
Markus Kammerhofer, BSc.

Enabling Project Success in a Very Small
Web Company

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Franz Wotawa

Co-Supervisor

Dipl-Ing. Dr.techn. Bernhard Peischl

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, May 2019

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. The text
document uploaded to tugrazonline is identical to the present master‘s thesis.

Date Signature

iii

Abstract

Very small software companies have a significant economic impact. As these
companies are most often cash flow driven, project success is vital for them. In
the context of small, medium and large enterprises, software process improvement
is already proved to enable project success. Unfortunately, very small companies
differ even from small companies decisively. Therefore the common belief of very
small companies that software process improvement initiatives cause an unafford-
able overhead is yet not empirically negated. This work aims to prove the opposite
by conducting an empirical action study to a very small web company in Austria.
Over 14 months two iterations of the Quality Improvement Plan — an iterative
light-weight software process improvement framework — were executed. In each
iteration, goals were defined and quantitatively evaluated by using a customized
quality model, which was iteratively developed by using the Goal Question Metric
approach. After analyzing a project, appropriate corrective actions were chosen
and applied to the subsequent project. Ultimately the impact of these actions was
evaluated quantitatively by the quality model. With this methodology, systematic
requirements engineering and modern code reviews were integrated into the devel-
opment process in the first iteration, and continuous delivery was integrated in the
second iteration. The results show that software process improvement initiatives
do not need unaffordable overhead. By conducting the light-weight initiative along
with the three corrective actions, the projects stuck to budget and time constraints
more accurately. In addition to that, the number of failures found by customers, and
the lead and cycle times decreased significantly. Furthermore, a vast improvement
of the quality of the code bases could be achieved.

v

Abstract

Kleinstunternehmen haben einen starken Einfluss auf die Wirtschaft. Nachdem
diese Unternehmen zumeist stark von ihrem Cashflow abhängig sind, ist der Erfolg
von Projekten überlebenswichtig. Für kleine, mittlere und große Unternehmen
wurde bereits gezeigt, dass Prozessverbesserungsinitiativen einen positiven Ein-
fluss auf den Projekterfolg haben. Kleinstunternehmen unterscheiden sich je-
doch sogar von Kleinunternehmen sehr stark. Die Befürchtung, dass diese Ini-
tiativen für Kleinstunternehmen einen unleistbaren Mehraufwand bedeuten, kon-
nte bisher noch nicht ausgeräumt werden. Das Ziel dieser Arbeit ist es mittels
einer empirischen Studie in einem österreichischen Kleinstunternehmen aus dem
Webentwicklungsbereich, das Gegenteil zu beweisen. Über einen Zeitraum von 14
Monaten wurden zwei Iterationen des Quality Improvement Plan’s — ein itera-
tives und schlankes Prozessverbesserungsframework — durchgeführt und aktiv
begleitet. In jeder Iteration wurden Ziele definiert, deren Erreichen dann auch quan-
titativ mittels eines Qualitätsmodells überprüft wurden. Dieses Qualitätsmodell
wurde iterativ mit dem Goal-Question-Metric-Ansatz erstellt. Nach der Anal-
yse jedes Projekts wurde der Prozess angepasst. Letztendlich wurden die Wirk-
samkeit der Änderungen und das Erreichen der Ziele der darauffolgenden Projekte
mit dem Qualitätsmodell festgestellt. Auf diese Weise wurden eine systematis-
che Anforderungsentwicklung, moderne Code Reviews und Continuous Delivery
Schritt für Schritt in den Entwicklungsprozess integriert. Die Ergebnisse zeigen,
dass Verbesserungsinitiativen selbst für Kleinstunternehmen keinen unleistbaren
Mehraufwand bedeuten. Die Mehrkosten wurden durch die folglich finanziell erfol-
greicheren Projekte abgedeckt. Neben der besseren Einhaltung von Zeit- und Bud-
getzielen wurden auch wesentlich weniger Fehler von Kunden gefunden. Darüber
hinaus wurden die Durchlaufzeiten und die Codequalität stark verbessert.

vii

Contents

1 Introduction 1

2 Description of Problem and Solution Approach 5
2.1 Description of Investigated Company 5

2.1.1 Manpower Analysis . 5
2.1.2 Analysis of Process and Structure 8
2.1.3 Drawbacks . 12

2.2 Elaboration of Approach to enable Project Success 14
2.2.1 Project, Project Management and Project Success 14
2.2.2 Enabling Project Success 17
2.2.3 Software Process Improvement 18

2.3 Approach . 20
2.3.1 SPI Frameworks and Properties 21
2.3.2 Situation in Very Small Enterprises 31
2.3.3 Selection . 33

3 Implementation 37
3.1 Iteration 1 . 37

3.1.1 Description of Project A 38
3.1.2 Observations of Project A 38
3.1.3 Define Goals . 41
3.1.4 Initialize GQM-Model 43
3.1.5 Quantify Observations of Project A 52
3.1.6 Description of Project B 58
3.1.7 Corrective Actions . 58
3.1.8 Analyze Impact on Project B 64

3.2 Iteration 2 . 71
3.2.1 Observations of Project B 72
3.2.2 Define Goals . 74

ix

Contents

3.2.3 Extend GQM-Model . 74
3.2.4 Quantify Observations of Project B 79
3.2.5 Description of Project C 85
3.2.6 Corrective Actions . 86
3.2.7 Analyze Impact on Project C 91

4 Related Work 105
4.1 Classification Framework . 105
4.2 Inclusions and Exclusions . 107
4.3 Publications . 108

5 Conclusions 115
5.1 Recap . 115
5.2 Discussion of SPI Approach . 118
5.3 Discussion of Applied Practices and Threats to Validity 120

Bibliography 123

x

List of Figures

2.1 Number of employees . 6
2.2 Average hours worked . 7
2.3 Total hours worked . 8
2.4 Team structure in the beginning. Different sizes of software engi-

neers related to different amount of working-hours per week. . . . 9
2.5 Current team structure. Different sizes of software engineers re-

lated to different amount of working-hours per week. 11
2.6 The Iron Triangle [4] . 15
2.7 Categorization of CSFs [20] . 19
2.8 Improvement goals [77] . 20
2.9 Types of progression . 23
2.10 The IDEAL model [56] . 24
2.11 CMMI v1.3 [32] . 28
2.12 Relationship of ISO 15503, ISO 12207 and ISO 9001 [32] 30
2.13 GQM Approach [82] . 32
2.14 Quality Improvement Plan [82] 34

3.1 Dependencies of observations 42
3.2 Project A: Effort distribution . 54
3.3 Project A: Distribution of lines of code on files (7185 total lines of

code distributed on 43 files) . 55
3.4 Project A: Distribution of cyclomatic complexity on files (Total

complexity of 1690 distributed on 43 files) 55
3.5 Project risk framework [45] . 60
3.6 Elaborated process . 63
3.7 Project duration . 65
3.8 Project effort . 65
3.9 Project B: Additional effort and effort distribution 65
3.10 Project A: Effort distribution . 66

xi

List of Figures

3.11 Project B: Effort distribution . 66
3.12 Tree map of lines of code of projects A and B 70
3.13 Tree map of cyclomatic complexity of projects A and B 71
3.14 Lead and cycle times of project B 83
3.15 Project A: Effort distribution until due day 85
3.16 Project B: Effort distribution until due day 85
3.17 Process adjustments for iteration 2 (Changes presented in black) . 90
3.18 Tree map of lines of code of projects A, B and C 94
3.19 Tree map of cyclomatic complexity of projects A, B, and C 95
3.20 Lead and cycle times of projects B and C 99

4.1 Classification framework . 106

xii

List of Tables

2.1 Square route for understanding success criteria [4] 17

3.1 Observations of project A . 41
3.2 G1 prevent scope creep: Measurement results project A 53
3.3 G2 deliver maintainable code: Measurement results project A . . . 57
3.4 G1 prevent scope creep: Measurement results project A vs. project B 67
3.5 G2 deliver maintainable code: Measurement results project A vs.

project B . 69
3.6 Observations of project B . 74
3.7 G3 achieve a schedule estimation accuracy of 1: Results of projects

A and B . 80
3.8 G1 prevent scope creep: Measurement results of projects A, B and C 93
3.9 G2 deliver maintainable code: Measurement results of projects A,

B and C . 97
3.10 G3 achieve a schedule estimation accuracy of 1: Results of projects

A, B and C . 100

xiii

1 Introduction

This thesis deals with enabling project success in very small enterprises by con-
ducting a light-weight software process improvement initiative to a very small
web development company in Austria. In the process, a quality model is generated
iteratively, and three common software development practices are established one
by another. Finally, most importantly the success of the established practices and
the overall software process improvement initiative is quantitatively determined.

The software industry is still one of the fastest growing worldwide. It contributes
2.9 million jobs in the United States and 3.6 million in the European Union in
2016. These figures grew by 14.6 respectively 16.5 percent since 2014 [2][1]. In
Austria 5,089 software development companies employ 27,320 including 5,030
self-employed people in 2016. Ninety percent of these companies are very small
enterprises with less than ten employees. Another eight and two-tenths percent are
small-sized enterprises with 10 to 49 employees. The remainder is spread among
medium and large-sized enterprises [5]. These figures are similar to many other
countries like the United States, Brazil, Canada, China, India, Finland, Ireland, and
Hungary [41]. As one will recognize, these very small companies have a big impact
on the economy. In contrast to their large counterparts, small and medium-sized
enterprises are most often cash flow driven. Project success is therefore critical to
stay competitive and ultimately, to survive [49].

Project success is defined by the iron triangle regarding adherence to budget
and time constraints, and delivering an appropriate quality. The quality of a created
product has to be verified and validated. It has to be ensured that the delivered
product sticks to a specification, the so-called verification, and it has to be validated
that the specification and therefore the product serves the intended purpose. Soft-
ware development companies operating in the service sector have to focus more
on verification because the customer often determines the requirements. Therefore
the customer carries the ultimate responsibility, and the development company can

1

1 Introduction

only serve as an advisor. In addition to these fundamental success factors, organi-
zational and stakeholder benefits can be considered [4]. Whereas time, cost and
quality can be determined at the day of acceptance, organizational and stakeholder
benefits can only be evaluated in the post-acceptance phase. Project success can be
achieved in many ways, e.g., by improving a team’s capability or by improving
the processes. A business process consists of defined and structured interrelated
tasks that are performed in a specific order to produce a service or a product for
customers. These processes occur on all levels of an organization [72]. Most of the
literature especially regarding software process improvement was related to large
companies. At the beginning of the new millennium research recognized the need
for investigation in that direction. This was followed by a high interest in that topic
for many years then. However, also these publications were mainly related to small
and medium-sized enterprises. This is a problem as Christian Hofer already found
that very small companies with less than 10 employees have significant differences
to companies with 10 to 50 employees [36]. Also, the agile movement is not fully
applicable to very small companies, even if the combination of agility and software
process improvement gained interest since 2008 [47]. On the one hand, it is not
fully applicable because most of the contracts of very small companies include
a fixed price. On the other hand, the average team size is between one and two
and a half members [76]. Agile methodologies need larger teams, e.g., Scrum
recommends teams consisting of five to six developers. As one can see, research
regarding project success in very small companies is most often omitted.

Von Wangenheim and Richardson state that people often believe that good practices
and solutions are expensive, time-consuming, and targeted toward large organiza-
tions, and therefore difficult to apply in small companies [41]. However, research
already showed that software process improvement in small and medium-sized
companies does not introduce unacceptable overhead [91][48][59]. However, there
is still too little evidence, that it is also profitable for very small companies. There-
fore the goal of this work is to provide evidence by conducting an action study
in a very small company. To accomplish this goal, it was only concentrated on
the most promising process areas during this research. It was also important to
evaluate the success of such process improvements. This was achieved by creating
a customized quality model using the Goal Question Metric approach iteratively.
Therefore a standardized assessment was not used to avoid unnecessary overhead.
It is expected, that focusing on the process areas, which cause the most severe
problems will improve the project success significantly, according to the Pareto

2

principle. Also due to the fact, that project success is quantitatively determined for
the first time, a more conscious and better decision making is expected. The whole
company should, therefore, be better steerable than before.

In chapter 2 the investigated company is described in detail. In addition to that,
different ways to enable project success are presented, and one concrete approach
is chosen to be used in this context. In chapter 3 the implementation of the iterative
software process improvement initiative and its results are described. Two concrete
iterations over 14 months including three projects were therefore accompanied.
The whole process of observing the most important areas to improve, up to the
selection of the corrective actions, and the analysis of their impact, is described
comprehensively. In chapter 4 related work is presented. Finally, this thesis is
concluded and discussed in chapter 5.

3

2 Description of Problem and
Solution Approach

This chapter will explain the methodology and its derivation in detail. At first,
a description of the investigated company is provided. Subsequently, software
process improvement as the topic of interest is chosen. The choice was made by
having a look on project success and the project success factors. At last a concrete
approach is presented.

2.1 Description of Investigated Company

This section provides a comprehensive description of the current status of the
company and how it evolved. For analyzing the company’s organizational structure,
an analysis of the workforce over time is provided. This analysis shows how fast
and in which way the company grew. After that, the evolution of the company’s
organizational structure over time is reproduced. This creates a link to workforce
analysis. In the end, the drawbacks of the current situation are carved out.

2.1.1 Manpower Analysis

Three different metrics were chosen to describe the growth and the evolution of
the company,

• Total hours worked per month
• Average hours worked per month
• Number of employees per month

5

2 Description of Problem and Solution Approach

The total hours worked per month show the growth of the company. Whereas the
average hours worked and the number of employees per month, give more insights
about the structural change over time.

Number of employees

At the beginning of the company there was only one individual developer, who
founded the company. When the workload got too big, the founder was looking for
support by an employee. This procedure was repeated many times. As the effort for
managing more employees is more likely to be exponential than linear, recruiting
more people over and over again, was not the answer in the long run. Therefore
the curve of the number of employees by time flattened out as figure 2.1 illustrates.
A process started where the average time worked by the employees increased.

Figure 2.1: Number of employees

6

2.1 Description of Investigated Company

Average hours worked

The employed software engineers consisted entirely of part-time students. The
reason for that is the founders need of low salary, flexibility and therefore part-
time employment because he was not able to guarantee a full-time job. This
scheme perfectly fits the needs of students. As already shown, employing more
and more students to overcome the workload stopped scaling at one point in time.
Increasing the number of employees was not paying off anymore, because the
effort of recruiting and integrating new employees was high. Caused by the bigger
size of the company and a stable order situation, some full-time developers were
acquired, and already employed students increased their amount of work per week
continually. Therefore the average hours worked per week increased linearly over
time as seen in figure 2.2. The variations of those numbers are caused by the
varying effort for the students at the university. The impact of this measurement
and the number of employees on the total performed hours within the company is
shown and discussed in the following section.

Figure 2.2: Average hours worked

7

2 Description of Problem and Solution Approach

Total hours worked

The consequence of more people working more hours on average led to an expo-
nential growth of the company as shown in figure 2.3. In section 2.1.2 the needed
and applied adjustments in the company’s organizational structure can be found.
Of course this exponential growth caused some kind of chaos, further described in
the section drawbacks. The aim of this thesis is to respond to these negative side
effects, which are common in small enterprises [41][68].

Figure 2.3: Total hours worked

2.1.2 Analysis of Process and Structure

As described in section 2.1.1, the response to the increasing amount of workload
was employing new software engineers at first and then increasing their average
amount of working hours per week. This growth caused the necessity of adjust-
ments in the organizational structure of the company. The initial approach after
acquiring some new employees was a star structure as shown in figure 2.4.

8

2.1 Description of Investigated Company

Figure 2.4: Team structure in the beginning. Different sizes of software engineers related to different
amount of working-hours per week.

9

2 Description of Problem and Solution Approach

In the middle of the figure, the founder is positioned. He only delegated develop-
ment tasks to part-time software engineers. So there were a lot of responsibilities
left:

• Executive responsibility in his role as CEO

– customer acquisition
– human resources

• Technical responsibility in his role as CTO

– defining and maintaining a software engineering process
– keeping track of the technical portfolio
– keeping track of code quality
– maintaining technical infrastructure

• Finances in his role as CFO
• Realisation of projects in his role as the project manager

– Assign software engineers to projects and tasks and take care of re-
sources

– Customer support
– Creating offers including requirement engineering and time estimation
– Set up milestones and deadlines

These responsibilities are far too much. In the beginning, this amount of responsi-
bilities was only manageable, because the number of employees was lower. The
approach to handle this number of responsibilities was to employ a project man-
ager because this responsibility was the easiest to delegate. The integration of the
project manager is shown in figure 2.5. The crucial step was handing over the
customer after acquisition to the project manager. Therefore the project manager
was involved in meetings with customers as early as possible to guarantee a smooth
transition.

The concrete employed project manager was again a student with part-time em-
ployment. In the end, this solution had not the effect of taking away all the project
management work of the founder, but at least the workload got less, and the so-
called truck factor was dramatically decreased by the introduced second person,
who was able to run the daily business and give feedback to customer requests.
This situation is the starting point of this master thesis.

10

2.1 Description of Investigated Company

Figure 2.5: Current team structure. Different sizes of software engineers related to different amount
of working-hours per week.

11

2 Description of Problem and Solution Approach

2.1.3 Drawbacks

Now that the situation of the company is described comprehensively, the drawbacks
of this situation need to be discussed. These drawbacks can be derived from the
list of responsibilities of the founder by categorizing the list entries in urgent and
not urgent. It has to be mentioned that all of those entries are important. Therefore
an additional segmenting is not necessary. The distinction between urgent and
not urgent is therefore interesting because urgent tasks are processed before the
not urgent ones. As a result, the urgent tasks are delivered with more quality and
integrity than not urgent tasks. Not urgent tasks are therefore often neglected,
unattended or even omitted. In the following the same list of responsibilities is
provided again, whereby the urgent tasks are presented boldly.

• Executive responsibility in his role as CEO

– customer acquisition
– human resources

• Technical responsibility in his role as CTO

– defining and maintaining a software engineering process
– keeping track of the technical portfolio
– keeping track of code quality
– maintaining technical infrastructure

• Finances in his role as CFO
• Realisation of projects in his role as the project manager

– Assign software engineers to projects and tasks and take care of
resources

– Customer support
– Creating offers including requirement engineering and time estimation
– Set up milestones and deadlines

In the following, the consequences of neglecting those responsibilities will be
discussed in more detail.

12

2.1 Description of Investigated Company

No defined software engineering process

One of the reasons for the not fully successful implementation of a project manager
is the lack of a structured process. A structured and defined process also defines the
roles and their responsibilities. This clear separation of responsibilities makes it
easier to integrate new employees into the running system. A chaotic and running
system could be effective if each member knows its role and its responsibilities,
but this takes a long time. And if it is easier to integrate new employees, it is easier
to scale without omitting important responsibilities.

Not keeping track of code quality and technical portfolio

Working software is not necessarily a good software. A lack of code quality and
a bad technical portfolio are causing high costs in the lifecycle of a software.
Especially a lack of code quality is introduced when tasks are urgent, and no senior
developer is monitoring the quality of the integrated code. This will be discussed
in high detail in section 3.1.7.

Poor requirement engineering and time estimations

A poor requirement engineering leads to poor time estimations. Most often poor
time estimations appear as an underestimated amount of work needed, because
some critical points may be missed. A contract with an underestimated amount
of work is therefore often combined with unrealistic deadlines. Those deadlines
put developers under pressure and support the process of building technical debt.
In addition to that, poor requirement documents do not support the common
understanding of tasks sufficiently. This could lead to implemented solutions,
which do not meet the customer’s expectations. In this case, the customer is often
in a better position, and an adjustment or a reimplementation is needed. This leads
to higher costs and an increasing probability of missing deadlines. In extreme
cases, this could cause a project to be canceled and therefore a significant loss of
money.

13

2 Description of Problem and Solution Approach

2.2 Elaboration of Approach to enable Project
Success

As shown in the previous section, there are many problems in the company to
investigate. The overall goal is to enable project success. The company’s success
itself would exceed the scope of this work. In order to find an appropriate approach
to achieve the goal of project success, a definition of the terms project, project
management, and project success has to be provided (2.2.1).

In the subsequent section (2.2.2) the success factors mentioned in the literature
are discussed. One of these factors is the process used. The process, or rather
software process improvement, will be the starting point on finding an approach
2.2.3. It will also be shown, that software process improvement is closely related
to software quality management. This starting point serves as the basis for the
concrete approach chosen in section 2.3.

2.2.1 Project, Project Management and Project Success

To write a master thesis about enabling project success, the term project and the
meaning of project success need to be defined. An early definition of project
management by Richard Paul Olsen [65] helps by identifying, what a project is:

Project Management is the application of a collection of tools and
techniques (such as the CPM and matrix organisation) to direct the use
of diverse resources toward the accomplishment of a unique, complex,
one-time task within time, cost and quality constraints. Each task
requires a particular mix of these tools and techniques structured to fit
the task environment and life cycle (from conception to completion)
of the task.

