.displayMessage(response.result.message);

64 }

65 }

66 } catch (exception) {

67 LNAPP.gui.utils.logError(’app_ui.js [LNAPP.xhr.listDirectory]: ’ + exception.

message);

68 }

69 },

70 beforeSend: function () {

71 LNAPP.gui.overlay.displayOverlay(LNAPP.ELEM_APP_CONTENT_OVERLAY);

72 LNAPP.gui.actions.displayBusy(LNAPP.ELEM_APP_BUSY);

73 },

74 complete: function () {

75 LNAPP.gui.overlay.hideOverlay(LNAPP.ELEM_APP_CONTENT_OVERLAY);

76 LNAPP.gui.actions.hideBusy(LNAPP.ELEM_APP_BUSY);

77 },

78 error: function () {

79 LNAPP.gui.actions.handleXHRError ();

80 }

81 });

82 };

Once the server has processed the request, it sends a response back to the
client where the raw JSON data is properly formatted so that it can be in-
serted into the HTML page. In case of the directory listing, this occurs in the
LNAPP.gui.actions.generateDirectoryListing function (Listing 2.3).

Listing 2.3: Listing for the function LNAPP.gui.actions.generateDirectoryListing

1 LNAPP.gui.actions.generateDirectoryListing = function (items) {

2 ’use strict ’;

3 var html = ’’,

4 index ,

5 id,

6 actions;

7

8 html += ’<div class ="repository -dashboard -title" style ="text -align: left; width: 100%;

margin -left: 0px; margin -right: 0px;">REPOSITORY </div >’;

9 html += ’<table id=" repository -content -table">’;

10 for (index = 0; index < items.length; index += 1) {

27

2 Architecture and Functionality

11 id = ’’;

12 actions = ’’;

13 if (’..’ !== items[index].name) {

14 id = ’ id="’ + items[index].path + ’"’;

15 actions = ’<button class="button -action" title=" Delete">Delete </button >’;

16 }

17

18 if (items[index]. is_dir) {

19 html += ’<tr id="D_’ + items[index].path + ’">’;

20 html += ’<td class ="selected -item -indicator"></td>’;

21 html += ’<td class =" repository -item">’;

22 if (’..’ === items[index].name) {

23 html += ’<div class ="item -icon icon -parent"></div >’;

24 } else {

25 html += ’<div class ="item -icon icon -folder"></div >’;

26 }

27 html += ’<div class ="item -info">’;

28 html += ’<div class ="item -top">’ + items[index].name + ’</div >’;

29 html += ’<div class ="item -bottom">’;

30 html += ’<div class ="item -status">’ + items[index].size + ’</div >’;

31 html += ’</div >’;

32 html += ’</div >’;

33 html += ’</td>’;

34 html += ’</tr>’;

35 } else {

36 html += ’<tr id="F_’ + items[index].path + ’">’;

37 html += ’<td class ="selected -item -indicator"></td>’;

38 html += ’<td class =" repository -item">’;

39 html += ’<div class ="item -icon icon -pdf"></div >’;

40 html += ’<div class ="item -info">’;

41 html += ’<div class ="item -top">’ + items[index].name + ’</div >’;

42 html += ’<div class ="item -bottom">’;

43 html += ’<div class ="item -status">’ + items[index]. modified + ’</div >’;

44 html += ’</div >’;

45 html += ’</div >’;

46 html += ’</td>’;

47 html += ’</tr>’;

48 }

49 }

50 html += ’</table >’;

51 return html;

52 };

The function LNAPP.gui.actions.generateDirectoryListing takes the JSON
formatted directory listing data and transforms it in to a valid HTML table
element that is then inserted into the HTML page in place of the previous
directory listing.

2.2 Business Logic Layer

The web application’s functionality and business logic is provided to client
through its JSON-RPC interface. The interface provides web services that
offer both technical functions including, for instance, authentication and
authorization, as well as business logic oriented functionality including
repository-, document- and accounting data management.

28

2.2 Business Logic Layer

JSON-RPC is a simple stateless remote procedure call protocol that uses the
JSON format for the data exchange between the client and the JSON-RPC
server. The web application developed within the scope of this thesis features
a JSON-RPC server that is based on the JSON-RPC 2.0 Specification.

The JSON-RPC request object contains following members (JSON-RPC
Working Group, 2013):

• jsonrpc - JSON-RPC protocol version
• id - unique identifier used by the client to establish the correlation

between the sent request and received response
• method - name of the remote method that is to be invoked
• params - remote method parameter values that are to be used for the

remote method invocation

After the remote method has been invoked, the server responds with a
response object that can contain following members:

• jsonrpc - JSON-RPC protocol version
• id - unique identifier used by the client in the request
• result - this member contains the result of the method invocation, and

is only present if the remote method invocation was successful
• error - this member contains the information about the error that

occurred during the invocation, and is present only if the remote
method invocation was not successful

The web application’s JSON-RPC interface contains web services that can
be divided into three groups: user management services, repository man-
agement services, and the utility services.

2.2.1 User Management

The user management web services provide the functionality that is needed
to create an application user, and manage the user’s authentication data
(table 2.1).

29

2 Architecture and Functionality

Web Service Parameters Result Description

AUTH::SIGN IN username
password

code
message

Sign in

AUTH::SIGN OUT - code
message

Sign out

AUTH::CREATE ACCOUNT email
first name
last name
password

code
message

Create a user account

AUTH::RESET PASSWORD email code
message

Reset the user’s password

AUTH::CHANGE PASSWORD password
token

code
message

Change the user’s password

Table 2.1: User management services

The service AUTH::SIGN IN is used to sign in an already registered user,
while the AUTH::SIGN OUT service is used to sign the user out of the
application and close the session.

The AUTH::CREATE ACCOUNT service provides the possibility to create
the user’s account. It takes the user’s valid email address, their first name,
their last name, and a password, and returns a security token needed for
the account activation and a status message.

When the users forget their password, or merely want to change it, they
can do so by using the web services AUTH::RESET PASSWORD and
AUTH::CHANGE PASSWORD. The service AUTH::RESET PASSWORD
needs to be called first, because it generates a security token needed to
perform the actual password change. The token is sent to the user’s email
address and can then be used alongside the new password as an input
parameter for the AUTH::CHANGE PASSWORD service.

The usage of the services and their integration in the web application is
discussed in more detail in the chapter 3.2.

2.2.2 Repository Management

The repository management web services can be divided into three groups:
cloud repository management services, file management services and the
accounting data management services.

30

2.2 Business Logic Layer

The cloud repository management services are used to create a cloud
repository and manage it’s settings and properties.

Web Service Parameters Result Description

REPOSITORY::AUTHORIZE cloud service id
repository name

cloud service auth url
code
message

Starts the OAuth2 process

REPOSITORY::UPDATE data layout id code
message

Update repository properties

REPOSITORY::CONNECT authorization id code
message

Establish a connection to a
cloud service

REPOSITORY::DISCONNECT - code
message

Close the connection to the cur-
rently connected cloud service

REPOSITORY::AUTHORIZE USER username
role

repository users
code
message

Authorize the application user
for the currently connected
repository

REPOSITORY::REVOKE USER user id repository users
code
message

Revoke the user’s authoriza-
tion for the currently connected
repository

REPOSITORY::SET PRIVILEGES privileges code
message

Set the repository user privi-
leges

REPOSITORY::CREATE DATA FIELD data field label
data field type

data fields
code
message

Create an accounting data field

REPOSITORY::CREATE DATA LAYOUT data layout name
data layout

code
message

Create an accounting data lay-
out

REPOSITORY::CREATE PARAMETER TABLE parameter table code
message

Create a parameter table

REPOSITORY::POST COMMENT document id
comment

comments
code
message

Post a comment regarding a cer-
tain document

REPOSITORY::GET COMMENTS document id comments
code
message

Get all comments regarding a
certain document

Table 2.2: Cloud repository management services

The first step towards creating a document repository is authorizing the
web application for use with the chosen cloud storage service. This is done
by using the REPOSITORY::AUTHORIZE service. This service generates
and returns the authorization URI, where the user can sing in to the chosen
cloud storage service using their credentials and grant the permissions
needed to access and use the storage. The authorization process uses the
OAuth 2.0 flow, being that all three cloud storage services considered in this
thesis support this authorization protocol.

The OAuth 2.0 is an industry-standard authorization protocol that provides
authorization flows for multiple different devices and applications (Aaron
Parecki, 2019). In order for web application to obtain the token needed for
service access, it uses the OAuth 2.0 authorization code grant method. With
this method, the client first obtains the authorization code that is afterwards

31

2 Architecture and Functionality

exchanged for the access token. The figure 2.1 shows the OAuth 2.0 process
flow when using the authorization code grant.

Figure 2.1: OAuth 2.0 authorization process flow

As shown in the figure 2.1, the web application first needs to generate the
authorization URI and redirect the user to it. In the second step the user
signs in to the cloud storage service and grants the permissions. This way
the user credentials are not exposed to the web application, which is an
important security feature. After the permissions have been granted, the
cloud storage service redirects the user back to the web application by using
the redirect URI, which has been previously communicated. In the final
stage, the web application needs to extract the authorization code from
the redirect URI and use it to perform a request for an access token. This
request is performed in the background, and without the interaction from
the user. Once the response from the cloud storage service comes in, the
reusable access token is extracted and internally saved for future use.

Once the authorization has been successfully conducted, the document
repository will be ready for use, and the user that has created the repos-
itory will automatically assume the role of the repository owner. This
will allow them to add or remove further users to or from the reposi-
tory by using the services REPOSITORY::AUTHORIZE USER and REPOS-
ITORY::REVOKE USER. When authorizing a new repository user, the pa-
rameter role is used to assign the user an appropriate role. This will affect

32

2.2 Business Logic Layer

the privileges that the new user will have within the repository context. The
newly created repository will have the default set of privileges assigned to
it, but if the repository owner wants to define a custom set of privileges
they can do so by using the REPOSITORY::SET PRIVILEGES service. Roles
and privileges are discussed in more detail in the chapter 3.2.

In order to be able to work with the repository, the user needs to connect
to it first. This is done by using the REPOSITORY::CONNECT service. This
service internally sets up the web application to be able to work with the
repository. This includes reading the cloud storage service parameters and
saving them into session variables, reading and initializing the appropri-
ate repository permissions etc. When the user is done working with the
repository, or wants to switch to a different repository, the currently active
repository must be disconnected by using the REPOSITORY::DISCONNECT
service.

The service REPOSITORY::CREATE DATA FIELD provides the possibil-
ity for user to define their own accounting data fields, while the service
REPOSITORY::CREATE DATA LAYOUT enables the user to create a custom
accounting data field layout that suits their workflow best. Within a layout,
the user can define the order in which the accounting data fields appear in
the user interface, and which fields are visible and which are hidden. Each
repository is created with only two default accounting data fields, Docu-
ment ID and Text, but these two services allow the web application to be
expanded and modified so that it can accommodate further accounting data
that some users may need. Additionally the service REPOSITORY::UPDATE
can be used to set the default layout for the repository.

In order to simplify the workflow, the web application provides the possibil-
ity to save predefined parameter tables in form of key-value pairs that are
used for the accounting data input in the user interface. These key-value
pairs are displayed in the user interface as HTML select elements. The
parameter tables must be defined in JSON format and can then be saved by
using the REPOSITORY::CREATE PARAMETER TABLE service.

The web application’s simple commenting system features two web services:
REPOSITORY::POST COMMENT and REPOSITORY::GET COMMENTS.
Former is used to post a comment regarding a certain document, while the
latter can be used to fetch all comments regarding a document.

33

2 Architecture and Functionality

Web Service Parameters Result Description

REPOSITORY::CREATE DIRECTORY path
directory

code
message

Create a directory in the cloud
storage

REPOSITORY::LIST DIRECTORY path directory listing
breadcrumbs
path
code
message

List the contents of a cloud stor-
age directory

REPOSITORY::UPLOAD path
upload file

code
message

Upload a file to the cloud stor-
age

REPOSITORY::DOWNLOAD path
file name

document id
download url
code
message

Download a file from the cloud
storage

REPOSITORY::DELETE FILE path code
message

Delete a file or directory from
the cloud storage

Table 2.3: File management services

The file management services listed in the table 2.3 are used to interact with
the cloud storage service. The web service REPOSITORY::LIST DIRECTORY
allows the user to navigate trough the directory hierarchy of the cloud
storage. This service returns the contents of a chosen directory, but it also
provides the breadcrumbs that indicate where in the hierarchy is the current
directory located. With the service REPOSITORY::CREATE DIRECTORY,
the user can create a directory in a current directory hierarchy location.

Files can be uploaded to the cloud storage by using the web service REPOS-
ITORY::UPLOAD. Within the web application’s context, the files are always
uploaded into the directory that was previously set by using the REPOSI-
TORY::LIST DIRECTORY service. In order to display the document to the
user within the web application’s user interface, the file needs to be down-
loaded first. This is achieved by calling the REPOSITORY::DOWNLOAD
service, and using the returned download URL to download the docu-
ment.

Additionally, files and directories can be deleted from the cloud storage by
using the REPOSITORY::DELETE FILE web service.

34

2.2 Business Logic Layer

Web Service Parameters Result Description

REPOSITORY::SET ACCOUNTING DATA document id
[accounting data fields]

code
message

Set the accounting data
related to a certain docu-
ment

REPOSITORY::GET ACCOUNTING DATA document id accounting data id
[accounting data fields]
code
message

Get the accounting data
related to a certain docu-
ment

REPOSITORY::GET ACCOUNTING DATA REVISIONS accounting data id accounting data revisions
code
message

Get the accounting data
revisions

REPOSITORY::CREATE ACCOUNTING RECORD document id
record date
accounting records

code
message

Create accounting
records related to a
certain document

REPOSITORY::GET ACCOUNTING RECORDS document id accounting records
code
message

Get accounting records
related to a certain doc-
ument

Table 2.4: Accounting data management services

The accounting data management services provide the functionality needed
to create and edit the accounting data and accounting records (table 2.4).
As mentioned earlier, there are only two default accounting data fields,
Document ID and Text, but with the use of the provided web services,
additional accounting data fields can be created. The web service REPOSI-
TORY::SET ACCOUNTING DATA is used for saving the accounting data
related to a certain document. This service takes the document id, and the
accounting data as an input. The accounting data parameter can also include
the custom accounting data fields that were additionally created with the
REPOSITORY::CREATE DATA FIELD service. The accounting data can be
fetched with the web service REPOSITORY::GET ACCOUNTING DATA.
This service returns both the accounting data as well as the accounting data
id that is needed in order to fetch the accounting data revisions by using
the REPOSITORY::GET ACCOUNTING DATA REVISIONS web service.

The accounting records, on the other hand, can be created by using the
REPOSITORY::CREATE ACCOUNTING RECORD web service. The input
to this service must contain the document id, the record date, and one or
more accounting records. To fetch the accounting records related to a certain
document, the web service REPOSITORY::GET ACCOUNTING RECORDS
can be used. This web service takes only a document id as an input, and
returns all accounting records related to this document.

35

2 Architecture and Functionality

2.2.3 Utility Services

The utility services are web services created to add further functionality
to the web application. They are partially intended to work only with the
web application that is developed within the scope of this thesis, for some
of them generate and return HTML code that is then dynamically inserted
into the HTML page.

