
Richard Aigner, BSc

Decision Making and Problem Solving in
a Group-based Configuration System

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Softwareengineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Alexander Felfernig

Institute for Softwaretechnology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, July 2019

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Acknowledgement

First of all I would like to thank my supervisor Univ.-Prof. Dipl.-Ing.
Dr.techn. Alexander Felfernig for his abundant support.
I would also like to gratefully acknowledge Dipl.-Ing Müslüm Atas, Dipl.-
Ing. Dr.techn. Martin Stettinger, and MSc Thi Ngoc Trang Tran for their
assistance.

Above all, I want to thank my family, especially my parents, my friends,
and all other people who have supported me throughout my studies.
Finally, I want to thank my cousin Ingo for proofreading the thesis.

iii

Abstract

Group-based configuration is a new configuration approach in which com-
plex group decisions are interpreted as configuration problems. A group of
users configures a product or a service based on predefined parameters and
constraints.
Within this master thesis, a prototype of an intelligent user interface to
handle group-based configurations was developed. The explanation of this
prototype illustrates the challenges, but also the possibilities that come with
developing such a system.
Configuration is a very successful application of Artificial Intelligence. There
are a variety of related topic areas from which to reuse or compare func-
tionality. The prototype has been developed to be as easy to use as possible
while still offering many features and supporting all domains.This master
thesis explains these features in detail.
Furthermore, a usability test was performed on the prototype. The results
of this test provide further approaches to improve the existing system and
continue research on this topic.

iv

Kurzfassung

Gruppenbasierte Konfiguration ist ein neuer Ansatz bei dem komplexe
Gruppenentscheidungen als Konfigurationsprobleme interpretiert werden.
Die Gruppe konfiguriert dabei ein Produkt oder ein Service mit der Hilfe
von vordefinierten Parametern.
Im Rahmen dieser Masterarbeit wurde ein Prototyp einer intelligenten
Benutzeroberfläche zur Handhabung gruppenbasierter Konfigurationen
entwickelt. Die Erklärung dieses Prototyps zeigt die Herausforderungen,
aber auch die Möglichkeiten auf, die das Entwickeln eines solchen Systems
mit sich bringt.
Konfiguration ist eine sehr erfolgreiche Anwendung von Artificial Intelli-
gence. In diesem Bereich gibt es eine Vielzahl von verschiedenen verwandten
Themen, von denen Funktionsweisen übernommen oder vergleicht werden
können. Der Prototyp wurde so entwickelt, dass er möglichst einfach zu
bedienen ist und trotzdem viele Funktionen anbietet und alle möglichen
Einsatzgebiete unterstützt. Diese Arbeit erklärt diese Funktionen im Detail.
Außerdem, wurde ein Usability-Test am Prototyp durchgeführt. Das Ergeb-
nis dieses Tests liefert weitere Ansätze zur Verbesserung des bestehenden
Systems und zur Fortsetzung der Forschung an diesem Thema.

v

Contents

Abstract iv

Kurzfassung v

1 Introduction 1

2 Related Work 10
2.1 Related Literature . 10

2.2 Related Applications . 13

3 Requirements regarding the prototype 23
3.1 Mockup . 24

3.2 Development Environment . 30

4 Implementation 32
4.1 Application Structure . 32

4.2 Knowledge Engineering . 32

4.3 Voting . 38

4.4 Aggregation . 40

4.5 Recommendation . 42

4.6 Conflict Detection and Resolving 44

5 Use Cases 47
5.1 Apartment Profile . 47

5.2 Exam Definer . 67

5.3 Car Configurator . 69

5.4 Vacation Planning . 72

6 User Study 75

vi

Contents

7 Conclusion 79
7.1 Actual Status of KonfiGr . 79

7.2 Future Works . 80

Bibliography 83

vii

List of Figures

1.1 Decision scenarios categorized with regard to constraint in-
clusion and the representation of alternatives, designed by
Felfernig, Boratto, et al., 2018 6