From that definition, the definition of a project as a unique, complex and one-time
task, can be derived. In addition to that, it also defines the goals of a project, namely
meeting time, cost and quality constraints. Reaching or not reaching these goals
can serve as an indicator if a project succeeded or failed. Roger Atkinson states
that this definition tries to reference the views of the 1950’s also known as the Iron
Triangle (see figure 2.6), whose origin is not clear [4].

14

2.2 Elaboration of Approach to enable Project Success

Figure 2.6: The Iron Triangle [4]

15

2 Description of Problem and Solution Approach

Another definition of project success including interrelations between the fac-
tors provides Harry Sneed in his book about Software Management [81]. He is
describing four dimensions:

1. Quality
2. Scope
3. Timeliness
4. Cost

The interrelations described states, by changing one of the factors at least one of
the other factors will change (intended or not intended), e.g., if scope gets bigger,
more budget or time is needed or even both. If these additional resources are not
provided, the quality will suffer.

For years meeting time, quality, cost, and scope goals served as the basis for
judging the project. Therefore a project is stated to be done right, if

• it was delivered in time,
• if it meets all requirements by the customer,
• if it was developed within estimated cost and effort and
• if some predefined quality parameters are met.

Roger Atkinson notes that such a project is not necessarily really done right, if
for example the project is not liked by the sponsors, not used by the customers or
did not improve the effectiveness or efficiency of the organization [4]. Therefore
only considering time, cost, quality, and scope does not suffice, to state, that a
project was successful or not. This originates in the fact, that projects are most
often assessed right after their delivery. This limits the criteria for determining
project success to the Iron Triangle and excludes possible longer-term benefits of a
project. Atkinson suggests the four dimensions for understanding project success,
called the square route (see table 2.1). In it, the Iron Triangle is only one dimension
and is extended by the information system, organizational benefits, and stakeholder
benefits.

Paul Bannerman also investigated in finding a definition for project success, which
expands the Iron Triangle [9]. He proposes five levels of project success:

1. Process success (process selection, alignment, and integration)
2. Project management success (time, cost, scope)

16

2.2 Elaboration of Approach to enable Project Success

Table 2.1: Square route for understanding success criteria [4]

Iron Triangle Information System Organizational Benefits Stakeholder Benefits
Cost
Quality
Time

Maintainability
Reliability
Validity
Information
quality use

Improved efficiency
Improved effectiveness
Increased profits
Strategic goals
Organizational-learning
Reduced waste

Satisfied users
Social and
Environmental impact
Personal development
Professional learning
Contractors profits
Capital suppliers
Content project team
Economic impact to
surrounding community

3. Product success (quality, requirements, effectiveness, acceptance, use, satis-
faction, impact)

4. Business success (business plan, meeting expected benefits for the company)
5. Strategic success (market, industry, competitive- investor, regulator and other

impacts

2.2.2 Enabling Project Success

In order to be successful, the requirement is to meet the critical success factors
(CSFs). Christine V. Bullen defines CSFs as follows [13]:

CSFs are the limited number of areas in which satisfactory results
will ensure successful competitive performance for the individual,
department or organization. CSFs are the few key areas where ”things
must go right” for the business to flourish and for the manager’s goals
to be attained.

Chow presented a study based on those CSFs [20]. In the study, the CSFs are
investigated in terms of agile software development project success (quality, scope,
time and cost). First of all, 48 factors were collected and categorized. Subsequently,
those factors were analyzed to find out, which of those are critical. The factors
were classified in the following categories:

17

2 Description of Problem and Solution Approach

1. Organizational factors
2. People factors
3. Process factors
4. Technical factors
5. Project factors

These relations including examples of different categories are also illustrated in
figure 2.7.

The first thing to distinguish is if factors are controllable or not. In the company
under investigation three categories are not changeable easily: Organizational fac-
tors, people factors, and project factors. Process and technical factors are remaining.

These arguments directly point to the area of software process improvement,
as process factors relate to one out of two possible success factor categories. In
addition to that, many technical factors can be incorporated and are therefore con-
sidered in the field of software process improvement. The next section will present
the field of software process improvement, including its aim and the connection to
the overall goal of this master thesis, namely project success.

2.2.3 Software Process Improvement

The previous section derived SPI as the field of interest to enable project success.
To check, whether SPI is a good starting point to enable project success, the thesis
is double checked by examining the reasons for doing SPI. Schmitt and Diebold
[77] found four common improvement goals by looking at existing literature
combined with an additional survey and a set of workshops. The goals are listed
subsequently and are shown in more detail in figure 2.8:

1. Customer involvement
2. Organizational democratization
3. Quality
4. Time-to-market

Whereas quality and time-to-market directly correspond to components of project
success (see 2.2.1).

As quality is one of the improvement goals, it seems, that quality management is

18

2.2 Elaboration of Approach to enable Project Success

Figure 2.7: Categorization of CSFs [20]

19

2 Description of Problem and Solution Approach

Figure 2.8: Improvement goals [77]

strongly related to SPI. This is confirmed by Jacobsen et al. [42].

Also, the trends of SPI collected by Kuhrmann et al. show that SPI is the right
choice even for SMEs [47]. These SPI trends are enumerated in the following:

1. New and customized SPI models
2. SPI success factors
3. SPI for SMEs
4. SPI and agility

Finally, the concrete approach used, to improve the software process in the company
under investigation is elaborated and described in the next section.

2.3 Approach

In the previous section, SPI is chosen to enable project success. SPI was chosen
because process factors are one of the critical success factors of projects. In addi-
tion to that, the reverse direction was investigated. It turned out that the aim of SPI
supports two out of four success criteria of the iron triangle (see 2.2.1).

20

2.3 Approach

In this section, an appropriate SPI approach for very small web companies is
chosen. On the one hand, this is done by showing an overview of SPI frameworks,
which are characterized by different properties and on the other hand by looking at
the special needs of very small companies.

2.3.1 SPI Frameworks and Properties

Process improvement can, at its core, be described as consistently applying the
practices that give one good results and changing the practices that cause problems
[92]. The overall assumption of process improvement is that improving the quality
of the process will improve the quality of the product. Many methods, models and
techniques emerged over the years. It is not necessarily about the actual practice
itself [44]:

[...] the success of a project depends heavily on the implementation
maturity, regardless of the process model.

SPI framework is the term used to put them all together.

In the following four different SPI frameworks are presented, namely:

• ISO 9001
• CMMI - Capability Maturity Model Integration
• ISO 15504 (SPICE)
• QIP/GQM - Quality Improvement Plan combined with the Goal Question

Metric approach

The first three frameworks are selected mainly by their popularity. Whereas
QIP/GQM is not that popular anymore, but it is also included in the list because its
nature is very different compared to the other frameworks.

The following presentation of the frameworks consists of basic descriptions in-
cluding the structures and the detailed investigation of the following properties for
each framework:

21

2 Description of Problem and Solution Approach

• Improvement initiation
• Progression
• Process improvement method
• Assessment method and authority

These properties will help to compare the frameworks. They are a subset of the
properties used in the taxonomy for SPI frameworks elaborated by Halvorsen
and Conradi [33]. Only those properties were described, which should guide the
selection of the framework used within this action study.

Properties

Before presenting the frameworks, the selected properties are explained in detail.

Improvement initiation is about the viewpoint of process improvement, whether
the improvement task is approached top-down or bottom-up. Thomas and McGarry
wrote an article about it, whereas McGarry states, that process improvement is a
bottom-up task, and Thomas, that it is a top-down task [87].

Thomas argues that most of the companies do not even have anything, which
can be recognized as a software process. Moreover, as in any other engineering
discipline, the requirements have to be settled. He describes a gap analysis (compar-
ison between current practices and a standard) as a valuable place to start process
improvement. This relates to a top-down approach.

The main argument of McGarry is that the assumption that an improved process
will improve the product is not proven. Also, more important, ”if a changed pro-
cess has no positive effect on the product, there is absolutely no value in making it”.

In other words, the top-down approach tries to close the gap between a com-
pany and a generalized standard and the bottom-up approach focuses on specific
goals for each company individually.

Progression is about the way improvement is achieved. There are three different
possibilities (also shown in figure 2.9):

22

2.3 Approach

• Flat
• Staged
• Continuous

ISO 9001 is a typical flat framework. A company is certified or not. There is no
possibility of being more or less certified. Whereas CMMI is a staged framework.
There exist different maturity levels, which show the quality of the process. In the
end, QIP/GQM uses a continuous representation. Its focus is only on the evolution
of the company.

The type of progression is a crucial factor in terms of comparability. A flat
framework can distinguish only certified and not certified. Whereas a continu-
ous representation has, of course, the highest level of detail, it is hard to compare.
For comparison, a staged environment is the best.

Figure 2.9: Types of progression

Process improvement method ”defines the strategy and the process by which
improvement is pursued” [17]. There are also SPI frameworks existing, which are
purely assessment frameworks without any guidance to improve the process.

Popular process improvement methods are:

• PDCA - Plan, Do, Check, Act
• IDEAL - Initiating, Diagnosing, Establishing, Acting, Learning
• QIP - Quality Improvement Plan

PDCA also called Deming wheel is an iterative four-step management tool to im-
prove processes. At first, the actual processes are assessed and actions are planned

23

2 Description of Problem and Solution Approach

(Planning). Subsequently, those actions are executed (Do). As the third step, the
results are checked against the expectations (Check). Whether these expectations
are met, the trial process is accepted as the new standard and as a new base for the
next planning step (Act).

IDEAL is shown in figure 2.10. The five steps are described as follows [15]:

1. Initiating - Laying the groundwork
2. Diagnosing - Determining where one is and determining future goals
3. Establishing - Planning how one is going to achieve goals
4. Acting - Doing the work required to reach the defined goals
5. Leveraging - Learning from what has been done for the next iteration of the

process improvement cycle

Figure 2.10: The IDEAL model [56]

QIP is the last process improvement method to be explained. It is based on the
PDCA approach. It is a quality approach that aims to learn from experience. It

24

2.3 Approach

is built upon experimentation and application of measurement. The improvement
loop can be summarized as [82]:

Each new development project is regarded as an experiment and avail-
able results of every foregoing and ongoing experiments should be
packaged and reused, too.

The cycle consists of the following six steps [82]:

1. Characterize - Understand the environment and existing processes
2. Set goals - Set quantifiable goals
3. Choose process - Choose appropriate processes to reach the goals
4. Execute - Execute the elaborated processes
5. Analyze - Evaluate the current practices at the end of each specific project

including recommendations for future projects
6. Package - Combine the experience gained and update the experience base

Assessment method and authority describe in which way the maturity or
the conformity is determined. Some of the frameworks include a certification, of
course only issued by an external authority. Others can be used internally and
externally. At last, others do not even provide any assessment at all.

Frameworks

In this section, the different SPI frameworks are presented.

ISO 9001 defines the requirements to a quality management system QMS [84].
The newest version is ISO 9001:2015 and replaced the previous version ISO
9001:2008. The International Organization for Standardization ISO defines a QMS
as ”a way of defining how an organization can meet the requirements of its cus-
tomers and other stakeholders affected by its work”. It is based on continual
improvement.

ISO 9001 requires organizations to define objectives relating to quality and meeting
customer needs themselves and to improve their processes continually in order to
reach them. ISO claims that ISO 9001 is suitable for organizations of all types,

25

2 Description of Problem and Solution Approach

sizes, and sectors. The standard is based on seven principles [85] defined in ISO
9000, which contains a detailed explanation of these principles and many of the
terms and definitions used in ISO 9001. These principles ”are a set of fundamental
beliefs, norms, rules and values that are accepted as true and can be used as basis
for quality management”. The seven quality management principles are

1. Customer focus
The primary focus of quality management is to meet customer requirements.

2. Leadership
Leaders at all levels establish unity of purpose and direction and create
conditions in which people are engaged in achieving the organizations quality
objectives.

3. Engagement of people
Engaged people at all levels of a company are essential to create and deliver
value.

4. Process approach
Results are more consistent and predictable when managed interrelated
processes exist, which are part of a coherent system.

5. Improvement
Ongoing focus on improvement is essential.

6. Evidence-based decision making
Decisions based on analysis and evaluation of data will more likely produce
the desired results.

7. Relationship management
Organizations have to manage relationships with interested parties.

ISO 9001 is a top-down approach, whereby the top-level requirements are de-
scribed in the standard.

An external auditor can certify a company. There is no continuous or staged
assessment. Therefore ISO 9001 is a flat framework.

The standard itself does not define what has to be done by the company, but
continuous improvement is one of the principles of the stand. Therefore a process
improvement method needs to be established, but the standard does not explicitly
determine one. PDCA as an example was the method to use in the previous version
of 2008. In 2015 as mentioned, the regulations were relaxed, and the company
solely makes the selection for a method.

26

2.3 Approach

CMMI as the abbreviation for ”Capability and Maturity Model Integration” is the
successor of CMM (Capability and Maturity Model). Historically the first version
of CMM was released 1991. 2002 CMMI was released. The most used version
at the moment is CMMI 1.3, which was released in 2010. 2018 CMMI 2.0 was
released. This discussion covers CMMI 1.3 as it is widely used and freely available.
These are important points when comparing to ISO 15504. ISO 15504 was released
later and is not freely available, which raises points of criticism. These points are
discussed, when presenting ISO 15504 in detail.

The basic concepts of the CMMI are process areas, capability and maturity levels.
There is a predefined set of process areas. The capability level describes the degree
of institutionalization of a single process. These levels are:

0. Incomplete
1. Performed
2. Managed
3. Defined

The maturity level describes the maturity of a whole organization. These levels
are:

1. Initial (ad-hoc and chaotic)
2. Managed (focus on basic project management)
3. Defined (focus on process standardization)
4. Quantitatively managed (focus on quantitative management)
5. Optimizing (focus on continuous process improvement)

To reach a certain maturity level, a defined subset of process areas have to have a
certain capability level. For maturity level 2 all corresponding process areas have
to have a capability level of 2. From maturity level 3 to 5 the corresponding process
areas have to have capability level 3. All requirements of the lower level need to be
fulfilled to reach a higher maturity level. This relationship is also shown in figure
2.11. The framework is therefore staged, and of course, it is a top-down approach.
It can be assessed internally and externally by an auditor.

Like ISO 9001, CMMI does not define any specific process improvement method,
but SEI, the founders of the CMMI, developed one, which can be used for imple-
menting standards like CMMI and ISO 15504. It is the already described IDEAL
model.

27

2 Description of Problem and Solution Approach

Figure 2.11: CMMI v1.3 [32]

28

2.3 Approach

ISO 15504 - SPICE is again a standard by the International Organization for
Standardization. SPICE is the abbreviation for ”Software Process Improvement
and Capability Determination”. SPICE is a standard containing different parts:

1. Concepts and vocabulary
2. Performing an assessment
3. Guidance on performing an assessment
4. Guidance on use for process improvement and process capability determina-

tion
5. An exemplary software life cycle process assessment model
6. An exemplary system life cycle process assessment model
7. Assessment of organizational maturity
8. An exemplary process assessment model for IT service management
9. Target process profiles

10. Safety extension

The concept of SPICE correlates with the concept of CMMI. It is about assessing
process areas and the maturity of organizations. Part 2 and 3 cover the assessment
of process areas, whereas part 2 is the normative part and part 3 gives guidance
to fulfill the requirements of part 2. Part 7 uses the information gathered by the
process assessment to determine an organization’s maturity level. The process areas
themselves are not defined in ISO 15504, but they can be taken from ISO 12207
or ISO 15288. ISO 15288 defines general system lifecycle processes, whereas
ISO 12207 focuses on software and defines software lifecycle processes. This
relationship is shown in figure 2.12. The figure also shows the impact of ISO 9001.
It assists by providing the quality management system requirements.

ISO 15504 in combination with ISO 12207 is therefore only slightly different to
CMMI. As already mentioned in the section about CMMI, this raises criticism.
On the one hand, the meaningfulness has to be scrutinized because it is developed
years after the release of CMM. On the other hand, it is not that widespread,
because it is, in contrast to CMMI, not freely available.

ISO 15504 is of course, as CMMI, a staged top-down approach. It can be as-
sessed by an official auditor, which has to fulfill the requirements of part 2. IDEAL
can be used as a process improvement method. It is also conceivable to use PDCA,
as it was mandatory in ISO 9001:2008 and ISO 9001 provide the requirements of
a quality management system to ISO 15504.

29

2 Description of Problem and Solution Approach

Figure 2.12: Relationship of ISO 15503, ISO 12207 and ISO 9001 [32]

30

2.3 Approach

There are also several attempts to harmonize the standards described so far, e.g.,
ISO 15504 to CMMI [67][73]. The CMMI Institute itself compared ISO 9001 and
CMMI [40]:

In particular, the synergy between ISO 9001 and CMMI is high. But
the emphasis in CMMI is on assuring institutionalization - across
multiple projects - that represent the organization being appraised. As
a result, we sometimes find that a ”Maturity Level 3” organization
easily passes its ISO auditor’s look, but that ISO organizations are
sometimes not of ”higher maturity.”

There are also attempts for concrete mappings [7][94][66].

QIP/GQM - Quality Improvement Plan combined with the Goal Question Metric
approach is very different from the frameworks described so far. This approach is
bottom-up. The idea is to learn from project to project. The approach ”uses internal
assessments against the organization’s own goals” [44]. Solingen and Berghout
[82] describe this combination of techniques and practices. For these assessments,
an analysis method is needed.

The Goal/Question/Metric (GQM) approach is used for this purpose. Basili et
al. [14] introduced the GQM model. It is a top-down approach to find the right
metrics to determine, whether a goal is reached or not. For that purpose one sets
out one or more goals. Then questions, which need to be asked to determine
whether a goal is achieved or not, are elaborated. Concrete metrics then answer
those questions. This is also shown in figure 2.13.

This combined approach is therefore bottom-up and has a continuous progression.
The assessment is internally, and the process improvement method is the QIP
approach.

2.3.2 Situation in Very Small Enterprises

This section will show the relevance of SPI for SMEs and if it is a common practice.
Also, different solutions will be presented, and finally it is explained, why SPI

31

2 Description of Problem and Solution Approach

Figure 2.13: GQM Approach [82]

initiatives are often not used in SMEs.

At first, SMEs have different needs compared to large companies, because they
are not just scaled-down versions of those [86]. This is relevant because many of
the SPI frameworks presented were developed for large companies. Richardson
and Von Wangenheim noted that small companies are ”extremely responsive and
flexible because that’s their advertised competitive advantage” [41]. They also
stated, that, in contrast to large companies, small companies do not have enough
staff to develop functional specialties and also have tight finances as an additional
constraint. Therefore the SPI frameworks are often not suited for small companies,
especially established standards.

As SMEs are a big fraction in terms of economy, this topic is for interest. Therefore
Kuhrmann et al. have found in their systematic literature review, that SPI in SMEs
and customized approaches are trends in current research [47].

Nevertheless, SPI is not useless for small companies. SMEs reported short- and
long-term benefits from SPI initiatives [74][75][16][30][60][12][29]. However,
studies also found that small companies sometimes cannot afford the costs of
implementing comprehensive frameworks [38][64]. As a result, the research

32

2.3 Approach

tried to evaluate which process areas are of high importance to small compa-
nies [53][62][61][93]. Most of those studies do not try to scale-down a framework.
Instead, they try to find a subset of process areas, which better fits small companies.
Mc Caffery et al. presents one of those approaches. They propose the following six
process areas [55]:

• Project Monitoring and Control
• Project Planning
• Requirements Management
• Configuration Management
• Process and Product Quality Assurance
• Measurement and Analysis

2.3.3 Selection

As shown in the previous section, the topic of SPI in small companies is under
active research, and a final answer is not found yet. As most of the research is
focused on top-down approaches, which are using a subset of process areas of high
standards, the QIP/GQM bottom-up approach is selected for this thesis. In addition
to that, the cost factor of even small-sized standards would exceed the budget of the
investigated company. Also, as there is nearly no structure in the company yet (see
section 2.1), a bottom-up approach, which is not introducing a big change at once
seems to be more appropriate. This iterative character also helps in financing the
change. The idea is to use a small proportion of a project’s budget for improvement.

The concrete improvement process is shown in figure 2.14. The scope of this work
includes two iterations of the QIP cycle. The concrete implementation and the
results can be found in section 3.

The concrete steps, which can also be found as the structure of each iteration
in this work are described in the following. At first, a project is observed, and
problems tried to be identified by reflecting, what happened during the project
(characterization step of QIP). By inverting the major problems, the goals are set
(the problem should not occur again). This represents the step of setting goals.
These goals are used to initialize or extend the GQM model. Before executing the
third step of the QIP (choose process), the observed problems of the preceding

33

2 Description of Problem and Solution Approach

Figure 2.14: Quality Improvement Plan [82]

34

2.3 Approach

project are quantified. In QIP this would be done in the analyzations step, but
it seems to be a better idea to validate the problems observed by looking at the
concrete measures. This could save time and money if the quantification does not
overlap with the observations. The following steps of choosing corrective actions
(QIP: choose process) and analyzing the impact of those (QIP: Analyze) are done
as proposed. The last step of packaging ist neglected.