Web Service Parameters Result Description

APP::CHANGE SETTINGS settings code
message

Change the application settings

APP::LOG ERROR message reference
code
message

Log a client-side error

APP::UI USER LOG user id html
code
message

Get the HTML formatted user
log

APP::UI USER REQUESTS user id html
code
message

Get the HTML formatted user
requests log

APP::UI APPLICATION LOG log file html
code
message

Get the HTML formatted appli-
cation log

APP::UI DIALOG dialog id
step

dialog id
step
html
code
message

Get the HTML formatted dialog

APP::UI REPOSITORY DASHBOARD repository id
dialog id

html
dialog
code
message

Get the HTML formatted repos-
itory dashboard

Table 2.5: Application utility services

The web services APP::LOG ERROR and APP::UI APPLICATION LOG are
important for the application maintenance. The former is used to log an
error that occurred on the client-side, while the latter can be used to list all
the errors that have been logged, both client- and server-side.

The utility services APP::UI USER LOG and APP::UI USER REQUESTS are
created for application’s user management. The service APP::UI USER LOG
returns the list of the web application sign in attempts made by the user.
The list contains the information regarding the time of the attempts and
if they were successful or not. The web service APP::UI USER REQUESTS
returns the list of all of the user requests that were made. More informa-
tion regarding the user requests and how they are used within the web
application is available in the chapter 3.2.

36

2.3 Data Layer

The services APP::UI DIALOG and APP::UI REPOSITORY DASHBOARD
are both used to generate different user interface dialog elements. The
web service APP::UI DIALOG is used to create simple dialogs such as the
one needed for file upload. It generates the dialog formatted in HTML
and sends it to the client where the dialog is displayed. The web service
APP::UI REPOSITORY DASHBOARD generates the more complex repos-
itory dashboard element for the user interface. The repository dashboard
contains all the functions needed for repository management such as con-
necting to the repository or authorizing a new user. The repository manage-
ment and usage of the repository dashboard are discussed in more detail in
the chapter 3.3.

The web service APP::CHANGE SETTINGS is used to set the web applica-
tion’s user specific settings.

2.3 Data Layer

Due to the fact that an accountant or a bookkeeping service can have more
than one client, the web application needs to feature an architecture that
provides data storage for multiple tenants. This means that the data model
must provide means to ensure that the data belonging to multiple different
clients is stored properly in regard to efficiency and security, so one of
the biggest challenges in implementation of such a model will be the data
isolation.

There are generally three approaches to implementing a data architecture for
an SaaS delivered applications. The data can be managed by using separate
databases for each tenant, by using a single database with separate schemas
for each tenant, and lastly by using a single database and a schema that is
shared by all tenants (Chong, Carraro, and Wolter, 2017). The application
implemented within the scope of this thesis will use the second approach
which houses all of the tenants in a single database with separate schemas,
but due to the fact that MySQL physically does not differentiates between a
schema and a database (Oracle Corporation and/or its affiliates, 2017c), the
data architecture will provide each tenant with a set of separate tables that
can be uniquely identified by the repository ID to store the data that should

37

2 Architecture and Functionality

be isolated (e.g. accounting data), while using shared tables for data that
needs to be available outside the tenant’s context, such as the user data. The
data structures and their relationships are described and further discussed
in the chapter 3.1.1.

38

3 Implementation

3.1 Database

The application will store the data by using MySQL, which is a dual-licensed
relational database management system. The software can be used as open-
source under the terms of GNU General Public License, or by purchasing a
commercial license (Oracle Corporation and/or its affiliates, 2017a).

3.1.1 Data Model

The tables that store the client’s isolated data, such as document- or account-
ing data, will be created using the stored procedures as soon as the client
creates a repository by authenticating the application with the chosen cloud
service. Additionally, the privileges for these tables will be assigned only
to a new dedicated database user. Shared tables, which house the session
data, user data, repository data, authorization data, user log data, user
requests, user settings and the repository privileges will be created during
the installation process.

Here are the listings for the database tables, procedures and functions
alongside with the description of the data structures and relationships:

Table Sessions

The sessions table (Listing 3.1) stores the user session information which
are used across multiple subsequent requests within the web application.
The column session data will hold the encrypted session data while the
key that is used to encrypt it will be stored in the column session key.

39

3 Implementation

Information about the exact time when a session was last accessed will be
stored in the last accessed column.

Listing 3.1: Listing for the database table sessions

1 CREATE TABLE ‘sessions ‘ (

2 ‘session_id ‘ VARCHAR (128) NOT NULL ,

3 ‘session_key ‘ VARCHAR (128) DEFAULT NULL ,

4 ‘session_data ‘ TEXT DEFAULT NULL ,

5 ‘last_accessed ‘ INT UNSIGNED DEFAULT NULL ,

6 PRIMARY KEY (‘session_id ‘)

7) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Table Users

The table users (Listing 3.2) stores all of the user related data. Each user is
internally identified by a unique user id which is automatically assigned by
using the AUTO INCREMENT attribute. The column user status will be used
to store the current status of the user’s account. A status can be, for instance,
used to lock the user and temporarily deny the access to the application as a
security measure if a wrong password is entered multiple times in a row.

The column username, which is indexed, will store a user’s valid email
address which needs to be provided during the user account creation. This
measure is, apart from it’s security purpose, also used to ensure that the
username is unique within the system. The encrypted user password will
be stored in the password column.

The columns first name and last name will store the user’s real name. By
storing the user’s real name it will be easier, for instance, to track changes
and identify the accounting clerk who entered the accounting data. The
column registered will hold the date and time of the user’s registration.

Listing 3.2: Listing for the database table users

1 CREATE TABLE ‘users ‘ (

2 ‘user_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘user_status ‘ TINYINT UNSIGNED NOT NULL DEFAULT 0,

4 ‘username ‘ VARCHAR (254) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

5 ‘password ‘ VARCHAR (128) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

6 ‘first_name ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

7 ‘last_name ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

8 ‘registered ‘ DATETIME NOT NULL ,

9 PRIMARY KEY (‘user_id ‘),

10 UNIQUE KEY ‘idx_username ‘ (‘username ‘)

11) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

40

3.1 Database

Table Repositories

All of the information related to the document repositories will be stored
in the repositories table (Listing 3.3). Each repository will have a status,
which can be used to mark the repository as deleted when needed, while
the entry remains in the table for revision purposes.

The columns repository name, service id and service token are all re-
lated to a cloud service which is storing the documents, so they hold the
repository name which is provided by the user to identify a certain repos-
itory, a service id that is internally used to identify a cloud service (i.e.
Dropbox, Google Drive or OneDrive), and the token that is received after
completing the authorization process.

The columns database user and database password store the dedicated
database user information that is internally needed to access the set of iso-
lated tables that are created for each of the client’s repositories as discussed
in the beginning of this chapter.

Additionally, the default accounting data layout will be stored in the column
layout id.

Listing 3.3: Listing for the database table repositories

1 CREATE TABLE ‘repositories ‘ (

2 ‘repository_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘repository_status ‘ TINYINT UNSIGNED NOT NULL DEFAULT 1,

4 ‘repository_name ‘ VARCHAR (50) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

5 ‘layout_id ‘ INT UNSIGNED NOT NULL DEFAULT 1,

6 ‘service_id ‘ TINYINT UNSIGNED NOT NULL ,

7 ‘service_token ‘ VARCHAR (2048) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

8 ‘database_user ‘ VARCHAR (16) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

9 ‘database_password ‘ VARCHAR (128) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

10 PRIMARY KEY (‘repository_id ‘)

11) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Table Authorizations

The authorizations table (Listing 3.4) stores all of the user’s authoriza-
tions that are needed to access the repositories, and therefore connects the
users table with the repositories table through the two foreign keys - the
user id and the repository id. Additionally there is a deletion restriction
enforced upon the two parent tables users and repositories which pre-
vents a row from being deleted in one of these tables as long as there is an

41

3 Implementation

authorization present for the user or the repository in question. The column
user role stores the information regarding the role that a user has within
the authorized repository (e.g. client or accountant).

Listing 3.4: Listing for the database table authorizations

1 CREATE TABLE ‘authorizations ‘ (

2 ‘authorization_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

4 ‘user_id ‘ INT UNSIGNED NOT NULL ,

5 ‘user_role ‘ TINYINT UNSIGNED NOT NULL ,

6 PRIMARY KEY (‘authorization_id ‘),

7 FOREIGN KEY (‘user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT ,

8 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

9 UNIQUE KEY ‘idx_user_repository ‘ (‘user_id ‘,‘repository_id ‘)

10) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Table User Log

The user log table (Listing 3.5) allows the system to track the user’s login
attempts for security purposes. The table stores the exact time of the login
attempt in the attempt time column, an information indicating if the login
was successful in the success column, and the user’s id in the user id

column. The foreign key user id also enforces the deletion restriction upon
the users table as long as there are user log entries for a certain user present
in the database.

Listing 3.5: Listing for the database table user log

1 CREATE TABLE ‘user_log ‘ (

2 ‘user_log_id ‘ BIGINT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘user_id ‘ INT UNSIGNED NOT NULL ,

4 ‘attempt_time ‘ BIGINT UNSIGNED NOT NULL ,

5 ‘success ‘ TINYINT UNSIGNED NOT NULL ,

6 PRIMARY KEY (‘user_log_id ‘),

7 FOREIGN KEY (‘user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT

8) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Table User Requests

The user requests table (Listing 3.6) is used to keep track of the different
user requests such as an account activation, or a password reset request.
Each request is identified by a unique user request id, while the column
request type holds the information about the type of the request that was
posed by the user. Columns request time and activity time indicate the

42

3.1 Database

exact time of the request (e.g. when the user requested a password reset)
and the time the requested action was actually performed by the user (e.g.
the password has actually been reset by the user). The foreign key user id

references the the user that has posed the request.

The purpose and usage of the user requests table will be discussed in
more detail in the chapters 3.2.3 and 3.2.4.

Listing 3.6: Listing for the database table user requests

1 CREATE TABLE ‘user_requests ‘ (

2 ‘user_request_id ‘ BIGINT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘user_id ‘ INT UNSIGNED NOT NULL ,

4 ‘request_type ‘ TINYINT UNSIGNED NOT NULL ,

5 ‘request_time ‘ BIGINT UNSIGNED NOT NULL ,

6 ‘activity_time ‘ BIGINT UNSIGNED DEFAULT NULL ,

7 PRIMARY KEY (‘user_request_id ‘),

8 FOREIGN KEY (‘user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT

9) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Table Privileges

The privileges table (Listing 3.7) stores the custom repository privileges.
Each record is identified by a unique privilege id, while the columns
repository id and role refer to which repository and which role the privi-
leges apply to. The column privileges stores the actual privilege data.

The purpose and usage of the privileges table will be discussed in more
detail in the chapter 3.2.2.

Listing 3.7: Listing for the database table privileges

1 CREATE TABLE ‘privileges ‘ (

2 ‘privilege_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

4 ‘role ‘ TINYINT UNSIGNED NOT NULL ,

5 ‘privileges ‘ INT UNSIGNED NOT NULL ,

6 PRIMARY KEY (‘privilege_id ‘),

7 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

8 UNIQUE KEY ‘idx_repository_role ‘ (‘repository_id ‘,‘role ‘)

9) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Table Settings

The table settings stores the application’s user specific settings. The settings
are stored in the settings column as a key - value pairs in JSON format.

43

3 Implementation

Being that they are user-related, each settings record will have a reference
to a user (column user id). The settings will be discussed in more detail in
the chapter 3.5.

Listing 3.8: Listing for the database table settings

1 CREATE TABLE ‘settings ‘ (

2 ‘settings_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

3 ‘user_id ‘ INT UNSIGNED NOT NULL ,

4 ‘settings ‘ TEXT NOT NULL ,

5 PRIMARY KEY (‘settings_id ‘),

6 FOREIGN KEY (‘user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT ,

7 UNIQUE KEY ‘idx_user ‘ (‘user_id ‘)

8) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;

Stored Function sf table suffix

As already mentioned earlier, the client specific set of tables is created
by using the stored procedures. In order to be able to identify a set of
tables that belong to a certain client, the system will use the repository id
as a table name suffix. This suffix will be generated with a stored func-
tion sf table suffix (Listing 3.9) by left-padding the repository id with
zeros. A client specific table will therefore have a name in the format <TA-
BLE NAME> <SUFFIX>(e.g. documents 0000000001).

Listing 3.9: Listing for the stored function sf table suffix

1 CREATE FUNCTION sf_table_suffix (repository_id INT)

2 RETURNS CHAR (10) DETERMINISTIC

3 RETURN LPAD (repository_id , 10, ’0’);

Stored Procedure sp create table documents

The stored procedure sp create table documents (Listing 3.10) is used to
create the documents table. The documents table keeps record of every doc-
ument that is uploaded to the cloud storage repository, and is the first of
overall seven tables that are created for each repository. Each record in
the table has a unique document id as well as a reference to a repository
that it belongs to in the column repository id. The information concern-
ing the date and time of the upload, as well as a reference to the user
that has uploaded the document are kept in the columns created date,

44

3.1 Database

created time and created user id, respectively. The columns file name,
file last modification and md5 file are used to identify the uploaded
file. The columns file name and file last modification contain the name
of the uploaded file including the file extensions and the time of the last
modification, while the md5 file column stores the MD5 hash or a check-
sum of the file that can be used both to check if a duplicate of a document is
being uploaded or to identify a document if the file is renamed. The column
file size contains the size of the uploaded file in bytes.

Listing 3.10: Listing for the stored procedure sp create table documents

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_documents (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE documents_ ’, sf_table_suffix (repository_id), ’(

8 ‘document_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

10 ‘created_user_id ‘ INT UNSIGNED NOT NULL ,

11 ‘created_date ‘ DATE NOT NULL ,

12 ‘created_time ‘ TIME NOT NULL ,

13 ‘file_name ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

14 ‘file_size ‘ INT UNSIGNED NOT NULL ,

15 ‘file_last_modification ‘ INT UNSIGNED NOT NULL ,

16 ‘md5_file ‘ VARCHAR (32) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

17 PRIMARY KEY (‘document_id ‘),

18 FOREIGN KEY (‘created_user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT ,

19 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

20 UNIQUE KEY ‘idx_file_repository ‘ (‘file_name ‘,‘repository_id ‘)

21) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

22);

23

24 PREPARE statement FROM @statement;

25 EXECUTE statement;

26 DEALLOCATE PREPARE statement;

27

28 END $

29

30 DELIMITER ;

Stored Procedure sp create table accounting data fields

The procedure sp create table accounting data fields (Listing 3.11) is
used to create an accounting data fields table for each repository. This
table allows the client to define a custom set of accounting data fields on
a per repository basis. Each field defined by the client has a unique id
which is used as a column name suffix in the accounting data table. This
means that each time a customer creates a new field, a new record will be
created in the accounting data fields table and a new column added to
the accounting data table. Hence, the table accounting data fields holds

45

3 Implementation

the metadata for the columns in the table accounting data. This metadata
includes the label for the field that is visible in the user interface (col-
umn field label), and an optional reference to a parameter table (column
parameter table id). The table accounting data will be introduced later
in this chapter.

Listing 3.11: Listing for the stored procedure sp create table accounting data fields

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_accounting_data_fields (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE accounting_data_fields_ ’, sf_table_suffix (repository_id), ’(

8 ‘field_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

10 ‘field_label ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

11 ‘parameter_table_id ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci DEFAULT NULL ,

12 PRIMARY KEY (‘field_id ‘),

13 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT

14) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

15);

16

17 PREPARE statement FROM @statement;

18 EXECUTE statement;

19 DEALLOCATE PREPARE statement;

20

21 END $

22

23 DELIMITER ;

Stored Procedure sp create table accounting data layouts

The procedure sp create table accounting data layouts (Listing 3.12)
creates the accounting data layouts table, which allows the creation of
multiple accounting data field layouts. Each layout has a unique id (col-
umn layout id), and holds a reference to the related repository (column
repository id). The column layout represents the actual layout by storing
the list of the field id’s that will be visible in the user interface, while the
column layout name stores a descriptive name that the user provided for
the created layout.