2.1 Voting a travel poll in ChoiclaWeb 14

2.2 Choosing a final option in Doodle 15

2.3 Microsoft Forms survey to configure a car 16

2.4 Available question(parameter) types in Microsoft Forms . . . 17

2.5 Playful effort estimation by playing cards in PlanITpoker . . . 19

2.6 Constraint interaction in a common Microsoft Surface config-
uration . 21

3.1 Mockup of the dashboard listing projects and their most
important details . 24

3.2 Mockup of defining a project by basic settings 25

3.3 Mockup of the overview of the steps of the project 26

3.4 Mockup of defining a constraint to restrict specific facilities
and the living area for specific house types 27

3.5 Mockup of the member handling in a project 28

3.6 Mockup of voting the price of a house supported by showing
user preferences and a recommendation 28

3.7 Mockup of the result of the house configuration showing a
conflict because of inconsistency between the members 29

3.8 Software architecture . 30

4.1 Entity relationship model of the knowledge engineering phase
to build up a configuration model 34

4.2 Entity relationship model of the voting process 39

5.1 Configuration model of the apartment search profile 48

viii

List of Figures

5.2 Project creation formula in the Apartment Profile project 49

5.3 Defining the object type step in the Apartment Profile project . . 50

5.4 Overview of the steps in the Apartment Profile project 51

5.5 Selection of the visibility of the user preferences 52

5.6 Advanced settings of the space step 52

5.7 Constraint to disable balcony and elevator for ground floor
apartments . 53

5.8 Complex example of connecting conditions 54

5.9 Overview of the constraints in the project 54

5.10 Overview of the members in the project 55

5.11 Dashboard of the projects . 56

5.12 Voting of the object type . 56

5.13 Voting of the object type showing a recommendation and
user preferences . 57

5.14 Voting example of the district step 58

5.15 Finishing page after voting . 58

5.16 Temporary project result of the Apartment Profile project . . 59

5.17 Overview of all founded issues of the Apartment Profile project 60

5.18 Temporary result showing all issues after closing the Apart-
ment Profile project . 61

5.19 Example of resolving an issue by weighting 62

5.20 Resolving an issue by choosing an algorithm to rate the
weightings . 63

5.21 Weighting example of the object type step in the Apartment
Profile project . 63

5.22 Example of resolving an issue by approximation 64

5.23 Example of resolving an issue by changing the own value . . 65

5.24 Step results of the contract type and price in the Apartment
Profile project . 65

5.25 Result of the district step . 66

6.1 SUS evaluation: average ratings, N=13 (1 = I do not agree, ...,
5 = I totally agree) . 76

ix

1 Introduction

This chapter gives a short overview of this master thesis. It describes the
most important topics, their connections with each other, and their relation
to the prototype that was developed in the course of this master thesis.
This chapter also reflects the motivation behind this thesis and provides an
overview of all other chapters.

This master thesis is about an approach of creating an intelligent user in-
terface prototype to handle group-based configurations. This prototype is a
web application and it is named ”KonfiGr”. The name is a mixture of the
words knowledge-based, group-based, and configuration, because KonfiGr is a
knowledge-based group-based configuration system. This chapter will offer a
detailed explanation of this system.

Group-based configuration (Felfernig, Muesluem Atas, et al., 2016; Felfernig,
Stettinger, et al., 2014; Felfernig, Boratto, et al., 2018) is a relatively new and
extensive topic. It is an approach to expand knowledge-based configuration
(Felfernig, Hotz, et al., 2014) which has been evolving since the beginning
of the Industrial Age. Hand in hand with the industrial revolution, configu-
ration of products and services had to be constantly improved. Since then,
group-based configuration is designed to meet new demands of the evolving
industry. However, as products and services are very complex and manifold
in today’s world, there are many challenges in developing such a system.
This thesis sheds light on these challenges, but also on other areas related
to this topic.

1

1 Introduction

Knowledge-based Configuration

According to Felfernig, Hotz, et al., 2014, in the first part of the last century,
mass production was introduced and over time, mass customization has been
established. Mass customization (Tiihonen and Felfernig, 2017) forced new
technological developments, including configuration. Configuration (Zhang,
2014; Stumptner, 1997; Felfernig, Hotz, et al., 2014) is the task of assembling
products or services of complex systems from parameterizable components.
To capture the variety and complexity of configurable products or services,
extensive knowledge of them is required, explained by Felfernig, Tiihonen,
et al., 2018. Therefore, configuration is specified as knowledge-based, among
others by Sabin and Weigel, 1998.

