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Abstract

With the increasing importance of the Industrial Internet of Things (IIoT),
industrial cloud platforms emerged. However, vulnerabilities in the pro-
vided services may allow an adversary to manipulate or extract sensitive
data. In order to identify vulnerabilities, different security testing methods,
such as Interactive Application Security Testing (IAST), have been proposed.
A particular IAST approach relies on including a magic value in HTTP
requests. This value is checked in so-called potentially unsafe operations,
which can be adversely used when invoked with user input. However, input
manipulations can limit the detection capabilities of this approach, leading
to undetected vulnerabilities. As a result, they may be adversely exploited
and can eventually cause harm to the industry.

In this thesis, we improve the capabilities of IAST with regard to the de-
tection of invocations of potentially unsafe operations. Our solution tracks
input manipulations by combining the aforementioned magic value ap-
proach with dynamic taint analysis at character-level. Furthermore, we
automatically taint strings which are created from the magic value. We refer
to this approach as interactive tainting. In order to taint primitive arrays
as well, we rely on the object tagging capabilities of the JVM Tool Interface
(JVMTI). With a proof-of-concept implementation for the Java Virtual Ma-
chine (JVM) platform, we verify the practicability of our concept. We show
that combining taint analysis with the magic value approach of IAST offers
two main advantages. First, we can detect manipulated input when it is
passed to potentially unsafe operations. Second, we reduce the dependency
on a comprehensive definition of user input sources by interactive tainting.
In conclusion, more vulnerabilities can be detected and ultimately potential
harm to the industry is prevented. Therefore, we propose other IAST tools
to incorporate taint analysis.
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Kurzfassung

Das Industrielle Internet der Dinge (IIoT) gewinnt zunehmend an Bedeu-
tung und dadurch entstanden industrielle Cloud-Plattformen. Schwach-
stellen in den bereitgestellten Diensten können es einem Angreifer jedoch
ermöglichen, sensible Daten zu manipulieren oder zu extrahieren. Um
Schwachstellen zu identifizieren, wurden verschiedene Sicherheitstestmeth-
oden, wie zum Beispiel Interactive Application Security Testing (IAST)
entwickelt. Ein bestimmter IAST Ansatz beruht darauf, einen magischen
Wert in HTTP Anfragen zu inkludieren. Dieser Wert wird in sogenan-
nten potenziell unsicheren Operationen überprüft, welche bei Aufruf mit
Benutzereingaben schadhaft verwendet werden können. Durch Manipula-
tionen der Benutzeringaben kann jedoch die Erkennungsfunktion dieses
Ansatzes eingeschränkt werden, wodurch nicht erkannte Schwachstellen
auftreten. Infolgedessen können Operationen nachteilig ausgenutzt werden
und der Industrie möglicherweise Schaden zufügen.

In dieser Arbeit verbessern wir das Potential von IAST hinsichtlich der
Erkennung von Aufrufen von potenziell unsicheren Operationen. Unsere
Lösung verfolgt Eingabe-Manipulationen, indem sie den oben genannten
magischen Wert-Ansatz mit dynamischer Taint-Analyse auf Zeichenebene
kombiniert. Außerdem markieren wir automatisch Strings, die aus dem
magischen Wert erstellt werden. Wir bezeichnen diesen Ansatz als interak-
tives Tainten. Um auch primitive Arrays zu markieren, setzen wir die Objekt-
Tagging-Funktion des JVM Tool Interface (JVMTI) ein. Mit einer Proof-of-
Concept-Implementierung für die Java Virtual Machine (JVM) Plattform
überprüfen wir die Umsetzbarkeit unseres Konzepts. Wir zeigen, dass die
Kombination der Taint-Analyse mit dem magischen Wertansatz von IAST
zwei Hauptvorteile bietet. Zum einen können wir manipulierte Eingaben
erkennen, wenn sie an potenziell unsichere Operationen übergeben werden.
Zum anderen reduzieren wir die Abhängigkeit von einer umfassenden
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Definition von Benutzereingabequellen durch interaktives Tainting. Zusam-
menfassend kann festgestellt werden, dass mit unserem Ansatz weitere
Schwachstellen erkannt werden und letztendlich potenzieller Schaden für
die Industrie verhindert werden kann. Daher empfehlen wir andere IAST
Tools, Taint-Analyse zu integrieren.
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1 Introduction

In recent years, there has been a shift towards cloud computing in industrial
environments. The primary reason for this shift is the application of the
Internet of Things (IoT) in industry, also known as Industrial Internet of
Things (IIoT) or Industry 4.0 [Gil16]. The IIoT is, similar to the IoT, a network
of interconnected things. These things are devices which may include sensors.
They perform tasks including data collection, data upload and device control.
To fulfil these tasks, they are typically connected to a cloud service. As a
result, cloud platforms providing services for the IIoT emerged. These
services may process sensitive data uploaded by IIoT devices, such as
domain knowledge and intellectual property. Individuals like cybercriminals
or competitors may be interested in such data. To preserve the confidentiality
and integrity of this data, it is crucial that applications are free from security
bugs. Otherwise, adversaries can exploit them to perform unauthorised
actions. These actions primarily undermine or break confidentiality and
integrity. Broken confidentiality allows attackers to steal intellectual property.
Broken integrity, on the other hand, allows attackers to perform unwanted
manipulations of data. For example, such manipulations may be used to
sabotage manufacturing processes. In summary, web applications are a
valuable target for attackers. Keeping them free of security bugs is a very
challenging task, since bugs have been part of software programs since their
origins. Thus, establishing sophisticated inspection techniques is of utmost
importance. Otherwise, vulnerabilities may stay undetected, constituting a
potential harm to the industry.
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1 Introduction

1.1 Motivation

Since insecure web applications are a potential threat to the industry, they
need to be inspected for vulnerabilities. This task is the purpose of security
testing. By improving inspection mechanisms, more vulnerabilities can be
fixed, and thus the security can be improved. Inspection can be performed
in different ways. Depending on the presence of the application source
code, we can distinguish between white-box and black-box security testing
methods. White-box methods test the inner structure of an application by
analysing the source code. Black-box methods, on the other hand, have no
access to the source code or any other information about the application
except the public Application Programming Interface (API).

Typically, there exist two approaches of application security testing: Static
Application Security Testing (SAST) [Garc] and Dynamic Application Se-
curity Testing (DAST) [Gara]. SAST, is performed white-box. It scans for
vulnerabilities by inspecting the source code of the application. This in-
spection is done without executing the application itself. DAST of web
applications is, according to Gartner [Gara], typically performed black-box
by analysing the responses of a running application.

Both SAST and DAST have their weaknesses. The fact that SAST inspects
source code leads to higher code coverage. Nevertheless, high code coverage
does not necessarily imply a high detection rate. A study [GP15] on the
detection capabilities of static analysis tools concludes that relying solely
on static analysis leaves a notably amount of vulnerabilities undetected.
Furthermore, SAST is also more prone to false positives since the findings
are based on heuristics. A significant amount of false positives can become
counterproductive very quickly and decrease the usefulness of a tool. This
situation can eventually lead to the ignorance or cutoff of tests and thus
provide a false sense of security.

In DAST for web applications, vulnerabilities are typically detected based
on errors included in a response. If a response contains no indications of
an error, it is typically assumed that no faults occurred inside the appli-
cation. However, this assumption may lead to undetected vulnerabilities.
The absence of error messages does not necessarily imply the absence of
vulnerabilities. Hence, the detection capabilities of DAST strongly depend

2



1 Introduction

on the responses of the application. This dependency becomes an issue
when vulnerabilities are blind. Blind in this context refers to the nontriv-
iality or inability to infer vulnerabilities by interpreting responses. Blind
vulnerabilities can be introduced both intended or unintended. For instance,
let us consider an unintended silent catch statement in the program code.
This circumstance may turn an easily detectable vulnerability into a blind
one. On the other hand, intentionally wrapping specific error messages
into generic ones may also introduce blind vulnerabilities. For example, a
Structured Query Language (SQL) exception is thrown inside an application,
but a generic Hypertext Transfer Protocol (HTTP) error 404 is returned. In
doing so, it is not possible to tell whether a resource was not found or a
real exception occurred. Therefore, it is particularly challenging to detect
such vulnerabilities. If there is no way of producing different responses,
observing timing delays is the only option. However, this technique depends
heavily on a good side channel. If such a side channel is not available, a
vulnerability becomes fully blind.

As a result, a third approach, known as Interactive Application Security Test-
ing (IAST) [Garb] is employed. The goal of IAST is to reduce the weaknesses
of DAST. To do so, black-box and white-box approaches are combined.
A vulnerability scanner represents the black-box approach. To extend its
detection capabilities, the code of an application is instrumented. This in-
strumentation process represents the white-box approach. With this combi-
nation, a black-box scanner can gather valuable information about a running
application, such as data flow and the actual configuration. Data flow is
of particular interest when it concerns user input. This input can flow into
operations which can be adversely used and thus are potentially unsafe. In
this case, vulnerabilities arise.

The main advantage of IAST is its capability to detect fully blind vulnerabil-
ities. A typical approach for detection performed by existing IAST solutions
is to include a magic value in the response. Instrumented code checks if
this value is passed to a potentially unsafe operation. If this is the case, a
vulnerability is discovered. This vulnerability is then reported back to the
black-box scanner. This approach works regardless of whether the vulnera-
bility is blind or not. However, it has one major drawback. If the application
manipulates the user input, it destroys the magic value. If this manipula-
tion occurs before the magic value reaches a potentially unsafe operation,

3



1 Introduction

vulnerabilities are not detected.

We conclude that the detection of potentially unsafe operations by security
testing is necessary to ensure secure web applications. Powerful testing
methods are required to perform this task. IAST is such a method, but input
manipulations may severely limit detection capabilities. Taint analysis is an
approach which can reduce this limitation. In taint analysis, the information
that input originates from a user is stored as metadata. If the input is
modified, the metadata is transformed accordingly. In this way, the chance
that input manipulations destroy the magic taint value is reduced. Primitive
taint analysis approaches store taint information for entire strings. As a
consequence, a string can either be fully tainted or not tainted at all. Thus,
a long untainted string, for instance, becomes tainted just by a tainted
string of one character. A substring of the previously untainted part is now
tainted. Such cases are likely to introduce false positives. By tracking taint
information at character-level, false positives can be reduced. Currently,
there is no IAST solution that integrates with web applications and has the
following properties:

• Transformed inputs are taken into account
• Taint information is tracked at character-level
• Primitive arrays are taken into account

1.2 Proposed Solution

In this thesis, we develop an IAST tool which eliminates limitations of
existing solutions. In particular, we present an approach which integrates
well with web applications as well as web application containers.

The main contributions of our solution are:

• Reduce Input Manipulation Effects
We apply dynamic taint analysis to reduce the effects of input ma-
nipulations. Such manipulations limit the detection capabilities of the
IAST approach which uses magic values to mark user input. To per-
form taint analysis, we instrument Java Development Kit (JDK) classes
which hold strings. During instrumentation, we add a field which

4



1 Introduction

stores the taint information. Furthermore, we add code which propa-
gates taint information to methods which perform manipulations on
the string. Although primitive arrays are considered as objects on the
Java Virtual Machine (JVM) platform, they cannot be instrumented.
Therefore, we rely on the object tagging capabilities of the JVM Tool
Interface (JVMTI).

• Minimize False Positives
We apply two countermeasures to reduce false positives. The first one
is to track taint information at a character level. For every individual
character in a string, we hold information whether it is tainted or not.
If partly tainted user input reaches a potentially unsafe operation, it
can be evaluated in greater detail. The second countermeasure we
apply is to keep track of applied sanitisation functions. For instance, it
may be required for certain functionality that users invoke potentially
unsafe operations. To prevent potential damage from such invocations,
user input is sanitised. By keeping track which sanitisations functions
have been invoked, we reduce false positives.

• JVM Language Independence
Our solution is applicable for all available JVM languages. We instru-
ment the intermediate code, also referred to as Java Bytecode, which
the JVM executes. We evaluated several instrumentation frameworks
and chose ByteBuddy for our purpose. Using this framework, we are
able to keep our approach as generic as possible.

• No Interference with Existing Code & Performance
Our approach reduces the risk of side effects by not altering existing
bytecode instructions. Transformation of existing bytecode instructions
increases the likelihood to introduce a different behaviour compared to
the unmodified application. Furthermore, it is more likely to produce
invalid bytecode. Therefore, we only add new bytecode instructions.
More specifically, new instructions are added at the beginning or
end of a method’s instructions. In this way, we do not interfere with
existing instructions. This approach also reduces the time needed for
instrumentation.

• Configurability & Extendability
Our solution is configurable and extensible to the fast-changing nature
of software libraries. If a library introduces a new potentially unsafe
operation or a new string operation is added, taint propagation is
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1 Introduction

affected. Therefore, we support customisation in two forms. First,
we define configuration files for sources of user input, sanitisation
functions and potential operations. These configurations support a
very abstract and generic way of matching those functions. Second,
we abstract the taint propagation in a way that makes it simple to add
further policies.
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2 Security Testing of Web

Applications

In this chapter, we explain the basic concepts of security testing for web ap-
plications. Web applications process potentially sensitive data, making them
a valuable target for attackers. In general, security testing aims at finding
vulnerabilities which threat the confidentiality, authenticity or integrity of
this data. Furthermore, also securing the availability of an application is
part of security testing. Breaking any of these properties can have severe
consequences. For instance, lack of confidentiality can result in the exposure
of sensitive data. In case of missing authenticity, an attacker can impersonate
a legitimate user and perform actions on their behalf. Broken integrity can
result in data being forged or corrupted. Degraded availability becomes
devastating when critical infrastructure becomes unavailable.