Listing 3.12: Listing for the stored procedure sp create table accounting data layouts

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_accounting_data_layouts (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

46

3.1 Database

7 ’CREATE TABLE accounting_data_layouts_ ’, sf_table_suffix (repository_id), ’(

8 ‘layout_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

10 ‘layout_name ‘ VARCHAR (100) CHARACTER SET utf8 COLLATE utf8_unicode_ci NOT NULL ,

11 ‘layout ‘ TEXT NOT NULL ,

12 PRIMARY KEY (‘layout_id ‘),

13 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT

14) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

15);

16

17 PREPARE statement FROM @statement;

18 EXECUTE statement;

19 DEALLOCATE PREPARE statement;

20

21 END $

22

23 DELIMITER ;

Stored Procedure sp create table accounting data

The procedure sp create table accounting data (Listing 3.13) is used to
create one of the key tables in the application - the accounting data table.
This table holds all of the client’s accounting data related to the commercial
documents that are uploaded to the cloud storage.

Initially there are only three columns in the table. The primary key col-
umn accounting data id holds a unique id for every record. The columns
document id and repository id reference the commercial document to
which the accounting data relates to, and the containing repository, respec-
tively.

Columns that hold the actual accounting data are created additionally from
the user interface. This approach allows the accountant to create a custom
data structure for every client individually, if needed. As already mentioned
earlier, for each created data field, a new column will be added to the
accounting data table, while the metadata concerning the newly created
column is stored in the accounting data fields table.

Listing 3.13: Listing for the stored procedure sp create table accounting data

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_accounting_data (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE accounting_data_ ’, sf_table_suffix (repository_id), ’(

8 ‘accounting_data_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘document_id ‘ INT UNSIGNED NOT NULL ,

10 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

11 PRIMARY KEY (‘accounting_data_id ‘),

47

3 Implementation

12 FOREIGN KEY (‘document_id ‘) REFERENCES ‘documents_ ’, sf_table_suffix (repository_id), ’‘ (‘

document_id ‘) ON DELETE RESTRICT ,

13 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

14 UNIQUE KEY ‘idx_document_repository ‘ (‘document_id ‘,‘repository_id ‘)

15) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

16);

17

18 PREPARE statement FROM @statement;

19 EXECUTE statement;

20 DEALLOCATE PREPARE statement;

21

22 END $

23

24 DELIMITER ;

Stored Procedure sp create table accounting data revisions

The stored procedure sp create table accounting data revisions (List-
ing 3.14) is used to create the table accounting data revisions. This table
keeps track of every change that is made to the accounting data. Each record
in the table represents a version of a record from the accounting data ta-
ble, so it has a unique id (column accounting data revision id) as well
as a reference to the accounting data record (column accounting data id)
and a reference to a repository (column repository id). The information
concerning the date and time of the change made to a record, as well as
a reference to the user that has made the change is kept in the columns
created date, created time and created user id, respectively. In order to
keep track of the changes made to the accounting data, the columns that
are created in the table accounting data will also be created in the table
accounting data revisions.

Listing 3.14: Listing for the stored procedure sp create table accounting data revisions

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_accounting_data_revisions (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE accounting_data_revisions_ ’, sf_table_suffix (repository_id), ’(

8 ‘accounting_data_revision_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘accounting_data_id ‘ INT UNSIGNED NOT NULL ,

10 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

11 ‘created_user_id ‘ INT UNSIGNED NOT NULL ,

12 ‘created_date ‘ DATE NOT NULL ,

13 ‘created_time ‘ TIME NOT NULL ,

14 PRIMARY KEY (‘accounting_data_revision_id ‘),

15 FOREIGN KEY (‘accounting_data_id ‘) REFERENCES ‘accounting_data_ ’, sf_table_suffix (

repository_id), ’‘ (‘accounting_data_id ‘) ON DELETE RESTRICT ,

16 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

17 FOREIGN KEY (‘created_user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT

18) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

19);

20

48

3.1 Database

21 PREPARE statement FROM @statement;

22 EXECUTE statement;

23 DEALLOCATE PREPARE statement;

24

25 END $

26

27 DELIMITER ;

Stored Procedure sp create table accounting records

The stored procedure sp create table accounting records (Listing 3.15)
is used for the creation of the accounting records table.

The table accounting records stores all of the accounting records related
to a certain document (column document id). Each accounting record must
have a record date (column date), indication whether it is a credit or a debit
record (column credit debit), amount (column amount), and the affected
account (column account).

Listing 3.15: Listing for the stored procedure sp create table accounting records

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_accounting_records (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE accounting_records_ ’, sf_table_suffix (repository_id), ’(

8 ‘accounting_record_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘document_id ‘ INT UNSIGNED NOT NULL ,

10 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

11 ‘date ‘ DATE NOT NULL ,

12 ‘credit_debit ‘ TINYINT NOT NULL ,

13 ‘account ‘ INT UNSIGNED NOT NULL ,

14 ‘amount ‘ DOUBLE NOT NULL ,

15 PRIMARY KEY (‘accounting_record_id ‘),

16 FOREIGN KEY (‘document_id ‘) REFERENCES ‘documents_ ’, sf_table_suffix (repository_id), ’‘ (‘

document_id ‘) ON DELETE RESTRICT ,

17 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT

18) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

19);

20

21 PREPARE statement FROM @statement;

22 EXECUTE statement;

23 DEALLOCATE PREPARE statement;

24

25 END $

26

27 DELIMITER ;

Stored Procedure sp create table comments

The stored procedure sp create table comments (Listing 3.16) creates the
comments table. This table stores the comments that are written by the users

49

3 Implementation

on a document level. All the comments that are related to a certain document
will be displayed as a one single thread, so they will have a reference to a
document that they relate to (column document id), and will be sorted by
data and time (columns date and time) representing the order in which the
comments have been written. The content of the comments will be stored in
the comment text column.

Listing 3.16: Listing for the stored procedure sp create table comments

1 DELIMITER $

2

3 CREATE PROCEDURE sp_create_table_comments (IN repository_id INT)

4 BEGIN

5

6 SET @statement = CONCAT (

7 ’CREATE TABLE comments_ ’, sf_table_suffix (repository_id), ’(

8 ‘comment_id ‘ INT UNSIGNED NOT NULL AUTO_INCREMENT ,

9 ‘document_id ‘ INT UNSIGNED NOT NULL ,

10 ‘repository_id ‘ INT UNSIGNED NOT NULL ,

11 ‘user_id ‘ INT UNSIGNED NOT NULL ,

12 ‘date ‘ DATE NOT NULL ,

13 ‘time ‘ TIME NOT NULL ,

14 ‘comment_text ‘ TEXT NOT NULL ,

15 PRIMARY KEY (‘comment_id ‘),

16 FOREIGN KEY (‘document_id ‘) REFERENCES ‘documents_ ’, sf_table_suffix (repository_id), ’‘ (‘

document_id ‘) ON DELETE RESTRICT ,

17 FOREIGN KEY (‘repository_id ‘) REFERENCES ‘repositories ‘ (‘repository_id ‘) ON DELETE RESTRICT ,

18 FOREIGN KEY (‘user_id ‘) REFERENCES ‘users ‘ (‘user_id ‘) ON DELETE RESTRICT

19) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT =1;’

20);

21

22 PREPARE statement FROM @statement;

23 EXECUTE statement;

24 DEALLOCATE PREPARE statement;

25

26 END $

27

28 DELIMITER ;

The remaining stored procedures that are not listed here, are the pro-
cedure sp create user, procedure sp drop repository tables and proce-
dure sp initialize repository. The first one is used to create a dedicated
database user with appropriate privileges for the newly created repository
tables, while the second one allows the system to drop the created repository
tables if an error occurs in the process of creating a complete set of the
repository tables. So if, for instance, an error occurs after creating the first
two of the eight repository tables, the two created ones will be deleted in
order to keep the database in a consistent state. The use of this procedure is
necessary due to the fact that Data Definition Language (DDL) statements
cause an implicit commit, and therefore cannot be simply rolled back (Or-
acle Corporation and/or its affiliates, 2017b). Additionally the procedure

50

3.1 Database

sp initialize repository is used to initialize the repository tables with
default values.

3.1.2 Database abstraction with PHP Data Objects

PHP Data Objects (PDO) is a PHP extension that provides an interface for
database access (Achour, Betz, and Dovgal, 2017). By using the PDO, a
same set of functions can be used to define and manipulate the data, no
matter which database is used in the background. The available drivers that
implement the PDO interface currently include support for databases such
as MySQL, Oracle, PostgreSQL, SQLite and others.

In order to add an abstraction layer between the application logic and the
database, the web application will use PHP classes that represent the data
model and provide methods which allow data access by using the PDO. For
instance, the PHP class Users will be used to provide access to the database
table users. The PDO object which is needed to access the database is passed
as a constructor parameter, and kept in a protected member variable (Listing
3.17). When the instance of the Users class is destructed, the connection is
also automatically terminated.

Listing 3.17: Creation and destruction of the PDO object within the PHP class Users

1 protected $databaseHandle_;

2

3 public function __construct(PDO $databaseHandle) {

4 $this ->databaseHandle_ = $databaseHandle;

5 }

6

7 public function __destruct () {

8 if ($this ->databaseHandle_) {

9 $this ->databaseHandle_ = null;

10 }

11 }

The PDO object itself is created in the PHP class DatabaseAdapter (Listing
3.18). This class provides only one function getPDODatabaseHandle. The
DatabaseAdapter reads the connection parameters from the Config class
and establishes a database connection. It also checks if a connection to a
cloud service (i.e. repository) is active and currently in use. It does this
by checking whether the user and password parameters for the isolated

51

3 Implementation

repository tables are available in the session data, and if they are, it uses
them to make the connection instead. This check is necessary because
there are basically two categories of the database users. The first category
contains only one general database user that has permissions for the shared
tables only, while the second category contains all the additionally created
database users that have permissions both for the shared tables as well as
for the isolated repository table set. As already discussed before, one such
repository-related database user is added each time a repository is created
within the application alongside the corresponding set of isolated tables.
The general database user is therefore used only until the user connects to a
repository, and once the repository connection is established, the repository-
related database user’s connection parameters become available in the
session data and are used for all the subsequent connections.

Listing 3.18: PHP class DatabaseAdapter

1 class DatabaseAdapter {

2

3 const PDO_MYSQL_DRIVER_NAME = ’mysql’;

4

5 public static function getPDODatabaseHandle($sharedTableAccess = false) {

6 try {

7 $driver = Config ::get (’PDO_DRIVER ’);

8 $username = Config ::get (strtoupper ($driver) . ’_USERNAME ’);

9 $password = Config ::get (strtoupper ($driver) . ’_PASSWORD ’);

10

11 if (! $sharedTableAccess) {

12 $connectionParameters = Session :: getRepositoryDatabaseParameter ();

13 if (null !== $connectionParameters [0] && null !== $connectionParameters [1]) {

14 $username = $connectionParameters [0];

15 $password = $connectionParameters [1];

16 }

17 }

18

19 if ($driver === self:: PDO_MYSQL_DRIVER_NAME) {

20 $pdo = new PDO ($driver . ’:host=’ . Config ::get (strtoupper ($driver) . ’_HOST’) .

’;dbname=’ . Config ::get (strtoupper ($driver) . ’_DATABASE ’), $username , $password)

;

21 return $pdo;

22 }

23 return null;

24 } catch (PDOException $exception) {

25 Log:: logException ($exception);

26 return null;

27 }

28 }

29 }

The public interface of the class Users, as well as public interfaces of all
the other classes that represent the data model entities, provides methods
that allow data definition and manipulation. All of these methods use PDO
functionality to achieve this. As already discussed in this chapter, the PDO

52

3.2 User Management

object is created by the DatabaseAdapter and passed to the class instance
during the construction. The function createUser from the class Users

shows, for instance, how the PDOStatement object is used to prepare and
execute a prepared statement that inserts a new user record into the table
users (Listing 3.19).

Listing 3.19: Listing for the function createUser from the Users class

1 public function createUser($userStatus , $username , $password , $firstName , $lastName) {

2 try {

3 $statement = $this ->databaseHandle_ ->prepare (’INSERT INTO users (user_status , username ,

password , first_name , last_name , registered) VALUES (: user_status , :username , :password , :

first_name , :last_name , NOW());’);

4 $statement ->bindParam (’:user_status ’, $userStatus , PDO:: PARAM_INT);

5 $statement ->bindParam (’:username ’, $username , PDO:: PARAM_STR);

6 $statement ->bindParam (’:password ’, $password , PDO:: PARAM_STR);

7 $statement ->bindParam (’:first_name ’, $firstName , PDO:: PARAM_STR);

8 $statement ->bindParam (’:last_name ’, $lastName , PDO:: PARAM_STR);

9 if ($statement ->execute ()) {

10 return $this ->databaseHandle_ ->lastInsertId ();

11 } else {

12 Log:: logDatabaseError($statement , __METHOD__);

13 }

14 return null;

15 } catch (Exception $exception) {

16 Log:: logException ($exception);

17 return null;

18 }

19 }

3.2 User Management

In this chapter different aspects of user management will be discussed,
ranging from fundamental concept of roles and privileges to a more complex
process of a user account creation. There will be presented both theoretical
considerations, as well as some of the actual code.

3.2.1 Roles

There are two groups of roles that are available within the application: the
application level roles and the repository level roles.

The application level roles contain the application level privileges and
define thereby what the user is allowed to do and see within the higher-level
application context. These privileges include, for instance, the permission

53

3 Implementation

to see the application log or access the user management interface. The
privileges for both application level roles and the repository level roles will
be discussed in more detail in the chapter 3.2.2.

The technical implementation of the application level roles will be kept
simple. There will be two available application level roles: the administrator
and the user. The application will be able to identify the administrators based
on their username. Configuration file will keep a list of all the usernames
that have the administrator privileges, and the application will search this
list when the user signs in to see if there is a match with the currently signed
in user. The information regarding the application level role will be stored
in the session (Listing 3.20), and therefore it will be available until the user
signs off.

Listing 3.20: Listing for the setApplicationLevelRole and getApplicationLevelRole functions
from the Session class

1 public static function setApplicationLevelRole($userName) {

2 if (Config :: isAdministrator ($userName)) {

3 $_SESSION [’APPLICATION_LEVEL_ROLE ’] = Config :: APPLICATION_LEVEL_ROLE_ADMINISTRATOR;

4 } else {

5 $_SESSION [’APPLICATION_LEVEL_ROLE ’] = Config :: APPLICATION_LEVEL_ROLE_USER;

6 }

7 }

8

9 public static function getApplicationLevelRole () {

10 if (isset ($_SESSION [’APPLICATION_LEVEL_ROLE ’])) {

11 return $_SESSION [’APPLICATION_LEVEL_ROLE ’];

12 }

13 return -1;

14 }

The repository level roles, on the other hand, contain the repository level
privileges. These define what the user is allowed to do and see within
the repository context. These privileges define, for instance, if the user is
allowed to edit the accounting data, or upload documents.

The repository level roles are: repository owner, client and accountant. They
are kept in the database table authorizations, and are assigned during the
authorization of the new repository user. This enables one application user
to have multiple different repository level roles for different repositories.
The role repository owner will be automatically assigned to the user that is
creating a new repository, but a current repository owner can also assign it
to newly authorized repository users.

54

3.2 User Management

The repository level role is also kept within a session variable. This variable
is set alongside other repository parameters when a user connects to a
repository, and is cleared when the user disconnects (Listing 3.21).