Felfernig, Hotz, et al., 2014 describe configuration as ”one of the most suc-
cessfully applied technologies of Artificial Intelligence (AI)”. This is especially
true, because configuration can be used in almost every branch of industry.

Configuration is an umbrella term that involves multiple operations. How-
ever, these operations can be summed up in two main processes. In the first
process, knowledge engineers define the product by all its possible variants.
This can be done in different ways. One of these ways is defining component
types and constraints. The result of this effort is known as configuration model.
Whereas, the process of developing such a model is known as knowledge
acquisition. While component types describe each component by attributes or
a set of alternatives, constraints limit the way different components can be
combined. The defined model is provided on a configuration system, also
known as configurator. In the second process, users choose one of the vari-
ants by configuring the predefined model.

Configuration is required to efficiently make good product or service deci-
sions. Decisions are made not only in everyday life but also in industry.
The spectrum of decisions reaches from ”where to spend the next vacation” to
”financial strategies a company should focus on”. In configuration, such decisions

2

1 Introduction

are prepared by domain experts and knowledge engineers, which enable deci-
sion makers to agree on appropriate solutions. These processes are usually
supported by a variety of techniques employing AI.

Group-based Configuration

Group-based configuration (Felfernig, Muesluem Atas, et al., 2016; Felfernig,
Stettinger, et al., 2014; Felfernig, Boratto, et al., 2018) allows configuring
products or services by a group of users. Configurators are usually designed
for single users. However, there are many products and services where this
can lead to a suboptimal decision. There are many examples where config-
uration should be rather made by a group to make high-quality decisions.
Software Release Planning (Felfernig, Zehentner, et al., 2011; Felfernig, Spöckl-
berger, et al., 2018) is, for example, a task in which a group of stakeholders
must decide on the execution of a project. Holiday Planning (Jameson, Baldes,
and Kleinbauer, 2004) is another scenario in which a group of friends or a
family should decide together.

An industry study by Felfernig, Stettinger, et al., 2014 has found out that
in addition to Software Release Planning and Holiday Planning, the following
domains are particularly relevant:

• Product line scoping and open innovation
• Bundle configuration for travel groups
• Stakeholder selection for new software projects
• Architectural design in software development
• Financial service configuration
• Building configuration
• Funding decision

Even this single study with N=25 companies indicates that there is a high
demand for group-based configuration systems. The scope of application is
very versatile. To operate in all these different domains, KonfiGr was built
domain-independent.

3

1 Introduction

To assist users and to lead them to a convenient solution, configuration is
supported by many different features. Most of these features belong to AI.
Group-based configuration not only has to deal with the usual features of
single-user configuration, but also with group decision features. It should
be noted that most of these features have several variants that function
differently depending on the domain and scenario.

Group Recommender Systems

Felfernig, Boratto, et al., 2018 define recommender systems (Felfernig, Boratto,
et al., 2018; Felfernig, Jeran, et al., 2014; Jannach et al., 2010; Aggarwal et al.,
2016; Adomavicius and Tuzhilin, 2005; Ricci, Rokach, and Shapira, 2011) as
”decision support systems helping users to identify solutions that fit their
wishes and needs”. Recommender systems are quite similar to configurators.
However, according to Falkner, Felfernig, and Haag, 2011, ”a major differ-
ence between configuration systems and recommender systems in general is the
way in which product knowledge is represented. Configuration systems are
operating on a configuration knowledge base (Stumptner, 1997) which describes
the properties of all allowed instances. In contrast to configuration systems,
recommender systems are operating on the basis of an assortment of explicitly
defined solution alternatives.” Nevertheless, applying recommendation tech-
nologies to support configuration scenarios becomes increasingly popular,
because it improves the quality of decision-making (Falkner, Felfernig, and
Haag, 2011; Ardissono et al., 2003; Cöster et al., 2002; Tiihonen and Felfernig,
2010).