One of the main reasons why web applications can be insecure is that
they handle user input. This input may be malicious and thus should
not be trusted. Consequently, applications must be tested for robustness
against such inputs. However, tests at a functional level often do not cover
such inputs. They send acceptable inputs to check if requirements are met.
However, this form of testing is insufficient for security testing. Unexpected
and unacceptable inputs have to be taken into account as well.

There exist several technologies for security testing. In this chapter, we
describe the most common techniques for web applications. Section 2.1
describes which types of vulnerabilities are common for web applications.
Section 2.2 explains the security testing methodologies Static Application
Security Testing (SAST), Dynamic Application Security Testing (DAST) and
Interactive Application Security Testing (IAST).

7



2 Security Testing of Web Applications

2.1 Vulnerabilities

Vulnerabilities are a particular kind of software bug. They may allow an
attacker to perform unauthorised actions. Vulnerabilities typically arise due
to insecure configuration or improper handling of user input. Different
kinds of software programs are susceptible to different vulnerabilities. In
our work, we focus on web applications. Typical vulnerabilities of such
applications are summarised by the Open Web Application Security Project
(OWASP)1. Moreover, other categorisations exist, such as Common Weak-
ness Enumeration (CWE)2. We shortly introduce those categorisations in the
following section. Furthermore, we explain potentially unsafe operations,
since our goal is to detect their invocations.

2.1.1 Categorisation

As web applications became more feature rich, the number of different
vulnerability increased. Therefore, efforts have been made to categorise
vulnerabilities. OWASP issue the most prominent vulnerability categori-
sation for web applications. With their Top 103 project, they list a broad
consensus of the ten most widespread type of vulnerabilities. A much more
fine-grained categorisation than OWASP Top 10 is the CWE. It was estab-
lished by the Massachusetts Institute of Technology Research Establishment
(MITRE) to introduce a common language for weakness identification and
categorisation. In comparison to the OWASP Top Ten, CWE does not only
focus on web applications. It consists of over a thousand entries which are of
different abstraction levels. The most dangerous weaknesses are summarised
in their Top 254.

Vulnerabilities can also be categorised based on occurrences in real software.
For this purpose, the National Institute of Standards and Technology (NIST)
introduced the Common Vulnerabilities and Exposures (CVE) list [MIT19].

1https://www.owasp.org
2https://cwe.mitre.org/
3https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
4https://cwe.mitre.org/top25
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2 Security Testing of Web Applications

Figure 2.1: A typical form of SQL injection. User input is concatenated with a SQL query.

It contains vulnerabilities of specific versions of software or libraries. Most
vulnerability scanners utilise this library as they scan specific entries of it.

2.1.2 Potentially Unsafe Operations

A potentially unsafe operation is any operation which can be adversely used
when invoked with user input. Therefore, those operations are not unsafe
per se, assuming a non-adversarial developer. Operations, like sending
commands to an interpreter or reading from a file, are commonly performed
in the application. In this thesis, we mainly focus on one aspect of potentially
unsafe operations, namely injections. Hence, we discuss injections in the
following paragraph.

Injections Whenever user input is interpreted as a command, injection
attacks may occur. They are the most highly ranked type of vulnerabilities.
The OWASP Top 10 rank injections in the first place. The top two items of
the CWE Top 25 are injections as well. More specifically, Structured Query
Language (SQL) injection and Operating System (OS) command injection.

Although many types of injection attacks exist, they typically follow a
similar principle. Input sent by a user is used as input to an interpreter
used in the application. If user input is not filtered, an adversary can send
arbitrary commands to the interpreter. However, before input reaches the
interpreter, it may be inserted in a predefined string of instructions, such
as an SQL query or an OS Command Line Interface (CLI) command. The

9



2 Security Testing of Web Applications

inserted location is referred to as the context. As a result, it may be necessary
to break out of the semantical context, to successfully inject commands. In
this case, the user input has to be crafted accordingly. After context breakout,
any desired commands can be injected. An example injection attack for
SQL is depicted in Figure 2.1. The ’OR 1=1 – payload sent by the attacker
is mixed with the predefined SQL query in the application. To break out
of the context, a single quote is used. This quote ends the password search
string and allows the attacker to insert further commands. In this case, the
tautology OR 1=1 is used to bypass a password check.

Consequences of injections are manifold. The potential damage depends
on the commands an interpreter supports. For instance, CLI interpreter
commands for user management can be used to compromise a server. For
SQL injections, Halfond et al. [HVO08] have classified different types of
attacks, including data extraction, authentification bypass and privilege
escalation.

2.2 Methodologies

Three approaches exit for application security testing: Static Application Se-
curity Testing (SAST) [Garc], Dynamic Application Security Testing (DAST)
[Gara] and Interactive Application Security Testing (IAST) [Garb]. SAST
detects vulnerabilities without executing the application itself. In contrast,
DAST is performed by interacting with the running application. IAST en-
hances the capabilities of DAST by approaches of SAST.

2.2.1 Static Application Security Testing

SAST is an approach which detects vulnerabilities without executing the
application itself. SAST approaches typically analyse the source or compiled
code to detect vulnerabilities. For Java Virtual Machine (JVM) applications,
most approaches focus on bytecode analysis. Popular approaches include
points-to analysis [LL05], taint analysis [Cao+17] and symbolic execution
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2 Security Testing of Web Applications

[CF10]. The first two approaches can be used to detect invocations of po-
tentially unsafe operations. Symbolic execution can be utilised to solve
constraints on strings to bypass input filters.

The advantage of SAST is the ease of setup and code coverage. For the usage
of SAST tools, no application deployment or setup is necessary. Therefore,
those tools can be integrated early in the Software Development Lifecycle
(SDLC). Compared to DAST and IAST, the code coverage of static testing
is the most comprehensive. When all dependencies of an application are
supplied, exhaustive path coverage can be reached.

However, analysing code statically also introduces drawbacks. Because the
application is not tested in its running state, assumptions about its be-
haviour have to be made. For instance, security-relevant configurations are
often only known at runtime. Similarly, access control policies or interac-
tions with external systems are typically not known at compile-time. A
further consequence of SAST is false positives. Those can arise from by
over-approximation of a program’s behaviour, as pointed out by Trinh et al.
[TCJ14]. Finally, a study [GP15] indicates that relying on SAST alone leads to
undiscovered vulnerabilities. Therefore, high coverage does not necessarily
imply a high detection rate.

2.2.2 Dynamic Application Security Testing

Dynamic Application Security Testing (DAST) represents the counterpart
of SAST. It analyses an application during runtime. In web applications,
vulnerabilities are detected by analysing the responses.

This analysis is typically performed in a black-box setting. In this setting,
tools have no access to the source code or any other information about
the application except the public Application Programming Interface (API).
Furthermore, also white-box and grey-box settings exist. In a white-box
setting, full access to source code is available. A grey-box setting typically
gives access to an application’s configurations or specifications. In the
following, we discuss two typical approaches used in dynamic testing.

11



2 Security Testing of Web Applications

Fuzz Testing. One popular approach to generate faulty data is fuzz test-
ing. The majority of approaches rely on injecting certain faults into the
application. The responses to this faulty data are observed for anomalies. In
this way, vulnerabilities are discovered. Fuzzying is performed black-box,
grey-box or white-box. When performing fuzzing in a black-box setting,
achieving a high code coverage is challenging. If conditionals are not sat-
isfied by the data, paths may never be taken. In this case, false negatives
arise.

Dynamic Taint Analysis. Taint analysis tries to solve the so-called tainted
object propagation problem. It comprises sources, sinks and optionally
sanitisers. Sources are functions from which user inputs originates. Sinks
represent potentially unsafe operations. Sanisiters transform user input
in a form that is not harmful to a particular sink. To solve the tainted
object propagation problem, one must detect if user input from a source
can reach a sink. Several steps have to be performed for detection. First,
user input is marked as tainted, since it may be malicious. Next, taint
information is propagated. Taint propagation ensures that taint information
is properly passed when new variables are derived from tainted ones.
Finally, instrumentation code in sinks checks if tainted user input is present
in security-relevant parameters.

Vulnerability Scanner. Several methodologies, including the above men-
tioned, are combined in tools. These tools are often referred to as vulnera-
bility scanners. Open-source, as well as commercial variants, are available.
Well-known open-source scanners include ZAP5, Arachni6 and Nikto7. Com-
mercial scanners include Burp Suite8, Acunetix9, AppScan10. According to
Hope and Walther [HW08], two components are typical for such scan-
ners, namely so-called spider and test-cases for well-known vulnerabilities.

5https://github.com/zaproxy/zaproxy
6https://www.arachni-scanner.com/
7https://cirt.net/Nikto2
8https://portswigger.net
9https://www.acunetix.com/

10https://www.ibm.com/us-en/marketplace/appscan-standard
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Spiders can be seen as crawlers whose goal is to identify the attack sur-
face. This process includes parsing responses for links and following them.
Forms and parameters are identified as well. After this process, test-cases
for well-known vulnerabilities are executed. This phase is referred to as
scanning.

Advantages and Disadvantages. The advantage of DAST is typically,
according to several authors [Dou+12; GGS14] a lower false positive rate
compared to SAST. Since DAST tests an application in its running state,
behaviour does not need to be approximated.

The major drawback of DAST is a typically lower detection rate in com-
parison to SAST. There are two reasons for this circumstance. First, paths
in which vulnerabilities are present may not be executed. There have been
efforts to explore more paths with techniques like fuzzing [LLW14; Duc+14]
and a combination of fuzzing with symbolic execution [GLM08]. Neverthe-
less, full coverage is impractical because programs can have an unbounded
number of paths. The second reason for a lower detection rate is blind
vulnerabilities. These types of vulnerabilities depend on a side channel and
are practically not detectable if no exploitable side channel exists.

2.2.3 Interactive Application Security Testing

Interactive Application Security Testing (IAST) is a form of testing which
incorporates both SAST and DAST. However, instead of applying both tech-
niques separately, it creates a synergy between them. The importance of this
synergy has been pointed out first by Ernst [Ern03]. They suggested blend-
ing the strengths of static and dynamic approaches. Information collected
by SAST can be utilised by DAST and vice versa.

Two typical forms of IAST approaches exist. First, information collected by
static code analysis is utilised. Such information includes potential Input
vectors (IVs) and constraints which restrict payloads. Second, information
collected from a running application is utilised. We further refer to such ap-
proaches as agent-based approaches. These agents contain algorithms which
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gather information from the running application, such as invoked SQL
functions. In the following, we describe one approach for each category.

String Constraint Solving. Im et al. [IYJ17] proposed an IAST approach
which incorporates static code analysis to address filters in applications.
Filters restrict payloads and therefore also attack strings of dynamic analy-
sers. Bypassing filters can lead to a higher detection rate. Therefore, they
try to solve the constraints of those filters. In this way, attack strings bypass-
ing those filters can be generated. They developed an interaction platform
which incorporates static and dynamic analysers. The static analyser is used
to gather string constraints. These constraints are solved using a string
constraint solver.

Magic Value Tainting. A typical agent-based approach to enhance DAST
capabilities is what we refer to as magic value tainting. The goal of this ap-
proach is to detect the invocations of potentially unsafe operations with user
input. The detection is achieved by the interaction between instrumented
code and the DAST scanner. First, the DAST scanner sends requests which
include magic value. Instrumentation code then checks for this value in
invocations of potentially unsafe operations. If the value is found, it is cer-
tain that user input can reach a potentially unsafe operation. Subsequently,
detected vulnerabilities are reported back to the DAST scanner.

Vendors of security testing tools started to incorporate IAST agents. Portswig-
ger11 use this approach in their Infiltrator component. Acunetix12 developed
an agent as well, called Acusensor. Both vendors employ a magic value
tainting approach.

Advantages and Disadvantages. Since IAST uses information extracted
from code, higher detection rates compared to DAST can be achieved.
A particular weakness of DAST is that it does not recognise invocations
of potentially unsafe operations via response analysis. The agent-based

11https://portswigger.net
12https://www.acunetix.com/
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approach of IAST can detect such invocations. Furthermore, it can report the
exact line of vulnerable code. As a result, developers can fix vulnerabilities
quicker and thus deploy security updates in a more timely manner.

The advantages which are gained through code analysis and instrumentation
introduce a dependency on source or bytecode. Without code access, IAST
capabilities cannot be leveraged. Furthermore, as with DAST, coverage still
remains an issue with IAST. Although more paths can be explored with IV
detection and string constraint solving, full coverage cannot be guaranteed.
This is an inherent limitation of dynamic testing. Vulnerabilities can only be
detected if the code path in which they reside is actually executed.
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In this chapter, we explain the fundamentals of the JVM platform. This in-
formation is vital to understand the instrumentation of programs developed
for the JVM. The JVM is a virtual machine, designed for hardware- and OS
independent programs. It abstracts the underlying hardware and OS from
the programmer. Because of this abstraction, programmers do not have to
take platform specific behaviour into account. The functionality of the JVM
is standardised in the JVM specification [LB15]. This standard ensures that
every programmer can rely on the same behaviour across different JVM
implementations. The most prominent implementation is called HotSpot
[Oraa]. It was developed by Sun Microsystems and is now developed and
maintained by Oracle. Currently, HotSpot is available for Linux, MacOS,
Windows and Solaris SPARC.