Listing 3.21: Listing for the setRepositoryLevelRole and getRepositoryLevelRole functions
from the Session class

1 public static function setRepositoryLevelRole($role) {

2 $_SESSION [’REPOSITORY_LEVEL_ROLE ’] = $role;

3 }

4

5 public static function getRepositoryLevelRole () {

6 if (isset ($_SESSION [’REPOSITORY_LEVEL_ROLE ’])) {

7 return $_SESSION [’REPOSITORY_LEVEL_ROLE ’];

8 }

9 return -1;

10 }

3.2.2 Privileges

The privileges determine which functionality is accessible to the user. They
are, just as roles, divided into two groups: the application privileges and
the repository privileges. The application privileges can be assigned to the
application level roles while the repository privileges are assigned to the
repository level roles.

The application level privileges (table 3.1) are used to restrict access to
certain application functionality such as user management, and are not
customisable. The application level privilege checking is done directly in
the code by checking if the current user has an appropriate application
role to access the target functionality, and being that there will be only two
available application level roles, only the administrators will be allowed to
access the application areas that contain the shared data.

55

3 Implementation

Privilege Description
AP ACCESS APPLICATION LOG Privilege to access the application log

containing both the server-side as well as
the client-side application errors

AP ACCESS USER LOG Privilege to access the user log containing
the sign in timestamps

AP ACCESS USER REQUESTS Privilege to access the user requests
including the account activation and
password reset requests

AP ACCESS USER MGMT Privilege to access the user management
interface

AP ACCESS REPOSITORY MGMT Privilege to access the repository
management interface

AP ACCESS AUTHORIZATION MGMT Privilege to access the authorization
management interface

Table 3.1: Application level privileges

Application privilege checking is implemented in the PHP class Permissions
(Listing 3.22) . Being that the application role is determined when the user
successfully signs in to the application and stored in the session data, the
application will only check if the user is an administrator in order to give
clearing for the given application privilege.

Listing 3.22: Listing for the userHasApplicationPrivilege function from the Permissions
class

1 public static function userHasApplicationPrivilege($privilege) {

2 if (! in_array ($privilege , self:: AP_PRIVILEGES)) {

3 return false;

4 }

5

6 $role = Session :: getApplicationLevelRole ();

7 if (Config :: APPLICATION_LEVEL_ROLE_ADMINISTRATOR == $role) {

8 return true;

9 } else {

10 return false;

11 }

12 }

The repository privileges, on the other hand, determine which functionality
is available to the user within the repository context. These are listed in the
table 3.2.

56

3.2 User Management

Privilege Description
RP VIEW ACCOUNTING DATA Privilege to view the accounting data
RP EDIT ACCOUNTING DATA Privilege to edit the accounting data
RP UPLOAD DOCUMENT Privilege to upload documents
RP DELETE DOCUMENT Privilege to delete documents
RP CREATE DIRECTORY Privilege to create new directories
RP RENAME DIRECTORY Privilege to rename directories
RP DELETE DIRECTORY Privilege to delete directories
RP ADD REPOSITORY USER Privilege to give repository clearance to

other users
RP REMOVE REPOSITORY USER Privilege to revoke repository clearance

from other users
RP EDIT REPOSITORY DATA FIELDS Privilege to add or remove repository data

fields
RP EDIT REPOSITORY DATA LAYOUTS Privilege to add, remove or edit repository

data layouts
RP EDIT REPOSITORY PARAMETERS Privilege to add or remove repository field

parameters
RP EDIT REPOSITORY PRIVILEGES Privilege to modify repository privileges

Table 3.2: Repository level privileges

57

3 Implementation

Almost all of the repository privileges are customisable and can be set
for each repository individually. The only exception is the privilege to
modify the repository privileges. This privilege is reserved exclusively
for the repository owner role. The user interface that allows the privilege
modification is available from the repository dashboard (Figure 3.1).

Figure 3.1: Repository privileges dashboard

Repository privileges are checked on two levels (Listing 3.23). When the
repository owner modifies the privileges for the first time, three records are
created in the shared database table privileges, one for each repository
role. Therefore the application always checks if there is a custom privilege
definition for the given repository first by searching in the database table
privileges. If the privileges table contains no records for the given repos-
itory then the default repository privileges are used. These are defined
directly in the application code.

58

3.2 User Management

Listing 3.23: Listing for the function getRepositoryPrivileges from the Permissions class

1 public static function getRepositoryPrivileges($repositoryId) {

2 $defaultPrivileges = self:: getDefaultRepositoryPrivileges ();

3 $repositoryPrivileges = array (

4 Authorizations :: ROLE_REPOSITORY_OWNER => 0,

5 Authorizations :: ROLE_CLIENT => 0,

6 Authorizations :: ROLE_ACCOUNTANT => 0

7);

8

9 $privilegesModel = new Privileges (DatabaseAdapter :: getPDODatabaseHandle (true));

10 $rolePrivilege = $privilegesModel ->getPrivileges ($repositoryId , Authorizations ::

ROLE_REPOSITORY_OWNER);

11 if (null == $rolePrivilege) {

12 $repositoryPrivileges [Authorizations :: ROLE_REPOSITORY_OWNER] = $defaultPrivileges [

Authorizations :: ROLE_REPOSITORY_OWNER];

13 } else {

14 $repositoryPrivileges [Authorizations :: ROLE_REPOSITORY_OWNER] = $rolePrivilege ->privileges;

15 }

16

17 $rolePrivilege = $privilegesModel ->getPrivileges ($repositoryId , Authorizations :: ROLE_CLIENT

);

18 if (null == $rolePrivilege) {

19 $repositoryPrivileges [Authorizations :: ROLE_CLIENT] = $defaultPrivileges [Authorizations ::

ROLE_CLIENT];

20 } else {

21 $repositoryPrivileges [Authorizations :: ROLE_CLIENT] = $rolePrivilege ->privileges;

22 }

23

24 $rolePrivilege = $privilegesModel ->getPrivileges ($repositoryId , Authorizations ::

ROLE_ACCOUNTANT);

25 if (null == $rolePrivilege) {

26 $repositoryPrivileges [Authorizations :: ROLE_ACCOUNTANT] = $defaultPrivileges [Authorizations

:: ROLE_ACCOUNTANT];

27 } else {

28 $repositoryPrivileges [Authorizations :: ROLE_ACCOUNTANT] = $rolePrivilege ->privileges;

29 }

30

31 return $repositoryPrivileges;

32 }

3.2.3 Account Creation

In order to be able to use the application, the user needs to create an account
first. The account creation process is carried out in two steps.

In the first step, the user must fill out the account creation form, which is
located on the index page (Figure 3.2). In order to create an account, the
user must provide a valid email address, which will serve as a username,
the users first- and last-name, and a password. Upon clicking the ”Create
account” button the data is sent to the server by means of AJAX. On the
server-side the application then creates a record in the users table with the
status registered, as well as a record in the user requests table with a
request type account activation.

59

3 Implementation

Figure 3.2: Account creation form

In the second step, a verification email message is generated and sent to the
provided email address. The message will contain an activation link that
contains a token and redirects the user to the index page where they can
sign into the application for the first time. The index page will recognize
that a token is provided within the URL, and it will send it alongside the
email address and the password when signing in the user. Before checking
the credentials, the application will first check the user’s status. If the
status is registered then the token must be provided and checked for
its validity. Being that the token consists of the encrypted user request
data, it needs to be decrypted first and then verified (Listing 3.24). If the
token data matches the data in the user requests table, the user will be
signed into the application and redirected to the overview page, while the
status of the record in the users table is updated to active, and the token
invalidated by updating the activity time in the corresponding record of
the user requests table.

Listing 3.24: Listing for the functions getTokenData and checkToken from the class
Authentication

1 public static function getTokenData($token) {

2 $data = Cryptography :: decrypt ($token);

3 $userRequestId = intval (substr ($data , 0, 10));

60

3.2 User Management

4 $userId = intval (substr ($data , 10, 10));

5 $requestTime = intval (substr ($data , 20, 20));

6 $requestType = intval (substr ($data , 40, 1));

7 return array (

8 $userRequestId ,

9 $userId ,

10 $requestType ,

11 $requestTime

12);

13 }

14

15 protected function checkToken($token , $requestType , $username = null) {

16 $tokenData = self:: getTokenData ($token);

17

18 if ($tokenData [2] != $requestType) {

19 Log:: logError (’Invalid token [request type invalid]: ’ . $token);

20 return false;

21 }

22

23 if (null !== $username) {

24 $users = new Users (DatabaseAdapter :: getPDODatabaseHandle ());

25 $user = $users ->getUser ($tokenData [1]);

26 if (null !== $user && 0 !== strcmp (trim ($username), trim ($user ->username))) {

27 Log:: logError (’Invalid token [username mismatch]: ’ . $token);

28 return false;

29 }

30 }

31

32 $userRequests = new UserRequests (DatabaseAdapter :: getPDODatabaseHandle ());

33 if (! $userRequests ->authenticateUserRequest ($tokenData [0], $tokenData [1], $requestType ,

$tokenData [3])) {

34 Log:: logError (’Invalid token [user request invalid]: ’ . $token);

35 return false;

36 }

37 return true;

38 }

3.2.4 Signing In to Application

After the user has successfully created an account, they can use the sign in
form on the index page to sign into the application. The sign in form sends
the user credentials to the server by means of an AJAX request. On the
server-side, the user authentication is done in the php class Authentication
(Listing 3.25).

Listing 3.25: Listing for the function signIn from the class Authentication

1 public function signIn($username , $password , $token) {

2 $pdoHandle = DatabaseAdapter :: getPDODatabaseHandle ();

3 $users = new Users ($pdoHandle);

4 $userLog = new UserLog ($pdoHandle);

5

6 $user = $users ->authenticateUser ($username , $password);

7 if (null != $user) {

8 $activation = false;

9 if (Users:: STATUS_REGISTERED == $user ->user_status) {

10 if (null == $token) {

11 throw new AuthAccountNotActivatedException (Config ::get (’EXCEPTION_ACCOUNT_REGISTERED

’));

12 }

61

3 Implementation

13 if (! self:: checkToken ($token , UserRequests :: REQUEST_TYPE_ACCOUNT_ACTIVATION , $username

)) {

14 throw new AuthInvalidTokenException (Config ::get (’EXCEPTION_INVALID_TOKEN ’));

15 }

16 $activation = true;

17 }

18

19 if ($user ->success) {

20 $session = new Session ();

21 $session ->start (true);

22 $session ->setValid (true);

23 Session :: setUserId ($user ->user_id);

24 Session :: setUserDisplayName ($user ->first_name , $user ->last_name);

25 Session :: setApplicationLevelRole ($username);

26 $userLog ->writeUserLog ($user ->user_id , UserLog :: SIGN_IN_SUCCESS);

27 if ($activation) {

28 $users ->updateUserStatus ($user ->user_id , Users:: STATUS_ACTIVE);

29 self:: invalidateToken($token);

30 }

31 return true;

32 } else {

33 $userLog ->writeUserLog ($user ->user_id , UserLog :: SIGN_IN_FAILURE);

34 if (Users:: STATUS_LOCKED == $user ->user_status) {

35 throw new AuthUserLockedException (Config ::get (’EXCEPTION_AUTH_USER_LOCKED ’));

36 } else {

37 if ($userLog ->checkBruteForceAttack ($user ->user_id)) {

38 $users ->updateUserStatus ($user ->user_id , Users:: STATUS_LOCKED);

39 throw new AuthUserLockedException (Config ::get (’EXCEPTION_AUTH_USER_LOCKED ’));

40 }

41 throw new AuthBadPasswordException (Config ::get (’EXCEPTION_AUTH_BAD_PASSWORD ’));

42 }

43 }

44 } else {

45 return false;

46 }

47 }

When signing in the user, the application will first check the user’s status. If
the status is registered, the user will not be able to sign in before completing
the second step of the account creation process as described in chapter
3.2.3. If the account status is active, the user’s password is verified, and if it
matches the stored password, the user will be signed in by starting a session
and initializing the session variables.

If the user provides a wrong password three consecutive times, the account
will be locked. This is due to the brute force attack checking. On any failed
sign in attempt, the applications searches the user log table to check if there
are three consecutive failure records for the given user. If so, the application
locks the user by setting the user account status to locked in the users

table.

Once the account has been locked, the user will need to reset the password
by using the password reset request form on the index page. The form is
available by clicking on the ”Forgot password” link. After entering the email
address, the user will receive an email that contains a token and redirects

62

3.2 User Management

the user to the password reset form where they can enter and confirm the
new password. Once the new password is saved the user is redirected to
the index page and can now sign into the application. If the account has not
yet been activated then it will not be not possible to perform a password
reset.

Figure 3.3: Password reset form

3.2.5 Signing Out of Application

When the user wishes to leave the application, it is recommended to do so
by signing out of it. To sign out, the user only needs to click on the user’s
name or on the sign out icon. Both of them are located in the lower right
corner of the application screen (Figure 3.4).

63

3 Implementation

Figure 3.4: Sign out icon

When the user signs out, the application will automatically end the session.
This is done in the Authentication php class (Listing 3.26).

Listing 3.26: Listing for the function signOut from the class Authentication

1 public function signOut () {

2 $session = new Session ();

3 $session ->start ();

4 $session ->end ();

5 }

3.3 Repository Management

The repository management contains all of the functionality needed to create
and manage a document repository. This chapter discusses the concepts
behind the repository management within the web application, as well as
some of the implementation aspects.

64

3.3 Repository Management

3.3.1 Creation of Document Repository

In order to be able to use a document repository, the user needs to create one
first. The creation of a repository within the web application is conducted in
only a few simple steps. New repository can be created from the overview
page by clicking on the repository placeholder (Figure 3.5). First, the user
must select which cloud storage service they want to use for the repository,
and then enter a name for the new repository.

Figure 3.5: Repository placeholder

In the next step the web application generates the authorization URI and
redirects the user to the chosen cloud storage service where they can autho-
rize the application by using the OAuth 2.0 flow as described in the chapter
2.2.2. The OAuth 2.0 flow is implemented for each of the cloud services
individually in a separate PHP class, and each of these classes implements
the CloudServiceInterface (Listing 3.27). This interface provides all of the
functionality needed to interact with the cloud storage service.

Listing 3.27: Listing for the interface CloudServiceInterface

1 interface CloudServiceInterface {

65

3 Implementation

2 public function startOAuth2Process ();

3 public function finishOAuth2Process(Array $response);

4 public function getAuthorizationURL ();

5 public function getRootPath ();

6 public function connect ();

7 public function listDirectory($path);

8 public function createDirectory($path , $directory);

9 public function delete($path);

10 public function download($path , &$file);

11 public function upload($path , $filename , &$file , $localPath);

12 }

The OAuth 2.0 process is started by calling the function startOAuth2Process

of the Authorization class (Listing 3.28), which returns the authorization
URI to which the user is redirected to, and once the user authorizes the
web application, they are redirected back to the overview page (i.e. redirect
URI). The overview page first checks the query string and then again uses
the Authorization class to instantiate the appropriate implementation of
the CloudServiceInterface, and to call it’s finishOAuth2Process function.
The function finishOAuth2Process handles the last step in the OAuth
2.0 process by exchanging the authorization code for the reusable access
token.

Listing 3.28: Listing for the class Authorization

1 class Authorization {

2

3 public static function startOAuth2Process($cloudServiceId) {

4 $cloudService = CloudServiceFactory :: createCloudService ($cloudServiceId);

5 return $cloudService ->startOAuth2Process ();

6 }

7

8 public static function finishOAuth2Process($cloudServiceId , $response) {

9 $cloudService = CloudServiceFactory :: createCloudService ($cloudServiceId);

10 return $cloudService ->finishOAuth2Process ($response);

11 }

12 }

Once the web application has attained the reusable access token, it saves all
the repository related data in the database by creating an new record in the
repositories table.