There are many processes in configuration that can be supported by recom-
mendation. Falkner, Felfernig, and Haag, 2011 list the following examples:
recommendation of features and feature values (Cöster et al., 2002; Tiihonen and
Felfernig, 2010), recommendation of relaxations (Felfernig, Friedrich, Schubert,
et al., 2009), reuse of cases for the determination of new configurations (Tseng,
C.-C. Chang, and S.-H. Chang, 2005). The recommendations are typically
knowledge-based, because they are determined on the basis of constraints
(Felfernig and Burke, 2008). However, there are also other recommendation
types that have to be considered. In recommender systems, a distinction is

4

1 Introduction

made between collaborative filtering, content-based filtering, constraint-based
recommendation, critiquing-based recommendation, and hybrid recommendation.

In collaborative filtering (Schafer et al., 2007; Felfernig, Boratto, et al., 2018;
Mathew, Kuriakose, and Hegde, 2016; Koren and Bell, 2015), the opinion of
friends or nearest neighbors are used to provide recommendations.

In Content-based filtering (Van Meteren and Van Someren, 2000; Felfernig,
Boratto, et al., 2018; Mathew, Kuriakose, and Hegde, 2016), the system
identifies similarities between items based on categories or keywords. In
other words, items are recommended to users that are similar to the items
they have already chosen.

Constraint-based recommendation (Felfernig and Burke, 2008; Burke, 2000;
Trewin, 2000; Felfernig, Boratto, et al., 2018; Felfernig, Friedrich, Jannach,
et al., 2015) is a knowledge-based recommendation, because rules are defined
based on deep knowledge about the items. The recommendations are gener-
ated according to these rules.

In critiquing-based recommender systems (Chen and Pu, 2012; McCarthy et al.,
2006; Felfernig, Boratto, et al., 2018), reference items are presented to users
and the users accept the items or negotiate them by specifying critiques.
These critiques are used as search criteria for the recommendation.

Hybrid recommendation (Burke, 2002; Burke, 2007; Chen and Pu, 2007) com-
bines these different recommendation types to make use of their specific
advantages.

Furthermore, Recommenders (Felfernig, Boratto, et al., 2018) can be differ-
entiated in the way they support decision-making. They can, for example,
act as a supporter to find out suitable candidate items and thus, reduce

5

1 Introduction

the consideration set, or they can help users to select among items by pre-
senting them in a specific way. In extreme cases, the recommender system
completely takes over the decision-making.

The most common applications provide recommendations for single users.
However, the interest in group recommender systems is constantly growing.
Group recommender systems (Felfernig, Boratto, et al., 2018) provide informa-
tion in order to lead a group to a consensus solution in a personalized way.
Therefore, recommender systems suggest appropriate items matching the view
of the single user as well as the view of the group.

Configuration is just one of many decision scenarios that can be supported by
recommendation techniques. As explained by Felfernig, Boratto, et al., 2018,
there are many other related scenarios in which decision-making is the main
focus. Figure 1.1 shows the relation between these applications. Felfernig,
Boratto, et al., 2018 describe release planning, triage, resource balancing, and
sequencing as subtypes of configuration. In contrast to other applications,

Figure 1.1: Decision scenarios categorized with regard to constraint inclusion and the
representation of alternatives, designed by Felfernig, Boratto, et al., 2018

6

1 Introduction

configuration includes constraints and the alternatives are defined only im-
plicitly. Therefore, configuration is also known as constraint-based recommender
system.

Figure 1.1 shows that release planning (Felfernig, Boratto, et al., 2018) is in
terms of knowledge representation and inclusion of constraints a specific
type of configuration. Triage (Felfernig, Boratto, et al., 2018) is similar to
release planning, but in triage, the overall goal is to determine three parti-
tions of a given set of alternatives. On the other hand, Felfernig, Boratto,
et al., 2018 define the goal of resource balancing as ”to assign consumers
to resources in such a way that a given set of constraints is satisfied.” In
sequencing (Felfernig, Boratto, et al., 2018), alternatives have to be arranged
in a sequence. The items are often represented in terms of parameters and
the constraints are related to user preferences and further restrictions.

Parametrization (Felfernig, Boratto, et al., 2018) does not include any re-
strictions. The decisions are related to detailed aspects of an item. Related
alternatives are therefore represented as parameter values. Polls (Felfernig,
Boratto, et al., 2018) are presented in form of just one question and possible
answers. Moreover, polls have no constraints. Questionnaires (Felfernig, Bo-
ratto, et al., 2018) are similar to polls with the exception that more than one
question is usually asked.