35

3 Implementation

Chapter 2 describes the used methodology of this work. In this chapter, two
concrete iterations are presented. Following the methodology, each iteration affects
two projects. A legacy project is used to reflect the current state. The corrective
actions are applied to a subsequent project, which is then used to validate the impact
of those actions. In the first iteration, project A is the base project, and project B is
the project on which the corrective actions were applied. Project B is then used as
the basis for the second iteration. The corrective actions of this iteration are then
applied to Project C and of course validated by the elaborated quality model. The
structure of the text follows the six steps of the used methodology. In addition to
that, descriptions of the projects A and B are provided in the section of the first
iteration and a description of project C is provided in the section of the second
iteration. These descriptions are important for the subsequent interpretation of the
results. It is important to mention that the author of this work managed all three
projects. Of course, this was beneficial for this research because it allowed the
author to control and to observe the circumstances of the projects better than by
only providing consultancy.

3.1 Iteration 1

Each iteration consists of six steps, whereas each of those has its subsection. In
addition to that, project A and project B are described in two additional subsec-
tions.

37

3 Implementation

3.1.1 Description of Project A

The goal of project A is the development of a web application. The web application
should help to schedule courses automatically. In addition to that, it should be
possible to manage instructors and participants. PHP was used as backend in
combination with the content management system Concrete 5. The frontend was
built by using client-side JavaScript and partially server-side PHP. The initial team
consisted of two inexperienced developers, who were students working full-time
in the summer break. They had almost no experience with PHP and no experience
with Concrete 5 or JavaScript. As already mentioned, the project was managed by
the author of this work. By the end of the summer break, the team composition
changed. The two actual developers left the team, and the project manager started
to contribute also to the code, approximately at that time, when the big change
of requirements occurred. The project manager had already one year of part-time
experience with frontend JavaScript. He was supported by a colleague, which was
already familiar to some extent with the Concrete 5 PHP framework used in project
A.

3.1.2 Observations of Project A

As mentioned already, the goal of project A was developing a web application,
which serves as a tool to schedule courses automatically and to help managing
instructors and participants. The specification was poor and written by the customer,
which has little experience in creating specifications. The document was rather
a wish list containing some vague requirements mixed with fixed solutions. This
document was not reviewed properly either by the project manager nor the CEO.
Nevertheless, it served as the specification and therefore as the acceptance criteria
for fulfilling the contract and completing the project.

Observation A-1: Poor and vague specification signed off

The development team consisted of two inexperienced web developers. They were
not familiar with the technologies used. The responsible person for the project
was the project manager. The project manager was responsible for the product, the
team and the communication with the customer. Therefore the project manager
incrementally derived features from the specification. The features were delivered

38

3.1 Iteration 1

continuously by the development team and continuously reviewed concerning
functionality by the project manager. This functionality was regularly presented to
the customer. The quintessence of the customer’s feedback was that the product still
does not fulfill all points of the specification. The project manager did not take that
seriously, because he was conscious about not yet fulfilling all requirements, but
was erroneously convinced, that the direction was correct. In the first testing phase
of the customer’s project manager, the project team got faced with an enormous
amount of little adjustments in design and functionality. At this point, changes
were already pretty expensive, because the project team already developed a high
amount of technical debt. After integrating these adjustments, the application was
presented to the end-users the first time. At this point, the project manager found
out, that the end-users were not involved in creating the specifications and therefore
the product did not solve any of the real problems the end-users were facing.

Observation A-2: End-users not involved in creating the specification

From that point on, the project was at risk for a long delay. Arguing, that these
major changes were not part of the contract, was hardly possible, because:

• the customer was the biggest revenue generator for years,
• the specification was written vaguely and
• the deadline for delivering the product was already missed.

The result was that almost every change request was defined as a defect or at least
as part of the contract. This is a dynamic, called scope creep, which typically
occurs in small and medium enterprises [68]:

Large software companies have dedicated teams whose only concern
is software maintenance and evolution. VSSEs do not have that lux-
ury; the development team is also responsible for handling incoming
change requests.

The paper exactly describes also, how scope creep arises [68]:

[...] customers often ask for changes while development has already
started. Customers are often eager to have the project delivered and
often sign off the requirements document without having done a proper
analysis. When early builds of the software are to be delivered or
demonstrated, the clients start to realize that the product being built it
is not exactly what they want. Another factor is that new ideas emerge

39

3 Implementation

- unforeseen requirements - during development. These factors cause
scope creep. [...] The scope of the project grows even more when
unforeseen requirements are included.

Scope creep is also considered as one of the major risks in software projects [90],
as the clients request changes but do not provide enough additional resources to
finish the project on time [68].

Observation A-3: Scope creep

This led to many code changes in a stressful situation. With a high code quality, it is
possible to cope with such a situation. However, the code base had a high amount of
technical debt built in. In addition to that, no automatic test suite existed. Changing
the code was therefore risky. Changing the code often was hardly possible without
introducing a high number of defects. The customer often found these defects. The
trust and patience of the customer continuously decreased.

Observation A-4: No regression tests

Observation A-5: Bad code quality

This happened, although the project manager invested much time in testing new
functionality and features, which already worked. The costs exploded, and the
project was not built on time, because, as described above, the customer neither
signed off additional resources nor accepted an extension of the deadline.

Observation A-6: High manual testing effort

Also, the deployment itself was risky. Problems with the database version on differ-
ent environments occurred often. Also, functionality which worked on development
and staging environments often did not work in production.

Observation A-7: Deployment risky and error-prone

Observation A-8: Problems with configuration management

As already mentioned, a massive technical debt was built. This was not only caused
by many changes, but also by the inexperience of the development team. The added
code was never reviewed by at least one senior developer.

40

3.1 Iteration 1

Table 3.1: Observations of project A

ID Description
O-A-1 Poor and vague specification signed off

O-A-2 End-users not involved in creating the specification
O-A-3 Scope creep
O-A-4 No regression tests
O-A-5 Bad code quality
O-A-6 High manual testing effort
O-A-7 Deployment risky and error-prone
O-A-8 Problems with configuration management
O-A-9 Code contributions were not reviewed by a senior developer
O-A-10 Project was not delivered on time
O-A-11 Customer not satisfied
O-A-12 Planned costs exceeded
O-A-13 Many regression and production bugs
O-A-14 No defined process for change requests

Observation A-9: Code contributions were not reviewed by a senior
developer

Observation A-10: Project was not delivered on time

Observation A-11: Customer not satisfied

Observation A-12: Planned costs exceeded

The conclusion of the project is that concerning our definition of project success
the project failed in every dimension. In table 3.1 the observations are collected.

3.1.3 Define Goals

Regarding the observations stated in table 3.1, the goal of this section is to find
concrete goals, which are the basis for the sections that follow. The observations of
project A are a mixed list of causes and effects. The fact, that end-users not involved
in creating the specification (O-A-2), led to a poor and vague specification (O-A-1).
Scope creep (O-A-3) describes and compromises all the final effects to one term

41

3 Implementation

(O-A-10: Project not in time, O-A-11: Customer not satisfied, O-A-12: Planned
costs exceeded). In addition to that, scope creep puts a lot of time pressure on the
whole team and has, therefore, most likely an impact on code quality (O-A-5).
Figure 3.1 shows the dependencies of the different observations.

Figure 3.1: Dependencies of observations

This graph gives the possibility to identify the root causes, by merely enumerating
all nodes without ingoing edges.

• Requirements development

– Poor and vague specification signed off

42

3.1 Iteration 1

– End-users not involved in creating the specification

• No code reviews
• No regression tests
• Problems with configuration management
• No defined process for change requests

The goals of the initial GQM-model will be

1. preventing scope creep and
2. delivering maintainable code.

The questions and metrics for the GQM-model are elaborated in the following.

3.1.4 Initialize GQM-Model

The goal of this section is to derive a GQM-model from the observations stated in
section 3.1.2. In section 3.1.3 the goals of preventing scope creep and ensuring a
good code quality are listed and elaborated. In the following, the related questions
and metrics are elaborated to initialize a full GQM-model. This GQM-model
will be used to determine, whether the observations are consistent with the actual
measurements and if the next project performed better.

Goal 1: Prevent Scope Creep

To determine if scope creep occurred or if the project was prevented from scope
creep, the following questions need to be answered:

• Q1.1: Was the project delivered in-time?
• Q1.2: Was the project built within budget?
• Q1.3: How were the resources used?
• Q1.4: Was the feature estimation wrong?
• Q1.5: Were the change requests paid by the customer?
• Q1.6: Was the team successful in building trust by providing a reliable soft-

ware in-time to put the project manager in a good change request negotiating
position?

43

3 Implementation

Metrics for Q1.1 - Was the project delivered in-time? To answer this ques-
tion, the actual and desired project duration need to be taken into account. For
the aim of comparability over different projects of different sizes, the metrics
are given as ratios. The total numbers are also provided to give more contextual
information [44]. The strategy of giving relative and absolute values will be used
for all subsequent metrics.

The first two used metrics are therefore estimated project duration (M1) and
schedule estimation accuracy (M2). The duration is considered as the period in
calendar days including weekends from placing the order to the day of acceptance.
The day of acceptance is defined as the day the bill was sent to the customer.
The investigated company only sends the bill once the customer agrees with the
delivered product.

M1 = Estimated project duration in calendar days

Metric 1: Estimated Project Duration

M2 =
Actual project duration in calendar days

Estimated project duration in calendar days (M1)
Metric 2: Schedule Estimation Accuracy

Metrics for Q1.2 - Was the project built within budget? In contrast to ques-
tion 1.1, which targets the in-time delivery, question 1.2 targets a development
within the estimated effort. The total estimated project effort in hours (M3) and the
effort estimation accuracy (M4) are used.

M3 = Estimated project effort in hours

Metric 3: Estimated Project Effort

M4 =
Actual project effort in hours (M5)

Estimated project effort in hours (M3)
Metric 4: Effort Estimation Accuracy

44

3.1 Iteration 1

Metrics for Q1.3 - How were resources used? If Q 1.1 and Q1.2 show that
there are significant problems by staying in-time and within the estimated effort,
the next question to be asked is, how the resources were used. This is done by
looking at the effort distribution of the three different task types feature, failure
and change request.

A feature describes functionality predetermined in the contract and the spec-
ification, whereas a change request defines a feature that was not part of the
specification and should, therefore, be a reason to get a deadline suspension and
additional budget. Another possibility is to substitute a predetermined feature with
the change request.

The third type is a failure. In this thesis, the definition of IEEE Std 610.12-1990
[69] is used. The standard defines an error as:

The difference between a computed, observed, or measured value
or condition and the true, specified, or theoretically correct value or
condition. For example a difference of 30 meters between a computed
result and the correct result.

Fault (also called defect [44]) is the term for:

An incorrect step, process, or data definition. For example, an incorrect
instruction in a computer program.

A failure relates to:

An incorrect result. For example, a computed result of 12 when the
correct result is 10.

Finally, a mistake is:

A human action that produces an incorrect result. For example, an
incorrect action on the part of a programmer or operator.

The term of interest, in this case, is failure. The reason for this is that each cus-
tomer’s complain about a failure causes effort and is documented. To determine
if it is the same underlying defect would be object to a more detailed analysis,
which is not needed in this case. For customer satisfaction, the failure rate is more
important than the defect rate.

45

3 Implementation

To provide comparability with other projects, the resource usage is given as propor-
tion, whereas the actual project effort is used as the denominator and is also given
(M5). These proportions are the feature effort proportion (M6), change request
effort proportion (M7) and failure effort proportion (M8).

M5 = Actual project effort in hours

Metric 5: Actual Project Effort

M6 =
Effort for working on features in hours

Actual project effort in hours (M5)

Metric 6: Feature Effort Proportion

M7 =
Effort for working on change requests in hours

Actual project effort in hours (M5)

Metric 7: Change Request Effort Proportion

M8 =
Effort for working on failures in hours

Actual project effort in hours (M5)

Metric 8: Failure Effort Proportion

Metrics for Q1.4 - Was the feature estimation wrong? In addition to the
metrics of Q1.3, two metrics are provided to show if the project would have met
the estimated effort, if there would have been no change requests (M9) and if there
would have been no change requests and no reported failures (M10). Again the
metrics are proportions. This time the estimated project effort (M3) is used as
the denominator. If everything would be fine, if no change requests had occurred,
change request management seems to work unsatisfactorily. Moreover, if also, in
this case, the effort exceeds the estimated effort, two cases can be distinguished:

• The budget was too less to create such an application or

46

3.1 Iteration 1

• the time used for working on failures was either not considered in the
contract, or the quality was too bad, and the considered budget for working
on failures was simply exceeded.

In other words, feature effort to estimation ratio (M10) shows the accuracy of the
estimation, if there would have been worked only on predetermined features and
no mistakes are made by the developers or at least no failures would have been
reported.

M9 =
Effort working on features and failures in hours

Estimated project effort in hours (M3)

Metric 9: Feature and Failure Effort to Estimation Ratio

M10 =
Effort working on features in hours

Estimated project effort in hours (M3)

Metric 10: Feature Effort to Estimation Ratio

Metrics for Q1.5 - Were the change requests paid by the customer? The
major negative effect of scope creep is an enormous amount of additional effort
in the form of additional or changing functionality, which the customer is not
willing to pay. A single metric is therefore sufficient, the billed change request
effort proportion (M11). The metric shows, which proportion of the hours worked
on change requests is billed.

M11 =
Billed effort for change requests in hours

Effort working on change requests in hours

Metric 11: Billed Change Request Effort Proportion

47

3 Implementation

Metrics for Q1.6 - Was the team successful in building trust by providing
reliable software in time to put the project manager in a good change
request negotiating position? The reason for the non-existing willingness to
pay for change requests is often caused by

• the situation that the customer is a critical revenue generator for the supplier
and should therefore not be annoyed.
• a high number of failures, which puts the supplier into a bad position in

change request negotiations.
• an already existing exceedance of the deadline.

The first reason is a fact and cannot be changed. Whereas the second and the third
reason could be prevented. Therefore the customer found failure rate (M14) and
the exceedance of the deadline (M2) are significant. The customer found failure
rate is a relative metric. It shows the failures observed by the customer on average
per month of a certain period1. The total values are also given. These are the total
failures found by the customer (M13) in the period of observation (M12). The
period of observation is defined by the first and the last appearance of a failure
found by the customer.

M12 = Period of observation in days

Metric 12: Period of Observation

M13 = Total failures found by customer in period of observation

Metric 13: Total Failures Found

M14 =
Total failures found by customer (M13) ∗ 30

Period of observation (M12)

Metric 14: Customer Found Failure Rate
1Typically this metric is given per license months [44]. As the reporting of failures is done by

the customer’s project manager, who is also responsible for the acceptance, the sum of failures per
month of all users combined is more interesting in this case.

48

3.1 Iteration 1

Goal 2: Deliver maintainable code

The following questions and metrics are necessary to determine if the goal of
delivering maintainable code is achieved:

• Q2.1: How complex is the code?
• Q2.2: Is the code well documented by a meaningful test suite?
• Q2.3: How hard is it to change the code?
• Q2.4: Is the amount of technical debt acceptable?

There are many different ways to determine how difficult it is to understand, extend
and change the code. Many of the metrics used to answer the questions above are
derived from a free to use tool called SonarQube 2.

Metrics for Q2.1 - How complex is the code? The complexity of the whole
system has a big impact if it comes to changing and understanding the code. Thus
different metrics to measure complexity are provided. For these metrics, it is always
interesting to see the average and the maximum, to detect outliers.

A first intuitive and common metric for complexity is the number of lines of
code. By providing the lines of code, it is important to state, on what the metric is
based on, because the operational definition of counting is ambiguous [44]. In the
book ”Programming Productivity” different definitions are provided [43]:

• Count only executable lines.
• Count executable lines plus data definitions.
• Count executable lines, data definitions, and comments.
• Count executable lines, data definitions, comments and job control language.
• Count lines as physical lines on an input screen.
• Count lines as terminated by logical delimiters.

Jones [43] describes the result of the second method as ”logical lines of code”. This
method is ”a somewhat more rational choice for quality data”[44]. In addition to
the total logical lines of code (M15), the logical lines of code per file are considered,
which can serve as an indicator if files are properly separated and no monoliths

2https://www.sonarqube.org last visited October 30, 2018

49

https://www.sonarqube.org

3 Implementation

are created. This is done by providing the maximum logical lines of code per file
(M16) and the average logical lines of code per file (M17).

M15 = Total logical lines of code

Metric 15: Logical Lines of Code

M16 = Maximum logical lines of code per file

Metric 16: Maximum Logical Lines of Code

M17 =
Total logical lines of code (M15)

Number of files

Metric 17: Average Logical Lines of Code

Cyclomatic complexity is a measure, that shows how many test cases are needed
to test the whole control flow [54]. This measure ”was designed to indicate a
program’s testability and understandability (maintainability)”[44]. The metric is
based on graph theory and describes the ”number of linearly independent paths
that comprise the program”[44]. As this metric is additive, the complexity of a file
can also be calculated by summing up the cyclomatic complexity of each function
block. Again the total cyclomatic complexity (M18), the maximum cyclomatic
complexity per file (M19) and the average cyclomatic complexity per file (M20)
are given.

M18 = Total cyclomatic complexity

Metric 18: Cyclomatic Complexity

M19 = Maximum cyclomatic complexity per file

Metric 19: Maximum Cyclomatic Complexity

50

3.1 Iteration 1

M20 =
Total cyclomatic complexity (M18)

Number of files

Metric 20: Average Cyclomatic Complexity

A moderate to strong correlation between cyclomatic complexity and defect rate is
found. As cyclomatic complexity is additive, it increases with the lines of code.
Therefore it is still not clear, whether the correlation is caused by the increasing
lines of code or the cyclomatic complexity itself. Studies, which tried to control
the lines of code, are not consistent [44]. Initially, lines of code and cyclomatic
complexity are measured. If it turns out, that they are having a strong correlation,
one of those two can be neglected in future iterations.

Q2.2 - Is the code well documented by a meaningful test suite? A good
test coverage supports developers in understanding and changing the code. As the
first two projects had no test suite at all, question 2.2 is only determined by metric
M21, which determines whether an appropriate automated test suite is applied or
not.

M21 = Appropriate automated test suite applied

Metric 21: Appropriate automated test suite applied

Metrics for Q2.3 - How hard is it to change the code? A high test coverage
does not only improve the understandability of the code, but it also improves the
robustness to change. It is easier to change because a well-designed test suite will
immediately highlight if a change had broken existing functionality. Therefore test
coverage (M21) is also used to answer this question.

The proportion of duplicated lines (M22) is also used to answer this question.
Is this proportion high, the maintainability of the code decreases.

M22 = Percentage of Duplicated Lines

Metric 22: Percentage of Duplicated Lines

51

3 Implementation

Metrics for Q2.4 - Is the amount of technical debt acceptable? The clean-
ness of the code is determined by the proportion of duplicated lines (M22), which
is already used in Q2.3. In addition to that, SonarQube provides an automatic
inspection of the code, which identifies code smells and security vulnerabilities
for example. They are all added up to the total number of issues and are broken
down on issues per 1000 lines of code (M23). SonarQube also has an underlying
mapping, which maps different issues to an expected time to fix it. This cumulated
time is used as an additional metric (M24).

M23 =
SonarQube issues ∗ 1000

Logical lines of code (M15)

Metric 23: SonarQube Issues per 1000 Logical Lines of Code

M24 = Estimated time to fix all issues detected by SonarQube

Metric 24: SonarQube Fix Time

3.1.5 Quantify Observations of Project A

The observations of project A made in section 3.1.2 are quantified in the following.
The metrics are based on the GQM-model described in section 3.1.4. The concrete
measurement results for the first goal (prevent scope creep) can be found in table
3.2. The results of the second goal can be found in table 3.3.

Goal 1: Interpretation of results

The questions of the first goal are ordered by the level of detail. The first question
gives a rough overview if the goal was reached. The subsequent questions can be
used to get information about the root causes. In other words, the first question
indicates if the goal was reached and the subsequent questions indicate why the
goal was or was not reached.

52

3.1 Iteration 1

Table 3.2: G1 prevent scope creep: Measurement results project A

ID Description A
Q1.1 Was the project delivered in-time?
M1 Estimated Project Duration [days] 64
M2 Schedule Estimation Accuracy 2.06

Q1.2 Was the project built within budget?
M3 Estimated Project Effort [hours] 243
M4 Effort Estimation Accuracy 2.79

Q1.3 How were resources used?
M5 Actual Project Effort [hours] 679
M6 Feature Effort Proportion 55 %
M7 Change Request Effort Proportion 37 %
M8 Failure Effort Proportion 8 %

Q1.4 How were resources used?
M3 Estimated Project Effort [hours] 243
M9 Feature and Failure Effort to Estimation Ratio 1.55
M10 Feature Effort to Estimation Ratio 1.77

Q1.5 Were the change requests paid by the customer?
M11 Billed Change Request Effort Proportion 3.5 %

Q1.6

Was the team successful in building trust by
providing a reliable software in-time to put the
project manager in a good change requests nego-
tiating position?