3.3.2 Connecting to a Document Repository

In order to work with the document repository, the user must connect to
it first. This functionality does not actually creates any type of a persistent

66

3.3 Repository Management

connection, but is rather used to initialize the web application’s session
variables that hold the information regarding the repository as well as the
database connection parameters and cloud storage service access token.
Besides the session variable initialization, the connect function can also be
used to try to perform an action on the cloud storage service, for instance,
to check if the access token is still valid.

The implementation of the connect functionality is found in the function
methodConnectRepository from the class RPCEndpointInterface (Listing
3.29).

Listing 3.29: Listing for the function methodConnectRepository

1 protected static function methodConnectRepository($params , &$response) {

2 try {

3 $authorizations = new Authorizations (DatabaseAdapter :: getPDODatabaseHandle ());

4 $authorization = $authorizations ->getAuthorization ($params [self:: PARM_AUTHORIZATION_ID])

;

5

6 $repositories = new Repositories (DatabaseAdapter :: getPDODatabaseHandle ());

7 $authParameter = $repositories ->getAuthParameter ($params [self:: PARM_AUTHORIZATION_ID],

Session :: getUserId ());

8

9 if (null != $authParameter) {

10 Session :: setCloudServiceParameter ($authParameter ->service_id , $authParameter ->

service_token , $authParameter ->repository_id , $authParameter ->repository_name);

11 Session :: setRepositoryDatabaseParameter ($authParameter ->database_user , $authParameter ->

database_password);

12 Session :: setRepositoryLevelRole ($authorization ->user_role);

13 Session :: setRepositoryPrivileges (Permissions :: getRepositoryPrivileges ($authParameter ->

repository_id) [$authorization ->user_role]);

14 Session :: setRepositoryDataLayout ($authParameter ->layout_id);

15 // Check the connection to the cloud service

16 $cloudService = CloudServiceFactory :: createCloudService (Session :: getCloudServiceId ());

17 if (null === $cloudService || ! $cloudService ->connect ()) {

18 Session :: setCloudServiceParameter (null , null , null , null);

19 Session :: setRepositoryDatabaseParameter (null , null);

20 Session :: setRepositoryLevelRole (null);

21 Session :: setRepositoryPrivileges (null);

22 Session :: setRepositoryDataLayout (null);

23 self:: responseError ($response , self:: RC_FAILURE , ’CONNECTION_ERROR ’, TRUE);

24 return false;

25 }

26 self:: responseStatus ($response , self::RC_SUCCESS , ’REPOSITORY_CONNECTED ’, TRUE);

27 return true;

28 } else {

29 self:: responseError ($response , self:: RC_FAILURE , ’CONNECTION_ERROR ’, TRUE);

30 return false;

31 }

32 } catch (AccessTokenException $exception) {

33 Log:: logException ($exception);

34 self:: responseError ($response , self:: RC_INVALID_ACCESS_TOKEN , ’Invalid access token ’);

35 } catch (NetworkException $exception) {

36 Log:: logException ($exception);

37 self:: responseError ($response , self:: RC_FAILURE , ’NETWORK_ERROR ’, TRUE);

38 } catch (Exception $exception) {

39 Log:: logException ($exception);

40 self:: responseError ($response , self:: RC_FAILURE , ’CONNECTION_FAILURE ’, TRUE);

41 }

42 Session :: setCloudServiceParameter (null , null , null , null);

43 Session :: setRepositoryDatabaseParameter (null , null);

44 Session :: setRepositoryLevelRole (null);

45 Session :: setRepositoryPrivileges (null);

67

3 Implementation

46 Session :: setRepositoryDataLayout (null);

47 return false;

48 }

To connect to a repository, the user must first select a repository from the
overview page. This will bring up the repository dashboard, from where the
user can use the ”CONNECT” button to connect to the chosen repository
(Figure 3.6).

Figure 3.6: Repository dashboard

Once the repository is connected, the user can either navigate to the reposi-
tory page by using the navigation bar in the top right corner of the appli-
cation screen, or edit the repository properties (e.g. add repository users,
create accounting data fields etc.).

3.3.3 Repository User Management

The repository user management interface is available trough the repository
dashboard (Figure 3.7). By default, it allows the user with a repository

68

3.3 Repository Management

owner role to authorize additional users to work with the repository, or to
revoke their repository access, although this privilege can be assigned to
any role from the repository privileges dashboard.

Figure 3.7: Repository user management interface within the repository dashboard

To authorize an additional user, the repository owner must click the ”+”
button, and then enter a username of an already registered application user.
Additionally, one of the three available repository roles must be assigned to
the new repository user (Figure 3.8). This role will only be valid within the
currently connected repository, which means that each application user can
have authorizations for multiple different repositories, each with a different
role.

69

3 Implementation

Figure 3.8: Repository user authorization dialog

Once the needed information has been entered, and the user clicks the ”ADD
USER” button, the client-side function LNAPP.xhr.authorizeRepositoryUser
generates a JSON-RPC request and sends it to the server. On the server-side
the request is processed within the function methodAuthorizeRepositoryUser

from the class RPCEndpointInterface (Listing 3.30).

Listing 3.30: Listing for the function methodAuthorizeRepositoryUser

1 protected static function methodAuthorizeRepositoryUser($params , &$response) {

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_ADD_REPOSITORY_USER ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $users = new Users (DatabaseAdapter :: getPDODatabaseHandle ());

9 $user = $users ->getUserId ($params [self:: PARM_USERNAME]);

10 if (null === $user) {

11 self:: responseError ($response , self:: RC_FAILURE , ’USER_AUTHORIZATION_ERROR ’, TRUE);

12 return false;

13 }

14

15 $authorizations = new Authorizations (DatabaseAdapter :: getPDODatabaseHandle ());

16 $authorization = $authorizations ->createAuthorization (Session :: getCloudRepositoryId (),

$user ->user_id , $params [self:: PARM_ROLE]);

17

18 if (null != $authorization) {

19 $repositoryUsers = $users ->getUsers (Session :: getCloudRepositoryId ());

20 foreach ($repositoryUsers as $repositoryUser) {

21 $authorizedUser [self:: PARM_USER_ID] = $repositoryUser ->user_id;

22 $authorizedUser [self:: PARM_FIRST_NAME] = $repositoryUser ->first_name;

70

3.3 Repository Management

23 $authorizedUser [self:: PARM_LAST_NAME] = $repositoryUser ->last_name;

24 $authorizedUser [self:: PARM_USERNAME] = $repositoryUser ->username;

25 $authorizedUser [self:: PARM_ROLE] = strtoupper (View:: getRepositoryLevelRoleLabel (

$repositoryUser ->user_role));

26 $repositoryUsersArray [] = $authorizedUser;

27 }

28 self:: addResponseMember ($response , self:: PARM_REPOSITORY_USERS , json_encode (

$repositoryUsersArray));

29 self:: responseStatus ($response , self::RC_SUCCESS , ’USER_AUTHORIZED ’, TRUE);

30 return true;

31 } else {

32 self:: responseError ($response , self:: RC_FAILURE , ’USER_AUTHORIZATION_ERROR ’, TRUE);

33 return false;

34 }

35 } catch (Exception $exception) {

36 Log:: logException ($exception);

37 self:: responseError ($response , self:: RC_FAILURE , ’USER_AUTHORIZATION_FAILURE ’, TRUE);

38 }

39 return false;

40 }

3.3.4 Accounting Data Fields

As discussed in the chapter 1.5.4, the users have a possibility to define
additional accounting data fields. This can be achieved trough the repository
accounting data fields dashboard (Figure 3.9). The dashboard contains the
list of currently available data fields, and a possibility to add a new one by
clicking the ”NEW DATA FIELD” button.

The list of fields contains information regarding the individual data fields.
The column ”Label” contains the textual description that is visible in the
user interface, while the column ”FieldId” contains the id that is used when
sending accounting data as a parameter using a JSON-RPC request. The
column ”DataType” indicates the application internal data type, and the
column ”Null” indicates whether the field is optional or obligatory. The
”Parameter Table” column contains the id of the parameter table that is used
for the data field in the user interface.

71

3 Implementation

Figure 3.9: Repository accounting data fields dashboard

In order to create an new accounting data field, the user only needs to enter
a label for the new field (i.e. a name), and the datatype (Figure 3.10). The
data type is then internally mapped to an SQL data type in the PHP class
DataType.

72

3.3 Repository Management

Figure 3.10: Repository data field creation dialog

When saving a new data field, the JSON-RPC request is created in the
function LNAPP.xhr.addRepositoryDataField, and on the server-side pro-
cessed within the function methodCreateRepositoryDataField from the
class RPCEndpointInterface (Listing 3.31).

Listing 3.31: Listing for the function methodCreateRepositoryDataField

1 protected static function methodCreateRepositoryDataField($params , &$response) {

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_EDIT_REPOSITORY_DATA_FIELDS ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $databaseHandle = DatabaseAdapter :: getPDODatabaseHandle ();

9 $databaseHandle ->beginTransaction ();

10

11 $dataType = new DataType ();

12 $parameterTableId = null;

13 if (DataType :: DATA_TYPE_PARAMETER == $params [self:: PARM_DATA_FIELD_TYPE]) {

14 if (! array_key_exists (self:: PARM_DATA_FIELD_PARAM , $params)) {

15 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

16 $databaseHandle ->rollback ();

17 return false;

18 }

19 $parameterTableId = $params [self:: PARM_DATA_FIELD_PARAM];

20 $columnDataType = $dataType ->getDatatype ($params [self:: PARM_DATA_FIELD_TYPE], $params [

self:: PARM_DATA_FIELD_LENGTH], $parameterTableId);

21 } else {

22 $columnDataType = $dataType ->getDatatype ($params [self:: PARM_DATA_FIELD_TYPE], $params [

self:: PARM_DATA_FIELD_LENGTH]);

23 }

73

3 Implementation

24

25 if (’’ !== $columnDataType) {

26 // Create record in the accounting data fields table

27 $accountingDataFields = new AccountingDataFields ($databaseHandle);

28 $fieldId = $accountingDataFields ->createAccountingDataField (Session ::

getCloudRepositoryId (), $params [self:: PARM_DATA_FIELD_LABEL], $parameterTableId);

29

30 if (null === $fieldId) {

31 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

32 $databaseHandle ->rollback ();

33 return false;

34 }

35

36 $columnId = AccountingData :: DATA_FIELD_PREFIX . $fieldId;

37

38 // Create column in the accounting data table

39 $accountingData = new AccountingData ($databaseHandle);

40 $result = $accountingData ->createAccountingDataField (Session :: getCloudRepositoryId (),

$columnId , $columnDataType);

41

42 if (! $result) {

43 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

44 $databaseHandle ->rollback ();

45 return false;

46 }

47

48 // Create column in the accounting data revisions table

49 $accountingDataRevisions = new AccountingDataRevisions ($databaseHandle);

50 $result = $accountingDataRevisions ->createAccountingDataRevisionsField (Session ::

getCloudRepositoryId (), $columnId , $columnDataType);

51

52 if (! $result) {

53 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

54 $databaseHandle ->rollback ();

55 return false;

56 }

57

58 // Update default accounting data layout

59 $accountingDataLayouts = new AccountingDataLayouts ($databaseHandle);

60 $result = $accountingDataLayouts ->updateDefaultAccountingDataLayout (Session ::

getCloudRepositoryId (), $columnId);

61 if (! $result) {

62 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

63 $databaseHandle ->rollback ();

64 return false;

65 }

66

67 $dataFields = $accountingDataFields ->getAccountingDataFields (Session ::

getCloudRepositoryId ());

68 if (null !== $dataFields) {

69 self:: addResponseMember ($response , self:: PARM_DATA_FIELDS , json_encode ($dataFields)

);

70 }

71

72 $databaseHandle ->commit ();

73 self:: responseStatus ($response , self::RC_SUCCESS , ’DATA_FIELD_CREATED ’, TRUE);

74 return true;

75 } else {

76 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_FIELD_ERROR ’, TRUE);

77 $databaseHandle ->rollback ();

78 return false;

79 }

80 } catch (Exception $exception) {

81 Log:: logException ($exception);

82 self:: responseError ($response , self::RC_FAILURE , ’ADDING_DATA_FIELD_FAILURE ’, TRUE);

83 $databaseHandle ->rollback ();

84 }

85 return false;

86 }

74

3.3 Repository Management

3.3.5 Accounting Data Layouts

In addition to the possibility to create additional data fields, the users also
have the possibility to define which accounting data fields are going to
appear in the user interface, and in which order. They can do that from the
accounting data layouts dashboard (Figure 3.11). This dashboard contains a
list of the currently available layouts, as well as their content. Additionally,
by clicking the ”NEW DATA LAYOUT” button, the users can create their
own custom layout.

Figure 3.11: Repository accounting data layouts dashboard

The accounting data layout creation is implemented by using a simple drag-
and-drop user interface (Figure 3.12). The left table contains all of the data
fields that are available, while the right table contains the data fields that are
going to be part of the new layout. The fields can be dragged and dropped

75

3 Implementation

both between tables, as well as within a single table in order to define the
order in which the fields will appear in the user interface. Once the user
has defined which fields should appear in the layout, and in which order,
they only need to enter a name for the new layout before saving it. If the
user wants to change the default layout for the repository, they only need to
click on it in the accounting data layouts dashboard.

Figure 3.12: Repository accounting data layout creation dialog

The new data layout is saved by performing a JSON-RPC request created
in the function LNAPP.xhr.addRepositoryDataLayout, while the server-side
logic is implemented within the function methodCreateRepositoryDataLayout

from the class RPCEndpointInterface (Listing 3.32).

Listing 3.32: Listing for the function methodCreateRepositoryDataLayout

1 protected static function methodCreateRepositoryDataLayout($params , &$response) {

76

3.3 Repository Management

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_EDIT_REPOSITORY_DATA_LAYOUTS ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $accountingDataLayouts = new AccountingDataLayouts (DatabaseAdapter :: getPDODatabaseHandle

());

9 $result = $accountingDataLayouts ->createAccountingDataLayout (Session :: getCloudRepositoryId

(), $params [self:: PARM_DATA_LAYOUT_NAME], $params [self:: PARM_DATA_LAYOUT]);

10 if (null == $result) {

11 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_LAYOUT_ERROR ’, TRUE);

12 return false;

13 }

14 self:: responseStatus ($response , self::RC_SUCCESS , ’DATA_LAYOUT_CREATED ’, TRUE);

15 return true;

16 } catch (Exception $exception) {

17 Log:: logException ($exception);

18 self:: responseError ($response , self:: RC_FAILURE , ’ADDING_DATA_LAYOUT_FAILURE ’, TRUE);

19 }

20 return false;

21 }

3.3.6 Parameter Tables

Parameter tables allow the user to create predefined key-value entries that
can be used as options for the accounting data field’s select HTML element
in the user interface. By using the parameter tables the user can define
allowed values for a certain data field, and by that reduce the possibility of
an incorrect input value. To associate an accounting data field with a certain
parameter table, the user must use the ”Parameter” data type and select the
wanted parameter table while creating a new data field in the repository
data field creation dialog (Figure 3.10).

The handling of the parameter tables is implemented in the PHP class
Parameters (Listing 3.33). When the parameter tables are loaded, the ap-
plication reads both application default parameter tables, as well as the
repository specific ones.