Section 3.1 describes the process of compilation of source code until the
execution of native code on a high-level. This description illustrates the
different locations where instrumentation code can be added. Section 3.2
describes the Java class file format in closer detail. Section 3.3 covers the
execution of class files. Section 3.4 explains how programs developed for
the JVM can be instrumented.

3.1 From Source Code to Native Code

In this section, we explain the process from compilation of source code to the
generation of native code. This process is depicted in Figure 3.1. Programs
targeted for the JVM are commonly written in a high-level language. A
compiler translates this source code to an intermediate representation,
so-called class files. These class files represent classes or interfaces in a
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binary form. Section 3.1.1 explains the compilation process in greater detail.
After compilation, the generated class files are usually packaged, which is
described in Section 3.1.2. Finally, the JVM loads the class files and translates
the bytecode to native instructions. Thus, programs can be written in any
language supporting compilation to class files. A well-known example of
such a language is Java. It makes use of the javac compiler to translate .java
files to class files. Other well-known JVM languages are Kotlin, Groovy and
Scala.

3.1.1 Compilation

The starting point of the compilation process is source code of a program
written in a JVM language. Subsequently, a compiler is used to transform
the source code into a binary representation. This stream of bytes is stored
in class files. The structure of a class file is explained in greater detail
in Section 3.2. As an alternative to the compilation to class files, Java 9
introduced Ahead-of-Time (AOT) compilation. The goal of AOT is to speed
up the startup of JVM applications. By compiling source code immediately
to native code, time for interpretation and Just-in-Time (JIT) compilation is
spared. For that purpose, the AOT compiler of the graal project1 is used. To
date, AOT compilation still has several limitations. It is in an experimental
state and only supports Linux x64 systems. Furthermore, classes which use
dynamically generated code like lambda expressions cannot be compiled
ahead-of-time.

3.1.2 Packaging

Class files are typically packaged into zip files. Well-known formats are
Java Archive (jar), Web Archive (war) and Enterprise Archive (ear). Jar files
follow a specific format, described in the jar file specification [Orab]. If a jar
file contains all dependent classes which are referenced in the class files, it
is called a fat jar. War files are used for web applications adhering to the
Java servlet specification [CB]. The archive contains an additional WEB-INF

1https://www.graalvm.org/
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Figure 3.1: Transformation of source code to native code.
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directory. This directory comprises compiled java servlet classes, libraries,
and a deployment descriptor file named web.xml. The ear file format is used
for Java enterprise applications [DS]. An Ear archive may also contain jar
and war files. A common part of all archive formats is the MANIFEST.MF
file in the META-INF directory. Apart from meta information about the
packaged files, it contains the relative path to the main class.

Let us consider the above-explained compilation process by taking the Java
language as an example. In this case, the starting point is source code written
according to the Java Language Specification [Gos+18]. This source code is
stored in .java files. Next, the javac compiler is used to compile the classes
in the .java files to class files. The final step is packaging the class files into
an archive. Various tools can perform this task. The Java Development Kit
(JDK) for instance ships with the command line tool jar. Further options
include build tools like Ant2 or Gradle3.

3.2 The Class File Format

Class files constitute a cornerstone of the JVMs platform-independence.
They can be seen as an intermediate representation of source code. This
representation is platform-independent and translated to native code for a
specific platform by the JVM. A class file describes the structure of exactly
one class or interface. If a source file contains several classes or interfaces,
the compiler generates separate class files for each.

The class file format is specified in the JVM specification [LB15, Section 4]
in form of a C-style struct. This format is illustrated in Listing 3.1. Every
line represents the size and type of a class file section. The size is either
specified in chunks of bytes or as a structure. Chunk sizes include one
byte (u1), two bytes (u2) and four bytes (u4). Structures are composed of
the aforementioned chunks, or contain structures itself. The items cp_info,
field_info, method_info and attribute_info are such structures. It is
important to mention that the array notation does not imply access at fixed

2https://ant.apache.org/
3https://gradle.org/
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byte-offsets like in C-style arrays. The notation rather indicates a list of
structures, which are of variable size. The reason for that is that structures
may itself contain lists of structures.

In the following paragraphs, we describe the essential sections of the class
file format in greater detail. Basic sections are described by comments in the
listing itself.

Listing 3.1: The structure of a class file, according to the JVM specification [LB15]

1 ClassFile {

2 u4 magic; // magic number , always 0xCAFEBABE

3 u2 minor_version; // minor class file version

4 u2 major_version; // major class file version

5 u2 constant_pool_count;

6 cp_info constant_pool[constant_pool_count -1];

7 u2 access_flags; // access permissions , i.e. PUBLIC

8 u2 this_class; // name of the class

9 u2 super_class; // direct super class , if existing

10 u2 interfaces_count;

11 u2 interfaces[interfaces_count ]; // implemented

12 // interfaces

13 u2 fields_count;

14 field_info fields[fields_count ];

15 u2 methods_count;

16 method_info methods[methods_count ];

17 u2 attributes_count;

18 attribute_info attributes[attributes_count ];

19 }

constant_pool. This item is the cornerstone for dynamic linking. It con-
sists of a list of entries, such as class, field or method references. Entries may
have different sizes. The constant pool also contains concrete values. Such
values are for instance strings denoting a class, method or field name as
well as numeric constants. Furthermore, entries may also reference entries
within the constant pool itself.

Entries in the constant pool are referenced by so-called symbolic references
in other parts of the class file. Depending on the particular JVM implemen-
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tation, symbolic references are either resolved when a class is loaded or
at run-time. During resolution, the symbolic references are replaced with
actual memory addresses. Hence, class files do not depend on the run-time
memory layout of a JVM implementation.

�elds. This item contains all fields which are defined in the class or inter-
face described by the class file. Fields from superclasses or superinterfaces
are not inherited. The field_info structure is used to describe fields. First of
all, the structure includes an access modifier. The name and type of the field
are described via references to the constant pool. Finally, the field_info

structure contains attributes. The most prominent type of attributes for
fields are annotations.

methods. All methods including the constructor of the class being de-
scribed, are defined in this item. A method_info structure is used to de-
scribe a method. The first entry in the structure defines the access modifier.
Further, the name, parameters and return type are described via a reference
to the constant pool. Like the field_info structure, the structure also in-
cludes attributes. As with fields attributes, one type of them are annotations.
An important type of attribute for methods is the code_attribute. This
structure contains the bytecode instructions for non-abstract and non-native
methods. Moreover, it defines the maximum number of local variables and
the maximum depth of the operand stack.

attributes. Attributes at class file level are defined in this item. The refer-
enced inner classes, annotations and the source file name are examples for
such attributes.

3.3 JVM Internals

The Java Virtual Machine (JVM) executes programs which have been com-
piled to class files. To execute class files, the JVM has to perform several
steps. First, classes have to be loaded, linked and initialised. We refer to
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Figure 3.2: How the JVM executes a class file.

this procedure as the class loading process. Then, the interpreter and JIT
compiler produce native code the JVM can execute.

Section 3.3.1 explains the class loading process with the steps loading, link-
ing and initialisation. In Section 3.3.2, we cover details about the verification
of class files. Finally, interpretation and JIT compilation is described in
Section 3.3.3
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3.3.1 Class Loading Process

To execute code, classes or interfaces stored in class files are first transformed
into a runnable state. To achieve that, the JVM performs the stages loading,
linking and initialisation. Since loading is just one part of the complete
process, we refer to all stages as the class loading process.

Loading. In the loading stage, the binary representation of classes or
interfaces is loaded into the JVM. A class loader is responsible for this
procedure. The JVM specification [LB15] specifies two kinds of class loaders:
User-defined class loaders and bootstrap class loader. A user-defined class
loader must be a subclass of the abstract class ClassLoader. They are used
to customise the behaviour of the loading process. For instance, classes can
be loaded from different locations than the local filesystem. Furthermore, it
is also possible to generate classes on the fly and supplying these classes
to the class loader. In the end, the loader has to return a stream of bytes
in the Java class file format. Since user-defined class loaders are regular
classes themselves, they have to be loaded by a class loader as well. Hence,
there exists a particular class loader which does not depend on the JVM for
its execution. Such a particular kind of class loader is the bootstrap class
loader. It is not written in any JVM language but in native code. Thus, every
JVM implementation for a particular platform has its own bootstrap class
loader.

Linking. After class loading, the linking stage is performed. During link-
ing, classes are verified, prepared and resolved. Verification is an important
task to ensure memory and type safety. Therefore it is explained separately
in Section 3.3.2. Preparation involves the allocation of memory for all static
fields and its assignment of default values. Concrete values are assigned in
the initialising stage. During resolution, symbolic references in the run-time
constant pool are replaced with original memory references. This step is
optional and can be deferred to run-time.
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Initialisation. Initialisation is the final stage, in which the initialisation
method of a class or interface is executed. This method comprises all code
from static initialisers. Furthermore, it includes all assignments of static
variables to their concrete values.

3.3.2 Class File Veri�cation

The JVM gives strong guarantees concerning memory and type safety. To
fulfil these guarantees, class files have to be validated. The central part of the
validation process involves checking the static and structural constraints of
bytecode instructions. Those constraints are defined in the JVM specification
[LB15]. Static constraints concern the well-formedness of the bytecode. For
example, the target of a jump instruction in the bytecode of a method must
be an instruction within the same method. Structural constraints are related
to the relationship between bytecode instructions. For instance, it is validated
whether a local variable is accessed before initialisation. In addition to the
verification of methods bytecode, the class file itself is validated. When
instrumenting bytecode, special care has to be taken to prevent the violation
of static and structural constraints.

3.3.3 Interpretation and Just-in-Time Compilation

Intepretation, Just-in-Time (JIT) compilation, or a combination of both trans-
form JVM bytecode instructions to native instructions. It is up to the concrete
JVM implementation which techniques are used. Interpretation is performed
by translating one bytecode instruction after another to native instructions.
A dedicated interpreter is responsible for executing those native instructions.
JIT compilation, on the other hand, translates chunks of bytecode instruc-
tions into native code. Processing larger chunks of instructions provide
more possibilities for optimisations.

To provide an example, we consider the most widely used JVM implementa-
tion HotSpot [Oraa]. It is based on the observation that the most frequently
executed parts of a program are just a small subset of it. Therefore, optimisa-
tion is focused on those most frequently executed parts, also called hot spots.
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HotSpot features an interpreter and two distinct compilers. The interpreter
matches a template of native code instructions to every bytecode instruction,
as described in [HM18]. First, bytecode is executed using the interpreter, to
collect statistics about frequently executed code. These statistics are used to
trigger the JIT compilers. Subsequently, the generated native instructions
are used instead of the interpreter. HotSpot includes a client and a server
compiler. The client compiler is constructed for fast compilation with few
optimisations. The server compiler performs more aggressive optimisations
but takes more time. To combine the benefits of both compilers, tiered com-
pilation was added to HotSpot. In this approach, both the client and server
compiler are used for a single application. In doing so, a good compromise
between fast startup and runtime performance can be achieved.

3.4 Instrumentation

The goal of instrumentation is to enrich programs with additional code, to
inspect its state and behaviour. Especially in Quality Assurance (QA), it can
be beneficial to know additional information about a running application’s
behaviour. Such information is for instance which lines of code are executed,
or which functions are affected by a user-defined input. With this knowledge,
the quality of testing can be improved. However, the code for collecting
and providing this information is usually not included in the application by
default. It is added manually by instrumenting source or bytecode.

Instrumentation may be categorised in two ways. One form of distinction is
the point in time when instrumentation code is added. Static instrumenta-
tion is performed before an application is started. Dynamic instrumentation
is done at application startup or runtime. Another way for categorisation is
the layer of abstraction at which additional code is added. These layers are
either source code or bytecode. Source code instrumentation is covered in
Section 3.4.1. Instrumentation at bytecode level is explained in Section 3.4.2.
State of the art bytecode instrumentation frameworks are reviewed in Sec-
tion 3.4.3.
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3.4.1 Source Code Instrumentation

The purpose of source code instrumentation is to enrich source code with
additional behaviour. It typically works by modification of the Abstract
Syntax Tree (AST). The AST is generated by a parser and represents the
source code in a structured way. This representation allows it to perform
efficient modifications.

Instrumenting code on source level is less complex than on bytecode level.
The reason for that is, that source code is easier to understand and less
verbose. However, these advantages come with less portability. Since dif-
ferent languages rely on the JVM, instrumentation code cannot be written
generically for all JVM languages. Another limitation of source code instru-
mentation is that it can only be performed statically. Since the JVM requires
compiled classes for execution, runtime instrumentation is not possible.

3.4.2 Bytecode Instrumentation

The goal of bytecode instrumentation is to modify the behaviour of an ap-
plication by changing its bytecode. On the JVM, this approach is performed
by the modification of class files. An essential part of a class file for instru-
mentation is the included instructions. These are stored within methods.
The instruction set is defined in the JVM specification [LB15, section 6].