M12 Period of Observation [days] 173
M13 Total Failures Found 112
M14 Customer Found Failure Rate 19.4
M2 Schedule Estimation Accuracy 2.06

53

3 Implementation

As metric 2 shows, the project took more than twice as long as arranged with
the customer. Also the internal budget was highly exceeded (see figure 3.2). The
effort of the team was nearly three times higher than expected. These metrics show
that time and budget constraints were clearly missed.

Now the question is if the reason for that is scope creep as observed. At first,
the work distribution on different task types is taken into account (see figure 3.2). It
shows that more than a third of the whole resources were spent on change requests,
whereas only eight percent were spent on failures, which seems to be ok. This
would indicate, that the high number of change requests caused the project to fail.
However, metrics M9 and M10 show, that the project exceeded the budget nearly

Figure 3.2: Project A: Effort distribution

twice even if there would have been no change requests at all. Even subtracting
the fixing time of defects would not change the result. Therefore the first thing to
mention is, that the initial estimation of the predetermined features was wrong.
The second thing to mention, the high amount of change request indicates that the
features were not chosen properly. This would not cause problems if the customer
paid the change requests. However, metric M11 shows, that only three and a half
percent of the effort regarding change requests could be billed. The suspicion that
a poor specification caused the project to fail appears to have been confirmed.

However, why was the project manager not able to bill the additional effort caused
by change requests? Question 1.6 and the corresponding metrics give a clear an-
swer to that. Beside the fact, that the project was heavily exceeding the deadline,
the customer’s trust could not have been high, because the number of failures

54

3.1 Iteration 1

found by the customer was high. One hundred twelve failures in total or rather
19.4 failures per month found by the customer is too much.

To sum up, the goal of preventing scope creep was clearly missed. A dynamic
of exceeding a deadline, therefore working under pressure, which leads to bad
code quality and therefore a bad position for change request negotiations was not
prevented. The root cause was bad requirements engineering. Concrete actions to
prevent scope creep are discussed in section 3.1.7.

Goal 2: Interpretation of results

Question 1.6 discussed in section 3.2.4 shows, that too many failures occurred.
The presumption is that the high amount of change caused a high amount of tech-
nical debt. This could be a reason for the high amount of defects. To verify that
assumption, the questions Q2.1 to Q2.4 target clean code.

The problem of the system is that no automated test suite is provided. That

Figure 3.3: Project A: Distribution of lines of
code on files (7185 total lines of
code distributed on 43 files)

Figure 3.4: Project A: Distribution of cyclo-
matic complexity on files (Total
complexity of 1690 distributed on
43 files)

makes understanding and changing code more difficult. The complexity of the

55

3 Implementation

code is measured with lines of code and cyclomatic complexity. In figure 3.3 the
distribution of the code lines on the different files is presented as a treemap. As
one can see, there exists one file with 1800 lines of code. This file represents a
monolith, which is hard to maintain. In addition to that, it handles much important
functionality.

In figure 3.4 the treemap of the cyclomatic complexity is shown. The monolith also
occurs in this figure with a cyclomatic complexity of 344. Measuring cyclomatic
complexity in addition to the lines of code does not give deeper insights in this
case. The cyclomatic complexity will be more expressive if it is compared to the
other projects later on. At this point the recommendations for different cyclomatic
complexity values by Steve McConnel can help to get a feeling for those values:

• 0-5: The routine is probably fine.
• 6-10: Start to think about ways to simplify the routine.
• 10+: Break part of the routine into a second routine and call it from the first

routine.

It is important to say, that the metrics M19 and M20 correspond to the complexity
per file and not to the complexity per routine. The complexity per file is, of course,
greater or equal to the complexity per function, because it is the sum of the com-
plexity of all functions in that file.

As mentioned above, the values will be more expressive in comparison to the
other projects. What can be stated at this point is, that the maximum complexity of
344 seems to be very high. The percentage of duplicated lines is also high.

The metrics M23 and M24 are already explained in more detail in section 3.1.4.
The values measured are without any doubt not good. For every 1000 lines of code,
140 issues are introduced. It is estimated that it would take 164 hours to remove
those issues.

To conclude, there are some serious anomalies in the metrics describing the main-
tainability of the code. As observed and suspected, corrective actions are necessary
for the next project. Before elaborating these actions, project B is described in
detail.

56

3.1 Iteration 1

Table 3.3: G2 deliver maintainable code: Measurement results project A

ID Description A
Q2.1 How complex is the code?
M15 Lines of Code 7185
M16 Maximum Logical Lines of Code 1800
M17 Average Logical Lines of Code 167.1
M18 Cyclomatic Complexity 1690
M19 Maximum Cyclomatic Complexity 344
M20 Average Cyclomatic Complexity 39.3

Q2.2
Is the code well documented by a meaningful
test suite?

M21 Appropriate automated test suite applied No

Q2.3 How hard is it to change the code?
M22 Percentage of Duplicated Lines 6.8 %
M21 Appropriate automated test suite applied No

Q2.4 Is the amount of technical debt acceptable?
M23 SonarQube Issues per 1000 Lines of Code 140
M24 SonarQube Fix Time [hours] 164
M22 Percentage of Duplicated Lines 6.8 %

57

3 Implementation

3.1.6 Description of Project B

Project B extends the product of project A. Therefore the technologies used are
PHP in combination with Concrete 5 as the content management system for
the backend and JavaScript for the client-side application. The product helps to
schedule and manage courses, instructors and participants. The team setting was
the same as at the end of project A. The project manager, which is the author of
this work, was also contributing to the client-side application and his colleague
was working on the backend. Of course, the fact that this project is not written
from scratch, that the team did not change from project A to project B, that the
team is now more experienced with the used technologies and that the team was
already familiar with the code base, could have a significant impact on the results.
This issue is therefore discussed at the end of this iteration (see section 3.1.8) and
in the final discussion (see section 5).

3.1.7 Corrective Actions

The goals of this iteration are preventing scope creep and delivering maintainable
code. Which actions are chosen, why they are chosen and in which way they should
help, is discussed in the following.

Preventing scope creep

In section 3.1.2 it is already mentioned, that better requirements development and
management practices in addition to a good change request process would most
likely lower the risk of scope creep. This assumption correlates with literature.
Many publications blame poor requirements engineering practices to jeopardize
project success [37][88][71][50]. Additionally Alcides Quispe et al. show that poor
requirements engineering practices are common and have disastrous consequences
on project success, especially in very small companies [68]. Their findings indicate,
that

1. project specifications are usually met, but the client often finds the solution
unsatisfactory.

2. communication issues with clients cause incomplete specifications.

58

3.1 Iteration 1

3. the project’s scope expands as clients require additional changes
4. requirements specification in VSSEs is mostly an ad-hoc process.
5. this ad-hoc process leads to requirement management issues such as loss of

requirements.
6. when uncertainty arises, developers tend to resolve the issue without con-

tacting the clients.
7. very small enterprises are aware of the benefits of requirements engineering

practices but are not sure they apply in their context.

This enumeration represents the problems of project A. Requirements engineering
is also mentioned to be a key factor to increase the success rate of software projects
[26][51][63].

In terms of project risk, Mark Keil et al. introduced a framework [45], which
consists of four quadrants shown in figure 3.5. The four areas result from two
dimensions:

• Seriousness of the risk
• Level of control of the project manager on the risk itself

Scope and requirements are located in the top right quadrant. They have high
importance and are well controllable. This assumption was verified by a survey
with 507 participating project managers [90]. The outcome is that the scope and
the requirements are of high importance. In addition to that, they found that the
combination of high execution risk, e.g., low experience of the project team,
with high requirements and scope risk has a nine times higher influence on the
outcome of the project as requirements and scope risks alone. They also give some
guidance:

Practically speaking, this means that project managers who know
execution risk is high and are unable to lower it must develop a risk-
mitigation strategy focusing on minimizing the risks associated with
scope/requirements and customer mandate.

The CMMI also indicates that requirements management is of high priority. The
CMMI model consists of twenty-two process areas and five maturity levels. Seven
of those areas have the lowest maturity level. Requirements management is one
of them whereas requirements development is a process area of the next maturity
level [21].

59

3 Implementation

Figure 3.5: Project risk framework [45]

60

3.1 Iteration 1

Therefore a requirements development and management process will be introduced.
The actual process is described at the end of this section.

Delivering maintainable code

The practice of code reviews is described for the first time by Michael Fagan in
1976 [28]. He described a formal process including a design- and a code review.
Nowadays, code reviews are used differently. Therefore the term ”Modern Code
Reviews” was introduced, which describes code reviews as informal and tool-based
[6].

Code reviews are primarily introduced to find defects in code. Therefore, code
reviews would not target the goal of delivering maintainable code. However, firstly
research showed, that the expectations of doing code reviews do not fully correlate
with the actual outcomes and secondly code improvements are the second most de-
sired effects of code reviews [6]. Additionally, knowledge transfer and distribution
is desired.

Bacchelli and Bird showed that most of the comments provided by code reviews
target code improvements. They think that this is caused by the fact, that these
improvements are easy to submit, whereas finding defects is much more challeng-
ing because a deep understanding of the code by the reviewer has to be attained
[6]. Summarizing, modern code reviews primary outputs are code improvements
regarding

• better code practices,
• removing not necessary or unused code and
• improving code readability.

Therefore introducing modern code reviews is a good choice towards the goal of in-
creasing maintainability. The concrete implementation of the practice is described
in the following.

61

3 Implementation

Introducing the process

The actions chosen will be combined and integrated into a defined process. The
new process is shown in figure 3.6 and described in the following.

Requirements Development The process includes a part for requirements de-
velopment. The detailed specification of a feature is done by a product owner (S1).
The product owner passes the specification to the technical lead, who estimates the
effort (S2). The elaborated and estimated feature is reviewed and declared as ready
for development by the customer itself (S3). If the technical lead or the customer
has problems in understanding the feature described, the feature is passed back to
the product owner (S1). The customer also has the possibility to deny a feature,
which leads to an end state (S9).

Implementation If a feature is ready for development (S4), it is the responsi-
bility of the project manager to assign developers and keep track of the progress.
As code reviews are part of the new process, the development team uses another
branching strategy. In project A, everyone was working directly on the mainline.
In project B the branching model ”Branch-by-feature” is used. Therefore the de-
veloper creates a branch from the mainline to work isolated on the feature. After
implementing the feature, the developer creates a pull request and assigns the
technical lead to the feature (S6). If there are no problems detected, the changes
are merged into mainline and the feature is passed to the internal quality assurance
(S7). If problems were detected, they are documented, and the ticket is passed
back to ”Work in Progress”. It is the responsibility of the developer to adjust the
changes.

Acceptance The mainline is then deployed to a testing environment and man-
ually tested by the internal quality assurance. In case of problems, the feature
can be rejected. Otherwise the mainline is deployed to the staging environment
and reviewed by the customer. The customer is then able to accept the feature
or to reject it. In the case of rejection, the project manager is responsible for
distinguishing, if it is a failure or a change request. A failure would cause the
feature to get back work in progress (S5). If the claim represents a divergence

62

3.1 Iteration 1

Figure 3.6: Elaborated process

63

3 Implementation

to the accepted specification, the new desired functionality is treated as a change
request. In this case, the change request is treated like every customer request and
has to go through the whole process as every feature does. The original feature is
then treated as accepted (S10).

3.1.8 Analyze Impact on Project B

As already mentioned, project B was an extension of project A. It added new
functionality with a nearly equally high estimated effort as the base project itself.
This makes requirements engineering easier because all parties already know the
project itself.

Tables 3.4 and 3.5 show the measurable impact of the corrective actions described
in section 3.1.7. The tables show the concrete results of project A and B side by
side. Goals in the following provide a detailed analysis of those values.

Goal 1: Preventing scope creep

The analysis starts with question 1.1, if the project was delivered in-time. Project
B also exceeds the deadline as shown in figure 3.7. But project B exceeded the
deadline only by 59 percent (M2). This is a significant improvement to 106 percent
in project A.

The effort estimation is topic to question 1.2. Figure 3.9 shows, that project B
was still more effort than estimated, but 15 percent (M4) is an acceptable value,
especially compared to 179 percent in project A. This comparison is also shown in
figure 3.8.

By looking at the effort and the duration of the project one sees significant
improvements to project A. Therefore the goal of preventing scope creep can
already be considered as reached. The reason is caused by less change requests.
The effort distribution of project B is shown in figure 3.9. Figures 3.10 and 3.11
show the change of the change request’s proportion from project A to project B.
These figures show, how the resources were used (question 1.3, M6, M7, M8).

64

3.1 Iteration 1

Figure 3.7: Project duration Figure 3.8: Project effort

Figure 3.9: Project B: Additional effort and effort distribution

Question 1.4 targets feature estimation. Metrics M9 and M10 show, if the project
is built within estimated effort if the time spent on failures respectively the time
spent on failures and change requests is neglected. The metrics show, that the
estimation was already nearly correct by only four percent additional effort when
change requests are neglected. Effectively this can be done because 86 percent
of the change requests were paid by the customer (M11). In project A only three
and a half percent of the change requests were paid. By also neglecting the time
spent on failures or respectively only looking at the time spent on real features, the

65

3 Implementation

Figure 3.10: Project A: Effort distribution Figure 3.11: Project B: Effort distribution

effort met the estimation. This set of metrics is also visualized in figure 3.9. The
lower bar shows the effort of the different types of issues. By comparing those to
the upper bar, one can see, that the time spent on features is lower than the effort
estimation and also the time spent on features and failures exceeds the estimation
just a little bit.

As already mentioned, nearly all change requests were paid by the customer.
This is most likely due to a decreased customer found failure rate (M14). There
were only six and two tenth failures found per month compared to nineteen and
four tenths in project A. In addition to that, and as already mentioned, project B
was delivered earlier as its predecessor (M2).

Goal 2: Delivering maintainable code

As code reviews were used to keep the code maintainable, it is important to state,
that only new checked in code was reviewed. As already mentioned, this project
is an extension. There was still no test suite, and the monolith, which caused the
maximum lines of code per file and the maximum cyclomatic complexity per file
is still in the code, and the metrics even increased (see figure 3.12 and 3.13). The
results are therefore not as meaningful as desired.

66

3.1 Iteration 1

Table 3.4: G1 prevent scope creep: Measurement results project A vs. project B

ID Description A B
Q1.1 Was the project delivered in-time?
M1 Estimated Project Duration [days] 64 32
M2 Schedule Estimation Accuracy 2.06 1.59

Q1.2 Was the project built within budget?
M3 Estimated Project Effort [hours] 243 202
M4 Effort Estimation Accuracy 2.79 1.15

Q1.3 How were resources used?
M5 Actual Project Effort [hours] 679 233
M6 Feature Effort Proportion 55 % 76 %
M7 Change Request Effort Proportion 37 % 10 %
M8 Failure Effort Proportion 8 % 15 %

Q1.4 How were resources used?
M3 Estimated Project Effort [hours] 243 202
M9 Feature and Failure Effort to Estimation Ratio 1.55 0.87
M10 Feature Effort to Estimation Ratio 1.77 1.04

Q1.5 Were the change requests paid by the customer?
M11 Billed Change Request Effort Proportion 3.5 % 86 %

Q1.6

Was the team successful in building trust by
providing a reliable software in time to put the
project manager in a good change requests nego-
tiating position?

M12 Period of Observation [days] 173 213
M13 Total Failures Found 112 44
M14 Customer Found Failure Rate 19.4 6.2
M2 Schedule Estimation Accuracy 2.06 1.59

67

3 Implementation

However, as the proportion of duplicated lines (M22) and the issues per 1000
lines of code (M23) decreased, it seems, that the code changes improve the clean-
ness of the code. This improved cleanness is an indicator that the code reviews had
a positive impact. Metrics M16, M17, M19 and M20 can therefore nevertheless
be worse due to the fact, that the project was an extension and an increasing
complexity was not preventable but at least kept low. Figures 3.12 and 3.13 rep-
resent a bar chart, whereas the individual bars are presented as treemaps. As the
width of each bar is the same, the height is directly proportional to the total sum
of code lines respectively the total cyclomatic complexity. One can still see the
monoliths. However, by comparing the proportions between project A and B re-
garding cyclomatic complexity and lines of code, an interesting observation can be
made. The lines of code increased more than the complexity did. The total lines of
code increased by 24.8 percent, whereas the total complexity only increased by
17.5 percent. This indicates that the code base got less complex compared to its size.

To sum up, question Q2.1 shows that the complexity of the code increased, possibly
because the project was an extension. Project C will give more meaningful insights.
Questions Q2.2 and Q2.3 show that there is no significant improvement in the
understandability and changeability of the code. Maybe also caused by the original
code base. At last question Q2.4 shows, that the technical debt was decreased. The
results, therefore, are not conclusive. If the code reviews really succeeded and
therefore delivered the desired outcomes will be clarified by project C, which will
cover a new product, which is built from scratch.

Threats to validity

As already mentioned in the description of project B (see section 3.1.6), the team
that finished project A, was also the team working on project B. In addition to that,
the code base was the same, as the created product in project A was extended in
project B. In the following, it is presented in which way these facts and others
could have had an impact on the gathered results. In this case, it is taken advantage
of the fact, that the author of this work was operatively involved in both projects.
His qualitative perception of the situation can help to determine, which results are
really caused by the applied actions.

68

3.1 Iteration 1

Table 3.5: G2 deliver maintainable code: Measurement results project A vs. project B

ID Description A B
Q2.1 How complex is the code?
M15 Lines of Code 7185 8964
M16 Maximum Logical Lines of Code 1800 1990
M17 Average Logical Lines of Code 167.1 190.7
M18 Cyclomatic Complexity 1690 1987
M19 Maximum Cyclomatic Complexity 344 424
M20 Average Cyclomatic Complexity 39.3 42.3

Q2.2
Is the code well documented by a meaningful
test suite?

M21 Appropriate automated test suite applied No No

Q2.3 How hard is it to change the code?
M22 Percentage of Duplicated Lines 6.8 % 2.6 %
M21 Appropriate automated test suite applied No No

Q2.4 Is the amount of technical debt acceptable?
M23 SonarQube Issues per 1000 Lines of Code 140 94
M24 SonarQube Fix Time [hours] 164 141
M22 Percentage of Duplicated Lines 6,8 % 2.6 %

69

3 Implementation

Figure 3.12: Tree map of lines of code of projects A and B

The prevention of scope creep was the first goal of this iteration. The main result
was, that project A exceeded the estimated effort by 179 percent and project B by
only 15 percent. By reflecting both projects, this tremendous difference was mainly
obtained by better requirements engineering. However, it was also supported by
the constellation of this iteration, because the estimation and the requirements
engineering were easier for project B in comparison to a project, which creates
a product from scratch. This important parameter is not present in project C, as
the domain, the customer, and the technologies used are different to project A and
B. The second iteration will give deeper insights about the impact of knowing the
product and the domain already. The results show with no doubt that well-defined
requirements prevent scope creep. The remaining question is if the requirements
engineering process can also produce such well-defined requirements in an un-

70

3.2 Iteration 2

Figure 3.13: Tree map of cyclomatic complexity of projects A and B

known domain.

Regarding the modern code reviews, it is already mentioned, that a conclusive
validation cannot be obtained by analyzing the extension of a product. A slight
decline of the overall technical debt indicates success, but project C will give more
appropriate evidence.

3.2 Iteration 2

As in the first iteration, each of the used methodology’s six steps has its subsection
in the following. In addition to that, a description of project C is provided in its
own subsection.

71

3 Implementation

3.2.1 Observations of Project B

The goal of project B was extending the web application, which was the output
of project A. As described, the product serves as a tool for scheduling courses
automatically and for supporting the management of instructors and participants.
The details of project B are already described (see section 3.1.6). As this is not the
first iteration, the analysis of the first iteration can be used in addition to subjective
observations.

By having a look on tables 3.4 and 3.5 some observations can already be de-
rived. Metric M4 shows, that project B still overran the proposed budget slightly.
Also, the deadline was missed slightly (M2).

Observation B-1: Still little problems with delivering in-time and
within a predetermined budget

It was observable that the development of features worked well. It seems that
the still late acceptance is caused by the work on change requests and failures.
Changing the system is a high effort especially for the manual quality assurance.
Of course, this effort is exponentially higher with no test suite applied. There are
two choices in developing software:

• No test suite applied and therefore a low delivery frequency in respect to a
high manual quality assurance effort or
• a high delivery frequency, only possible with an appropriate automated test

suite.