Listing 3.33: Listing for the class Parameters

1 class Parameters {

2

3 protected $tables_;

4

5 public function __construct($repositoryId = NULL) {

6 $this ->tables_ = array ();

7 if (null === $repositoryId) {

8 if (null !== Session :: getCloudRepositoryId ()) {

9 $repositoryId = Session :: getCloudRepositoryId ();

10 }

11 }

77

3 Implementation

12

13 $parametersDir = array_diff (scandir (Config ::get (’PARAMETERS_PATH ’)), array (

14 ’.htaccess ’,

15 ’..’,

16 ’.’

17));

18

19 $customParametersDir = null;

20 if (null !== $repositoryId && file_exists (Config ::get (’PARAMETERS_PATH ’) . ’custom_ ’ .

$repositoryId)) {

21 $customParametersDir = array_diff (scandir (Config ::get (’PARAMETERS_PATH ’) . ’custom_

’ . $repositoryId), array (

22 ’.htaccess ’,

23 ’..’,

24 ’.’

25));

26 }

27

28 foreach ($parametersDir as $file) {

29 $json = file_get_contents (Config ::get (’PARAMETERS_PATH ’) . DIRECTORY_SEPARATOR .

$file);

30 $table = json_decode ($json , true);

31 if (null !== $table) {

32 array_push ($this ->tables_ , $table);

33 }

34 }

35

36 if (null !== $customParametersDir) {

37 foreach ($customParametersDir as $file) {

38 $json = file_get_contents (Config ::get (’PARAMETERS_PATH ’) . ’custom_ ’ .

$repositoryId . DIRECTORY_SEPARATOR . $file);

39 $table = json_decode ($json , true);

40 if (null !== $table) {

41 array_push ($this ->tables_ , $table);

42 }

43 }

44 }

45 }

46

47 public function getTable($tableId) {

48 foreach ($this ->tables_ as $table) {

49 if ($tableId == $table [’id’]) {

50 return $table;

51 }

52 }

53 return null;

54 }

55

56 public function getTables () {

57 return $this ->tables_;

58 }

59 }

All parameter tables, as well as their content, are visible in the repository
parameter tables dashboard (Figure 3.13). From here, the user can click the
”NEW PARAMETER TABLE” to create a new, repository specific, parameter
table. Repository specific means that the table will only be available within
the currently connected repository. To create a parameter table that is
available globally, the JSON file containing the table must be manually
placed into the ”parameters” directory.

78

3.3 Repository Management

Figure 3.13: Repository parameter tables dashboard

To create a new custom parameter table, the user must enter the JSON
formatted content of the table in the parameter tables creation dialog (Figure
3.14). The table must contain attributes name, id, key data type, and a key-
value array table. The value of the attribute name represents the name of
the table that will be visible in the user interface, while the id is used
only internally within the application logic. The value of the attribute
key data type designates the data type of the table’s keys, while the values
must always be strings.

79

3 Implementation

Figure 3.14: Repository parameter tables creation dialog

The content of the new parameter table is uploaded by performing a JSON-
RPC request created in the function LNAPP.xhr.createParameterTable,
while the server-side request handling is implemented within the function
methodCreateRepositoryParameterTable in the class RPCEndpointInterface
(Listing 3.34).

Listing 3.34: Listing for the function methodCreateRepositoryParameterTable

1 protected static function methodCreateRepositoryParameterTable($params , &$response) {

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_EDIT_REPOSITORY_PARAMETERS ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $parameterTable = $params [self:: PARM_PARAMETER_TABLE];

9 $json = json_decode ($parameterTable);

10 if (null === $json) {

11 Log:: logError (json_last_error_msg () . ’: ’ . $parameterTable);

12 self:: responseError ($response , self:: RC_FAILURE , json_last_error_msg ());

13 return false;

14 }

80

3.4 Document and Accounting Data Management

15

16 if (Config ::get (’LABEL_NO_VALUE ’) === View:: getAccountingDataFieldDataTypeLabel ($json ->

key_data_type)) {

17 self:: responseError ($response , self:: RC_FAILURE , ’CREATING_PARM_TABLE_FAILURE ’, TRUE);

18 return false;

19 }

20

21 $path = Config ::get (’PARAMETERS_PATH ’) . ’custom_ ’ . Session :: getCloudRepositoryId ();

22 if (! is_dir ($path)) {

23 if (! @mkdir ($path , 0700, true)) {

24 $error = error_get_last ();

25 Log:: logError ("Coud not create directory " . $path . ": " . $error [’message ’]);

26 self:: responseError ($response , self:: RC_FAILURE , ’CREATING_PARM_TABLE_FAILURE ’, TRUE)

;

27 return false;

28 }

29

30 $htaccessFile = @fopen ($path . DIRECTORY_SEPARATOR . ’.htaccess ’, "w");

31 fwrite ($htaccessFile , ’Options -Indexes ’);

32 fclose ($htaccessFile);

33 }

34

35 $parameterTableFilePath = $path . DIRECTORY_SEPARATOR . $json ->id . ’.json’;

36 $parameterTableFile = @fopen ($parameterTableFilePath , "w");

37 fwrite ($parameterTableFile , $parameterTable);

38 fclose ($parameterTableFile);

39

40 self:: responseStatus ($response , self::RC_SUCCESS , ’PARAMETER_TABLE_CREATED ’, TRUE);

41 return true;

42 } catch (Exception $exception) {

43 Log:: logException ($exception);

44 self:: responseError ($response , self:: RC_FAILURE , ’CREATING_PARM_TABLE_FAILURE ’, TRUE);

45 }

46 return false;

47 }

3.4 Document and Accounting Data
Management

To start working with the repository, the user must use the navigation
bar in the upper right corner of the web application to navigate to the
repository page by clicking the ”REPOSITORY” entry. This will take them
to the repository page which allows them to manage the repositories’s
documents and the accounting data.

The repository page consist of four panels and the PDF document viewer
(Figure 3.15). On the left hand side of the application window is the repos-
itory browser panel. This panel allows the user to browse the contents of
the repository, and to manage the files and directories. In the middle of
the window is the document viewer which allows the user to view the
PDF documents without having to use an external program or a browser
plugin. The accounting data and the accounting records can be found on

81

3 Implementation

the right hand side of the application window in the accounting data panel
and the accounting records panel respectively. On the bottom, below these
two panels, is the comments panel that scrolls up when the user clicks on
it in order to save screen space when commenting system is not needed.
Hence, the document and accounting data management contains all of the
functionality needed to manage the content of a document repository, and
the accounting data. This chapter discusses some of it’s concepts, and also
shows some of the implementation aspects.

Figure 3.15: Repository page

3.4.1 Fetching the contents of a Document Repository

In order to be able to browse the contents of a document repository (i.e.
of the cloud storage), the users have the repository browser panel at their
disposal. The browser panel is always showing the content of the current
directory as a list of files and directories that are contained within this
directory. Additionally, a top entry labeled with two dots is added if the
current directory has a parent directory.

The client-side implementation of this functionality has already been intro-
duced in the chapter 2.1. The data that is sent to the client is generated in

82

3.4 Document and Accounting Data Management

the RPC endpoint by the function methodListRepositoryDirectory (Listing
3.35).

Listing 3.35: Listing for the function methodListRepositoryDirectory

1 protected static function methodListRepositoryDirectory($params , &$response) {

2 try {

3 $cloudService = CloudServiceFactory :: createCloudService (Session :: getCloudServiceId ());

4

5 $requestedPath = $params [self:: PARM_PATH];

6 if (Config ::get (’ROOT_PATH ’) == $requestedPath) {

7 if ($cloudService ->getRootPath () != $requestedPath) {

8 $requestedPath = $cloudService ->getRootPath ();

9 }

10 } else {

11 $requestedPath = base64_decode ($requestedPath);

12 }

13

14 Session :: setCloudRepositoryCurrentPath ($requestedPath);

15 $items = $cloudService ->listDirectory ($requestedPath);

16

17 $dirListing = array ();

18 foreach ($items as $item) {

19 $dirListing [] = array (

20 ’name’ => $item ->getName (),

21 ’path’ => $item ->getPath (),

22 ’size’ => $item ->getSize (),

23 ’modified ’ => $item ->getModified (),

24 ’is_dir ’ => $item ->isDir ()

25);

26 }

27

28 self:: addResponseMember ($response , self:: PARM_DIR_LISTING , json_encode ($dirListing));

29 self:: addResponseMember ($response , self:: PARM_BREADCRUMBS , View:: generateBreadcrumbs (

$requestedPath));

30 self:: addResponseMember ($response , self::PARM_PATH , base64_encode ($requestedPath));

31 self:: responseStatus ($response , self::RC_SUCCESS , ’DIRECTORY_LISTED ’, TRUE);

32 return true;

33 } catch (AccessTokenException $exception) {

34 Log:: logException ($exception);

35 self:: responseError ($response , self:: RC_INVALID_ACCESS_TOKEN , ’Invalid access token ’);

36 } catch (NetworkException $exception) {

37 Log:: logException ($exception);

38 self:: responseError ($response , self:: RC_FAILURE , ’NETWORK_ERROR ’, TRUE);

39 } catch (Exception $exception) {

40 Log:: logException ($exception);

41 self:: responseError ($response , self:: RC_FAILURE , ’LIST_DIRECTORY_FAILURE ’, TRUE);

42 }

43 return false;

44 }

Being that the directory listing functionality must be implemented for each
of the cloud storage services individually due to the fact that they all
provide their own interface, the function methodListRepositoryDirectory

must first create an instance of the appropriate class that implements the
CloudServiceInterface interface by using the class CloudServiceFactory,
and then call it’s listDirectory function.

The listing 3.36 shows the implementation of the listDirectory function
for the Google Drive service (class GoogleDriveCloudService), and how the

83

3 Implementation

cloud storage content is internally represented by using the CloudServiceFSItem
class.

Listing 3.36: Listing for the function listDirectory

1 public function listDirectory($path) {

2 try {

3 $contents = array ();

4 $client = $this ->getClient ();

5 if (false === $client) {

6 return $contents;

7 }

8

9 $googleDriveClient = new Google_Service_Drive ($client);

10

11 if ($path == $this ->getRootPath () && null == Session :: getCloudServiceParameterValue (’

GOOGLE_DRIVE_ROOT_ID ’)) {

12 Session :: setCloudServiceParameterValue (’GOOGLE_DRIVE_ROOT_ID ’, $path);

13 }

14

15 if ($path !== $this ->getRootPath ()) {

16 $params = array (

17 ’fields ’ => ’parents ’

18);

19 $file = $googleDriveClient ->files ->get ($path , $params);

20

21 if ($this ->getRootPath () == Session :: getCloudServiceParameterValue (’

GOOGLE_DRIVE_ROOT_ID ’)) {

22 Session :: setCloudServiceParameterValue (’GOOGLE_DRIVE_ROOT_ID ’, $file ->getParents ()

[0]);

23 } else {

24 if ($file ->getParents () [0] == Session :: getCloudServiceParameterValue (’

GOOGLE_DRIVE_ROOT_ID ’)) {

25 $contents [] = new CloudServiceFSItem (CloudServiceFSItem :: PARENT_DIRECTORY ,

base64_encode (’root’), true , ’-’, ’-’);

26 } else {

27 $contents [] = new CloudServiceFSItem (CloudServiceFSItem :: PARENT_DIRECTORY ,

base64_encode ($file ->getParents () [0]), true , ’-’, ’-’);

28 }

29 }

30 }

31

32 $params = array (

33 ’q’ => ’\’’ . $path . ’\’ in parents ’

34);

35 $results = $googleDriveClient ->files ->listFiles ($params);

36

37 if (count ($results ->getFiles ()) == 0) {

38 return $contents;

39 } else {

40 foreach ($results ->getFiles () as $item) {

41 $name = ’’;

42 $filePath = ’’;

43 $isDir = false;

44 $size = ’’;

45 $modified = ’’;

46

47 $name = htmlspecialchars ($item ->getName ());

48 $filePath = base64_encode ($item ->getId ());

49 if (’application/vnd.google -apps.folder ’ == $item ->getMimeType ()) {

50 $isDir = true;

51 }

52

53 $contents [] = new CloudServiceFSItem ($name , $filePath , $isDir , $size , $modified);

54 }

55 }

56

57 return $contents;

58 } catch (Exception $exception) {

59 throw new Exception ($exception ->getMessage ());

60 }

84

3.4 Document and Accounting Data Management

61 }

3.4.2 Directory Creation

New directories (i.e. folders) can be created by using the repository toolbar
which is located at the bottom of the repository browser panel. The toolbar
contains only two buttons, the ”NEW FOLDER” button and the ”UPLOAD”
button. In order to create a new directory within the current one, the user
only needs to provide the name for the new directory after clicking on the
”NEW FOLDER” button, and then confirm by clicking the ”OK” button
(Figure 3.16). The newly created directory will be immediately visible in the
repository browser panel, because the application automatically triggers a
repository listing if the directory creation was successful.

Figure 3.16: Directory creation dialog

This functionality is also implemented by creating an RPC request which
is handled by the RPC endpoint class RPCEndpointInterface. In this case
the RPC endpoint will create an instance of the appropriate class that

85

3 Implementation

implements the CloudServiceInterface interface, and then call the func-
tion createDirectory. The listing 3.37 shows the implementation of the
createDirectory function from the class GoogleDriveCloudService.

Listing 3.37: Listing for the function createDirectory

1 public function createDirectory($path , $directory) {

2 try {

3 $client = $this ->getClient ();

4 if (false === $client) {

5 return null;

6 }

7

8 $googleDriveClient = new Google_Service_Drive ($client);

9

10 $fileMetadata = new Google_Service_Drive_DriveFile (array (

11 ’name’ => $directory ,

12 ’parents ’ => array (

13 $path

14),

15 ’mimeType ’ => ’application/vnd.google -apps.folder ’

16));

17

18 $file = $googleDriveClient ->files ->create ($fileMetadata , array (

19 ’fields ’ => ’id’

20));

21 return $file ->getId ();

22 } catch (Exception $exception) {

23 Log:: logException ($exception);

24 return null;

25 }

26 }

3.4.3 Document Upload

Users can upload PDF documents by using the ”UPLOAD” button which
is located in the repository toolbar at the bottom of the repository browser
panel. After clicking the ”UPLOAD” button the file upload will appear
where the user can select one or more files to upload (Figure 3.17). After
selecting the files and clicking the ”UPLOAD” button, the files will be
uploaded to the current working directory, and if the file upload was
successful, the application will automatically refresh the directory content
in the repository browser.

86

3.4 Document and Accounting Data Management

Figure 3.17: File upload dialog

On the server-side, the request is once again handled by the RPC end-
point, this time by the function methodRepositoryUpload. This function
uses the $ FILES array to gather the information regarding the uploaded
files, and then calls the upload function from a class that implements the
CloudServiceInterface interface. The listing 3.38 shows the implementa-
tion of the upload function from the class GoogleDriveCloudService.

Listing 3.38: Listing for the function upload

1 public function upload($path , $filename , &$file , $localPath) {

2 try {

3 $client = $this ->getClient ();

4 if (false === $client) {

5 return false;

6 }

7

8 $googleDriveClient = new Google_Service_Drive ($client);

9

10 $fileMetadata = new Google_Service_Drive_DriveFile (array (

11 ’name’ => $filename ,

12 ’parents ’ => array (

13 $path

14)

15));

16 $content = stream_get_contents ($file);

17 $file = $googleDriveClient ->files ->create ($fileMetadata , array (

18 ’data’ => $content ,

19 ’mimeType ’ => ’application/pdf’,

20 ’uploadType ’ => ’multipart ’,

21 ’fields ’ => ’id’

22));

23 return true;

87

3 Implementation

24 } catch (Exception $exception) {

25 Log:: logException ($exception);

26 return false;

27 }

28 }

3.4.4 Viewing the Document

In order for user to be able to view the document, the document must be
downloaded first. The download process is started when the user selects a
document in the repository browser. First, the client sends an RPC request
which is handled by the RPC endpoint function methodRepositoryDownload.
The function saves the file path in the session variable and returns the
download link to the client. The client can then use the download link to
stream the content of the document into a temporary file which is displayed
in the document viewer (Listing 3.39).