Bytecode instrumentation offers two main advantages. First of all, it enables
instrumentation independent of the language used for the source code.
Since the code is added to class files and not source files, it is irrelevant
which high-level language is used. The second advantage is the possibility
to perform instrumentation at runtime. This approach is useful in case not
all dependencies are available for post-compile instrumentation. One such
case is a thin jar, which does not include any dependencies. Instead, they
are supplied separately and added to the classpath.
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3.4.3 Bytecode Instrumentation Frameworks

Several bytecode instrumentation frameworks exist for the JVM platform.
They mainly differ in two aspects. The first aspect is the amount of control
over the instrumentation process. The amount of control ranges from the
addition of code at predefined points to the arbitrary transformation of
bytecode instructions. In general, frameworks with low-level APIs provide
a higher amount of control compared to those with high-level APIs. The
second aspect categorises frameworks according to the required knowledge
of the class file format. Some instrumentation frameworks only require
knowledge of a JVM language. Others require a certain degree of knowledge
about class files and JVM instructions. Those are usually the frameworks
which provide the highest amount of control over the instrumentation
process.

Bytecode instrumentation resembles a core part of this thesis. Therefore, we
have carefully evaluated the latest bytecode instrumentation frameworks.
These frameworks include ASM4, Javassist5, Cglib6, BCEL7, AspectJ8 and
ByteBuddy9.

AspectJ. AspectJ is an Aspect-Oriented Programming (AOP) framework
for the JVM. In AOP, the instrumentation code is defined in so-called aspects.
The process of merging the application’s code with aspects is called weaving.
AspectJ supports weaving before compilation, after compilation and during
runtime. Using AspectJ is simple because knowledge of the class file format
is not required. Aspects can be written in the application’s native language.
However, this advantage also introduces certain limitations. Instrumentation
code can only be added at specific predefined locations, so-called joinpoints.
Examples of such joinpoints are method calls or field references. To date,
joinpoints for conditionals or local variable access do not exist. Furthermore,
it is not possible to transform existing bytecode instructions.

4https://asm.ow2.io/
5http://www.javassist.org/
6https://github.com/cglib/cglib
7https://commons.apache.org/proper/commons-bcel/
8https://www.eclipse.org/aspectj/
9http://bytebuddy.net/
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Javassist. This framework [Chi00] was initially developed to provide a
low-level instrumentation API. To date, it also supports writing instrumen-
tation code in a source language similar to Java. A custom compiler is
responsible to compile the code. The apparent advantage of javassist is that
it provides both a low-level and high-level API. However, the fact that the
instrumentation code for the high-level API is not written in plain Java
results in certain limitations. For instance, their official manual10 states that
annotations and generics are not supported.

ASM. The ASM framework [BLC02] was built for high-performance. Pro-
gramming languages like Groovy and Kotlin use ASM for compiling high-
level programming constructs to bytecode. Furthermore, AspectJ and Byte-
Buddy are building on top of it. The current implementation provides two
low-level APIs, as described in the official documentation11. First, the core
API is event-based and designed to be fast and memory efficient. During the
parsing of a class file, events are generated for each element of a class. Such
elements are for instance methods, fields or instructions. Then, handler for
the generated events modify the classes’ bytecode. The second API is called
tree API and is built on top of the core API. It is object-based and stores the
whole content of a class file in a single object.

ASM provides a high amount of control over the instrumentation process.
Compared to other low-level APIs, ASM is designed to be as fast and
small as possible. However, profound knowledge of the class file format is
required for its usage.

ByteBuddy. ByteBuddy is a framework which allows generating and
transforming classes at runtime. For that purpose, it uses the visitor API
of the ASM framework. ByteBuddy provides an intuitive high-level API.
Though its high-level nature, it is designed to provide a high degree of
control over the instrumentation process. Fields and methods can be added,
removed and to some extent also transformed. For instance, it is possible to

10http://www.javassist.org/tutorial/tutorial2.html#limit
11https://asm.ow2.io/asm4-guide.pdf
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delegate method calls. Furthermore, transforming JVM instructions is also
possible using the ASM core API.

3.5 Agents

Java and native agents support capabilities which are not available to stan-
dard application code. In particular, these capabilities allow programmers
to modify and get information about a running JVM. For instance, profiler
use agents to gather information about performance metrics like memory
usage or execution time of executed methods. Agents may also be used
to influence the behaviour of an application actively. Both Java and native
agents provide access to classes’ bytecode for instrumentation. By having
this access, existing bytecode can be changed, or new instructions added.

3.5.1 Java Agents

Java agents are written purely in a JVM language. They are packaged into
jar files like standard JVM applications. However, agents do not run in an
own JVM instance. Instead, they are attached to the JVM instance of a run-
ning program. Java agents were introduced by the java.lang.instrument

API in JDK 5. Via this API one can access the bytecode of classes’ for in-
strumentation purposes. Thus, the primary purpose of a Java agent is to
instrument bytecode. In doing so, it is possible to modify or get information
about an application’s behaviour.

Classes can be instrumented during or after JVM startup. For these pur-
poses, the java.lang.instrument API defines the premain and agentmain

functions. These have to match the signatures given in Listing 3.2.

Listing 3.2: Signatures of the premain and agentmain functions.

1 public static void premain(String agentArgs ,

Instrumentation inst);

2 public static void agentmain(String agentArgs ,

Instrumentation inst);
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Instrumentation at VM startup is performed by implementing the premain

method. The JVM executes this function before the public static void

main(String[] args) function of the application to which the agent is at-
tached. Therefore, the agent has to be specified during the startup of the
application. In this way, it is possible to instrument classes of an application
before they are loaded into the JVM. Performing instrumentation during
startup has a significant advantage. It allows modifying the class file struc-
ture of a class to be loaded. Thus, additional methods and fields can be
added. However, this does not apply for classes which are already loaded be-
fore premain is invoked. The class file structure of these so called bootstrap
classes can yet not be modified, as recorded in an enhancement proposal12.
Examples are the java.lang.String or java.lang.Thread classes. As a con-
sequence, Java agents cannot be used out-of-the-box to add fields or methods
to bootstrap classes. Nevertheless, there exist efforts the circumvent this
restriction, for instance, DCVM13 or JRebel14. DCVM is a modified version of
the HotSpot JVM. JRebel uses a Java agent combined with abstract bytecode
and classloaders. Although it is not allowed to alter the class file structure,
method implementation still can be modified. This modification must be
done under the premise, that the method’s signature remains unchanged.

By implementing the agentmain method, instrumentation can be performed
after VM startup. As opposed to agent attachment at startup, the agentmain

method is invoked after the public static void main(String[] args)

method.

As already stated, agents are packed in jar files like standard applications.
Additionally, a manifest file need needs to be supplied. It is necessary in
order for the JVM to treat the archive as an agent. The following entries are
used to configure an agent:

• Premain-Class

Specifies the class containing the premain method
• Agent-Class

Specifies the class containing the agentmain method

12http://openjdk.java.net/jeps/159
13https://github.com/dcevm/dcevm
14https://jrebel.com/software/jrebel/
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3 The Java Virtual Machine

• Boot-Class-Path

List of directories or libraries added to the bootstrap classpath
• Can-Redefine-Classes

Boolean specifying the ability to redefine classes. Redefinition replaces
a class by supplying a new definition in the form of a byte array.

• Can-Retransform-Classes

Boolean specifying the ability to retransform classes. Retransformation
is perfomed by transforming an existing definition of class. This task is
handled by registering instances of so called ClassFileTransformer.

• Can-Set-Native-Method-Prefix

Boolean specifying the ability to set native method prefixes. This
mechanism allows it to instrument native methods by wrapping them
in a non-native method.

3.5.2 Native Agents

Native agents operate on a different level compared to Java agents. They use
low-level capabilities provided by the JVM Tool Interface (JVMTI). These
capabilities can be used to inspect and control the state of a JVM. The
JVMTI is defined in a C header file named jvmti.h. When implementing
a native agent, this header file must be included. Therefore, native agents
are typically written in the C/C++ language. Then, they are compiled to a
shared library. Another option is to statically link the agent with the JVM.
Agents are attached during JVM startup or runtime. The JVMTI defines a
wide range of capabilities. These can be divided into two applications areas,
namely inspection or modification of a running JVMs state.

Inspection of the JVM is mainly performed by registering and receiving
events. Such events include changes of fields or methods. For instance, it is
possible to register for events in case a classes’ field is accessed or modified.
Furthermore, one can also register for notifications when a classes’ method
is entered or exited. Additional features include statistics about CPU usage
or heap tagging. The latter is intended to track arbitrary objects by attaching
labels to them.

The JVMTI also supports actively influencing a running JVM. Debuggers
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are a typical application area of native agents. Breakpoints points can be set
and cleared. Threads may be suspended, resumed or stopped. Moreover,
static fields of classes can be accessed and set. The JVMTI also supports a
way of changing classes’ bytecode. The ClassFileLoadHook event is used for
that purpose. This event is triggered prior to the JVM loading a particular
class. It provides complete access to all classes for one-time instrumentation,
including bootstrap classes.

Listing 3.3: Example agent with callback at VM start.

1 JNIEXPORT jint JNICALL Agent_OnLoad(JavaVM *jvm ,

char *options , void *reserved) {

2 // Register capabilites

3 jvmtiCapabilities capa;

4 (void) memset (&cap , 0, sizeof(jvmtiCapabilities));

5 cap.can_tag_objects = 1;

6 error = jvmti ->AddCapabilities (&cap);

7

8 // Register callbacks

9 jvmtiEventCallbacks callbacks;

10 (void) memset (&callbacks , 0, sizeof(callbacks));

11 callbacks.VMStart = &cbVMStart;

12 error = jvmti ->SetEventCallbacks (&callbacks ,

(jint) sizeof(callbacks));

13 }

To develop a native agent, the Agent_OnLoad function has to be implemented.
This function is invoked early in the boot phase of the JVM. On invocation,
no classes or objects are loaded yet and no bytecode instructions have been
executed. Listing 3.3 shows an extract of such an implementation. The
desired capabilities an agent needs, have to be requested explicitly. In this
example, Line 5 shows how to request the heap tagging capability. In doing
so, the JVM is able to optimize its performance based on the requested
capabilities. Furthermore, callbacks must be specified in order to receive
events. In this example, the JVMStart callback is registered in Line 11.
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This chapter elaborates how we achieve the goal of detecting invocations of
potentially unsafe operations with IAST. Our concept incorporates several
approaches, including code instrumentation, taint analysis and agents. In the
following, we explain the design decision we made as well as the rationale
behind them.

Section 4.1 gives an overview of our concept. Section 4.2 describes the com-
ponents of our architecture. Section 4.3 exemplifies how the components
work together to detect a potentially unsafe operation. Section 4.5 gives de-
tails about the approach we use to instrument web applications. Section 4.4
explains how we apply dynamic taint analysis.

4.1 Approach

In our concept, we focus on detecting invocations of operations, which cause
potential harm when user input is passed. Throughout this document, we
further refer to such operations as sinks. We detect unsafe invocations by
tagging user input and checking tags when a sink is invoked. A typical IAST
approach for this purpose is to include a magic value in requests of a DAST
scanner. In this case, the value of the input itself gives information about its
taint status. Potential vulnerabilities are then detected by checking the input
parameters of potentially unsafe operations for this value. However, input
manipulation can destroy this value and thus reduce detection capabilities.
We counter this issue by combining this approach with taint analysis. Hereby,
we instrument string-holding classes. During instrumentation, we add a field
which stores taint information in these classes. When string-manipulating
functions of those classes are invoked, we mimic their manipulations on the

33



4 Concept

taint information. For instance, the substring of a tainted string is tainted as
well. However, primitive arrays are not covered by this approach. Therefore,
we rely on the object tagging capabilities of the JVMTI with a native agent.
In doing so, we can attach taint information to primitive arrays.

To perform tainting, we need to know when to attach taint information and
when to check it. Therefore, we support the definition of sources and sinks.
Assessing whether or not a sink is harmful is not in the scope of our work.
In the field of security testing, there exist well-known function signatures of
sinks. For instance, the popular static analysis tool FindSecBugs1 includes
a very comprehensive signature list. In our work, we give the user a very
generic way of matching those signatures in a configuration file. Concerning
the sources of user input, we are not forced to rely entirely on function
signatures. In traditional taint analysis, a variable is tainted if it originates
from a function with a specific signature. If such a signature is missing, user
input is not tainted. We counter this problem by interacting with a black-box
scanner. When a character sequence containing a magic value from the
scanner is added to a string, it is automatically tainted. Hence, we can attach
taint information in case of a missing source definition. Finally, we support
the definition of sanitisation functions. Those are functions which transform
strings to remove potential harmful character sequences.

We apply our taint concept by instrumenting the application on bytecode
level. Instrumentation is performed offline, during application startup and
runtime. The string-holding classes are instrumented offline. This procedure
is needed since the JVM does not allow changing the class file structure
after a class has been loaded. Sources, sinks and sanitisation functions
are instrumented at startup or runtime. To have access to the classes for
instrumentation, we use Java agents. All instrumentation code is added
without transforming existing bytecode instructions. In this manner, we can
minimise interferences with existing instructions.

We minimise false positives by applying two measures. First, we store taint
information for every individual character in a string. In doing so, a string
can contain tainted and untainted data. If taint information were stored
for whole strings, an untainted string would be tainted as soon as a small
tainted sequence is added. When reaching a sink, the previously untainted

1https://find-sec-bugs.github.io/
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Figure 4.1: The architecture of our solution.

part cannot be distinguished anymore. With character-level tainting, it can
be analysed if the tainted parts suffice to produce a vulnerability. The second
measure we apply against false positives is keeping track of sanitisation
functions. These functions transform a tainted string into a benign one.
Thus, reporting a vulnerability for a sanitised string would produce a
false positive. Therefore, we record for every string which of the defined
sanitisation functions have been invoked. In sinks, it can be checked if a
string was sanitised by an appropriate sanitisation function.