Problems occur when the delivery frequency is high, and no automated test suite
is applied. Problems of this kind could be observed in project B. As metric M21
already shows, there is still no test suite applied. The team was developing with a
good pace and finished features on time. The manual quality assurance was looking
for issues regarding functionality and performance. Everything was fine up to that
point in time. The delivery frequency was low and therefore having no test suite
did not cause problems. The situation changed when change requests and failures
found by the customer occurred. In this situation, the delivery frequency increased,
as every change request and especially every fix should have been delivered as
soon as possible. Theoretically, the manual quality assurance would have had
to check the whole system each time before a new version was delivered to the

72

3.2 Iteration 2

customer. On the one hand cycle and lead times of change requests and fixes were
long. On the other hand, the increasing pressure on manual quality assurance led to
faster checks and therefore to a lower delivered quality. As a result, more failures
found by the customer occurred, and therefore the pressure caused by a dissatisfied
customer rose. The following observations can be derived:

Observation B-2: Still no test suite

Observation B-3: Everything works fine until the moment of an in-
creasing delivery frequency

Observation B-4: Unmanageable effort for manual quality assurance

Observation B-5: High lead and cycle times of changes and fixes

Of course, this scenario leads to great discomfort in releasing new versions. De-
velopers are afraid of breaking the system, the quality assurance has an enormous
effort, and the project manager has problems with the customer due to quality
issues.

Observation B-6: High discomfort in releasing new versions

The last noticeable thing is that it is yet not clear if the code reviews had a positive
impact on code quality. The percentage of duplicated lines (M22) decreased and the
estimated maintenance effort (M23, M24) improved, whereas all other code quality
metrics slightly worsened (M16, M17, M19, M20). Interestingly, the complexity
did not grow as much as the lines of code did. This is already a good sign. As
project B was an extension of project A and therefore not written from scratch, the
question on the impact of code reviews cannot be answered definitely.

Observation B-7: Impact of code reviews yet not clarified - ambiguous
results

In table 3.2.1 the observations are collected.

73

3 Implementation

Table 3.6: Observations of project B

ID Description
O-B-1 Still little problems with delivering in-time and within predeter-

mined budget
O-B-2 Still no test suite
O-B-3 Everything works fine until the moment of an increasing delivery

frequency
O-B-4 Unmanageable effort for manual quality assurance
O-B-5 High lead and cycle times of changes and fixes
O-B-6 High discomfort in releasing new versions
O-B-7 Impact of code reviews yet not definitely clarified - ambiguous

results

3.2.2 Define Goals

The observations ultimately describe one goal: A schedule estimation accuracy of
1 (M2). Observations O-B-1 to O-B-6 are already reasons, why the project is not
accepted by the customer earlier. O-B-7 is already targeted by goal 2 and needs to
be validated in a new project that is written from scratch.

3.2.3 Extend GQM-Model

The goal of this section is to extend the GQM-Model by a third goal, namely:
”Achieve a schedule estimation accuracy of 1”. In the following, the related ques-
tions and metrics are elaborated to extend the GQM-Model. This will be used to
determine, how the concrete actions affected the project outcomes objectively.

Goal 3: Achieve a schedule estimation accuracy of 1

The first question to be asked is if the project was delivered in-time. The following
questions help to identify the reasons for a late acceptance and will be part of the
GQM-model for goal 3:

• Q3.1: Was the project delivered in-time?

74

3.2 Iteration 2

• Q3.2: Did a wrong effort estimation cause the delay of acceptance?
• Q3.3: Was the planning of resources appropriate?
• Q3.4: How much of the work was done from due day to day of acceptance?
• Q3.5: How was the time used from due day to day of acceptance?
• Q3.6: How was the time used until the due day?
• Q3.7: How easy was it to deliver change requests and fixes?

First of all, it needs to be verified, if the observations are the actual root causes.
The assumption is that the development of features was finished before the due day
and most of the work done after due day was caused by change requests and fixes.
This would indicate, that no estimation or resource planning mistakes occurred.
This is verified by the questions Q3.2 to Q3.6.

If effort estimation and resource planning were done right, the suspicion is, that
it was hard to deliver changes and fixes after the development of features was
complete. This suspicion is verified by question 3.7.

Metrics for Q3.1 - Was the project delivered in-time? This question is the
same as Q1.1. For a detailed description see section 3.1.4 and metrics M1 and
M2.

Metrics for Q3.2 - Did a wrong effort estimation cause the delay of accep-
tance? To answer this question, effort estimation accuracy (M4) is taken into
account. It shows, if and how much the invested effort exceeded the estimated
effort. For better comparability, the total estimated effort is also given in hours
(M3).

Metrics for Q3.3 - Was the planning of resources appropriate? The hu-
man resources are allocated in the planning phase of a project. If this is done right,
the invested hours until the due day should not be lower than the estimated effort,
expect the total invested effort was lower than the estimated effort. Therefore the
invested hours until due day divided by the estimated effort is used to answer this
question (M25). In addition to that, the total estimated effort (M3) is provided for
better comparability.

75

3 Implementation

M25 =
Invested hours until due day

Estimated project effort in hours (M3)

Metric 25: Invested hours by estimated hours until due day

A value of one means that the planning was proper. However, if the project ex-
ceeded the deadline, the estimation caused the problems. A value higher than one
means that the project manager already reacted on the bad effort estimation. A
value lower than one is ok if the project was delivered in-time. Otherwise, it means,
that the resource planning failed. Of course, it is also possible that the estimation
and resource planning was bad.

Metrics for Q3.4 - How much of the work was done from due day to day
of acceptance? The time until the due day has a low delivery frequency. The
reason for asking this question is to find out how much effort of the project was
made under pressure when the project was already delayed. The time after the due
day has a higher delivery frequency and is predestinated for introducing defects.
This question shows how significant that proportion is. Therefore three metrics
are defined. M26 and M27 represent the absolute values, whereas M28 shows the
percentage of time spent from due day to day of acceptance.

M26 = Total hours spent until due day

Metric 26: Total hours spent until due day

M27 = Total hours spent from due day to day of acceptance

Metric 27: Total hours spent from due day to day of acceptance

M28 =
Total hours spent from due day to day of acceptance (M27)

Time spent since due day (M27) + Time spent until due day (M26)

Metric 28: Invested hours by estimated hours until due day

76

3.2 Iteration 2

Metrics for Q3.5 - How was the time used from due day to day of accep-
tance? This question is very insightful. If the team worked solely on fixes and
change requests, at least the resource planning was good. If the team was still
working on features after due day, the project was not planned well. Therefore the
proportions of hours worked on features (M29), hours worked on failures found by
customer (M30) and hours worked on change requests (M32) from due day to day
of acceptance are given. In addition to that, the failures found by internal quality
assurance will get tracked in project C. Also this proportion is taken into account
(M31). The denominator is the total time spent from due day to day of acceptance
(M27).

M29 =
Total hours spent on features since due day

Total hours spent from due day to day of acceptance (M27)

Metric 29: Prop. of hours worked on features since due day

M30 =
Total hours spent on failures found by customer since due day

Total hours spent from due day to day of acceptance (M27)

Metric 30: Prop. of hours worked on failures found by customer since due day

M31 =
Total hours spent on failures found by QA since due day

Total hours spent from due day to day of acceptance (M27)

Metric 31: Prop. of hours worked on failures found by QA since due day

M32 =
Total hours spent on change requests since due day

Total hours spent from due day to day of acceptance (M27)

Metric 32: Prop. of hours worked on change requests since due day

77

3 Implementation

Metrics for Q3.6 - How was the time used until the due day? If the time
after due day was spent solely on change requests and fixes, it is interesting, if
the team was already working on change requests and fixes before the due day.
This would indicate, that the estimation was good, but maybe a bad quality led to a
high effort of fixing defects or maybe poorly defined requirements caused a high
amount of change requests. Therefore, as in question 3.5, the proportions of hours
worked on features (M33), hours worked on failures found by customer (M34),
hours worked on failures found by internal quality assurance (M35) and hours
worked on change requests (M36) until due day are investigated. In this case, the
total hours spent until the due day (M26) are used as the denominator.

M33 =
Total hours spent on features until due day

Total hours spent until due day (M26)

Metric 33: Prop. of hours worked on features until due day

M34 =
Total hours spent on failures found by customer until due day

Total hours spent until due day (M26)

Metric 34: Prop. of hours worked on failures found by customer until due day

M35 =
Total hours spent on failures found by QA until due day

Total hours spent until due day (M26)

Metric 35: Prop. of hours worked on failures found by QA until due day

M36 =
Total hours spent on change requests until due day

Total hours spent until due day (M26)

Metric 36: Prop. of hours worked on change requests until due day

78

3.2 Iteration 2

Metrics for Q3.7 - How easy was it to deliver change requests and fixes?
If the suspicion that the team was struggling with the high delivery frequency
combined with the non-existence of a test suite is confirmed, the lead and cycle
times of fixes and change requests are important to be examined. The cycle time
begins with the start of the work and ends with the delivery to the customer. The
lead time consists of the wait time from the customer’s request to the start of
the work and the cycle time. As the data set will most likely contain outliers, the
median values are used (M37 and M39). In addition to that, box plots will be used
to visualize the cycle and lead times. Therefore the interquartile ranges (IQR) are
given (M38 and M40). Fifty percent of the samples are within the interquartile
range per definition.

M37 = Median lead time for fixes and change requests in calendar days

Metric 37: Median lead time for fixes and change requests

M38 = IQR of lead times for fixes and change requests in calendar days

Metric 38: IQR of lead times for fixes and change requests

M39 = Median cycle time for fixes and change requests in calendar days

Metric 39: Median cycle time for fixes and change requests

M40 = IQR of cycle times for fixes and change requests in calendar days

Metric 40: IQR of cycle times for fixes and change requests

3.2.4 Quantify Observations of Project B

The observations of project B made in section 3.2.1 are quantified in the following.
The metrics are based on the GQM-model described in section 3.2.3. The concrete
measurement results for the third goal, namely achieving a schedule estimation
accuracy of 1, can be found in table 3.7.

79

3 Implementation

Goal 3: Interpretation of results

In this section, the observations of project B are quantified. For that purpose, it
would suffice to look only on the values of project B. As the metrics also changed
a lot from project A to project B, the values of project A are also provided. Those
values give additional insights about the effects of the corrective actions of iteration
1. These effects are therefore also discussed subsequently.

Table 3.7: G3 achieve a schedule estimation accuracy of 1: Results of projects A and B

ID Description A B
Q3.1 Was the project delivered in-time?
M1 Estimated Project Duration [days] 64 32
M2 Schedule Estimation Accuracy 2.06 1.59

Q3.2
Did a wrong effort estimation cause the delay of
acceptance?

M3 Estimated Project Effort [hours] 243 202
M4 Effort Estimation Accuracy 2.79 1.15

Q3.3 Was the planning of resources appropriate?
M3 Estimated Project Effort [hours] 243 202
M25 Invested hours by estimated hours until due day 1.57 0.79

Q3.4
How much of the work was done from due day
to day of acceptance?

M26 Total hours spent until due day 381 160

M27
Total hours spent since due day to day of accep-
tance 274 33.5

M28 Invested hours by estimated hours until due day 42 % 17 %

Q3.5
How was the time used from due day to day of
acceptance?

M29 Prop. of hours worked on features since due day 43 % 40 %

M30
Prop. of hours worked on failures found by cus-
tomer since due day 15 % 16 %

80

3.2 Iteration 2

M31
Prop. of hours worked on failures found by QA
since due day - -

M32
Prop. of hours worked on change requests since
due day 43 % 44 %

Q3.6 How was the time used until due day?
M33 Prop. of hours worked on features until due day 66 % 99 %

M34
Prop. of hours worked on failures found by cus-
tomer until due day 1.7 % 0.2 %

M35
Prop. of hours worked on failures found by QA
until due day - -

M36
Prop. of hours worked on change requests until
due day 32 % 0.6 %

Q3.7
How easy was it to deliver change requests and
fixes?

M37 Median lead time for fixes and change requests - 7.66
M38 IQR of lead times for fixes and change requests - 8.38
M39 Median cycle time for fixes and change requests - 5.87
M40 IQR of cycle times for fixes and change requests - 6.91

As already known, the project exceeded the deadline. Project B took 59 percent
longer than expected (M2), whereas 15 percent more effort was required than
estimated (M4). Therefore one knows, that the effort estimation did not cause
the project duration to exceed. One reason for that can be found in the resource
planning, because only 160 hours were worked until due day. That are only 79
percent (M25) of the estimated project effort. The combination of the metrics
M28, M29 and M33 shows, that the deadline was already missed caused by poor
resource planing. The argumentation works in the following way: 17 percent of the
overall effort was done after due day and before acceptance (M28). This effort was
not only used for change requests (44 percent, M32) and fixes (16 percent, M30),
but also for working on features (40 percent, M29). And as metric M33 shows, in
the time until due day the whole team was solely working on features (see figure
3.16). An appropriate resource planning could have led project B perform much
better in terms of schedule estimation accuracy, because all the effort working on

81

3 Implementation

features should have happened before due day and only 79 percent of the estimated
effort was really performed before due day.

An additional criteria is the effort for working on fixes and change requests after
due day. 60 percent of the time after due day was used to work on fixes and change
requests (M30 and M32). The suspicion is, that those fixes and change requests
have long cycle and lead times, caused by the non-existence of a test suite and
therefore a high manual testing effort for the internal quality assurance for each
delivery. The median cycle and lead times can be found in table 3.7. Beside that,
the interquartile range is given. These values are illustrated in a box plot (see figure
3.14).

82

3.2 Iteration 2

Figure 3.14: Lead and cycle times of project B

One can observe, that the median lead time is around seven and a half days (M37).
Fifty percent of all values are between 3.87 and 12.26 days. The lead times are
more dispersed than the cycle times. The dashed line shows the average and the
solid line the median. As one can see, the median and average lead times are far
away from each other in comparison to the corresponding cycle times. Two outliers
of the lead time are not visible in the box plot, because they have a lead time of
162 respectively 267 days. To keep the box plot readable, the y-axis shows only
30 days. It seems that these outliers are caused by their wait times, because, as

83

3 Implementation

already mentioned, the cycle times do not contain extreme outliers.

To interpret these values, they need to be examined concerning the agreed re-
spectively the estimated project duration. The estimated project duration of project
B was 32 days (M1). More concrete, if the customer finds a defect after due day,
one out of two times, it will take about four to twelve days to fix that and to deliver
it to the customer. As the acceptance of the project is tied to the removal of most
of the defects found by the customer, these lead times seem to have a big impact
on the project delay in addition to the problems in resource planning.

Additional insights in iteration 1

As already mentioned, some values for goal G3 are also measured for project A.
This provides deeper insights about what happened in iteration 1.

In project A the company provided additional resources, because it was clear
already early in the project, that the due day will be missed. More than 50 percent
more resources than estimated were used until the due day (M25). The reason,
why the due day was nevertheless clearly missed, was, that still 42 percent of the
overall effort was done after due day and before acceptance. The usage of the time
until the due day (question Q3.6) is another indicator, that scope creep occurred.
In project A the team was already working on change requests before the due day.
Only 66 percent of the time was used to work on features (M33). Of course, this
would be desirable, if the team would have been finished with all features before.
As this was not the case, figure 3.15 indicates, that the team was already faced
with change requests early in the project. This shows that the specification was
poorly written. In contrast to project A, the team was able to work 99 percent of
the time on features until the due day in project B. The requirements engineering
of project B was therefore successful. The difference is also presented in figures
3.15 and 3.16.

84

3.2 Iteration 2

Figure 3.15: Project A: Effort distribution until
due day

Figure 3.16: Project B: Effort distribution until
due day

3.2.5 Description of Project C

Project C is more representative concerning impacts generated by the different
corrective actions because it is a new application written from scratch ordered by
another customer. In the first iteration, the customer and the application were the
same on both reference projects. This issue is a threat to validity and is discussed
in more detail in section 3.1.8. Project C provides a web service for a client-
side application, which is developed by another company due to limited human
resources. Node.js was used to implement the web service. In addition to that, a
small configuration frontend was developed in-house by using Aurelia as frontend-
framework. However, this configuration frontend was just a tenth of the effort of
the web service itself. This part was developed by a full-time employee, which was
already quite experienced with the use of Aurelia. Again the author of this work was
part of the team in his role as project manager and backend developer, with a few
months of experience with Node.js. He was supported by his colleague of project B,
although the colleague had no experience with Node.js and backend JavaScript up
to that point. These two were also the only persons, which were working full-time
on project C. This core team was partially supported by the already mentioned
frontend developer, by another developer, who set up the skeleton of the web
service, what he already did a few times before and by another backend developer

85

3 Implementation

in the end of the project to provide additional human resources to finish the project
in-time. The last mentioned developer was slightly more experienced than the core
team. As technology changed, the experience of the core team at the beginning
of this project is comparable to the experience they have had at the beginning
of project B. In both cases, one of both had already little experience with the
technology used, and the other had not. What changed is, that also three other
colleagues contributed small parts to the project. In project B the members of the
core team were the only persons who contributed to the project. This setup will
provide more reasonable evidence to the corrective actions of the second iteration
as well as the corrective actions of the first iteration because the requirements
engineering and code review processes were not changed.

3.2.6 Corrective Actions

The goal of this iteration is a schedule estimation accuracy of 1. Which actions are
chosen, why they are chosen and in which way they should help, is described in
the following.

In the preceding analysis two causes for the delay of project acceptance were
found:

1. Poor resource planning (the team was not finished with working on features
on the due day)

2. Long lead and cycle times of fixes and change requests

The resource planning will not be discussed in this master thesis in more detail. Of
course, the information, that too little human resources were supplied in project B,
will have an impact on the resource planning of project C. The corrective actions
of this iteration will focus on reducing the lead and cycle times of fixes and change
requests.

86

3.2 Iteration 2

Choosing approach

The approach to choose is continuous delivery. Humble and Farley state, that the
main benefit of continuous delivery is ”a release process that is repeatable, reliable,
and predictable, which in turn generates large reductions in cycle time, and hence
gets features and bugfixes to users fast” [39]. The delivery strategy is also part
of the six critical success factors in agile software projects described by Chow
and Cao [20]. Also Chen and Power report, that they moved 20 applications to
continuous delivery. They describe six main benefits [18]:

1. Accelerated time to market
2. Building the right product
3. Improved productivity and efficiency
4. Reliable releases
5. Improved product quality
6. Improved customer satisfaction

The results they have obtained are tremendous. They released every one to six
months, now once a week on average and often even multiple times a day when
necessary. The release process has become more reliable, caused by the high
number of releases. Until the first deployment to production, the fully automated
pipeline is tested very often. Therefore the incidents in production have decreased
significantly. The software engineers reported that the stress of deploying new code
decreased. Finally, the work distribution of the teams is comparable to project B.
Approximately 30 % of the effort was fixing bugs. After implementing continuous
delivery, the number of open bugs for the applications has decreased by more than
90 %. They also state, that usually nobody is working on customer found failures
anymore.

These results are exactly what the following project needs to get accepted on
time.

Concrete realization

First of all, the approach chosen is continuous delivery. Continuous delivery pro-
vides completely automated a potentially releasable software artifact each time
the continuous delivery pipeline is triggered. These artifacts can be deployed to

87

3 Implementation

any environment. In the best case with just one click (one-click-deployments). A
step further would be continuous deployment. In this case, the deployment would
also be fully automated, and each time the pipeline is triggered, a new version
is deployed to production (zero-click-deployments). With the present types of
projects, continuous deployment is not desirable.

Continuous delivery is a practice, whose concrete realization differs from company
to company and from project to project. Stahl and Bosch described how continu-
ous integration practices differ in the industry of software development [83]. The
concrete realization is as close as possible to the recommendations of Humble and
Farley [39]. Of course, some parts differ.

Automate almost everything To ensure that the release process gets reliable,
it has to be automated. In the concrete implementation, the build is automated, and
the test suite is executed automatically.

Develop on mainline Humble and Farley describe developing on mainline the
only pattern for branching and merging which enables one to perform continuous
integration. This contradicts with the process introduced in iteration 1. As the code
reviews and the branching strategy (feature branches) worked well, this strategy
will remain. The main reason to develop on the mainline is to avoid ”merge and
integration hell” at the end of a project. As the team and the features are small, and
the team integrates a feature into mainline as soon as the feature is finished, the
present branching approach should not raise problems.

Build the final artifact only once If the final artifact is built only once, one
can ensure, that this artifact is reliable, because the automated test suite tested it,
deployed to and manually tested on internal quality assurance and customer staging
environment, which are as close as possible to the production environment.

Every check-in leads to a potential release This practice gets more compli-
cated as not every check-in is made to the mainline. To not take away the immediate
feedback of the automated test suite by developing on branches, the pipeline is
also triggered, when commits are made to feature branches. Of course, the created

88

3.2 Iteration 2

artifacts are not the same as those on the mainline. Therefore the manual quality
assurance does only test features when they are integrated into mainline. Otherwise,
the advantage of a single artifact would disappear. To avoid misunderstandings of
functionality, the product owner does a quick functional check of every feature on
a feature branch before the code gets reviewed and integrated into the mainline.
The feature gets tested in more detail from the internal quality assurance, once a
release should happen.