Listing 3.39: Listing for the class FileDownloadStream

1 class FileDownloadStream {

2

3 public static function download () {

4 $auth = new Authentication ();

5 if (! $auth ->validateSession ()) {

6 exit ();

7 }

8

9 $path = ’’;

10 if (! isset ($_GET [’path’]) && null == Session :: getCloudRepositoryPath ()) {

11 exit ();

12 } else if (isset ($_GET [’path’])) {

13 $path = base64_decode ($_GET [’path’]);

14 } else if (null != Session :: getCloudRepositoryPath ()) {

15 $path = Session :: getCloudRepositoryPath ();

16 }

17

18 $cloudService = CloudServiceFactory :: createCloudService (Session :: getCloudServiceId ());

19 $file = tmpfile ();

20 if (! $file) {

21 $maxmemory = 20 * 1024 * 1024; // 20 Mb

22 $file = @fopen ("php:// temp/maxmemory:$maxmemory", ’r+b’);

23

24 if (! $file) {

25 Log:: logError (’FileDownloadStream: Temporary file creation failed! Temp directory is:

’ . sys_get_temp_dir ());

26 exit ();

27 }

28 }

29

30 list ($fileName , $mimeType) = $cloudService ->download ($path , $file);

31

32 if (null != $mimeType) {

33 header (’Pragma: public ’);

34 header (’Expires: 0’);

35 header (’Cache -Control: must -revalidate , post -check=0, pre -check=0’);

36 header (’Cache -Control: public ’);

37 header (’Content -Description: File Transfer ’);

88

3.4 Document and Accounting Data Management

38 header (’Content -Type: ’ . $mimeType);

39 header (’Content -Disposition:attachment; filename ="’ . $fileName . ’"’);

40 header (’Content -Transfer -Encoding: binary ’);

41 rewind ($file);

42 echo stream_get_contents ($file);

43 }

44 exit ();

45 }

46 }

Alongside the file download, which occurs when the user selects a document
in the repository browser, the web application also automatically reads
and displays the document related accounting data, accounting records
and comments. This occurs in the client-side function LNAPP.xhr.download

(Listing 3.40).

Listing 3.40: Listing for the function LNAPP.xhr.download

1 LNAPP.xhr.download = function (path , file) {

2 ’use strict ’;

3 if (null === path) {

4 return;

5 }

6

7 if (null === file) {

8 return;

9 }

10

11 var id = LNAPP.xhr.generateRPCRequestId (),

12 data = JSON.stringify ({

13 ’jsonrpc ’: LNAPP.JSON_RPC_VERSION ,

14 ’method ’: LNAPP.RPC_METHOD_REPOSITORY_DOWNLOAD ,

15 ’id’: id,

16 ’params ’: {’path’ : String(path), ’file_name ’ : String(file)}

17 });

18

19 $.ajax({

20 type: LNAPP.REQUEST_METHOD_POST ,

21 url: LNAPP.RPC_SERVER ,

22 data: data ,

23 success: function (data) {

24 try {

25 var response = JSON.parse(data),

26 message;

27 if (!LNAPP.xhr.validateRPCRequestId(id , response)) {

28 return;

29 }

30

31 message = LNAPP.xhr.checkRPCResponse(response);

32 if (null !== message) {

33 if (LNAPP.RC_INVALID_SESSION === message.code) {

34 window.location.href = LNAPP.PAGE_INDEX;

35 return;

36 }

37

38 if (LNAPP.RC_INVALID_ACCESS_TOKEN === message.code) {

39 window.location.href = LNAPP.PAGE_OVERVIEW + ’?token=false’;

40 return;

41 }

42

43 LNAPP.gui.actions.displayMessage(message.text);

44 return;

45 }

89

3 Implementation

46

47 if (response.hasOwnProperty(’result ’)) {

48 if (response.result.hasOwnProperty(’message ’) && ’AI1012 ’ === response.result.code) {

49 // Display the document

50 document.getElementById(’pdf -viewer ’).src = ’tools/pdfjs -1.4.20 - dist/web/viewer.html

?file=’ + response.result.download_url;

51

52 // Set document ID

53 $(’#document_id ’).val(response.result.document_id);

54

55 // Enable toolbar buttons

56 $(’.toolbar -button ’).css(’pointer -events ’, ’auto’);

57

58 // Display the document data

59 LNAPP.xhr.getAccountingData(response.result.document_id);

60 // Display accounting records

61 LNAPP.gui.actions.clearAccountingRecords ();

62 LNAPP.xhr.getAccountingRecords(response.result.document_id);

63 // Display Comments

64 LNAPP.gui.actions.clearComments ();

65 LNAPP.xhr.getComments(response.result.document_id);

66 } else {

67 LNAPP.gui.actions.displayMessage(response.result.message);

68 }

69 }

70 } catch (exception) {

71 LNAPP.gui.utils.logError(’app_ui.js [LNAPP.xhr.download]: ’ + exception.message);

72 }

73 },

74 beforeSend: function () {

75 LNAPP.gui.overlay.displayOverlay(LNAPP.ELEM_APP_CONTENT_OVERLAY);

76 LNAPP.gui.actions.displayBusy(LNAPP.ELEM_APP_BUSY);

77 },

78 complete: function () {

79 LNAPP.gui.overlay.hideOverlay(LNAPP.ELEM_APP_CONTENT_OVERLAY);

80 LNAPP.gui.actions.hideBusy(LNAPP.ELEM_APP_BUSY);

81 },

82 error: function () {

83 LNAPP.gui.actions.handleXHRError ();

84 }

85 });

86 };

3.4.5 Document and Directory Deletion

Documents or directories can be deleted by using the delete icon that
appears when the user hoovers the mouse cursor over the icon displayed on
the left side of the file or directory items in the the document viewer (Figure
3.18).

90

3.4 Document and Accounting Data Management

Figure 3.18: Directory deletion

Just as the upload, and the directory creation, the deletion functionality is
also implemented in the RPC endpoint. When a directory or a file are to
be deleted, the RPC endpoint creates an instance of the appropriate class
that implements the CloudServiceInterface interface, and then calls the
function delete. The listing 3.41 shows the implementation of the delete

function from the class GoogleDriveCloudService.

Listing 3.41: Listing for the function delete

1 public function delete($path) {

2 try {

3 $client = $this ->getClient ();

4 if (false === $client) {

5 return false;

6 }

7

8 $googleDriveClient = new Google_Service_Drive ($client);

9 $googleDriveClient ->files ->delete ($path);

10 return true;

11 } catch (Exception $exception) {

12 Log:: logException ($exception);

13 return false;

14 }

15 }

3.4.6 Editing the Accounting Data

When a document is selected in the the repository browser, the application
automatically reads the accounting data and displays it in the accounting
data panel. The displayed accounting data fields and the order in which
they are displayed will correspond to the default accounting data layout of
the current repository (Figure 3.20).

91

3 Implementation

Figure 3.19: Accounting data panel

The user can edit the data by entering the values in the available data
fields, and save the data by clicking the ”SAVE” menu item on the top
of the accounting data panel. When the accounting data is saved, the ap-
plication automatically also saves the current version of the accounting
data for the revision purposes. This functionality is implemented in the
methodSetAccountingData function of the RPC endpoint (Listing 3.42).

Listing 3.42: Listing for the function methodSetAccountingData

1 protected static function methodSetAccountingData($params , &$response) {

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_EDIT_ACCOUNTING_DATA ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $accountingDataModel = new AccountingData (DatabaseAdapter :: getPDODatabaseHandle ());

9 $result = $accountingDataModel ->setAccountingData (Session :: getCloudRepositoryId (),

$params [self:: PARM_DOCUMENT_ID], $params);

10 if (false === $result) {

11 self:: responseError ($response , self:: RC_FAILURE , ’SET_ACCOUNTING_DATA_ERROR ’, TRUE);

12 return false;

13 }

14

15 $acccountingData = $accountingDataModel ->getAccountingData (Session :: getCloudRepositoryId

(), $params [self:: PARM_DOCUMENT_ID]);

16 if (null === $result) {

17 self:: responseError ($response , self:: RC_FAILURE , ’SET_ACCOUNTING_DATA_ERROR ’, TRUE);

18 return false;

19 }

20

21 $accountingDataRevisionsModel = new AccountingDataRevisions (DatabaseAdapter ::

getPDODatabaseHandle ());

22 $result = $accountingDataRevisionsModel ->createAccountingDataRevision (Session ::

getCloudRepositoryId (), $acccountingData [’accounting_data_id ’], $params);

23 if (false === $result) {

24 self:: responseError ($response , self:: RC_FAILURE , ’SET_ACCOUNTING_DATA_ERROR ’, TRUE);

25 return false;

26 }

27

28 self:: responseStatus ($response , self::RC_SUCCESS , ’ACCOUNTING_DATA_SET ’, TRUE);

92

3.4 Document and Accounting Data Management

29 return true;

30 } catch (Exception $exception) {

31 Log:: logException ($exception);

32 self:: responseError ($response , self:: RC_FAILURE , ’SET_ACCOUNTING_DATA_FAILURE ’, TRUE);

33 }

34 return false;

35 }

3.4.7 Versioning of the Accounting Data

Each time when the accounting data is modified, the current version of the
data is saved for the revision purposes. This occurs automatically in the
background and requires no action from the user.

The versions of the accounting data are visible in the accounting data
revisions dialog that is available trough the ”VERSIONS” menu item on
the top of the accounting data panel (Figure 3.20). The information visible
in the accounting data panel includes the version id, accounting data id,
repository id, the id of the user that has edited the accounting data, time
and date when the data was edited, and the accounting data itself.

Figure 3.20: Accounting data revisions dialog

93

3 Implementation

As discussed in the chapter 3.4.6, the versioning of the accounting data is
an integral part of the accounting data editing process, and is not separately
implemented.

3.4.8 Creating the Accounting Records

The accounting records can be created in the accounting data records panel
on the right hand side of the application window by clicking on the ”ADD
RECORD” menu item on the top of the panel (Figure 3.21). When the menu
item is clicked the application will display the input field for the record date,
and three fields for the record data: credit or debit selector, the account field
and the amount field. In order to create two accounting records with the
same record date, a credit and a debit one, the user must click the ”ADD
RECORD” menu item twice. This will provide the user with the possibility
to enter two records before saving the data, and if the business transaction
affects even more accounts, the user can create additional records simply
by clicking on the ”ADD RECORD” menu item. When all the accounting
records are recorded, the user can save them by clicking on the ”SAVE”
menu item.

Figure 3.21: Accounting records panel

When the accounting records are saved on the client-side, the function
LNAPP.xhr.createAccountingRecord (Listing 3.43) is called. This function
collects all the accounting records data from the input fields and generates
an RPC request.

94

3.4 Document and Accounting Data Management

Listing 3.43: Listing for the function LNAPP.xhr.createAccountingRecord

1 LNAPP.xhr.createAccountingRecord = function () {

2 ’use strict ’;

3 var id = LNAPP.xhr.generateRPCRequestId (),

4 params = {},

5 records = [],

6 record = {},

7 index ,

8 data = {

9 ’jsonrpc ’: LNAPP.JSON_RPC_VERSION ,

10 ’method ’: LNAPP.RPC_METHOD_REPOSITORY_CREATE_ACCOUNTING_RECORD ,

11 ’id’: id

12 };

13

14 params.document_id = String($(’#document_id ’).val());

15 params.record_date = String($(’#record -date -0’).val());

16

17 for (index = 0; index < LNAPP.accountingRecordEntry_; index += 1) {

18 record.credit_debit = $(’#record -credit -debit -’ + index).val();

19 record.account = $(’#record -account -’ + index).val();

20 record.amount = $(’#record -amount -’ + index).val();

21 records.push(record);

22 record = {};

23 }

24

25 params.accounting_records = records;

26 data.params = params;

27 data = JSON.stringify(data);

28

29 $.ajax({

30 type: LNAPP.REQUEST_METHOD_POST ,

31 url: LNAPP.RPC_SERVER ,

32 data: data ,

33 success: function (data) {

34 try {

35 var response = JSON.parse(data),

36 message;

37 if (!LNAPP.xhr.validateRPCRequestId(id , response)) {

38 return;

39 }

40

41 message = LNAPP.xhr.checkRPCResponse(response);

42 if (null !== message) {

43 if (LNAPP.RC_INVALID_SESSION === message.code) {

44 window.location.href = LNAPP.PAGE_INDEX;

45 return;

46 }

47

48 if (LNAPP.RC_INVALID_ACCESS_TOKEN === message.code) {

49 window.location.href = LNAPP.PAGE_OVERVIEW + ’?token=false’;

50 return;

51 }

52

53 LNAPP.gui.actions.displayMessage(message.text);

54 return;

55 }

56

57 if (response.hasOwnProperty(’result ’)) {

58 if (response.result.hasOwnProperty(’message ’) && ’AI1024 ’ === response.result.code) {

59 LNAPP.gui.actions.displayFeedback(’SAVED’);

60 LNAPP.gui.actions.clearAccountingRecords ();

61 LNAPP.xhr.getAccountingRecords($(’#document_id ’).val());

62 } else {

63 LNAPP.gui.actions.displayMessage(response.result.message);

64 }

65 }

66 } catch (exception) {

67 LNAPP.gui.utils.logError(’app_ui.js [LNAPP.xhr.createAccountingRecord]: ’ + exception.

message);

68 }

69 },

70 error: function () {

71 LNAPP.gui.actions.handleXHRError ();

95

3 Implementation

72 }

73 });

74 };

On the server-side, the request is handled by the RPC endpoint’s function
methodCreateAccountingRecord which saves the accounting records in the
database (Listing 3.44).

Listing 3.44: Listing for the function methodCreateAccountingRecord

1 protected static function methodCreateAccountingRecord($params , &$response) {

2 try {

3 if (! Permissions :: userHasRepositoryPrivilege (’RP_EDIT_ACCOUNTING_DATA ’)) {

4 self:: responseError ($response , self:: RC_FAILURE , ’INSUFFICIENT_PRIVILEGES ’, TRUE);

5 return false;

6 }

7

8 $date = explode (’.’, $params [self:: PARM_RECORD_DATE]);

9 if (count ($date) === 3) {

10 $recordDate = $date [2] . ’-’ . $date [1] . ’-’ . $date [0];

11 } else {

12 self:: responseError ($response , self:: RC_FAILURE , ’SAVING_RECORDS_ERROR ’, TRUE);

13 return false;

14 }

15

16 $databaseHandle = DatabaseAdapter :: getPDODatabaseHandle ();

17 $databaseHandle ->beginTransaction ();

18 $accountingRecords = new AccountingRecords ($databaseHandle);

19

20 foreach ($params [self:: PARM_ACCOUNTING_RECORDS] as $record) {

21 $creditDebit = $record [’credit_debit ’];

22 $account = $record [’account ’];

23 $amount = $record [’amount ’];

24 $recordId = $accountingRecords ->createAccountingRecord ($params [self:: PARM_DOCUMENT_ID],

Session :: getCloudRepositoryId (), $recordDate , $creditDebit , $account , $amount);

25 if (null === $recordId) {

26 $databaseHandle ->rollback ();

27 self:: responseError ($response , self:: RC_FAILURE , ’SAVING_RECORDS_ERROR ’, TRUE);

28 return false;

29 }

30 }

31 $databaseHandle ->commit ();

32 self:: responseStatus ($response , self::RC_SUCCESS , ’RECORDS_SAVED ’, TRUE);

33 return true;

34 } catch (Exception $exception) {

35 Log:: logException ($exception);

36 self:: responseError ($response , self::RC_FAILURE , ’SAVING_RECORDS_FAILURE ’, TRUE);

37 }

38 return false;

39 }

3.4.9 Viewing the Books

As discussed in the chapter 1.4.1, the double-entry bookkeeping requires
that each business transaction must be listed twice, once in the journal,
which is chronologically sorted, and once in the general ledger, which is

96

3.4 Document and Accounting Data Management

systematically organized into accounts. Within the web application that is
developed within the scope of this thesis, the journal and the general ledger
can be found on the books page that is reachable trough the entry ”BOOKS”
in the application’s navigation bar (Figure 3.22).