4.2 Architecture

In this section, we describe the overall architecture of our concept. It consists
of four major components, namely a Black-box Scanner, a Java agent, a Native
Agent and a RuntimePatcher. Figure 4.1 illustrates these components. In the
following, we describe each of them in greater detail.

Black-box Scanner. The black-box scanner represents a party which sends
requests to the application. Such a party is needed to perform IAST. In
general, it can be any tool capable of sending those requests. We rely on a
black-box vulnerability scanner. The scanner interacts with the application
by including a magic value in its requests. This value is used in two forms:
First, our agent checks for this value when a character sequence is added
to a string. If the value is included in the value to be added, we taint it.
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As a result, we can taint user input without predefined sources. However,
the application may transform the magic value before a new string is
created from it. In this case, we may lose taint information. Therefore,
we still support defining sources. The second form of using the magic
value is, to check for it again in sinks. Our concept is able to perform
this procedure. However, we rely on taint analysis to examine the taint
information associated with a string.

Java Agent. The Java agent component inserts instrumentation code for
sources, sinks and sanitizers. The point in time in which a class is instru-
mented depends on when it is loaded. Classes which are already loaded
when the agent is attached are instrumented immediately. All other classes
are instrumented on first load by a classloader. This point in time can be
during application startup or runtime. To perform instrumentation, those
functions need to be matched. Therefore, we define matchers in configu-
ration files. Our Java agent reads those files at startup and instruments
functions accordingly.

Native Agent. The native agent is used for attaching taint information
to primitive arrays. In the JDK, the java.lang.String class allows the
programmer to get its content in form of an array of primitive characters
or bytes. These arrays inherit the taint information of the string to reduce
false negatives. For this purpose, we use the heap tagging capabilities of the
JVMTI. With the SetTag and GetTag function, we attach taint information to
primitive arrays. Therefore, we do not lose taint information if programmers
extract primitive arrays.

Runtime Patcher. The runtime patcher modifies string classes. Typi-
cal classes in the JDK which store strings are: String, StringBuffer and
StringBuilder. These classes are already loaded when our Java agent starts
up. As the JVM forbids changing the class file structure of loaded classes,
we perform the modification offline. We instrument the string classes by
adding an attribute, storing taint information. Since we chose the attribute
to be of type object, users can store taint information in any desired format.
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Figure 4.2: Steps required to detect a SQL injection.

Furthermore, we instrument all methods of string classes which potentially
modify taint information. More specifically, we mimic the behaviour of
these functions on the taint information. For instance, we append taint
information if two strings are appended.

4.3 Detection Work�ow Example

In this section, we illustrate how our components described in the previous
section interact to detect a SQL injection vulnerability. Figure 4.2 shows the
overall process of this workflow.

First, the black-box vulnerability scanner sends a request including the
magic value OxCAFE. On the JVM, these requests are stored in classes
implementing the HttpServletRequest interface. These classes give access
to all parts of a request, like its parameters or cookies. In our example, this
request will contain a parameter with the value OxCAFE.

In the second step, the parameter is extracted using the getParamter(String
name) function. Therefore, this function acts as a source. Next, we can
distinguish between two cases:
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1. Source of user input is defined
2. Source of user input is not defined

In the first case, no matcher for the getParameter function is defined in
the sources configuration. As a consequence, the function will not be in-
strumented. In our example, this means that the TaintUtil.setTainted()

function call, depicted in bold, will be omitted. Now, the magic value Ox-
CAFE plays an important role. When a request is received, byte arrays or
buffers contain this magic value. These bytes are read by an open websocket
of the application. Since the socket API is low-level, reading is performed
bytewise. In the following, strings are created from bytes. In our example,
these are strings assigned with a value including OxCAFE. We hence taint
strings which are created from these bytes. The tainting is performed by in-
strumentation code added to all functions accepting character or byte arrays.
This code is added by our RuntimePatcher component. In the second case,
the sources configuration file does include a matcher for the getParameter

function. Based on this matcher, we match the corresponding function on
bytecode level for instrumentation. Both matching and instrumentation
are performed by our Java agent component. During the instrumentation
process, we add a method call at the end of the function. This call, in our
example TaintUtil.setTainted(), sets the taint information attribute of
the string function parameter name. This attribute was added to the string
class in advance by the RuntimePatcher component, as described in the pre-
vious section. After this process, the string returned by the getParameter

function is fully tainted.

In the third step, the tainted parts of the requests are further processed by
the application. During these operations, the string may be modified by
several functions. Furthermore, substrings can be taken, or the string could
also be concatenated to other strings. In such cases, the taint information is
propagated accordingly.

Next, tainted strings may flow into a sink, as denoted by the fourth
step. In our example, such a sink is the executeQuery() function of the
JdbcTemplate class. We check if the first string parameter of the function
contains tainted parts. If this is the case, a potential vulnerability is discov-
ered.
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In the final step, the black-box scanner retrieves the vulnerability informa-
tion. To automatically extract this information, the black-box scanner needs
to be extended. In our implementation, we rely on file output to log the
discovered vulnerabilities.

4.4 Taint Analysis

In this section, we describe how we use the principles of taint analysis in our
system. We apply a traditional taint analysis approach relying on sources,
sinks and sanitizers. Throughout this document, we refer to this approach
as non-interactive. In addition, we enhance the non-interactive approach by
reducing the dependency on a comprehensive definition of sources. We
refer to this enhanced approach as interactive tainting. Subsequently, we will
explain this approach in further detail. Furthermore, we elaborate where we
store taint information, how we propagate it and how we configure sources,
sinks and sanitizers.

4.4.1 Interactive Tainting

The non-interactive tainting approach relies heavily on the definition of
sources. Based on this definition, the return values of these functions are
tainted. In the interactive approach, we rely on a black-box scanner for taint-
ing. As described in Section 4.3, the request of the scanner includes a magic
value. After this value is stored in primitive arrays, it will typically flow into
a string class. Since the value represents user input, we subsequently taint
strings which are created from it.

Nevertheless, we do not solely rely on an interactive approach. We combine
the interactive tainting approach with the non-interactive one. In doing
so, the non-interactive and interactive approach mutually reduce their
disadvantages. In particular, the possibility of missing tainting is diminished.
Tainting in the interactive approach may fail if the bytes including the magic
value are transformed. When a new string is created from these bytes, the
magic value cannot be recognised. In this instance, a source defined in the
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Figure 4.3: Heap with tainted objects.

non-interactive approach can still taint such a string. On the contrary, a
missing source definition can lead to missed tainting. This downside is
countered by the interactive approach. The worst case scenario happens
when bytes are transformed, and source definition is missing. Since there
already exist well-known source definitions for JVM application, this risk is,
however, rather small.

4.4.2 Taint Storage Location

We store taint information in an additional field in string classes. This
decision is based on two fundamental observations: First, an entirely non-
invasive approach, like storing strings in a global key-value store which
holds taint information, is not practical. In this case, it is vital that the strings
are uniquely identifiable. The JVM specification does not specify a function
for this purpose. Admittedly, one could use the System.identityHashCode()
function included in the JDK. However, this function is not guaranteed to
be free of collisions for garbage collection reasons. Our second observation
is that storing taint information in the string itself requires to alter the
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behaviour of all manipulating operations. More specifically, all accesses to
the internal buffer containing the string need to be modified.

Storing taint information in an additional field has several advantages. For
instance, we can store taint information without the need to modify existing
bytecode instruction. Primitive arrays constitute an exception since their
classes cannot be modified in any way. Therefore, we rely on the JVMTI to
attach taint information.

String classes. We chose to store taint information in an additional field
in string classes. This field is of type Object and thus allows the user to
store taint information in any desired format. A more generic approach
would be to add this field to the object class. Since primitive arrays are also
objects on the JVM, they could be tainted as well. However, this approach
seems to break internal assumptions of the JVM, resulting in the inability
to boot. It is assumed that the reason for that is that the JVM internally
accesses object fields at fixed offsets. String classes appear not to be affected
by this limitation. We successfully validated our implementation against
JDK version 8.

Primitive arrays. For primitive arrays, we cannot store taint in a class field.
Neither the java.lang.instrument interface nor the JVMTI provide means
to instrument those arrays. Although arrays are considered objects, the
JVM dynamically creates array classes on startup. Because of this dynamic
creation, it is not possible to instrument those classes. However, the JVMTI
provides means to assign tags to objects on the heap. With the JVMTIs
setTag and getTag functions, we can associate taint information to array
objects.

Comparison. Storage-wise, the object tagging approach is similar to the ap-
proach for string classes. In both cases, the taint information is stored as an
object on the heap, as illustrated in Figure 4.3. However, there is a difference
in how taint information is set and where the reference to taint information
is stored. For string classes, taint information is set by invoking a setter
operation. In our example, this operation is called setTaintInformation
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and was added during instrumentation. The reference to the taint informa-
tion is also stored differently. For string classes, the reference is stored in
string class itself. For primitive arrays, we create this link artificially with
the setTag function.

4.4.3 Sources, Sinks and Sanitizers

We define sources, sinks and sanitizers for non-interactive taint analysis.
Although sources are not strictly necessary in our interactive tainting ap-
proach, we still define them. In doing so, we can minimise the chance of
missed tainting. We introduce separate configuration files for sources, sinks
and sanitizers. Since configurations may be edited manually, we define a
human-readable format. Therefore we rely on the human-readable language
YAML Ain’t Markup Language (YAML) [BEN19].

Configuration files for sources, sinks and sanitizers are comprised of so-
called matchers. The purpose of a matcher is to match one or several
functions. The matching is performed based on specific properties. Those
properties are either on class level or function level. On a class level, we
support matching based on interface, superclasses and annotations. On
a function level, we support matching based on names, descriptors and
annotations. The values for matchers are regular expressions. Hence, names
can be matched on a generic basis.

Using a matcher, one can match specific functions or several functions at
once. In some cases, it is desirable to match several functions at once based
on a common property. One such property is a common super-interface.
For instance, SQL statements are abstracted in the java.sql.Statement

interface. By matching all implementations of this interface, one could
generically instrument SQL related sinks, independent of the database
provider used.

Functions can be matched on various levels of abstraction. Figure 4.4 ex-
emplifies this abstraction levels on the Files.write() function of the JDK
runtime library. Such a function is called either directly, or indirectly by a
third-party library function. After calling intermediate functions, runtime
library functions eventually end up calling native functions. In general,
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Figure 4.4: Hierarchy of a typical function call stack.

those native functions are not called directly. Instead, wrapper functions are
called to provide means for instrumenting native functions.

An important question is at which abstraction level sources or sinks are
defined. Matching at native method level would resemble the most generic
approach. All functions using a particular native method would be included.
However, for identification and mitigation purposes, knowing the caller is
vital. Every level of abstraction provides more context to the function call
stack. Just having the information that a particular native function acted
as a source or sink is not helpful. For example, let us consider a potential
vulnerability involving the write0() native function of the example above.
To remove a vulnerability, one would either perform input sanitisation
or remove the function call leading to the write0() call. Either way, this
adaption would be performed on the same abstraction level as the initiating
call. One such initiating call is the Files.write() runtime library function.
Consequently, function definitions for sources and sinks are typically de-
fined for runtime library functions. In doing so, programmers exactly know
where code adaptions are necessary.
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4.4.4 Taint Propagation

After strings are tainted, manipulating operations may be performed on
them. Those operations are not automatically reflected on the taint informa-
tion. Therefore, we propagate taint information manually. For propagation,
we distinguish between strings, primitives and arrays of primitives. In the
following, we describe how and when we propagate taint information in
these cases.

Strings. String-related library classes contain several functions for manip-
ulations. We add instrumentation code to these functions to propagate taint
information. How this propagation is performed depends on the semantics
of the function. For instance, if the function performs concatenation, taint
information must be concatenated as well. A function that reverses a string
also needs to reverse the taint information. In sum, we mimic the function
logic on our taint information.

Propagation is rather simple if the string class is immutable. In the JDK,
this is the case for the java.lang.String class. Since the length and con-
tent cannot be modified, the taint information cannot get out of sync
with the string itself. However, if the string class is mutable, such as
java.lang.StringBuffer and java.lang.StringBuilder, taint information
may get lost.

As a result, all methods modifying the length or content of a string have to
be considered for mutable string classes. In particular, problems may occur
when the length of taint information differs from the string length. This
difference leads to incorrect array index accesses of the taint information.
As a result, the application may crash. Therefore, we need to ensure that
all operations modifying taint information length or content are instru-
mented. For instance, functions like append(int i) change the length of the
internal buffer. However, we do not handle those functions in terms of
taint propagation, since primitives are not in our scope. Therefore, we only
adjust the length of the taint information to keep it in sync with the string
length. To perform adjustments, we save the string length at the beginning
of a method’s execution. Before the method returns, we retrieve the string
length of the modified string. By calculating the difference between those
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two lengths, we determine the number of characters for adjustment. Then,
we increase or decrease the length of the taint information based on the
calculated amount.

Primitives. String operations may also take primitives such as char, int or
byte as argument. An example is the append function of the StringBuilder

class of the JDK. It allows the programmer to append primitives to an exist-
ing string. Since we taint objects, primitives are not included in our tainting
approach. Thus, we do not store any taint information about primitives.
Without employing the transformation of the whole bytecode, we have two
basic options: Either we treat primitives as tainted or untainted. The first
option would introduce more false positives. For this reason, we decided to
treat all primitives as untainted.