Therefore a new state has to be introduced in the process elaborated in iteration 1
(see figure 3.6). The adjusted process is shown in figure 3.17. The adjustments are
presented in black. If a developer finishes the coding, the feature is not immediately
passed to the technical review anymore but passed to the product owner (functional
review). Therefore the latest artifact of every feature branch is deployed to a feature
branch environment automatically. On this environment, the functional review is
conducted. As this artifact differs from the artifact released later, this functional
review is very superficial. If the feature passes the functional review, it is passed to
the technical review. Otherwise, the developer gets the feature back to implement
necessary changes.

89

3 Implementation

Figure 3.17: Process adjustments for iteration 2 (Changes presented in black)

The role of the manual tester also changes a bit, because the deployment to the
internal quality assurance environment and the customers staging environment
is now part of the work. This is easy, because these are one-click-deployments.
Depending on the situation, changes can be released very frequently or not. This

90

3.2 Iteration 2

decision is the responsibility of the product owner. An urgent fix can be reviewed
and deployed immediately. This would cause higher manual testing effort, because
the system needs to get tested for every change, to ensure that an artifact has a
proper quality. But the system is flexible, because the manual tester can also wait
for more new functionality integrated in mainline, to test and release them at once.
This is of course common practice in the beginning of the project. In addition to
that, the manual testing effort will be much less work, because the automated test
suite should catch regression defects beforehand.

3.2.7 Analyze Impact on Project C

The analysis is again provided for each goal separately in the following. Tables
3.8, 3.9 and 3.10 contain the data of the three different goals.

Goal 1: Prevent scope creep

By looking at table 3.8, it is clear that scope creep was prevented. Although the
project took 28 percent longer than expected (M2) and the total effort exceeded the
budget by 40 percent (M4), the project does not show the typical signs of scope
creep. In comparison to that, project A had to deal with scope creep by taking
twice as long as agreed and by requiring three times more work than estimated. In
addition to that, metric M2 is formally higher than informally. This is due to the
situation that the project was finished a few days after due day and nothing had
to be done anymore, but the customer was on holiday for a week. This delayed
acceptance. This is especially important when discussing goal G3, reaching a
schedule estimation accuracy of 1.

Questions Q1.3 to Q1.5 are therefore interesting because one can see quickly,
that the project was very healthy. In contrast to project B, the effort working on
features increased furthermore, whereas the effort working on fixes and change
requests slightly decreased. Metric M10 shows that in project C the effort was
slightly underestimated, which therefore is the reason for the effort estimation
accuracy of 1.4 in this project. If scope creep would not be prevented, the amount
of time working on change requests and fixes would have been much higher as
it is the case for project A. As nearly no change request effort occurred, it is no

91

3 Implementation

problem, that only 38 percent effort caused by change request was paid. The reason
for that is that the project was financially successful and the project manager,
therefore, did not even ask for getting all change requests paid. The benefits of
some additional hours paid would have less value for the company than the higher
customer satisfaction gained by not billing each little change request.

Question Q1.6 shows that the number of failures decreased significantly (M13).
The customer found failure rate (M14) seems to be very high, but the point of it is,
that all six defects were found within six days and no defect was found afterward.
The used definition of the period of observation (first occurrence of a failure to
last occurrence) and the actual value of 30 failures found per month is therefore
misleading. However, the number of total failures found shows, that the quality of
project C is much better than the quality of its predecessors. Therefore trust was
successfully built.

Goal 2: Delivering maintainable code

As project B was an extension of project A, the success of code reviews could not
be determined clearly. Whereas the size of the code base and the total complexity
rose, at least the complexity grew slower than the lines of code. The values of
project C are now able to clarify the success of the code reviews introduced in
iteration 1.

92

3.2 Iteration 2

Table 3.8: G1 prevent scope creep: Measurement results of projects A, B and C

ID Description A B C
Q1.1 Was the project delivered in-time?
M1 Estimated Project Duration [days] 64 32 60
M2 Schedule Estimation Accuracy 2.06 1.59 1.28

Q1.2 Was the project built within budget?
M3 Estimated Project Effort [hours] 243 202 156
M4 Effort Estimation Accuracy 2.79 1.15 1.40

Q1.3 How were resources used?
M5 Actual Project Effort [hours] 679 233 218
M6 Feature Effort Proportion 55 % 76 % 85 %
M7 Change Request Effort Proportion 37 % 10 % 5 %
M8 Failure Effort Proportion 8 % 15 % 10 %

Q1.4 How were resources used?
M3 Estimated Project Effort [hours] 243 202 156
M9 Feature and Failure Effort to Estimation Ratio 1.55 0.87 1.19
M10 Feature Effort to Estimation Ratio 1.77 1.04 1.33

Q1.5 Were the change requests paid by the customer?
M11 Billed Change Request Effort Proportion 3.5 % 86 % 38 %

Q1.6

Was the team successful in building trust by
providing a reliable software in time to put the
project manager in a good change requests nego-
tiating position?

M12 Period of Observation [days] 173 213 6
M13 Total Failures Found 112 44 6
M14 Customer Found Failure Rate 19.4 6.2 30
M2 Schedule Estimation Accuracy 2.06 1.59 1.28

93

3 Implementation

Figure 3.18: Tree map of lines of code of projects A, B and C

94

3.2 Iteration 2

Figure 3.19: Tree map of cyclomatic complexity of projects A, B, and C

As figures 3.18 and 3.19 show, the complexity of the code decreased. This has two
reasons:

• Smaller code base
• Better code distribution on files

The code base is 59 percent smaller than the code base of project B, whereas the
total complexity decreased only by 58 percent. That means that the complexity
even slightly increased concerning the lines of code. Nevertheless, the code is less

95

3 Implementation

complex not only because of the smaller code base. What changed significantly,
is the distribution of the code on different files. The lines of code per file and the
cyclomatic complexity per file decreased by approximately three quarters (M17
and M20). In figures 3.18 and 3.19 one will notice immediately, that the average
lines of code and the average complexity per file decreased and most importantly,
that there is no monolith present in project C anymore.

As also an appropriate test suite is supplied in project C and the percentage
of duplicated lines is only 1.5 percent, the code is much easier to change and to
understand.

In addition to that, the amount of technical debt decreased significantly. Whereas
94 issues per 1000 lines of code were present in project B with an estimated fix
time of 141 hours, project C performed much better with only 2.5 issues per 1000
lines of code and an estimated fix time of only two hours.

By looking at all of these values, it gets clear that a well maintainable code
was delivered and that the goal is therefore reached. Modern code reviews had a
positive impact on maintainability.

Goal 3: Achieving a schedule estimation accuracy of 1

The goal was to deliver on time and get the project accepted on the due day. There-
fore looking at metric 2, the schedule estimation accuracy, should suffice. At first
glance, a value of 1.28 indicates, that the goal was not reached. However, this
value does not represent the true story appropriately. As already mentioned, the
customer’s person in charge went on holidays some days after the due day. The
formal acceptance was then given after customer’s holidays. The last features and
the last staging defects found by the customer were finished respectively fixed a
few days before the due day. The metrics of question Q3.4 show that clearly. Only
two percent of the total effort was done after the due day. The product was already
finished on the due day, and the acceptance was only delayed by the customer’s
holidays. Ultimately the customer was satisfied. Therefore the schedule estimation
accuracy of 1.4 does not matter, and the goal was reached. In the following a
discussion about the impact of continuous delivery and the reasons for reaching
the goal is provided.

96

3.2 Iteration 2

Table 3.9: G2 deliver maintainable code: Measurement results of projects A, B and C

ID Description A B C
Q2.1 How complex is the code?
M15 Lines of Code 7185 8964 3654
M16 Maximum Logical Lines of Code 1800 1990 175
M17 Average Logical Lines of Code 167.1 190.7 47.5
M18 Cyclomatic Complexity 1690 1987 822
M19 Maximum Cyclomatic Complexity 344 424 84
M20 Average Cyclomatic Complexity 39.3 42.3 10.7

Q2.2
Is the code well documented by a meaningful
test suite?

M21 Appropriate automated test suite applied No No Yes

Q2.3 How hard is it to change the code?
M22 Percentage of Duplicated Lines 6.8 % 2.6 % 1.5 %
M21 Appropriate automated test suite applied No No Yes

Q2.4 Is the amount of technical debt acceptable?
M23 SonarQube Issues per 1000 Lines of Code 140 94 2.5
M24 SonarQube Fix Time [hours] 164 141 2
M22 Percentage of Duplicated Lines 6,8 % 2.6 % 1.5 %

97

3 Implementation

In project C the resource planning was better than in project B. Project C required
40 percent more resources (M4) than expected and the project was nevertheless
delivered on time. This shows that enough human resources were provided and also
enough safety buffer was taken into account. In project B the team was working on
features until the due day and also after it. In contrast to that, in project C the team
was already working on fixes and change requests before the due day (question
Q3.6). This indicates a good schedule because after the due day the team worked
just on some little change requests (M32). The features were already finished, and
the system was stable.

Reaching goal G3 could be traced back to the fact that resource planning was
improved. However, question Q3.7 shows, that continuous delivery had a huge
positive impact on the results. The given metrics, especially the cycle times are key
performance indicators for the continuous delivery system. Figure 3.20 shows that
cycle and lead times improved significantly in project C. The median lead time
decreased by 61 percent and the median cycle time by 49 percent. In addition to
better median values, the lead and cycle time is more reliable in project C. The
interquartile ranges of lead and cycle times decreased by 65 percent respectively 60
percent. In addition to that, there are no outliers present in project C. As mentioned
in the analysis of project B, these values have a big impact on in-time delivery. As
project B’s planned duration was 32 days, a median lead time of more than seven
days for fixes and change requests is a long time, especially after due day, when
the customer reports defects and the acceptance is blocked until they are fixed. In
contrast to that, project C had a planned duration of 60 days and a median lead
time of three days. By only looking at the defects, the median lead times are still
nearly seven days in project B, and only one day in project C. This is a crucial
factor when the customer starts to test the system and the due day is near. Even if a
high amount of defects is detected, the team can fix those immediately, and the
project can still be accepted as planned. In project B, this was not possible.

98

3.2 Iteration 2

Figure 3.20: Lead and cycle times of projects B and C

In addition to the low lead and cycle times, also the number of failures found by
the customer decreased. Therefore the results of nearly no defects and significantly
lower lead and cycle times reported by Chen and Power [18] could be reproduced
in project C. The positive impact of continuous delivery could be proved. The
cycle and lead times decreased on average and became more reliable too.

99

3 Implementation

Table 3.10: G3 achieve a schedule estimation accuracy of 1: Results of projects A, B and C

ID Description A B C
Q3.1 Was the project delivered in-time?
M1 Estimated Project Duration [days] 64 32 60
M2 Schedule Estimation Accuracy 2.06 1.59 1.28

Q3.2
Did a wrong effort estimation caused the delay
of acceptance?

M3 Estimated Project Effort [hours] 243 202 156
M4 Effort Estimation Accuracy 2.79 1.15 1.40

Q3.3 Was the planning of resources appropriate?
M3 Estimated Project Effort [hours] 243 202 156
M25 Invested hours by estimated hours until due day 1.57 0.79 1.37

Q3.4
How much of the work was done from due day
to day of acceptance?

M26 Total hours spent until due day 381 160 213

M27
Total hours spent since due day to day of accep-
tance 274 33.5 4.25

M28 Invested hours by estimated hours until due day 42 % 17 % 2 %

Q3.5
How was the time used from due day to day of
acceptance?

M29 Prop. of hours worked on features since due day 43 % 40 % 0 %

M30
Prop. of hours worked on failures found by cus-
tomer since due day 15 % 16 % 0 %

M31
Prop. of hours worked on failures found by QA
since due day - - 0 %

M32
Prop. of hours worked on change requests since
due day 43 % 44 % 100 %

Q3.6 How was the time used until due day?
M33 Prop. of hours worked on features until due day 66 % 99 % 87 %

100

3.2 Iteration 2

M34
Prop. of hours worked on failures found by cus-
tomer until due day 1.7 % 0.2 % 3.4 %

M35
Prop. of hours worked on failures found by QA
until due day - - 7 %

M36
Prop. of hours worked on change requests until
due day 32 % 0.6 % 2.6 %

Q3.7
How easy was it to deliver change requests and
fixes?

M37 Median lead time for fixes and change requests - 7.66 3.02
M38 IQR of lead times for fixes and change requests - 8.38 2.97
M39 Median cycle time for fixes and change requests - 5.87 3.01
M40 IQR of cycle times for fixes and change requests - 6.91 2.75

Threats to validity

As project B was an extension of the product developed in project A, section 3.1.8
raised some doubt. It was concluded that well-defined requirements produce the
desired results, but it was not clear if it is possible to generate such well-defined
requirements also in the context of a new product, where the business domain is
not known that well. This also limited the expressiveness of the results obtained by
modern code reviews. As project C is a new product (see description of project
C in section 3.2.5), the second iteration allows not only to validate continuous
delivery, but also the requirements engineering and modern code review processes
applied in the first iteration.

As the results of project C show, scope creep was also prevented in an unknown
domain. The results of iteration 1 can, therefore, be confirmed. However, it has
to be mentioned, that the estimation was not as accurate as in the well-known
domain of project B. Project B needed 15 percent more resources than expected
and project C 40 percent more. However, it has to be said, that both results are
sufficient and can be seen as a success. Scope creep only occurred in project A,
which caused 179 percent more effort than expected. An additional indicator is the
change request effort proportion. Whereas in project A 37 percent of the overall
effort was used for working on mainly unpaid change requests, in project B and

101

3 Implementation

C this proportions shrank to 10 respectively 5 percent, which were also mainly
billable. The hypothesis that an appropriate requirements engineering process
prevents a project from scope creep can be confirmed.

Regarding the goal of delivering maintainable code, project C showed signifi-
cant improvements to its predecessors. The code quality of project A was bad.
This was mainly due to the wrong usage of the Concrete 5 framework by an
inexperienced developer and by changing the code frequently due to the high
number of change requests. The requirements engineering process already pre-
vented project C from this high number of change requests. This could already be
one reason, why the quality of the code was better in project C. The intention of
the modern code reviews was the avoidance of large design or usage mistakes as
made in project A. This was achieved in project C. However, also this could have
another reason. As mentioned, the skeleton of the code was set up by developers,
which were already familiar with the technologies used. The senior developer
performing the modern code reviews had no reason to intervene. Therefore the
significant better code quality was at least not only caused by the application of
modern code reviews. However, it has to be said, that a scenario, as occurred in
project A, would have been avoided surely, because such wrong usages would
have been found. In addition to that, the inexperienced developers felt qualitatively
more comfortable by knowing, that a senior developer will review the code. Also
many small optimizations, yet not known by the inexperienced developers were
provided. The project was, therefore, better monitored with just a little effort from
a senior developer. These reviews could, therefore, be recommended for very small
enterprises.

The involved personnel can qualitatively confirm the positive impact of continuous
delivery on the schedule estimation accuracy and on the lead and cycle times. In
situations with high pressure regarding time, the automated delivery including
an appropriate test suite prevented the team from delivering error-prone code to
the customer many times. This accelerated the delivery of new functionality to
the customer significantly. The author of this work was the project manager of
all projects and also acted as a developer. He is convinced, that project C would
have exceeded the deadline drastically if continuous delivery would not have been
applied to the project. His conviction is based on the many failures, which were
introduced and not delivered to the customer. In addition to that, new functionality
was developed, and changes were introduced more rapidly. This is caused by the

102

3.2 Iteration 2

improved confidence provided by the test-suite. The results obtained can, therefore,
be qualitatively confirmed.

103

4 Related Work

The first part of this chapter presents a classification framework for software
process improvement. This classification framework is created in the style of an
existing framework combined with useful adjustments for classifying this work
in particular. This framework helps to get a good overview of topics, which are
part of this work, and to other related fields of those topics. The localization of this
work is also provided in the first part. The second part of this chapter describes,
what kind of publications are treated as related work. In the third part, the related
publications are presented according to the criteria elaborated in the second part.

4.1 Classification Framework

The created classification framework can be found in figure 4.1. First of all, the
master thesis is about enabling project success in very small companies. In section
2.2.2 the different categories of success factors of agile projects are presented.
These factors are derived from Chow and Cao [20]. In addition to that, one can
also find the reasons, why this thesis focuses on process and technical factors. Of
course, the size of the company under investigation is also an important attribute
[41]. Therefore, related work is classified in publications, which target very small
enterprises, small and medium enterprises, and large enterprises. The definition
of the concrete number of employees of each category differs. Truly related are
publications, which target companies with less than ten full-time employees. This
is because companies with less than ten full-time employees strongly differ from
other small companies with 10 to 50 full-time employees [36]. Also, the application
domain and the region should be taken into account. The investigated company is
located in Austria and focuses on web and mobile applications.

105

4 Related Work

Figure 4.1: Classification framework

106

4.2 Inclusions and Exclusions

The attributes mentioned so far refer to the context of the organization. The SPI
frameworks, the research method, and the practices describe the methodology. This
thesis is an empirical action study. The categorization of the empirical methods
is derived from Easterbrook et al. [25]. Also, software process improvement can
be made in many different ways. Often standards or recommended systematic
approaches, like CMMI, ISO 9001, SPICE or GQM/QIP, are used. A detailed
discussion about these frameworks is provided in section 2.3.1. In addition to the
concrete framework, the different software engineering practices are used in the
classification framework. As there are too many practices to be illustrated in this
classification framework, e.g., the twelve extreme programming practices [10],
only requirements management, modern code reviews and continuous delivery, the
practices used in this work, are illustrated.

4.2 Inclusions and Exclusions

As the topic is broad, it is important to find an appropriate definition of related
work. Of course, there are no publications, which would be classified the same
way as this work. Therefore the classification framework is too detailed. In the
following, the definition of related work is elaborated.

As a GQM-model is used to quantify all observations, one key aspect for related
work is an empirical quantitative research method, e.g., case studies, controlled ex-
periments or action researches. The quantitative nature is important for comparing
the results.

Case studies and action researches about small companies executing a SPI initia-
tive with quantitative results are therefore related. A restriction for the region, the
different practices and using exactly the practices of this work is not useful but
would be highlighted if one of those attributes is also fulfilled.

Regarding the SPI framework, publications, which used a GQM model in an
iterative way like QIP, are treated as related work. Publications regarding other
SPI frameworks are only considered as related if the region and some practices
intersect with this thesis.

107

4 Related Work

So far, only publications are considered as related work, which have the same
context and most importantly the same or a similar overall methodology. However,
this study also shows the impact of the different practices on project success and on
other software engineering topics independently. Therefore empirical quantitative
researches, which focus only on the impact of one or more of the used practices on
project success can be treated as related work.

4.3 Publications

In the following, publications were presented, which fulfill the criteria elaborated
before.

Software process improvement is topic of interest for more than two decades
now. Around the year of 2005 research concerning software process improvement
of small enterprises gained interest. As an example, Von Wangenheim et al. re-
ported their experiences in establishing software processes in two small software
companies [91]. They were using the ASPE-MSC approach for the establishment
of the software processes. This approach is similar to the GQM/QIP approach.
It is an iterative approach, which identifies the high-priority process areas at the
beginning of each iteration. These processes are then defined, implemented and ul-
timately evaluated. The first company had 19 full-time and 3 part-time employees.
For this company, they describe the implementation of a change request process,
as this work did in iteration 1. They observed mostly qualitative benefits. The time
spent on the handling of change requests decreased. The monitoring and trace-
ability of change requests inside the company have improved significantly. They
observed a reduction of 70 percent in the time spent on searching for information
on specific requests. The estimation worked better, cases of cost overruns and
late implementations were reduced, as in this master thesis. In addition to that,
they observed an increased customer satisfaction. The second company had five
full-time and five part-time employees, which is nearly the same setting as it is in
the investigated company of this work. The priority was on establishing supply,
customer support, and software development processes. Only two percent of the
productive capacity of the company was designated to the process establishment.
This is reasonable when considering the benefits. Due to automation, the software

108

4.3 Publications

process matured and was applied more consistently across projects and individuals.
The number of service-packs for fixing defects after delivery halved. Ultimately
the reduction of delays by incomplete execution of process steps was observed,
e.g., not all required pre-conditions were checked in advance of the installation pro-
cess. This publication is exemplary. The study is also confirming other experiences
[8][48][59][79][78] indicating, that it is possible to define and implement processes
also in the context of small companies in a beneficial and cost-efficient manner.
As this master thesis also shows, software process improvement is generating
measurable improvement and advances also in very small companies.

Clarke and O’Connor also investigated the influence of software process im-
provement in SMEs [23]. In contrast to many other studies including this master
thesis, they did not focus on increases in productivity, product quality and customer
satisfaction, improvements to budget and schedule adherence and decreases in
costs, cycle times and process complexity. They directly analyzed the business
success of those small companies. They found that business success was positively
correlated to the amount of software process improvement activities. The 15 inves-
tigated organizations had a headcount between 4 and 120, whereas 7 of them had
one of less than 20. Many others did this by calculating the return on investment
(ROI). As an example, Van Solingen collected a bunch of ROI calculations of
different big companies like Motorola and Boeing - determining that the average
ROI for SPI is 7:1 [89]. It has to be said, that ROI is viewed skeptically due to
inconsistent calculations [27].