In ranking (Felfernig, Boratto, et al., 2018), the overall goal is to prioritize a
list of items. The alternatives are represented in form of a list of explicitly
defined items and the scenarios typically do not include constraints. On the
other hand, in voting (Felfernig, Boratto, et al., 2018), a group of users de-
cides which alternative should be selected. Voting as well does not support
constraints.

In packaging (Felfernig, Boratto, et al., 2018), the combinations of items are
recommended in consideration of constraints that limit the way in which
different items can be combined. In contrast to configuration, items are
explicitly specified.

7

1 Introduction

In group recommendations (Felfernig, Boratto, et al., 2018), there are many
different algorithms. These different algorithms are more helpful or less
helpful depending on the specific scenario. KonfiGr supports the most com-
mon algorithms to generate recommendations. However, there are many
more approaches that should be considered in future work.

Open Configuration

Open configuration (Felfernig, Stettinger, et al., 2014; Zhang et al., 2014) is
a new extension to group-based configuration. Open configuration not only
configures the product or service within the group but also the knowledge
engineering process itself. Moreover, open configuration supports flexible prod-
uct enhancement.

Cooperative development of the knowledge base is called community-based
knowledge engineering (Felfernig, Stettinger, et al., 2014). This new engineering
method can tackle the knowledge acquisition bottleneck, explained by Felfernig,
Reiterer, et al., 2013. KonfiGr supports basic community-based knowledge engi-
neering, but it needs to be expanded to take full advantage of opportunities
within open configuration.

Flexible product enhancement (Felfernig, Stettinger, et al., 2014) is the ability to
include additional components or constraints in a flexible way. Therefore,
the application must supply flexible interfaces that offer an easy integration
of new components and constraints. This should be considered in future
work.

Motivation and Outline

The number of existing applications in the area of group-based configuration
is rather low, although the industry is already demanding such systems.
Chapter 2 gives an overview of the most important related research. This
chapter lists related applications and shows that there is still no existing
domain-independent group-based configuration system. The lack of such a system
was the main motivation in this thesis to develop a prototype that handles

8

1 Introduction

group-based configurations in all domains. This task offered an innovative
approach that offered many new insights but also challenges.

In light of the main concepts mentioned above, it has become clear that
the configuration topic is a very extensive one. Depending on the domain
and scenario, different approaches should be used. However, KonfiGr is
domain-independent to support the widest possible range of applications.
Therefore, the used features have been chosen to support as many domains
as possible.

Chapter 3 introduces the requirements for a prototype in order to develop
KonfiGr. Chapter 4 describes how the prototype was developed and which
features were implemented. Chapter 3 and Chapter 4 are based on an
example in which a group of users configure a real estate together. Other
popular use cases are presented in Chapter 5. This chapter also illustrates
the current function of KonfiGr. On the basis of these use cases, a usability
test was carried out. The evaluation of this test is explained in Chapter 6.
Finally, Chapter 7 reflects the status of the prototype and specifies the need
for future work.

9

2 Related Work

This chapter provides an overview of related research on group-based
configuration system. Especially, areas that were relevant for the implemen-
tation of KonfiGr are explained. Furthermore, this chapter discusses related
decision-making systems. The comparison of these applications with the
developed prototype illustrates the uniqueness of KonfiGr.

2.1 Related Literature

Group-based configuration is a very new topic and therefore, the number
of related literature is quite manageable. However, this topic is based on
many other topics, as mentioned in Chapter 1. Most notably, group-based
configuration is adapted from knowledge-based configuration. Therefore, it is
helpful to understand this broader topic first. Felfernig, Hotz, et al., 2014

give an overview of basic configuration technologies. They explain how con-
figuration has developed and why configuration is extremely important and
very useful. Furthermore, they discuss various concepts of configuration
knowledge representations. Many of these approaches have influenced the
development of KonfiGr. Above all, KonfiGr can be assigned to the dynamic
constraint satisfaction approach. This approach defines the configuration
problem as constraint satisfaction problem (CSP). Felfernig, Hotz, et al., 2014

define CSP by ”a triple (V, D, C) where V is a set of finite domain vari-
ables {v1, v2, ..., vn}, D represents variable domains {dom(v1), dom(v2),
..., dom(vn)}, and C represents a set of constraints defining restrictions on
the possible combinations of variable values (c1, c2, ..., cm)”. In a config-
uration task, the set of constraints is additionally defined as C = CKB ∗
REQ, where CKB represents the configuration knowledge base and REQ is a