Primitive Arrays. Primitive arrays can be added to strings via certain op-
erations. For instance, the append or insert functions of the StringBuilder

class of the JDK. In these functions, we copy the taint information of the
array. This copy is then added to the taint information of the string. Never-
theless, elements of primitive arrays can also be accessed directly by index.
In this case, we cannot propagate taint information correctly. The reason for
that is that we rely on hooking into function calls. On a bytecode level, array
element accesses are not performed by a function call. Special instructions
exist for every type of primitive array to store and load elements. Prop-
agating taint for primitive arrays would require to intercept all bytecode
instructions. Then, they would need to be checked for array instructions to
perform further actions. Since we purposely avoid inspection of complete
bytecode, this approach is not in our scope. Furthermore, taint propagation
for primitive arrays is only reasonable if primitive tainting is supported. For
those reasons, we do not propagate taint if parts of a primitive array are
stored in a variable.
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Figure 4.5: Three cases in which we perform instrumentation on method entry.

4.5 Instrumentation

In this section, we explain how our concept uses code instrumentation to
implement our taint analysis approach. To stay independent of the JVM
language in which the web application is written, we instrument its byte-
code. For instrumentation, it must be known when and where to place the
instrumentation code. Concerning the point in time, the code can be instru-
mented offline, during or startup or at runtime. Our approach does not
assume a specific time for instrumentation. However, when implementing it
for the JVM, a limitation has to be taken into account. This limitation forbids
changes to the class-file format after classes are loaded. In other words,
functions, fields and implemented interfaces are not allowed to change after
a class has been loaded. Since we add an additional field to store taint
information, we instrument string classes offline.

Apart from string classes, we do not alter the class-file format of classes. We
only add additional instructions to the instruction lists of existing methods.
Those additional instructions are added either at the beginning or at the
end of the instruction list. In this manner, we can minimise the chance of
altering the defined behaviour of existing instructions. The decision whether
instructions are added on method entry or exit depends on a method’s
semantics.

We instrument on method entry when parameters are affected. Method
parameters may change during method invocation. Therefore, we place
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Figure 4.6: Three cases in which we perform instrumentation on method exit.

instrumentation code affecting parameters at method entry. This approach is
needed in three cases, as illustrated in Figure 4.5. The first is our interactive
tainting approach, in which we compare a method parameter against a
magic value. The second case is tainting parameters. By tainting at method
entry, we assure that taint information is propagated for the parameter until
the end of the method is reached. The last case is to check taint information
in sinks. During this check, we inspect security relevant method parameters
for taint information.

We instrument on method exit if return values are affected, as variables
used as return value may change. Therefore, we place the corresponding in-
strumentation code affecting them at method exit. We rely on this approach
to attach taint information. We perform this step in two cases, namely the
initial attachment of taint information and taint propagation. In the first
case, we fully taint a return value. In the second case, we copy the taint
information of the current instance to the return value.

Length adjustments of taint information represent a special case. Those
adjustments are necessary to keep the length of taint information in sync
with the string length. Instrumentation on method entry and exit is required
for this process. On method entry, the current string length is saved. On
method exit, the difference between the stored length and the actual string
length is calculated. Based on this difference, adjustments to the taint
information length are applied. Details about the implementation of our
concept are given in the following chapter.
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This chapter gives details about how we implemented our concept described
in Chapter 4. In particular, we show how we used bytecode instrumentation
and agents to detect potentially unsafe operations. Our implementation is
divided into several components, namely Runtime Patcher, Java Agent, Native
Agent. In the following, we describe each of them in greater detail.

Section 5.1 explains how we used ByteBuddy to instrument the web appli-
cation’s bytecode. Section 5.2 describes how we instrument string classes
ahead of time with our Runtime Patcher. Section 5.3 shows how we use a Java
agent to instrument sources, sinks and sanitizers. Section 5.4 illustrates our
native agent that we used for attaching taint information to primitive arrays.
Section 5.5 covers the results of our conducted evaluation with regard to
performance and handling of transformed input.

5.1 Instrumentation Framework

We selected the ByteBuddy framework after comparing it against the well-
established frameworks AspectJ, ASM and Javaassist. Details about these
frameworks are covered in Section 3.4.3. To implement the taint analysis
approach of our concept, we required a framework that supports four main
tasks:

1. Insertions of bytecode instructions in the beginning and end of meth-
ods instruction list

2. Accessing function arguments in instrumentation code
3. Accessing return values in instrumentation code
4. Matching functions and classes

48



5 Implementation

The first three tasks are supported by all evaluated instrumentation frame-
works. The fourth task is only supported out-of-the-box by ByteBuddy and
AspectJ. However, without out-of-the-box support of function and method
matching, these features need to be reimplemented. Hence, we reduced
our possible candidates to ByteBuddy and AspectJ. We finally chose Byte-
Buddy over AspectJ due to its customisation capabilities. ByteBuddy allows
extending the instrumentation functionality at arbitrary locations, such as
conditionals.

Listing 5.1: Instrumenting the String class with ByteBuddy.

1 final DynamicType.Unloaded <String >

stringClassUnloaded = new ByteBuddy ()

2 .redefine(String.class , classFileLocator)

3 .implement(Taintable.class)

4 .defineProperty(taintInformation , Object.class)

5 .visit (...) // Taint propagation advices

6 ...

7 .make()

5.2 Runtime Patcher

In this section, we describe our Runtime Patcher component, which in-
struments string classes ahead of time. We rely on this approach for the
java.lang.String, java.lang.StringBuffer and java.lang.StringBuilder

classes. First, we show how we add a field which stores the taint information
in those classes. Second, we illustrate how we propagate taint information
whenever strings are manipulated.

5.2.1 Taint Storage

In order to store taint information, we need to add a place for storage and
provide a way to set and retrieve it. Listing 5.1 illustrates how we achieve
these tasks with ByteBuddy. We add a field of datatype object which stores
the taint information. Furthermore, we also add accessor methods for this
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Figure 5.1: Array data structure which stores taint information.

field. Both tasks are accomplished with the defineProperty function. In
order to call the accessor methods in our instrumentation code, we rely
on interfaces and polymorphy. We define the methods in an interface and
implement this interface in our string classes. As a result, we can cast our
string class to the interface type at runtime and invoke the methods. To
accomplish this task, we created the interface Taintable and added it via
the implement function of ByteBuddy. The resulting class of this process is
shown in Listing 5.2.

For our prototype, we chose an array data structure for storing taint informa-
tion, which is illustrated in Figure 5.1. The index of an element corresponds
to the position of a character in the string. Each element can either be null
or hold a reference to an object which contains taint information. This ob-
ject stores the stack trace of the source function from which the character
originated. Furthermore, it holds a list of invoked sanitisation functions.

Listing 5.2: Instrumented java.lang.String class.

1 public final class String implements Serializable ,

Comparable <String >, CharSequence , Taintable {
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2

3 private final char[] value;

4 private Object taintInformation;

5 public void setTaintInformation(Object var) {...}

6 public Object getTaintInformation () {...}

5.2.2 Taint Propagation

Taint propagation constitutes the most substantial part of our work. We
perform it for the String, StringBuffer and StringBuilder class of the
JDK. In the following, we describe how we propagate taint for those classes.
Furthermore, we list which methods we instrumented.

Instrumentation advices for propagation. All propagation code is or-
ganised in advices. Each of them fulfils a specific purpose in terms of
propagating taint information. Advices marked with an asterisk check for a
magic value, as discussed in Section 4.4.

Our first type of advices consists of generic advices. They are used for all
string classes.

A1 Parameter Propagation*
Takes the taint information of the parameter passed to the function
and sets in the current instance.

A2 Return Value Propagation
Takes the taint information of current instance and sets it to the return
value. The return value may be a string class or character/byte array.

A3 Extract Characters Propagation
Takes a subset of the taint information of the current instance. This
subset is replaced in the taint information of the passed character array
at the specified position.

A4 Substring Propagation
Takes a subset of the taint information of the current instance and sets
it in the returned string.
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Furthermore, we required one specific advice for the java.lang.String

class. This advice is needed for the concatenation operation, since it is differ-
ent from the one of java.lang.StringBuffer and java.lang.StringBuilder.

B1 String Concatenation Propagation
Concatenates the taint information of the passed string with the taint
information of the current string. The new concatenated taint informa-
tion is assigned to the returned string.

The java.lang.StringBuffer and java.lang.StringBuilder represent a
special case. In addition to advices for propagating the taint information, we
needed so-called length adjustment advices. These advices keep the length
of the taint information in sync with the string length. This procedure
is necessary for all methods in which we do not explicitly handle taint
information, but influence the length of it. Omitting this adjustment result
in the inability of the JVM to boot.

C1 Append Propagation
Appends the taint information of the passed string to the taint infor-
mation of the current instance.

C2 Append Length Adjustment
Increases the length of the taint information by the length of the
appended primitives’ string representation.

C3 Insert Propagation*
The taint information of the passed string is inserted at the specified
index in the taint information of the current instance.

C4 Insert Length Adjustment
Increases the length of the taint information by the length of the
inserted primitives’ string representation.

C5 Delete Length Adjustment
Decreases the length of the taint information by the specified length.

C6 DeleteAt Length Adjustment
Delete an element of the taint information at the specified index.

C7 Replace Propagation
Takes the taint information of the passed string and replaces the taint
information at the specified position in the taint information of the
current instance.
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C8 SetCharAt Propagation
Untaints an element in the taint information at the specified index.

C9 Reverse Propagation
Reverses the elements of the taint information.

Advices used by functions of the String class. The String class mostly
uses generic advices. This circumstance is owed to the immutability of this
class. The majority of functions do not change the content of the string. The
following table lists the advices we used to propagate taint information.

Function Instrumentation Advice

Constructor A1: Parameter Propagation

concat B1: String Concatenation Propagation

getChars A3: Extract Characters Propagation

getBytes A2: Return Value Propagation

replace Not implemented, see "Further cases." in Section 5.5.4

substring A4: Substring Propagation

toCharArray A2: Return Value Propagation

toLowerCase A2: Return Value Propagation

toString A2: Return Value Propagation

toUpperCase A2: Return Value Propagation

Table 5.1: Advices used by the StringBuilder and StringBuffer class.

Advices used by functions of the StringBu�er and StringBuilder class.
Since the StringBuffer and StringBuilder class are mutable, we additionally
required length adjustment advices. These advices are necessary for all
functions which change the string length. Otherwise, the length of the taint
information would get out of sync with the string length. The following
table lists the advices we used to propagate and adjust taint information.
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Function Instrumentation Advice

append C1: Append Propagation
C2: Append Length Adjustment

Constructor A1: Parameter Propagation

delete C5: Delete Length Adjustment

deleteCharAt C6: DeleteAt Length Adjustment

getChars A3: Extract Characters Propagation

insert C3: Insert Propagation
C4: Insert Length Adjustment

replace C7: Replace Propagation

reverse C8: Reverse Propagation

setCharAt C8: SetCharAt Propagation

substring A4: Substring Propagation

toString A2: Return Value Propagation

Table 5.2: Advices used by the StringBuilder and StringBuffer class.

5.3 Java Agent

In this section, we describe how we implemented our Java agent. In particu-
lar, we explain the steps performed until code is instrumented. Furthermore,
we elaborate on the tainting and taint checking process in greater detail.

5.3.1 Work�ow

The instrumentation performed by our Java agent follows several steps, as
illustrated in Figure 5.2. After these steps are completed, all classes which
are loaded during bootstrap or application startup are instrumented. Classes
loaded after startup are instrumented on class load.
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Figure 5.2: Java agent workflow from startup until runtime.
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Initially, the premain function of the agent is invoked by the JVM. At the
beginning of the function, we process the configuration files for sources,
sinks and sanitizers. Based on these files, we instruct ByteBuddy to match
instrumentation advices to functions. Details about the configuration op-
tions are covered in the following section. To perform the instrumentation,
a ClassFileTransformer instance is required. This transformer object con-
tains class and method matching logic as well as instrumentation code.
ByteBudddy creates this object internally, based on how we instruct it.

After the premain returns, the Java agent is ready for instrumentation.
Subsequently, whenever a class is loaded, it is checked whether methods
should be instrumented. Furthermore, if an already loaded class matches,
it is instrumented as well. At this stage, only classes required by the Java
agent itself are loaded, since the main function has not been invoked yet.
For those classes, we perform instrumentation to add advices for sources,
sinks and sanitizers. Adding taint propagation advices to string classes
was not feasible due to restrictions of the ByteBuddy framework. In fact,
the ByteBuddy framework could not add the advices because of circularity
issues. Therefore, we add those advices ahead of time, as described in
Section 5.4.

After the JVM invokes the main function, the application is executed. During
execution, classes will be loaded when they are used for the first time. Before
they are loaded, it is checked whether methods should be instrumented. If
this is the case, instrumentation is performed.

5.3.2 Tainting and Taint Checking

The instrumentation code added by our Java agent performs tainting and
taint checking. The functions selected for instrumentation are defined in
YAML configuration files. They allow matching functions based on several
properties. Listing 1 in the Appendix lists an example configuration.

Class matching. First, matching on a class level is possible. Configuration
options for class matching are:
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• className - The name of the class
• implementedInterfaces - A list of implemented interfaces
• superClass - The super class
• annotations - A list of class annotations
• methods - A list of methods to instrument, further described in the

following paragraph.