Another example explained in detail calculated the reduction in percent of the
total effort per one level change in a five-level-process-maturity-scale [22]. They
found that the larger a project regarding the lines of code is, the more savings are
achieved. This study was applied on 161 projects from 18 sources within 2,600
and 1,264,000 lines of code. As one can see, small projects are only a minor part of
it. However, there is one interesting thing indicating a chance for small companies
with small projects. The effort reduction grows logarithmically with the size of the
lines of code. This means that on the one hand, the relative effort savings grow with
the size of the project indicating fewer advantages for small projects. On the other
hand, the relative effort savings per one level change in process maturity grow
faster within smaller projects. Therefore, from 200,000 lines of code to 250,000
lines of code, the effort reduction raises from approximately 8.7 percent to 9.1
percent. That means 4.5 percent more relative effort savings per one level change in

109

4 Related Work

process maturity. In small settings, this is significantly different. The effort savings
from 2,600 to 50,000 lines of code start by approximately 3.8 percent and end
by 6.7 percent, resulting in an increase of 66 percent in efficiency. This means
that companies with small projects do not gain many benefits by increasing the
process maturity. However, at the moment they are starting to grow and to get
bigger projects, a one level change in process maturity would have had a big posi-
tive impact. One can see, that process maturity is important for scaling the business.

Harter et al. investigated the contradiction of high quality and low cycle times
respectively less effort [35]. Contrary to common belief, they found, that improve-
ments in both aspects can be achieved simultaneously. They found, by examining
30 software products by a major IT firm, that higher maturity levels are associated
with higher product quality, but also with increases in the development effort.
However, their findings indicate, that the reductions in cycle time and effort due
to improved quality outweigh the increases from achieving higher levels of pro-
cess maturity. This master thesis also increased maturity. The findings of Harter
et al. can be confirmed. The quality rose and the cycle times significantly decreased.

A comprehensive study by Galin and Avrahami analyzed 19 papers with results
of more than 400 projects from organizations in several countries, which adopted
CMM [31]. The values are given in relative improvements in order to a single
level advance in CMM. They found that the median error density (the number of
errors per lines of code) decreased by 26 to 63 percent. They also found a median
decrease of 34 to 40 percent of rework effort. In addition to that, the median
cycle time of projects decreased in a rage from 28 to 53 percent. The companies
compared the duration of similar projects before the advance of the CMM level.
These findings correlate with the results of this master thesis, although it targeted
large companies and CMM as SPI framework.

Regarding the severity of defects, Harter et al. found out, that a higher level
of process maturity decreased the likelihood of severe defects [34]. They also
found that high complexity projects benefit more from a higher maturity that sim-
ple projects do. This correlates with the findings of B. K. Clark already described
above [22].

The previous studies show in general, that software process improvement ini-
tiatives in general and in small companies are worth the effort. Many of them show

110

4.3 Publications

qualitative benefits by applying software process improvement. The remaining
studies evaluated the impact on different quality indicators like the number of
defects, the amount of rework and customer satisfaction. Generally spoken, the
presented publications show the impact of process maturity on companies, espe-
cially on small companies. In contrast to that, the following publications show
the impact of the different corrective actions applied in this master thesis, namely
requirements engineering, modern code reviews, and continuous delivery. In this
case, the application of these practices does not have to happen within a software
process improvement initiative. Although this master thesis’ main approach is
software process improvement and its empirical quantitative evaluation with a
GQM-model, these studies are also relevant. This is because the iterative approach
also allows a comparison of the different quantitative results of the corrective
actions separately.

Requirements engineering is the first practice to be investigated. First of all,
publications are investigated, which analyzed the impact of a requirements en-
gineering and change management process, preferably on small companies. The
case study applied by von Wangenheim et al., already described above, shows the
impact of a change request process including a sufficient description of change
requests [91]. As mentioned, the time spent on the handling of change requests
decreased. The monitoring and traceability of change requests inside the company
have improved significantly. They observed a reduction of 70 percent in the time
spent on searching for information on specific requests. The estimation worked
better, cases of cost overruns and late implementations were reduced.

Many publications claim that requirements engineering is positively associated
with improved productivity, software quality, and risk management. As an example,
Erik Simmons stated in his presentation about his lessons learned in five years
of requirements engineering improvement at Intel, that the ROI of requirements
engineering is large enough that its absolute value is irrelevant [80]. This statement
is representative for many others because there is little evidence to support these
statements about huge benefits [24].

Other studies, on the contrary, show the negative effects of not using appropriate
requirements engineering. Quispe et al. interviewed 24 project managers from 24
different very small enterprises with fewer than ten developers. Their findings indi-

111

4 Related Work

cate that the specifications are usually met, but the client often finds the solution
unsatisfactory, most often caused by communication issues with clients resulting
in incomplete specifications. In addition to that, the project’s scope expands as
clients require additional changes. As they also found that very small enterprises
use an ad-hoc process, issues like loss of requirements arise and developers tend to
resolve the issue without contacting the clients [68].

Aranda et al. were investigating the requirements engineering practices of seven
small companies [3]. Three of them had less than ten employees and the rest be-
tween 19 and 45. They identified four major findings, which they used to formulate
hypotheses for further investigation. On the one hand, they found, that everyone is
doing requirements engineering differently. On the other hand, they found three
things the companies had in common. The companies had a high cultural cohesion,
the CEO was in four of seven cases the requirements engineer, as in the company
of this master thesis, and requirements errors did not cause catastrophes for the
investigated companies so far.

To sum up, on the one hand, literature is out there, which described the prob-
lems caused by poor requirements engineering and which practices companies use
to overcome those. On the other hand, only a few publications provide evidence
for the claimed positive effects of requirements engineering. This master thesis
confirms the problems stated above and quantifies the positive impact of an appro-
priate requirements engineering and change request management process. This
should increase the trust of practitioners, that requirements engineering pays off.

Modern code reviews and its impact is investigated recently. Bird et al. found
out, that the most comments of modern code reviews relate to code improvements
and knowledge transfer as it is supporting understanding and social communication.
It is mainly used to ensure the code’s long-term maintainability, as a knowledge
sharing tool and to broadcast ongoing progress. These things are expected, and
modern code reviews fulfill that. Another main expectation is to find defects, but
effectively little defects are found [6]. This is similar to the findings of two other
publications, which found a ratio of 75:25 of maintainability-related changes to
functional changes caused by modern code reviews [11][52]. These findings reflect
the intention and the subjective perception of the people involved in this master
thesis and the projects investigated.

112

4.3 Publications

The publications presented so far, primarily show the content of the comments and
the changes made by modern code reviews. In addition to that, some publications
investigated the impact of different parameters, e.g., review coverage, of modern
code reviews on software quality. McIntosh et al. studied the relationship between
post-release defects and code review coverage, code review participation and the
domain-specific code reviewer expertise. They found that these parameters share a
significant link with software quality [57][58].

Continuous delivery is the third and last practice applied in the software pro-
cess improvement initiative of this master thesis. The practice is quite new, but
there are already many publications, that show the positive impact of continuous
delivery. Chen reports huge benefits in moving 20 applications to continuous deliv-
ery at Paddy Power, a rapidly growing company with 4000 employees. The release
frequency has increased from once every one to six months to application releases
once a week on average, even multiple times a day when necessary. The cycle
time from conception of a user story to the deployment to production decreased
from several months to two to five days. The time to market therefore accelerated.
The product quality improved additionally. The number of open bugs decreased by
more than 90 percent. He also reported a lower level of stress for the development
and operations team [19]. The impact was also analyzed in the B2B domain. The
findings are pretty much the same. Increasing speed, quality, and capacity of devel-
opment is reported [70]. These improvements can be confirmed quantitatively by
this master thesis. Project C had significant lower lead and cycle times along with
a decreasing number of defects found by the customer.

In addition to that, the satisfaction of the team was higher in respect to sub-
jective perception. This perception was empirically analyzed by Kropp et al. They
conducted an online survey in Switzerland in 2016 and investigated the impact
of agile development itself and its practices on satisfaction of practitioners. They
found that a low time to market correlates with high satisfaction. Additionally
they found, that the most satisfied practitioners more often use the practices of
automated builds, continuous integration and continuous delivery than the most
unsatisfied practitioners do [46].

As one can see, there is only little academic literature that provides empirical

113

4 Related Work

analysis of software process improvement, requirements engineering, modern code
reviews and continuous delivery in the context of very small enterprises. This could
be a reason, why very small enterprises do not start software process improvement
initiatives and do not use state of the art software practices. This master thesis
provides quantitative results and should therefore weaken the common belief, that
such initiatives are only for large companies and do not pay off for very small
companies.

114

5 Conclusions

This action research dealt with project success in very small enterprises. Through-
out 14 months, a light-weight software process improvement initiative was con-
ducted to a very small web development company in Austria. The software industry
is still one of the fastest growing worldwide. For instance, millions of jobs are
provided by software companies in the European Union and the United States.
About ninety percent of these companies are very small and have a headcount
lower than ten. As a result, these very small companies have a huge economic
impact. As these companies are most often cash flow driven, project success is
vital to them. Over the years software process improvement was not only evaluated
and examined in the context of large companies, but also in the context of small
and medium sized enterprises. This helped to break the belief that software process
improvement is only applicable in large companies and is accompanied by a huge
overhead. Unfortunately, there are big differences between small and very small
companies. Consequently, the evidence provided is not fully transferable to very
small companies. The goal of this work was to provide the missing evidence that
very small companies also benefit from software process improvement initiatives.
In the following, a recap of the thesis is provided (see 5.1). In addition to that,
discussions about the used software process improvement approach (see 5.2) and
the different used practices including threats to validity (see 5.3) are provided.

5.1 Recap

In chapter 2 the investigated company is presented in detail. The company has
undergone rapid growth in workforce. The number of employees quadrupled within
two years and the total hours worked per month grew exponentially. The company
was informally organized as a star around the founder. As the workload and the

115

5 Conclusions

number of employees increased, the founder was not able to meet his responsibili-
ties anymore. Requirements, estimations, code quality, and the technical portfolio
were important but not urgent responsibilities and were therefore often omitted.
Project success in the sense of providing appropriate quality and delivering the
right product within time and budget constraints disappeared. Many other very
small companies have the same problems.

By examining the five critical success factors for agile projects, namely orga-
nizational, people, process, technical and project factors, the process and tech-
nical factors were chosen to enable project success in the investigated company.
In the following different software process improvement frameworks, like ISO
9001, CMMI, QIP/GQM, and SPICE were presented. The bottom-up approach
of QIP/GQM was chosen. This enabled the company to set its own focus areas
instead of using predefined areas such as it would be necessary by using CMMI and
SPICE. In addition to that, the Quality Improvement Plan is iterative. Combined
with the Goal Question Metric approach, no big effort has to be made up front.
Further, it avoids unnecessary overhead, which is one of the key anxieties of very
small companies. In chapter 3 two iterations are described. Both iterations consist
of an initial observation of the preceding project. From these observations, goals
for the next project are derived. These goals were used as a basis for the Goal
Question Metric approach. With this approach, a quality model was created in the
first iteration and extended in the second. After completing the model, it was used
to quantify the observations of the preceding project. With this comprehensive
analysis of the present problems, appropriate corrective actions were retrieved
from literature. These actions were applied in the subsequent project. As the last
step, the success of the corrective actions was evaluated by the quality model. As
already mentioned, the whole process was executed two times. Three projects A,
B and C within fourteen months were therefore included, whereas the first project
only served as an observation and analysis basis. Therefore the results of the first
project were not affected by instructions of this work.

In the first iteration, project A was analyzed. The observations indicated the pres-
ence of scope creep and a lack of quality. Scope creep is a dynamic that is caused
by poor requirements engineering causing many change requests, which force the
development team to exceed estimated effort and the deadline. As time pressure
increases, the number of failures found by the customer also increases. Finally, the
trust of the customer disappears. As a result, the customer is not willing to pay for

116

5.1 Recap

the additional effort caused by the change requests. Heavily missed deadlines, a
widely exceeded budget, and an unsatisfied customer are the consequences. The
goals of the first iterations were, therefore, preventing scope creep and delivering
maintainable code. The created quality model confirmed the observations. Project
A took twice as long as determined and took nearly the triple amount of estimated
effort. A third of this effort was caused by change requests, whereas only a tiny
proportion of this effort was billed. The analysis of the code showed an enormous
technical debt accompanied by the fact, that no test suite was applied. To prevent
project B from such a scenario an appropriate requirements engineering process
was introduced and modern code reviews were integrated into the software devel-
opment process. These corrective actions had the desired impact. Project B only
took 60 percent longer than expected and was nearly finished within the estimated
effort, mainly due to fewer change requests. Also, the number of failures found
by the customer decreased by 60 percent. As project B was an extension of the
product developed in project A, the impact of modern code reviews on the code
base was noticeable, but not groundbreaking. Whereas the number of code smells
and the proportion of duplicated lines decreased, most of the bad code base did not
improve as code reviews only affected the new code. Additionally, there was still
no test suite applied.

In the second iteration, project B was analyzed. In contrast to the analysis of
project A in iteration 1, project B could be analyzed not only by subjective obser-
vations but also by the quality model created in iteration 1. Based on this analysis,
getting the project accepted in-time was the goal of iteration 2. This new goal ex-
tended the quality model. The quantitative analysis with the updated quality model
of project B showed, that long cycle respectively lead times of fixes and change
requests in addition to a poor resource planning caused the delay of acceptance in
project B. To shorten the cycle and lead times, the practice of continuous delivery
was established in project C. Therefore a comprehensive automated test suite was
also applied. The result was very satisfying, although the formal acceptance was
late. This happened because the customer’s person in charge went for holidays
some days after the due day. This was deferring the formal acceptance to the end
of the customer’s holidays. As the project was informally accepted beforehand,
the project was de facto accepted in-time. This was accomplished even though
40 percent more resources were used than expected. This is mainly caused by
a decrease of 65 respectively 60 percent of lead and cycle times. This enabled
the team to deliver final fixes and change requests faster without introducing new

117

5 Conclusions

defects. The number of failures found by the customer decreased by 86 percent.
The customer found only six failures in total. The duration from the first review
to the final acceptance was therefore very short. In addition to that, the impact of
modern code reviews in the software development process became visible. The
code base was significantly cleaner than the code base of the product developed in
project A and B.

5.2 Discussion of SPI Approach

The first perspective is to look at the software process improvement initiative
as a whole. Thus the methodology of elaborating a quality model with the Goal
Question Metric approach in combination with choosing, applying and evaluating
appropriate corrective actions can be evaluated. In the case of this action research,
the approach worked very well. As the quality model is based on specific goals,
which one wants to achieve by changing the process, or by establishing the use of
different practices, there is no overhead implied. It enables executives to focus only
on specific areas. This is a very beneficial factor, because this work shows, that
already small and specific changes can have a huge impact. This work provides
evidence that no blown up assessment or software process improvement framework
is necessary to enable project success in very small companies.

Applying one iteration does not need to be accompanied by a software process
improvement initiative. It is also very well suited to introduce goal-driven change,
which should be verified quantitatively. The problems in very small companies are
most often well known by all parties. The definition of a goal can be done quickly,
as large structured assessments are not necessary for such small entities. Also,
the elaboration of the questions and metrics does not need a considerable amount
of time. It should be possible to define the goal, the questions and the metrics
within one day. One should be careful by the selection of the metrics. The most
work of this goal-oriented approach is collecting the data after the definition of the
GQM-model. By carefully selecting metrics that are expressive but not extremely
hard to gather, one can increase the efficiency of this approach significantly. The
problem of this approach is that maybe not all metrics can be extracted from the
legacy project. If it was not possible to extract the most meaningful metrics from
the legacy project, one would have to run another project without introducing

118

5.2 Discussion of SPI Approach

the planned practices to get an object of comparison. In the case of this thesis,
this problem did not occur. However, it has to be said, that much manual post-
processing was necessary.

By applying this approach more often, so to say extending the GQM-model by
new goals for additional changes, the model could get confusing due to a miss-
ing structure. This is a disadvantage of the bottom-up nature of this approach.
The GQM-model of this thesis was created in the first iteration and extended by
the second and is already quite complex. If some iterations are performed, one
could think of redesigning the quality model by changing to a top-down approach.
Maybe the maturity of the company is then already high enough to implement
more formal standards like CMMI, SPICE or ISO 9001. Another possibility could
be to decrease the level of detail of goals, which were accomplished many times
consecutively. As an example, the first question of the first goal of this work would
suffice to determine if the goal is accomplished. Further questions are only needed
to find the root causes. In case of success, they are only needed if one wants to
verify if the corrective actions impacted the project in the way expected or not. As
an example, if one wants to know if the project did not exceed the budget, because
the number of change requests was reduced. By applying the corrective action the
first time, this can help to verify if the results are caused by the action or by other
factors. This is also discussed in section 5.3. As one can see, in later iterations
a high level of detail is not needed anymore, and the complexity of older goals
can be decreased. Especially, it is no problem to elaborate these detailed metrics
in case of failure. Another possibility would be to introduce thresholds, which
automatically indicate if a goal is reached or not. This would allow the whole
company to see the status of projects all the time. Of course, a quality manager
could interpret the model every once in a while to report to executives. However,
in such small companies, it is very likely that the executives would not delegate
this interpretation.

119

5 Conclusions

5.3 Discussion of Applied Practices and Threats
to Validity

Little has been said about the limitations and the validity of this work. The evi-
dence provided by this work is only carried by the examination of one company.
Of course, this limits the expressiveness of this work. This is especially the case
in the context of very small companies because project outcomes of such small
companies are strongly affected by individual human contributions. More empirical
evidence would be beneficial to confirm the findings of this work. Regarding the
validity of the gathered data, it has to be said, that very small companies have
limited possibilities to collect data, which is entered by employees, precisely. As
the amount of data is small, for example the time logged on features by developers,
already a few inaccurate or wrong manual logs can influence the data significantly.
Therefore it is essential to assess the validity of the data collected, by comparing
the outcomes with the subjective perception of the people involved. In this work,
the subjective perception of the people involved correlates strongly with the data
collected by the quality model. As already mentioned, further empirical evidence
could, therefore, prove the validity of the obtained results.

The threats to validity are discussed in detail at the end of the analyzing chapters
of each iteration (see 3.1.8 and 3.2.7). As project B extended the product created
in project A and the team did not change and was, therefore, more experienced
and familiar with the product in project B, the positive impact of requirements
engineering is questionable. As already mentioned before, the foremost questions
related to each goal show if the goal was reached or not. In contrast to that, the
subsequent questions show, how a goal was reached or why a goal was not reached.
It turned out that scope creep was prevented because the requirements were de-
fined very well. The remaining question was if the requirements were defined
well because the domain was already known. This doubt could be dispelled in the
second iteration. At the beginning of project C, the domain was not known, the
project team was not familiar with the technologies used, and another customer
ordered the project. The initial setting was therefore comparable with project A.
The requirements engineering process performed well also in this situation.

The improvement of maintainability in project B and C could not be solely traced
back to modern code reviews, neither in the first nor in the second iteration. As the

120

5.3 Discussion of Applied Practices and Threats to Validity

requirements engineering avoided a high number of change requests, the code in
project B and C was not changed as often as it was changed in project A. Of course,
this influences the maintainability of the code positively. There is no doubt that
both facts had a positive impact. However, it is not clear how large the individual
contributions are. The personnel situation had no impact because the experience
level of the teams working on project A and C were comparable. Modern code
reviews prevented project B and C from serious design errors and misapplications
of the used technology as occurred in project A. There is no possibility that modern
code reviews could not catch these major issues.

By analyzing project B qualitatively and quantitatively, it turned out, that too
little human resources were provided until the due day and that lead and cycle
times were long, leading to a non-adherence to the deadline. Continuous delivery
improved the lead and cycle times, but also more human resources were provided.
How large the proportional impact of both changes were, was again quantitatively
not determinable. Qualitatively it is clear, that the proportion of continuous delivery
on the adherence to the deadline was significant. It was observable that the team
developed features and introduced changes more rapidly because the test suite
prevented the team from breaking existing functionality most likely. Even if not
documented, the test suite prevented the team from delivering failures to the cus-
tomer very often. The relationship to the customer was therefore also significantly
better and the acceptance therefore much easier.

121

Bibliography

[1] BSA Software Alliance and Economist Intelligence Unit. The $1 Trillion
Economic Impact of Software. 2017. url: https://software.org/wp-
content/uploads/2017_Software_Economic_Impact_Report.pdf

(visited on 04/10/2019) (cit. on p. 1).

[2] BSA Software Alliance and Economist Intelligence Unit. The Growing EUR
1 Trillion Economic Impact of Software. 2018. url: https://software.
org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.

pdf (visited on 04/10/2019) (cit. on p. 1).

[3] Jorge Aranda, Steve Easterbrook, and Greg Wilson. “Requirements in the
wild: How small companies do it.” In: 15th IEEE International Require-
ments Engineering Conference (RE 2007). IEEE. 2007, pp. 39–48 (cit. on
p. 112).