10

2 Related Work

set of user requirements. In contrast to static constraint satisfaction, dynamic
constraint satisfaction ignores irrelevant variables. Moreover, forward checking
was implemented to eliminate inconsistent values. Felfernig, Hotz, et al.,
2014 also explain different approaches of conflict detection and diagnoses.
However, since KonfiGr is a group-based application, a new concept has
been developed with the help of related literature to manage conflicts and
find solutions. Furthermore, Felfernig, Hotz, et al., 2014 show numerous
case studies and configuration environments to demonstrate the practical
use of configuration systems.

Felfernig, Muesluem Atas, et al., 2016 introduced the concept of group-based
configuration by demonstrating a basic configuration task. This basic con-
figuration task deals with Software Release Planning. Therefore, the paper
is mainly focused on this specific domain and does not contain all other
different aspects of a domain-independent group-based configuration sys-
tem. Nonetheless, they show how to deal with inconsistent preferences of
group members. Doing so, they distinguish between manual and automatic
conflict resolution. KonfiGr usually resolves conflicts automatically, but there
are two types of situations where users have to manually resolve conflicts
(see Section 4.6). Felfernig, Muesluem Atas, et al., 2016 also demonstrate
the least misery and average algorithms which resolve conflicts in user pref-
erences. These two algorithms are implemented in KonfiGr. Furthermore,
they mention intelligent negotiation mechanisms. Their concept of such an
intelligent negotiation mechanism is also implemented in KonfiGr. Addition-
ally, fairness in group decision making and predictive search are discussed.
These topics require detailed user profiles and are not yet implemented in
KonfiGr, but are important topics for future improvements.

Group recommender systems help to find consensus in group decisions. Felfer-
nig, Boratto, et al., 2018 provide detailed information about group recom-
mendation techniques. They explain the different recommendation types
and algorithms that help users to identify suitable solutions in the area
of decision-making. Additionally, different group recommender systems
are described, which were also taken into account in the development of

11

2 Related Work

KonfiGr. Furthermore, they provide detailed information on biases in group
decisions, which are explained in the following.

Felfernig, Boratto, et al., 2018 interpret decision biases as ”tendencies to think
and act in specific ways that result in a systematic deviation of potentially
rational and high-quality decisions.” Some biases can be avoided by an in-
telligent knowledge engineering and others by an intelligent user interface.

The anchoring effect (Felfernig, Boratto, et al., 2018) describes a tendency to
rely too heavily on first given information. Emotional contagion (Felfernig,
Boratto, et al., 2018) represents the influence of the affective state of an
user on other users’ emotions within a group. Like the anchoring effect,
emotional contagion can be prevented by blocking information in the early
phase.

The decoy effect (Felfernig, Boratto, et al., 2018) is about decoy items in an
item list that are inferior to all other items. A decoy item can manipulate
the selection behavior of an user, because its properties make other items
look better. In KonfiGr, the knowledge engineers can add such decoy items
to influence users.

The serial position effect (Felfernig, Boratto, et al., 2018) occurs in item lists.
Users tend to prefer the items at the beginning and at the end of a list. In
KonfiGr, this effect might occur both: by presenting the choices, but also in
the sequence of the steps. Knowledge engineers must take this effect into
account when they define a project. In the future, an additional option, such
as randomizing the order of choices, could prevent this effect.

The framing effect (Felfernig, Boratto, et al., 2018) is about the influence of
the way of presenting an item. Users tend to prefer gains and avoid losses.
Knowledge engineers must consider this effect.