Method matching. After the class is identified, the listed methods are
matched. Configuration options for method matching are:

• name - The name of method
• descriptor - A method descriptor, as defined in the JVM specification

[LB15, Section 4.3.3]
• advice - The advice containing the instrumentation code
• parameterToTaint - A list of parameters to taint (only for sources)
• taintReturnValue - Whether to taint the method return value (only

for sources)
• parametersToCheck - A list of method annotations (only for sinks)

Matcher transformation. To identify classes and functions based on the
above-mentioned properties, we transform them into matchers suitable
for ByteBuddy. These matchers perform the actual matching process on a
bytecode level. After a method is successfully identified, the code in the
instrumentation advice is added.

Tainting. For sources, our advice code sets the taint information. Since we
store taint information per character, we create a new array with the same
length as the string itself. For string classes, the taint information is then
set via a setter method added to the string classes by our Runtime Patcher
component. For character and byte arrays, the taint information is set via a
native method of our Native Agent. In both cases, taint information in the
form of an array is attached.

Our advice for sanitisation functions records if a string, passed as parameter,
has been sanitised. Whenever sanitisation methods return, we store in the
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taint information of the return value that the function has been invoked.
Since a string might be sanitised by more than one sanitisation function, we
support recording several ones.

Taint checking. Taint information checking is performed in advices for
sinks. By default, our sink checking advice is applied, which logs vulnera-
bilities when input is partially tainted. To perform a more detailed analysis,
custom advice classes can be configured. In doing so, one can take into
account tracked sanitisation functions to reduce false positives. Further-
more, advices can be parameterised by passed function parameter indices.
For instance, let us consider a function which takes two parameters and
executes a SQL query. The first parameter represents the actual query string.
The second parameter contains prepared arguments that cannot lead to an
injection. In this example, the configuration contains only a index entry for
the first parameter.

5.4 Native Agent

Our native agent provides functions used by our tainting advices to attach
taint information to primitive arrays. In particular, we implemented func-
tions to set and retrieve tags for arbitrary objects. These tags are linked to
objects which store taint information. We implemented two native functions
for that purpose, namely _setTag and _getTag. However, they need to be
manually registered, in order to use them in our Java agent code. Therefore,
we have to list them as a prototype, since the native agent implementation is
in is C++ code. Listing 5.3 shows how we register the _setTag function. We
further introduce a wrapper function tagObject. In doing so, we can check
whether the native agent is loaded before calling the native function.

Listing 5.3: Registration and usage of the _setTag native function.

1 private static native void _setTag(Object obj ,

Object t);

2

3 public static void tagObject(Object obj , Object t) {

4 // check if native agent is loaded
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5 _setTag(obj , t);

6 }

To implement tagging capabilities in our _setTag and _getTag native func-
tions, we use the SetTag and GetTag function provided by the JVMTI. In
order to use these JVMTI functions, we register the can_tag_objects capa-
bility. However, the SetTag cannot be used directly to attach an object, as
it only supports tags of datatype long. Therefore, we create a new global
reference to the object we want to associate and cast this reference to a
long, as illustrated in Listing 5.4. In this way, we can associate object tags to
objects.

Listing 5.4: Tagging obj with a pointer to taintInformationObject.

1 jvmti ->SetTag(obj , (jlong) (ptrdiff_t) (void*)

env ->NewGlobalRef(taintInformationObject));

5.5 Evaluation

In this section, we evaluate our implementation in terms of handling of
manipulated inputs and performance. Concerning manipulated inputs, we
analyse effects on taint information based on several categories of operations,
such as string functions returning strings or string functions returning prim-
itives. With regard to performance, we analyse the impact on application
startup and request handling. Overhead on startup duration is caused by
matching and instrumenting sources, sinks and sanitisers. Applications may
grow over time and so the number of classes and methods. Furthermore,
the number of matchers in the configuration files might increase as well. All
those parameters have an impact on startup time. Hence, we analyse the
influence of their growth. Request handling overhead is caused by propagat-
ing the taint information. As dynamic scanner might send a high number
of requests to the application, throughput must be high enough to allow
efficient scanning. Therefore, we measure the overhead on response times
and throughput.

To evaluate the performance indicators startup time, response time and
throughput, we need to choose finite bounds for parameters. For instance,
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a specific limit on the number of loaded classes or the payload size. We
chose those bounds to be able to infer trends concerning runtime behaviour.
They do not imply a particular limit of our implementation. Furthermore,
when evaluating a particular performance indicator, we also have to choose
fixed parameters. Examples for those include a particular amount of classes,
methods or matcher. Again, we chose those in a way that allows us to infer
trends in runtime behaviour.

5.5.1 Setup

We perform our evaluation on a Spring boot application. To measure startup
time, we enhanced it to load a specific number of classes. To assess our detec-
tion capabilities, we added deliberately vulnerable endpoints. Other insecure
open-source applications exist, such as OWASP WebGoat1 or JavaVulnera-
bleLab2. However, those applications do not focus on test cases for blind
injections that include input manipulations. Since we require test cases for
that purpose to assess our detection capabilities, we developed a custom
test set. This test set focuses on the effects of input manipulations on IAST
detection capabilities.

Startup overhead tests are performed on a 2.1GHz Intel Xeon Silver 4116

CPU / 16 GB RAM machine. Request overhead is evaluated on 2.7GHz Intel
Core i7-6820HQ CPU / 16 GB RAM machine. As Java runtime, we use JDK
version 1.8.0_192.

Used dependencies We rely on several well-established spring projects.
Furthermore, we used relational and document-based databases to test SQL
and NoSQL injections. For this purpose, we used in-memory databases. The
h2 database serves as our relational database. As document-based database,
we use an embedded version of mongoDb.

1https://github.com/WebGoat/WebGoat
2https://github.com/CSPF-Founder/JavaVulnerableLab
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Dependency Version

org.springframework.boot:spring-boot-starter-web 2.0.4.RELEASE

org.springframework.boot:spring-boot-starter-data-mongodb 2.0.4.RELEASE

org.springframework:spring-jdbc 2.0.4.RELEASE

cz.jirutka.spring:embedmongo-spring 1.3.1

org.owasp.encoder:encoder 1.2.2

com.h2database 1.4.197

Table 5.3: Dependencies used in our vulnerable web application.

5.5.2 Overhead on Application Startup

In this section, we evaluate the performance impact on application startup
in terms of duration. The impact is mainly caused by matching sources,
sinks and sanitisation functions. As described in Section 5.3.2, we support
matching based on different properties. In this evaluation, we set our focus
on the properties class name and method name. Since they might cause
different overheads, we evaluate them separately. To prevent falsification of
measurements, we vary only one of the following parameters at a time: The
number of classes, the number of methods or the number of matchers.

Measurement Procedure. To measure the overhead, we perform the fol-
lowing procedure: First, we generate a particular number of classes. Depend-
ing on our scenario, we add several methods to these classes. Furthermore,
we may generate several matchers. Next, we compile our application with
the generated classes and start it. On startup, we load each of the generated
classes in turn. After the application booted, we measure the startup time of
the JVM using the ManagementFactory.getRuntimeMXBean().getUptime()

method. To get a reasonable amount of samples, we start the application 35
times in sequence. The data points in the following graphs are calculated by
taking the median of those 35 measurements. In doing so, we reduce the
effects of outliers.

61



5 Implementation

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
10

,0
00

12
,0

00
14

,0
00

4

6

8

10

Additional Classes [#]

JV
M

St
ar

tu
p

Ti
m

e
[s

ec
]

0

10
0

20
0

30
0

40
0

50
0

60
00

10

20

30

40

Matched Classes [#]

Instrumented Not instrumented

Figure 5.3: The first plot shows the increase in startup time depending on the number of
additionally loaded classes.
The second plot depicts the increase in startup time depending on the number
of matched classes (using 2000 additional classes).

Class and Method Name Matching. We test the scalability of class and
method name matching according to two parameters. The first parameter is
the number of elements to match, which are either classes or methods. We
perform measurements by specifying exactly one name matcher and increas-
ing the number of elements. The second parameter is the number of name
matchers in a configuration file. In this case, we measure by increasing their
amount at a fixed number of elements to match. Since the name comparison
takes constant time with respect to our tested parameters, we expect an
approximately linear increase of startup time. We illustrate our measure-
ments for class name matching in Figure 5.3. The behaviour of method name
matching is depicted in Figure 5.4. As a baseline, we take measurements
without applying our agents. Since no matching is performed, approxi-
mately constant behaviour is observable. For the instrumented application,
we observe linear increase of start time, confirming your hypothesis.
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Figure 5.4: The first plot shows the increase in startup time depending on the number of
methods in a class (using 2000 additional classes).
The second plot illustrates the increase in startup time depending on the number
of matched methods (using 500 additional classes and 100 methods per class).

Method Instrumentation. We test the scaling of the instrumentation pro-
cess according to the number of methods to instrument. The instrumentation
process is performed in constant time with respect to the number of instru-
mented methods. Hence, we expect a linear increase in startup time. The
resulting graph in Figure 5.5 confirms our hypothesis of linear behaviour.

5.5.3 Overhead on Request Handling

In this section, we evaluate the performance impact on HTTP request han-
dling. For this purpose, we measure the Time To Last Byte (TTLB) in millisec-
onds and the throughput in requests per seconds. The impact is caused by
taint propagation algorithms which copy and manipulate taint information.
Those algorithms differ for every instrumented string operation listed in Sec-
tion 5.2.2 Therefore, we evaluate each operation separately. As sink, we use
the query function of the org.springframework.jdbc.core.JdbcTemplate
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Figure 5.5: Increase in startup time depending on the number of instrumented methods (in
a single class with 800 methods)

class. To perform our measurements, we use JMeter3, an industry standard
tool for measuring performance impact. Furthermore, we take different
payload sizes into account, since the overhead may depend on these.

We measure according to the following procedure: For each operation
and payload size, we send 400 requests to acquire a reasonable amount
of samples. Next, we aggregate our results by taking the median of the
response times and throughputs for every <operation, payload size> tuple. We
chose the median as we observed outliers due to garbage collection and
runtime code optimisation. Finally, we group the tuples by payload size and
calculate the average response time and throughput for each group. The
resulting dependency between response time, throughput and payload size
is plotted in Figure 5.6.

As observable in Figure 5.6, increasing the payload size results in an approx-
imately linear increase of the response time. The overhead for all payload
sizes is on average 35%. Throughput, on the other hand, decreases indirect

3https://jmeter.apache.org/
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Figure 5.6: Response time and throughput depending on the payload size.

proportional. It is a functional equation in the form 1000 [ms]
average response time [ms] .

As a result, we observe a hyperbolic curve.

5.5.4 E�ect of Input Manipulations

Input manipulations are the main cause limiting the detection capabilities
of IAST. We assess the influence of these manipulations based on several
categories. These categories represent operations that may be performed on
tainted strings before they reach a sink. For each of these categories, we test
its influence on taint information.

String functions taking/returning strings. This category includes all
functions of the string classes, which take byte/character arrays or string
class objects as a parameter. Section 5.2.2 lists those functions and gives
further details on how they are instrumented. We developed a test suite
to test this category. It contains functional tests for all string functions we
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instrumented. For instance, we assure whether a call to the reverse function
of the StringBuilder class reverses the taint information. Analogously, we
ensure for other methods that its semantics is correctly reflected on the taint
information. If strings are passed to functions which internally use func-
tions of this category, taint information is propagated as well. For instance,
the java.lang.StringTokenizer class uses to substring functions. If one
decides to split a string by using such a utility class, taint information is
propagated accordingly.

String functions returning primitives. This category includes all opera-
tions that extract primitives from a string. Two functions are included in our
approach, all of which are defined in every string class we instrument. The
codePointAt() functions returns a unicode character in form of an integer.
The charAt() returns a one byte character. Since both return values are
primitive types, we do not attach taint information to them. Consequently,
these values become untainted.

String functions taking primitives. This category includes string opera-
tions which add primitives to a string. These are the append and insert

function of the StringBuffer and StringBuilder class. In both functions, the
string representation of a primitive is added to an existing string. Since we
treat primitives as untainted in our approach, the added characters will
be untainted as well. Therefore, loss of taint information occurs when the
added characters are originally tainted. A potentially dangerous case is
if several characters are extracted into primitives and then added again
with the append or insert function. For a non-adversarial developer, we
hypothesise that this occurrence is rare.

Tainted Array accesses. This category includes read and write operations
on a tainted primitive array. If an element is read, taint information is not
propagated. Analogously to the category String functions returning primitives,
elements get untainted. If an element is overridden, it remains tainted. This
circumstance can lead to false positives, since transformed parts of an array
may be copied and used in a sink. However, false positives can be reduced

66



5 Implementation

by encapsulating transformations in a method and registering this method
as a sanitiser. For instance, let us consider the java.util.Base64.encode()

function that transforms an entire primitive byte array. If a sink is safe with
Base64 encoded input, one could define the Base64.encode() method as a
sanitiser. By checking for this sanitiser in a sink, a potential false positive
can be suppressed.

Furthermore, it is possible to use the System.arrayCopy() to copy chunks
or entire arrays. In our current demonstrator, the array copy will not in-
herit the taint information. Instrumenting the System.arrayCopy() function
represents future work. Manual copies represent a special case. If the copy
is performed without any manipulations to the individual elements, taint
information is not propagated. However, in this case, the magic value can
be checked in the sink to prevent false negatives. The worst case repre-
sents array copies in which only a subset of elements is transformed. If
such a method is not a sanitisation method, false negative arise. For a
non-adversarial developer, we hypothesise that this occurrence is rare.