Figure 3.22: General ledger on the books page

Both journal and the general ledger are generated with PHP within the
books page. The Listing 3.45 shows the implementation of the function
generateGeneralLedgerTable from the class View.

Listing 3.45: Listing for the function generateGeneralLedgerTable

1 public static function generateGeneralLedgerTable($repositoryId) {

2 $html = ’’;

3 $parameters = new Parameters ($repositoryId);

4 $accountsTable = $parameters ->getTable (’ACCOUNT ’);

5

6 $accountingRecordsModel = new AccountingRecords (DatabaseAdapter :: getPDODatabaseHandle ());

7 $accountingRecords = null;

8 $account = ’’;

9 foreach ($accountsTable [’table ’] as $key => $value) {

10 $accountingRecords = $accountingRecordsModel ->getGeneralLedgerAccountingRecords ($key ,

Session :: getCloudRepositoryId ());

11 $account = $key . ’ ’ . $value;

12

13 if (null !== $accountingRecords) {

14 $html .= ’<div class ="data -table -header" style="text -align: left;">’ . $account . ’</div >’

;

15 $html .= ’<table class="data -table" style=" margin -bottom: 20px;" cellspacing ="0px"

cellpadding ="0px">’;

97

3 Implementation

16 $html .= ’<tbody >’;

17 $html .= ’<tr class=" header">’;

18 $html .= ’<td>Date </td>’;

19 $html .= ’<td>Document ID </td >’;

20 $html .= ’<td>Text </td>’;

21 $html .= ’<td>Credit </td>’;

22 $html .= ’<td>Debit </td>’;

23 $html .= ’</tr>’;

24

25 foreach ($accountingRecords as $accountingRecord) {

26 $html .= ’<tr class="data -row selectable">’;

27 $html .= ’<td>’ . $accountingRecord ->date . ’</td >’;

28 $html .= ’<td>’ . $accountingRecord ->data_1 . ’</td>’;

29 $html .= ’<td>’ . $accountingRecord ->data_2 . ’</td>’;

30 if (0 == $accountingRecord ->credit_debit) {

31 $html .= ’<td>’ . $accountingRecord ->amount . ’</td>’;

32 } else {

33 $html .= ’<td > </td>’;

34 }

35

36 if (1 == $accountingRecord ->credit_debit) {

37 $html .= ’<td>’ . $accountingRecord ->amount . ’</td>’;

38 } else {

39 $html .= ’<td > </td>’;

40 }

41 $html .= ’</tr>’;

42 }

43

44 $html .= ’</tbody >’;

45 $html .= ’</table >’;

46 $html .= ’</br>’;

47

48 }

49 }

50

51 return $html;

52 }

3.4.10 Using the Comment System

The commenting system allows the user to leave a document related com-
ment that is visible to all other repository users. Comments can be entered
in the comments panel which is initially hidden, and must be clicked on
in order to scroll up into the view (Figure 3.23). The system is kept very
simple, so all of the comments are shown in the order in which they were
entered.

98

3.4 Document and Accounting Data Management

Figure 3.23: Comments panel

When posting a comment, an RPC request is sent to the RPC server and
handled in the function methodPostComment (Listing 3.46) from the RPC
endpoint class RPCEndpointInterface.

Listing 3.46: Listing for the function methodPostComment

1 protected static function methodPostComment($params , &$response) {

2 try {

3

4 $commentsModel = new Comments(DatabaseAdapter :: getPDODatabaseHandle ());

5 if (null === $commentsModel ->createComment (Session :: getCloudRepositoryId (), $params [self

:: PARM_DOCUMENT_ID], Session :: getUserId (), strip_tags ($params [self:: PARM_COMMENT])))

{

6 self:: responseError ($response , self:: RC_FAILURE , ’CREATING_COMMENT_ERROR ’, TRUE);

7 return false;

8 }

9

10 $comments = $commentsModel ->getComments (Session :: getCloudRepositoryId (), $params [self::

PARM_DOCUMENT_ID]);

11 $commentsArray = array ();

12 if (null !== $comments) {

13 foreach ($comments as $comment) {

14 $record [self:: PARM_COMMENT_ID] = $comment ->comment_id;

15 $record [self:: PARM_FIRST_NAME] = $comment ->first_name;

16 $record [self:: PARM_LAST_NAME] = $comment ->last_name;

17 $record [self:: PARM_COMMENT] = $comment ->comment_text;

18 $commentsArray [] = $record;

19 }

20 }

21

22 self:: addResponseMember ($response , self:: PARM_COMMENTS , json_encode ($commentsArray));

23 self:: responseStatus ($response , self::RC_SUCCESS , ’COMMENT_CREATED ’, TRUE);

24 return true;

25 } catch (Exception $exception) {

26 Log:: logException ($exception);

27 self:: responseError ($response , self:: RC_FAILURE , ’CREATING_COMMENT_FAILURE ’, TRUE);

28 }

29 return false;

30 }

99

3 Implementation

3.5 Settings

This section gives a short overview of the user settings available in the web
application, the user, repository and authorization management interfaces,
as well as the application log.

3.5.1 General Settings

The user can navigate to the settings page by using the ”SETTINGS” item
from the navigation bar in the top right corner of the application screen.
The first settings available to the user are the general settings, which contain
the user specific application settings (Figure 3.24). The number of settings
can be expanded, but by default, the only user setting available is the
repository layout setting that allows the user to select between two different
panel layouts on the repository page. The horizontal layout, which is the
default one, will position the repository browser on the left hand side of the
application window, and the accounting data and accounting records panels
on the right hand side, while keeping the document viewer in the middle.
The vertical layout, on the other hand, will position all of the panels below
the document viewer allowing the document viewer to stretch horizontally
across the screen. This option can be beneficial when working with wide
format documents.

Figure 3.24: User settings

100

3.5 Settings

3.5.2 User, Repository and Authorization Overview

For the application administrators, the user interface offers three overview
panels which are kept very simple. The user overview panel contains the
list of all application users (Figure 3.25). When a user is selected, the
application automatically displays the user log and the user requests log.
This information can be helpful when, for instance, analyzing why a specific
user has no application access.

Figure 3.25: User overview

Additionally, the application offers the repository and authorization overview
panels. The repository overview contains the list of all repositories, while
the authorization overview contains the list of all the repository user autho-
rizations.

3.5.3 Application Log

The application log panel contains the list of all the application log files
(Figure 3.26). An individual application log file can be viewed by selecting

101

3 Implementation

an appropriate entry from the list. The log files contain both client-side and
server-side errors.

Figure 3.26: Application log

102

4 Conclusion

In this thesis, the possible usage of the cloud storage services and the
SaaS delivery model for the bookkeeping or accounting applications was
researched. For this purpose, the business requirements were analyzed and
the necessary functionality implemented in a web application by using the
cloud service APIs and JSON-RPC web services. The process of integrat-
ing a cloud storage service in the web application has proven to be very
straightforward, due to the fact that the APIs of the cloud storage services
considered in this thesis are very well documented, and that all of the ser-
vice providers offer API libraries for a variety of programming languages.
The goal of this thesis was not to implement a complete bookkeeping ap-
plication, but the mapping of the basic business requirements to the web
service functionality was very intuitive. Additionally, the SaaS has proven
to be an ideal delivery model for this kind of application, because it offers
the possibility of implementing a multi-tenant architecture and supports
the collaborative functionality that was needed.

103

Bibliography

Aaron Parecki (2019). OAuth 2.0. url: https://oauth.net/2/ (visited on
03/14/2019) (cit. on p. 31).

Achour, Mehdi, Friedhelm Betz, Antony Dovgal, et al. (2017). PHP Manual.
url: http://php.net/manual/en/index.php (visited on 01/17/2017)
(cit. on pp. 7, 51).

Balasubramanian, V and Alf Bashian (1998). “Document management and
Web technologies: Alice marries the Mad Hatter.” In: Communications of
the ACM 41.7, pp. 107–115 (cit. on p. 3).

Barton, Thomas (2014). E-Business mit Cloud Computing [in German]. Springer
Fachmedien Wiesbaden (cit. on pp. 8, 9).

Bauer, Ulrich (2017). Externe Unternehmungsrechnung/Buchhaltung und Bi-
lanzierung [in German]. Skriptenprojekt Hochschülerschaft an der TU
Graz GmbH (cit. on pp. 13, 17, 19, 20).

Bos, Bert (2016). Cascading Style Sheets Level 2 Revision 2 (CSS 2.2) Specification.
url: https://www.w3.org/TR/CSS22/css2.pdf (visited on 01/21/2017)
(cit. on p. 5).

Bragg, Steven M. (2011). Bookkeeping Essentials. John Wiley & Sons (cit. on
p. 1).

Brooks, Chad (2004). Document Management Systems: A Buyer’s Guide. url:
http://www.businessnewsdaily.com/8026-choosing-a-document-

management-system.html (visited on 03/27/2017) (cit. on p. 3).
Bundesministerium für Finanzen (2017a). Elektronische Rechnung - Überblick

über die Änderungen durch das Abgabenänderungsgesetz 2012 [in German].
url: https://www.bmf.gv.at/steuern/selbststaendige-unternehmer/
umsatzsteuer/elektronische-rechnung_abgaeg2012.html (visited on
02/27/2017) (cit. on p. 2).

Bundesministerium für Finanzen (2017b). e-Rechnung Rechtliche Grundlagen
[in German]. url: https://www.erechnung.gv.at/erb?p=info_jur
(visited on 02/27/2017) (cit. on p. 2).

105

https://oauth.net/2/
http://php.net/manual/en/index.php
https://www.w3.org/TR/CSS22/css2.pdf
http://www.businessnewsdaily.com/8026-choosing-a-document-management-system.html
http://www.businessnewsdaily.com/8026-choosing-a-document-management-system.html
https://www.bmf.gv.at/steuern/selbststaendige-unternehmer/umsatzsteuer/elektronische-rechnung_abgaeg2012.html
https://www.bmf.gv.at/steuern/selbststaendige-unternehmer/umsatzsteuer/elektronische-rechnung_abgaeg2012.html
https://www.erechnung.gv.at/erb?p=info_jur

Bibliography

Chao, Kuo-Ming (2016). “E-services in e-business engineering.” In: Electronic
Commerce Research and Applications 16, pp. 77–81. url: http://www.
sciencedirect.com/science/article/pii/S1567422315000769 (cit.
on p. 1).

Chong, Frederick, Gianpaolo Carraro, and Roger Wolter (2017). Multi-Tenant
Data Architecture. url: https://msdn.microsoft.com/en-us/library/
aa479086.aspx (visited on 04/03/2017) (cit. on p. 37).

Dropbox Inc. (2017a). Dropbox. url: https://www.dropbox.com/ (visited on
05/01/2017) (cit. on p. 10).

Dropbox Inc. (2017b). Dropbox Developers. url: https://www.dropbox.com/
developers (visited on 05/01/2017) (cit. on p. 10).

Faulkner, Steve et al. (2016). HTML 5.1 W3C Recommendation. url: https:
//www.w3.org/TR/html/ (visited on 01/22/2017) (cit. on p. 5).

Fielding, Roy and Julian Reschke (2014). Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. url: https://tools.ietf.org/html/
rfc7230 (visited on 03/18/2017) (cit. on p. 4).

Flanagan, David (2011). JavaScript: The Definitive Guide. 6th Edition. O’Reilly
Media, Inc. (cit. on p. 6).

Ginsburg, Mark (2000). “Intranet document management systems as knowl-
edge ecologies.” In: Proceedings of the 33rd Hawaii International Conference
on System Sciences (cit. on p. 3).

Goodman, Danny (2006). Dynamic HTML: The Definitive Reference. 3rd Edi-
tion. O’Reilly Media, Inc. (cit. on p. 6).

Google (2017a). Google API Client Libraries. url: https : / / developers .

google.com/api- client- library/ (visited on 05/02/2017) (cit. on
p. 12).

Google (2017b). Google Drive. url: https://www.google.com/drive/ (visited
on 05/02/2017) (cit. on p. 11).

Jacobs, Ian and Norman Walsh (2004). Architecture of the World Wide Web, Vol-
ume One. url: https://www.w3.org/TR/webarch (visited on 03/20/2017)
(cit. on p. 4).

JSON-RPC Working Group (2013). JSON-RPC 2.0 Specification. url: https:
//www.jsonrpc.org/specification (visited on 03/03/2019) (cit. on
p. 29).

Microsoft (2017a). Microsoft OneDrive. url: https://onedrive.live.com/
about/en-us/ (visited on 05/03/2017) (cit. on p. 12).

106

http://www.sciencedirect.com/science/article/pii/S1567422315000769
http://www.sciencedirect.com/science/article/pii/S1567422315000769
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://msdn.microsoft.com/en-us/library/aa479086.aspx
https://www.dropbox.com/
https://www.dropbox.com/developers
https://www.dropbox.com/developers
https://www.w3.org/TR/html/
https://www.w3.org/TR/html/
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://www.google.com/drive/
https://www.w3.org/TR/webarch
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://onedrive.live.com/about/en-us/
https://onedrive.live.com/about/en-us/

Bibliography

Microsoft (2017b). OneDrive API. url: https://dev.onedrive.com/ (visited
on 05/03/2017) (cit. on p. 13).

Oracle Corporation and/or its affiliates (2017a). MySQL 5.7 Reference Manual.
url: https://dev.mysql.com/doc/refman/5.7/en/introduction.html
(visited on 04/08/2017) (cit. on p. 39).

Oracle Corporation and/or its affiliates (2017b). MySQL 5.7 Reference Manual.
url: https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.
html (visited on 04/20/2017) (cit. on p. 50).

Oracle Corporation and/or its affiliates (2017c). MySQL Glossary. url: https:
//dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_schema

(visited on 04/03/2017) (cit. on p. 37).
Powers, Shelley (2007). Adding Ajax. O’Reilly Media, Inc. (cit. on p. 8).
Quinn, Martin (2010). Brilliant Book-keeping. Pearson Business (cit. on p. 1).
Tatroe, Kevin, Peter MacIntyre, and Rasmus Lerdorf (2013). Programming

PHP. 3rd Edition. O’Reilly Media, Inc. (cit. on p. 7).
W3C (2017a). Help and FAQ. url: https://www.w3.org/Help/#webinternet

(visited on 03/20/2017) (cit. on p. 4).
W3C (2017b). HTML & CSS. url: https : / / www . w3 . org / standards /

webdesign/htmlcss (visited on 01/20/2017) (cit. on pp. 5, 6).
W3C (2017c). JavaScript Web APIs. url: https://www.w3.org/standards/

webdesign/script (visited on 01/18/2017) (cit. on p. 6).

107

https://dev.onedrive.com/
https://dev.mysql.com/doc/refman/5.7/en/introduction.html
https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html
https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_schema
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_schema
https://www.w3.org/Help/#webinternet
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/script
https://www.w3.org/standards/webdesign/script