[4] Roger Atkinson. “Project management: cost, time and quality, two best
guesses and a phenomenon, its time to accept other success criteria.” In:
International journal of project management 17.6 (1999), pp. 337–342 (cit.
on pp. 2, 14–17).

[5] Statistik Austria. Leistungs- und Strukturstatistik ab 2008 - Unternehmens-
daten - Hauptergebnisse. 2016. url: http://statcube.at/statistik.
at/ext/statcube/jsf/tableView/tableView.xhtml (visited on
04/09/2019) (cit. on p. 1).

[6] Alberto Bacchelli and Christian Bird. “Expectations, outcomes, and chal-
lenges of modern code review.” In: Proceedings of the 2013 international
conference on software engineering. IEEE Press. 2013, pp. 712–721 (cit. on
pp. 61, 112).

123

https://software.org/wp-content/uploads/2017_Software_Economic_Impact_Report.pdf
https://software.org/wp-content/uploads/2017_Software_Economic_Impact_Report.pdf
https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.pdf
https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.pdf
https://software.org/wp-content/uploads/2018_EU_Software_Impact_Report_A4.pdf
http://statcube.at/statistik.at/ext/statcube/jsf/tableView/tableView.xhtml
http://statcube.at/statistik.at/ext/statcube/jsf/tableView/tableView.xhtml

Bibliography

[7] Maria Teresa Baldassarre et al. “Harmonization of ISO/IEC 9001:2000 and
CMMI-DEV: from a theoretical comparison to a real case application.” In:
Software Quality Journal 20.2 (June 2012), pp. 309–335. issn: 1573-1367.
doi: 10.1007/s11219-011-9154-7. url: https://doi.org/10.1007/
s11219-011-9154-7 (cit. on p. 31).

[8] Sergio Bandinelli et al. “Modeling and improving an industrial software pro-
cess.” In: IEEE Transactions on software Engineering 21.5 (1995), pp. 440–
454 (cit. on p. 109).

[9] Paul L Bannerman. “Defining project success: A multilevel framework.”
In: Proceedings of the Project Management Institute Research Conference.
Citeseer. 2008, pp. 1–14 (cit. on p. 16).

[10] Kent Beck and Erich Gamma. Extreme programming explained: embrace
change. addison-wesley professional, 2000 (cit. on p. 107).

[11] Moritz Beller et al. “Modern code reviews in open-source projects: Which
problems do they fix?” In: Proceedings of the 11th working conference on
mining software repositories. ACM. 2014, pp. 202–211 (cit. on p. 112).

[12] Miklós Biró, János Ivanyos, and Richard Messnarz. “Pioneering process
improvement experiment in Hungary.” In: Software Process: Improvement
and Practice 5.4 (2000), pp. 213–229 (cit. on p. 32).

[13] Christine V Bullen and John F Rockart. “A primer on critical success
factors.” In: (1981) (cit. on p. 17).

[14] Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. “Goal ques-
tion metric paradigm.” In: Encyclopedia of software engineering 1 (1994),
pp. 528–532 (cit. on p. 31).

[15] Valentine Casey and Ita Richardson. “A practical application of the IDEAL
model.” In: Software Process: Improvement and Practice 9.3 (2004), pp. 123–
132 (cit. on p. 24).

[16] Aileen Cater-Steel and Terry Rout. “SPI long-term benefits: Case studies of
five small firms.” In: Software Process Improvement for Small and Medium
Enterprises: Techniques and Case Studies. IGI Global, 2008, pp. 223–241
(cit. on p. 32).

[17] Fabiano Cattaneo, Alfonso Fuggetta, and Donatella Sciuto. “Pursuing co-
herence in software process assessment and improvement.” In: Software
Process: Improvement and Practice 6.1 (2001), pp. 3–22 (cit. on p. 23).

124

http://dx.doi.org/10.1007/s11219-011-9154-7
https://doi.org/10.1007/s11219-011-9154-7
https://doi.org/10.1007/s11219-011-9154-7

Bibliography

[18] Lianping Chen. “Continuous delivery: Huge benefits, but challenges too.”
In: IEEE Software 32.2 (2015), pp. 50–54 (cit. on pp. 87, 99).

[19] Lianping Chen. “Continuous delivery: Huge benefits, but challenges too.”
In: IEEE Software 32.2 (2015), pp. 50–54 (cit. on p. 113).

[20] Tsun Chow and Dac-Buu Cao. “A survey study of critical success factors in
agile software projects.” In: Journal of systems and software 81.6 (2008),
pp. 961–971 (cit. on pp. 17, 19, 87, 105).

[21] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum. CMMI guidlines for
process integration and product improvement. Addison-Wesley Longman
Publishing Co., Inc., 2003 (cit. on p. 59).

[22] Bradford K Clark. “Quantifying the effects of process improvement on
effort.” In: IEEE software 17.6 (2000), pp. 65–70 (cit. on pp. 109, 110).

[23] Paul Clarke and Rory V O’Connor. “The influence of SPI on business
success in software SMEs: An empirical study.” In: Journal of Systems and
Software 85.10 (2012), pp. 2356–2367 (cit. on p. 109).

[24] Daniela Damian and James Chisan. “An empirical study of the complex
relationships between requirements engineering processes and other pro-
cesses that lead to payoffs in productivity, quality, and risk management.”
In: IEEE Transactions on Software Engineering 32.7 (2006), pp. 433–453
(cit. on p. 111).

[25] Steve Easterbrook et al. “Selecting empirical methods for software engi-
neering research.” In: Guide to advanced empirical software engineering.
Springer, 2008, pp. 285–311 (cit. on p. 107).

[26] Christof Ebert and Jozef De Man. “Requirements uncertainty: influencing
factors and concrete improvements.” In: Proceedings of the 27th interna-
tional conference on Software engineering. ACM. 2005, pp. 553–560 (cit.
on p. 59).

[27] Hakan Erdogmus, John Favaro, and Wolfgang Strigel. “ROI in the Soft-
ware Industry-Return on Investment-Guest Editors’ Introduction.” In: IEEE
Software 21.3 (2004), pp. 10–11 (cit. on p. 109).

[28] Michael Fagan. “Design and code inspections to reduce errors in program
development.” In: IBM Systems Journal. Vol. 15. IBM Corp., 1976, pp. 182–
211 (cit. on p. 61).

125

Bibliography

[29] Analia Irigoyen Ferreiro Ferreira et al. “ROI of software process improve-
ment at BL informatica: SPIdex is really worth it.” In: Software Process:
Improvement and Practice 13.4 (2008), pp. 311–318 (cit. on p. 32).

[30] D Fleck. “A process for very small projects.” In: Proceedings of the 22nd
Annual Pacific Northwest Software Quality Conference. 2004, pp. 107–115
(cit. on p. 32).

[31] Daniel Galin and Motti Avrahami. “Are CMM program investments bene-
ficial? Analyzing past studies.” In: IEEE software 23.6 (2006), pp. 81–87
(cit. on p. 110).

[32] wibas GmbH. CMMI for development, version 1.3. Available at https:
//www.wibas.com/media/filer_public/2015/05/12/cmmi-

dev_v13_poster_v20_kopie.pdf (2018/11/16). 2013 (cit. on pp. 28,
30).

[33] Christian Printzell Halvorsen and Reidar Conradi. “A taxonomy to compare
SPI frameworks.” In: European Workshop on Software Process Technology.
Springer. 2001, pp. 217–235 (cit. on p. 22).

[34] Donald E Harter, Chris F Kemerer, and Sandra A Slaughter. “Does soft-
ware process improvement reduce the severity of defects? A longitudinal
field study.” In: IEEE Transactions on Software Engineering 38.4 (2012),
pp. 810–827 (cit. on p. 110).

[35] Donald E Harter, Mayuram S Krishnan, and Sandra A Slaughter. “Effects
of process maturity on quality, cycle time, and effort in software product
development.” In: Management Science 46.4 (2000), pp. 451–466 (cit. on
p. 110).

[36] Christian Hofer. “Software development in Austria: results of an empiri-
cal study among small and very small enterprises.” In: Proceedings. 28th
Euromicro Conference. IEEE. 2002, pp. 361–366 (cit. on pp. 2, 105).

[37] Hubert F Hofmann and Franz Lehner. “Requirements engineering as a
success factor in software projects.” In: IEEE software 4 (2001), pp. 58–66
(cit. on p. 58).

[38] Wei Huang et al. “A novel lifecycle model for Web-based application
development in small and medium enterprises.” In: International Journal of
automation and computing 7.3 (2010), pp. 389–398 (cit. on p. 32).

126

https://www.wibas.com/media/filer_public/2015/05/12/cmmi-dev_v13_poster_v20_kopie.pdf
https://www.wibas.com/media/filer_public/2015/05/12/cmmi-dev_v13_poster_v20_kopie.pdf
https://www.wibas.com/media/filer_public/2015/05/12/cmmi-dev_v13_poster_v20_kopie.pdf

Bibliography

[39] Jez Humble and David Farley. Continuous delivery: reliable software re-
leases through build, test, and deployment automation. Addison-Wesley
Boston, 2011 (cit. on pp. 87, 88).

[40] CMMI Institute. Do ISO Standards And CMMI Work Together? Available
at https://cmmiinstitute.zendesk.com/hc/en-us/articles/
115004587567- Do- ISO- standards- and- CMMI- work- together-

(2018/11/16) (cit. on p. 31).

[41] Richardson Ita and Chrisiane Gresse von Wangenheim. “Why Are Small
Software Organizations Different?” In: IEEE software 24 1 (2007), pp. 18–
22 (cit. on pp. 1, 2, 8, 32, 105).

[42] Jan Wiedemann Jacobsen et al. “On the role of software quality management
in software process improvement.” In: International Conference on Product-
Focused Software Process Improvement. Springer. 2016, pp. 327–343 (cit.
on p. 20).

[43] Capers Jones. Programming Productivity. New York, NY, USA: McGraw-
Hill, Inc., 1986. isbn: 0-07-032811-0 (cit. on p. 49).

[44] Stephen H Kan. Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc., 2002 (cit. on pp. 21, 31, 44, 45, 48–
51).

[45] Mark Keil et al. “A framework for identifying software project risks.” In:
Communications of the ACM 41.11 (1998), pp. 76–83 (cit. on pp. 59, 60).

[46] Martin Kropp et al. “Satisfaction, practices, and influences in agile software
development.” In: Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018. ACM. 2018,
pp. 112–121 (cit. on p. 113).

[47] Marco Kuhrmann, Philipp Diebold, and Jürgen Münch. “Software process
improvement: a systematic mapping study on the state of the art.” In: PeerJ
Computer Science 2 (2016), e62 (cit. on pp. 2, 20, 32).

[48] Felicia Kurniawati and Ross Jeffery. “The long-term effects of an EPG/ER
in a small software organisation.” In: 2004 Australian Software Engineering
Conference. Proceedings. IEEE. 2004, pp. 128–136 (cit. on pp. 2, 109).

127

https://cmmiinstitute.zendesk.com/hc/en-us/articles/115004587567-Do-ISO-standards-and-CMMI-work-together-
https://cmmiinstitute.zendesk.com/hc/en-us/articles/115004587567-Do-ISO-standards-and-CMMI-work-together-

Bibliography

[49] Claude Y Laporte, Simon Alexandre, and Rory V O’Connor. “A software
engineering lifecycle standard for very small enterprises.” In: European
Conference on Software Process Improvement. Springer. 2008, pp. 129–141
(cit. on p. 1).

[50] Brian Lawrence, Karl Wiegers, and Christof Ebert. “The top risk of re-
quirements engineering.” In: IEEE Software 18.6 (2001), pp. 62–63 (cit. on
p. 58).

[51] Annabella Loconsole. “Empirical studies on requirement management mea-
sures.” In: Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on. IEEE. 2004, pp. 42–44 (cit. on p. 59).

[52] Mika V Mäntylä and Casper Lassenius. “What types of defects are really dis-
covered in code reviews?” In: IEEE Transactions on Software Engineering
35.3 (2009), pp. 430–448 (cit. on p. 112).

[53] Fergal Mc Caffery, Philip S Taylor, and Gerry Coleman. “Adept: A unified
assessment method for small software companies.” In: IEEE software 24.1
(2007) (cit. on p. 33).

[54] Thomas J McCabe. “A complexity measure.” In: IEEE Transactions on
software Engineering 4 (1976), pp. 308–320 (cit. on p. 50).

[55] Fergal McCaffery, Donald McFall, and F George Wilkie. “Improving the
express process appraisal method.” In: International Conference on Product
Focused Software Process Improvement. Springer. 2005, pp. 286–298 (cit.
on p. 33).

[56] Bob McFeeley. IDEAL: A User’s Guide for Software Process Improvement.
Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST, 1996 (cit. on p. 24).

[57] Shane McIntosh et al. “An empirical study of the impact of modern code
review practices on software quality.” In: Empirical Software Engineering
21.5 (2016), pp. 2146–2189 (cit. on p. 113).

[58] Shane McIntosh et al. “The impact of code review coverage and code
review participation on software quality: A case study of the qt, vtk, and
itk projects.” In: Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM. 2014, pp. 192–201 (cit. on p. 113).

128

Bibliography

[59] Nils Brede Moe et al. “Process guides as software process improvement in
a small company.” In: Proceedings of the EuroSPI Conference, Germany.
2002 (cit. on pp. 2, 109).

[60] Mariano Montoni and Ana Regina Rocha. “A methodology for identify-
ing critical success factors that influence software process improvement
initiatives: an application in the Brazilian software industry.” In: European
Conference on Software Process Improvement. Springer. 2007, pp. 175–186
(cit. on p. 32).

[61] Mahmood Niazi and Muhammad Ali Babar. “Identifying high perceived
value practices of CMMI level 2: an empirical study.” In: Information and
software technology 51.8 (2009), pp. 1231–1243 (cit. on p. 33).

[62] Mahmood Niazi, Muhammad Ali Babar, and Suhaimi Ibrahim. “An em-
pirical study identifying high perceived value practices of CMMI level
2.” In: International Conference on Product Focused Software Process
Improvement. Springer. 2008, pp. 427–441 (cit. on p. 33).

[63] Bashar Nuseibeh and Steve Easterbrook. “Requirements engineering: a
roadmap.” In: Proceedings of the Conference on the Future of Software
Engineering. ACM. 2000, pp. 35–46 (cit. on p. 59).

[64] Rory V O’Connor and Gerry Coleman. “Ignoring’Best Practice’: why Irish
software SMEs are rejecting CMMI and ISO 9000.” In: (2009) (cit. on
p. 32).

[65] Richard Paul Olsen. “Can project management be defined?” In: Project
Management Institute. 1971 (cit. on p. 14).

[66] César Pardo et al. “Homogenization of Models to Support multi-model
processes in Improvement Environments.” In: 4th International Conference
on Software and Data Technologies ICSOFT. Vol. 9. 2009, pp. 151–156
(cit. on p. 31).

[67] Francisco J Pino et al. “Harmonizing maturity levels from CMMI-DEV
and ISO/IEC 15504.” In: Journal of Software Maintenance and Evolution:
Research and Practice 22.4 (2010), pp. 279–296 (cit. on p. 31).

[68] Alcides Quispe et al. “Requirements engineering practices in very small
software enterprises: A diagnostic study.” In: Chilean Computer Science
Society (SCCC), 2010 XXIX International Conference of the. IEEE. 2010,
pp. 81–87 (cit. on pp. 8, 39, 40, 58, 112).

129

Bibliography

[69] Jane Radatz, Anne Geraci, and Freny Katki. “IEEE standard glossary of
software engineering terminology.” In: IEEE Std 610121990.121990 (1990),
p. 3 (cit. on p. 45).

[70] Olli Rissanen and Jürgen Münch. “Transitioning towards continuous deliv-
ery in the B2B domain: a case study.” In: International Conference on Agile
Software Development. Springer. 2015, pp. 154–165 (cit. on p. 113).

[71] Janne Ropponen and Kalle Lyytinen. “Components of software development
risk: How to address them? A project manager survey.” In: IEEE transac-
tions on software engineering 26.2 (2000), pp. 98–112 (cit. on p. 58).

[72] Mark von Rosing, Henrik von Scheel, and August-Wilhelm Scheer. The
Complete Business Process Handbook: Body of Knowledge from Process
Modeling to BPM, Volume I. Morgan Kaufmann Publishers Inc., 2014 (cit.
on p. 2).

[73] Terence P Rout and Angela Tuffley. “Harmonizing iso/iec 15504 and cmmi.”
In: Software Process: Improvement and Practice 12.4 (2007), pp. 361–371
(cit. on p. 31).

[74] Marty Sanders. The SPIRE Handbook: Better Faster Cheaper Software
Development in Small Organisations. Centre for Software Engineering,
Limited, 1998 (cit. on p. 32).

[75] Marty Sanders and Ita Richardson. “Research into long-term improvements
in small-to medium-sized organisations using SPICE as a framework for
standards.” In: Software Process: Improvement and Practice 12.4 (2007),
pp. 351–359 (cit. on p. 32).

[76] Christian Schindler. “Agile software development methods and practices
in Austrian IT-industry: Results of an empirical study.” In: 2008 Interna-
tional Conference on Computational Intelligence for Modelling Control &
Automation. IEEE. 2008, pp. 321–326 (cit. on p. 2).

[77] Anna Schmitt and Philipp Diebold. “Why do we do software process im-
provement?” In: International Conference on Product-Focused Software
Process Improvement. Springer. 2016, pp. 360–367 (cit. on pp. 18, 20).

[78] L Scott, R Jeffery, and U Becker-Kornstaedt. “Preliminary results of an
industrial EPG evaluation.” In: Proc. 4th ICSE Workshop on Software Engi-
neering over the Internet, Toronto Canada. 2001, pp. 12–19 (cit. on p. 109).

130

Bibliography

[79] Louise Scott et al. “Understanding the use of an electronic process guide.”
In: Information and Software Technology 44.10 (2002), pp. 601–616 (cit. on
p. 109).

[80] Erik Simmons. “Lessons Learned in Five Years of Requirements Engineer-
ing Improvement.” In: presentation at RE Day 13 (2005) (cit. on p. 111).

[81] Harry M Sneed. Software-Management. Müller Köln, 1987 (cit. on p. 16).

[82] DM Rini van Solingen and Egon W Berghout. The Goal/Question/Metric
Method: a practical guide for quality improvement of software development.
McGraw-Hill, 1999 (cit. on pp. 25, 31, 32, 34).

[83] Daniel Ståhl and Jan Bosch. “Modeling continuous integration practice
differences in industry software development.” In: Journal of Systems and
Software 87 (2014), pp. 48–59 (cit. on p. 88).

[84] International Organization for Standardization. ISO 9001:2015. Available
at https://www.iso.org/files/live/sites/isoorg/files/
standards/docs/en/iso_9001.pptx (2018/11/15). 2015 (cit. on p. 25).

[85] International Organization for Standardization. Quality management prin-
ciples. Available at https://www.iso.org/files/live/sites/
isoorg/files/archive/pdf/en/pub100080.pdf (2018/11/15). 2015
(cit. on p. 26).

[86] David J Storey. Entrepreneurship and new firm. Routledge, 1982 (cit. on
p. 32).

[87] Martyn Thomas and Frank McGarry. “Top-down vs. bottom-up process
improvement.” In: IEEE Software 11.4 (1994), pp. 12–13 (cit. on p. 22).

[88] Axel Van Lamsweerde. “Requirements engineering: from craft to disci-
pline.” In: Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering. ACM. 2008, pp. 238–249 (cit. on
p. 58).

[89] Rini Van Solingen. “Measuring the ROI of software process improvement.”
In: IEEE software 21.3 (2004), pp. 32–38 (cit. on p. 109).

[90] Linda Wallace and Mark Keil. “Software project risks and their effect on
outcomes.” In: Communications of the ACM 47.4 (2004), pp. 68–73 (cit. on
pp. 40, 59).

131

https://www.iso.org/files/live/sites/isoorg/files/standards/docs/en/iso_9001.pptx
https://www.iso.org/files/live/sites/isoorg/files/standards/docs/en/iso_9001.pptx
https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100080.pdf
https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/pub100080.pdf

Bibliography

[91] Christiane Gresse von Wangenheim et al. “Experiences on establishing
software processes in small companies.” In: Information and software tech-
nology 48.9 (2006), pp. 890–900 (cit. on pp. 2, 108, 111).

[92] Karl Wiegers. “Process Improvement that Works.” In: Software Develop-
ment 7.10 (1999), pp. 24–30 (cit. on p. 21).

[93] F George Wilkie, Donald McFall, and Fergal McCaffery. “An evaluation
of CMMI process areas for small-to medium-sized software development
organisations.” In: Software Process: Improvement and Practice 10.2 (2005),
pp. 189–201 (cit. on p. 33).

[94] Chanwoo Yoo et al. “A unified model for the implementation of both ISO
9001: 2000 and CMMI by ISO-certified organizations.” In: Journal of
Systems and Software 79.7 (2006), pp. 954–961 (cit. on p. 31).

132