Further cases. In this category, we list further relevant cases in which we
do not propagate taint information. Those cases are not implemented and
represent future work.

When serialising String instances, the taint information is not serialised.
Although these instances are objects, internally they are serialised differ-
ently. More specifically, the writeString method is used instead of the
writeOrdinaryObject method. StringBuffer and StringBuilder instances are
serialised using the writeOrdinaryObject method. Therefore, taint infor-
mation is serialised. In order for String instances to be serialised as well,
the writeString method needs to be modified. For primitive arrays, the
writeArray needs to be modified.

The String.format function supports constructing a string by specifying a
format string with placeholders. The placeholder arguments to the format
string may be tainted. To propagate taint information accordingly, the
java.util.Formatter class needs to be instrumented.

Regex replacements are performed using the java.util.regex.Pattern

and java.util.regex.Matcher classes. Propagation of taint information
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requires instrumenting of those classes. In doing so, the replace method of
the String class could also propagate taint information.
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In this chapter, we cover related work of security testing. As Interactive
Application Security Testing (IAST) can incorporate both static and dy-
namic testing, we cover work of both methodologies. Furthermore, we list
approaches for dynamic taint analysis of JVM applications.

Static Analysis In the following, we list different static analysis approaches.
Our approach differs from these since we test an application in its running
state. Therefore, false positives resulting from the over-approximation are
reduced, as pointed out by Trinh et al. [TCJ14].

Thomé et al. [Tho+18] use a form of slicing to improve security auditing.
In slicing, code slices are extracted according to specific criteria. One such
criterion is, for instance, all program statements leading to a specific sink. By
slicing according to this criterion, they calculate slices for security auditing.
With such slices, manual auditing is more effective. Only relevant statements
for a specific sink need to be audited.

Livshits and Lam [LL05] use points-to analysis for solving the tainted
object propagation problem. Points-to analysis uses allocation sites, which
represent an object of a specific type. The result is points-to relations between
variables and allocations sites. They detect potential security violations by
checking if a sequence of points-to relations leading from a source to a sink
exists.

Taint analysis, a kind of information flow analysis, is another concept for
solving the tainted object propagation problem. Although points-to analysis
and taint analysis are seen as different processes, they can be unified.
Grech and Smaragdakis [GS17] propose a unification which uses points-to
algorithms to implement information-flow analysis. In taint analysis, each
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variable is assigned a particular taint status to mark it as user input. This
approach can be implemented with several techniques. Cao et al. [Cao+17]
apply taint analysis by utilising a Control Flow Graph (CFG) build out of
an AST. Tripp et al. [Tri+09] use code slicing techniques for that purpose.

Chaudhuri and Foster [CF10] employ symbolic execution to detect vulnera-
bilities such as session manipulation and unauthorised access. In symbolic
execution, variables are represented symbolically. Conditions represent
constraints on symbolic variables. Using simple assume/assert language,
security properties are defined. If satisfiable paths constraints leading to
assertion failures are found, a security violation is detected. In order to solve
these constraints, they use the Yices Satisfiability Module Theory (SMT)
solver Yices1.

A further application of symbolic execution is string constraint solving.
Trinh et al. [TCJ14] developed such a solver based on the Z32 SMT solver.
Validation routines in an application can block potentially malicious input.
However, these routines may not entirely block malicious inputs. String
constraint solver can be used to assess whether this is possible and thus
detect more vulnerabilities.

Monshizadeh et al. [MNV14] proposed an approach which detects privilege
escalation. They check if the same authorisation context is used consistently
for the same resource across different paths within the application. In case
of inconsistencies, the access control policy may be violated.

Near and Jackson [NJ14] introduced a solution for missing security checks.
Using symbolic execution, they interactively construct a security policy by
questioning the user about ways in which data might be exposed. With this
policy, they can detect missing security checks.

Dynamic Analysis Subsequently, we list different approaches which dy-
namic analyser may use. These approaches differ, as they do not apply
dynamic taint analysis.

1http://yices.csl.sri.com/
2https://github.com/Z3Prover/z3
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Awang and Manaf [AM15] proposed a solution which generates test cases
based on known attack patterns. Injection attack patterns, such as tautologies
or illegal or queries. They use the generated test cases to build URLs and
target parameters to construct requests. The responses to those requests are
analysed to decide whether an attack was successful. In particular, they seek
for error messages or authentification bypass.

A black-box approach for improving coverage was proposed [Dou+12]. First,
a model of the internal state is built incrementally. Based on this model, a
state machine is built. This state machine is used to drive an open-source
fuzzing tool.

Another black-box methodology to improve coverage is evolutionary fuzzing.
Duchene et al. [Duc+14] performed this technique by using a genetic algo-
rithm to adapt to sanitisation functions. A grey-box approach was proposed
by Liu Qiang et al. [LLW14]. It leverages Web Service Description Lan-
guage (WSDL) definitions to generate abnormal data for fuzzing efficiently.
Nevertheless, neither black- nor grey-box fuzz testing knows any internal
constraints. To address this limitation, combinations of fuzzing with sym-
bolic execution [GLM08] were proposed. However, this solution was not
tested if it integrates with web applications.

Khoury et al. [Kho+11] tested scanners from the vendors Acunetix, IBM
and QualysGuard. They implemented a custom testbed with stored SQL
Injections (SQLIs) vulnerabilities. At that point in time, the tested scanners
were not able to detect these vulnerabilities. Even when they instructed the
scanners on how to exploit the vulnerabilities, none were detected.

Dukes et al. [DYA13] tested tools, including Paros, WebScarab, JBroFuzz,
Acunetix and Fortify. Furthermore, they performed manual testing as well.
They conclude that some types of vulnerabilities are not found with auto-
mated tools. Therefore, manual testing is still an important part of security
testing. Using a variety of tools together with manual testing finds the most
number of vulnerabilities.

A more recent study [PZK16] showed that stored injections still impose a
problem. They evaluated the detection capabilities of Acunetix, AppScan
and ZAP with regard to SQL injection and Cross-Site Scripting (XSS). Their
results suggest that choosing the right attack vectors is crucial. Furthermore,
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they highlight that stored SQL injection and XSS are especially challenging
to detect. No scanner was able to detect a stored SQL injection vulnerability
created by them.

Further studies [HN17; Alz+17] indicate the limitations of automatic scan-
ning. Holik and Neradova [HN17] point out that modern web technologies
have an impact on the detection capabilities. Most of the undiscovered
vulnerabilities were caused because of these technologies. Therefore, they
suggest using automated tools to get a general idea about the application
security status. For comprehensive security testing, they recommend more
specialised tools, scripting and manual testing.

Dynamic Taint Analysis In the following, we list dynamic taint analysis
approaches for the JVM. Dynamic Taint Analysis (DTA) is a well-known
technique which was proposed by Newsome and Song [NS05]. It is a form of
information-flow analysis (IFA). The basic idea is to tag data from untrusted
sources as tainted. Instrumentation code propagates these tags until they
reach a potentially vulnerable function, a so-called sink. Tagging and tag
propagation are carried out by source or binary code instrumentation of the
target application.

Masri et al. [MPL04] proposed techniques for Dynamic Information Flow
Analysis (DIFA) on the JVM platform. In order to find information flows
from sources to sinks, they apply dynamic slicing. The information about
the data flow for dynamic slicing is collected by profiling code. This code is
added by bytecode instrumentation. Moreover, they use an optional static
preprocessing phase to identify information flows. Dynamic analysis is
inherently unable to detect these implicit information flows. Their approach
can be applied statically for validation or dynamically to prevent illegal
information flows.

An approach for DTA was applied by Haldar et al. [HCF05]. Like in the
approach presented by Masri et al. [MPL04], sources and sinks have to be
specified. Strings originating from untrusted sources are marked as tainted
using a boolean flag. This flag is added to the Java String, StringBuffer and
StringBuilder class. Furthermore, all methods in the String class, which
modify a string passed as a parameter, propagate the taint flag to the
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resulting string. An example of such a method is the toLowerCase method.
However, the authors do not take primitives and arrays of primitives into
account. This circumstance may lead to loss of taint information. One
such scenario is the conversion of a tainted string to an array of primitive
characters. Another limitation of their approach is that taint-information
is not stored at character-granularity. As a result, fine-grained analysis of
tainted strings is not possible.

A similar but improved approach was suggested by Chess and West [CW08].
In addition to the taint status of a string, it also stores information about the
source of tainted data. This information allows the categorisation of vulner-
abilities. For example, a tainted string originating from a local file may have
a different severity level than that of an HTTP parameter. Furthermore, they
use load-time instrumentation instead of compile-time instrumentation.

As an improvement for tainting at string granularity, approaches for character-
granular tainting [HOM06; CW09] have been proposed. In these approaches,
the taint status is stored for every single character in a string. Knowing
which parts of a string are tainted may help in reducing false positives. The
reason for that is, according to them, that strings may contain benign taint
information. A limitation of the proposed approaches is again that they
do not propagate taint information among primitives. As a consequence,
storing a string in a primitive character array results in the loss of taint infor-
mation. We encounter this limitation by using the object tagging capabilities
of the JVMTI in a native agent. Furthermore, we do not store taint in a
boolean array. We use references to objects which can store more meta-data
such as source and list of applied sanitizers. Finally, we also reduced the
dependency on a comprehensive definition of sources with our interactive
tainting approach.

To address the tainting of primitives, Bell and Kaiser [BK15] developed a
new approach. It propagates taint information for primitives and arrays of
primitives. In particular, the taint status is stored in the form of a shadow
variable or shadow array. For a primitive variable, a shadow variable is
stored in an adjacent location on the stack. Analogously, a shadow array is
stored adjacent to each array of primitives. The current status of their work
is published on GitHub3. Despite their innovative handling of primitives,

3https://github.com/gmu-swe/phosphor
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their implementation is not designed to be non-invasive. Since they add
instructions between existing bytecode instructions, it is more likely that
invalid bytecode is generated. For instance, we observed that their imple-
mentation did not integrate with embedded web applications container. In
contrast, our approach is less invasive by adding new instructions only at
method entry or exit. Hence, our solution integrates also with embedded
web application containers.
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The rise of Industrial Internet of Things (IIoT) cloud platforms introduced
a myriad of services, typically powered by web applications. These appli-
cations process potentially sensitive data send from IIoT devices, such as
domain knowledge and intellectual property. However, vulnerabilities in
web applications may allow an attacker to access or manipulate sensitive
data. Thus, vulnerabilities in these applications impose a potential threat
to the industry. In many instances, vulnerabilities are caused by operations
which can be adversely used when invoked with user input, and thus are
potentially unsafe. Interactive Application Security Testing (IAST) is an
approach to detect such operations. A typical IAST approach is to include a
particular value in requests. This value is checked in potentially unsafe op-
erations. However, input manipulations can manipulate the value and thus
introduce false negatives. Consequently, IAST needs to counter such input
manipulations in order not to miss vulnerabilities. To allow fine-grained
analysis of manipulations, tracking at character level is crucial. Otherwise,
false positives arise because of over-approximation.

In this thesis, we developed an IAST solution that encounters input manipu-
lations. To achieve this goal, we combined the aforementioned magic-value
based approach with dynamic taint analysis at character-level granularity.
For the implementation of our approach, we relied on Java bytecode instru-
mentation. To minimise interferences with the application code, we only
added new bytecode instructions. First, we instrumented string-holding
classes pre-runtime. We added an additional field to store taint informa-
tion. Furthermore, we also instrumented string-manipulating functions to
propagate this taint information. This propagation primarily consists of
mimicking the performed manipulations on the taint information. The at-
tachment of taint information in sources, as well as the taint checking, is
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performed on-demand using a Java agent. We further reduced the depen-
dency on a comprehensive definition of sources by an approach which we
refer to as interactive tainting. Hereby, we use the magic value to taint strings
automatically which are created from it.

Although taint propagation for string classes covers a broad spectrum of
manipulations, character or byte arrays may be extracted from string classes.
These array classes are not covered by our instrumentation approach for
string classes, since arrays cannot be instrumented without modifying the
underlying Java Virtual Machine (JVM). Nevertheless, if such an array is
passed to a sink, a potential vulnerability is missed. To have the possibility
to attach taint information to them, we implemented a native agent. By
using object tagging capabilities JVM Tool Interface (JVMTI), we can attach
taint information to character and byte arrays.

The results of our evaluation suggest that combining IAST with taint anal-
ysis for web applications is practical. Nevertheless, our approach adds
performance overhead. In the context of a Spring boot application, we
observed an average overhead in HTTP response time of 35%.

With our implementation, we demonstrate the practicality of our approach.
We implemented an IAST solution that reduces the effects of input manip-
ulations. By incorporating dynamic taint analysis, we showed that IAST
detection capabilities for JVM web applications can be improved. Con-
sequently, we propose other IAST solution to incorporate taint analysis.
Thereby, more vulnerabilities are detected, and ultimately potential damage
to the industry is prevented.
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Listing 1: Sources configuration file.

1 className: 'org.example.Test'

2 implementedInterfaces: ['com.example.Interface1 ',

'com.example.Interface2 ']

3 superClass: 'com.example.SuperClass '

4 annotations: ['com.example.Annotation1 ',

'com.example.Annotation2 ']

5 methods:

6 - name: 'methodName '

7 descriptor:

'(Ljava/lang/String ;)Ljava/lang/String;'

8 parameterToTaint: [1,2,3]

9 taintReturnValue: true
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