12

2 Related Work

Polarization (Felfernig, Boratto, et al., 2018) is the tendency of a group to shift
towards more extreme decisions. The decisions are often riskier. This group
polarization can be reduced by including dissent. KonfiGr allows users to
create custom issues whereby these issues provide discussions. Discussions
themselves already reduce this effect. However, in future work, this area
should be improved to prevent this effect completely.

GroupThink (Felfernig, Boratto, et al., 2018) occurs in situations in which a
group of users avoids conflicts and is not interested in analyzing decisions.
This effect can be avoided by hiding the leaders’ opinions or by adding
experts to the decision process. Both options are supported by KonfiGr.

2.2 Related Applications

This section explains applications related to KonfiGr. These applications
differ depending on the choice scenario to which they are assigned. Moreover,
they differ on whether they support groups and whether they are domain-
independent. Table 2.2 gives an overview of these comparisons. However,
all applications focus on decision-making. Therefore, their implementations

Table 2.1: Related applications and their comparison regarding the support of constraints,
groups, and domains

Constraint-
based

Group-
based

Domain-
independent

ChoiclaWeb x x
Doodle x x
Microsoft Forms x x
CATS x
PlanITpoker x
IntelliReq x x
Microsoft Surface Configurator x

13

2 Related Work

are comparable and partially reusable when developing a group-based config-
uration system.

ChoiclaWeb

ChoiclaWeb (Stettinger and Felfernig, 2014; Stettinger, 2014; Felfernig, Boratto,
et al., 2018; Stettinger, Felfernig, Leitner, Reiterer, and Jeran, 2015; Stettinger,
Felfernig, Leitner, and Reiterer, 2015; Graz University of Technology, 2018;
Tran et al., 2016) is a domain-independent decision-making tool developed by
the Applied Software Engineering Group at the Graz University of Technology.

Figure 2.1: Voting a travel poll in ChoiclaWeb

The actual version of ChoiclaWeb supports two different areas of application.
The first area is called ”poll”. In a poll, a group of users chooses a favorite
item based on a list of alternatives. As the name implies, this area supports
poll choice scenarios. Figure 2.1 shows such a poll scenario in which users
must select travel alternatives. The second area is called ”challenge”. In a
challenge, users create some sort of test. These tests consist of multiple-
choice questions including right and wrong answers. As shown in Figure

14

2 Related Work

1.1, this area can be assigned to the questionnaire choice scenario, because
the questions are not connected. Furthermore, ChoiclaWeb supports features
to avoid biases in group decisions. These biases are explained in detail in
Section 2.1.

Doodle

Doodle (Felfernig, Boratto, et al., 2018; Reinecke et al., 2013; Doodle AG,
2019) is probably the most popular system from this list. As ChoiclaWeb
and Microsoft Forms, Doodle supports decision-making for groups based on

Figure 2.2: Choosing a final option in Doodle

15

2 Related Work

single-choice or multiple-choice lists. However, the main focus of Doodle is
finding an appointment. KonfiGr can also be used for this reason.

Doodle is a domain-independent application and it uses the Majority Voting
(MAJ) to aggregate user preferences. If the decision contains a contradiction,
the holder of the vote is asked by Doodle to choose a final option (see Figure
2.2). KonfiGr supports the Majority Voting as well as choosing a final option.
However, Doodle does not support complex configurations or recommen-
dations and is therefore only suitable for a limited number of applications.
Doodle can be assigned to the voting choice scenario.

Microsoft Forms

Microsoft Forms (Microsoft, 2019) is a simple app to create surveys, quizzes, or
polls. This app is part of the Office 365 Education Suite. The main application
areas focus on creating tests and evaluating courses for teachers as well as

Figure 2.3: Microsoft Forms survey to configure a car

16

2 Related Work

catching up customer feedback and quantifying employee satisfaction for
companies.

Microsoft Forms is not a complete configuration system, because there are no
constraints between the questions. Microsoft Forms supports voting, ques-
tionnaire, and poll choice scenarios. Voting scenarios can be performed by
surveys, questionnaire scenarios can be performed by quizzes, and poll
scenarios can be performed by polls.

In surveys, users can create questions to configure a car, as shown in Fig-
ure 2.3. However, a survey can not represent constraints information like
”there exists no red VAN”. Furthermore, Microsoft Forms does not support
aggregation functions to merge user inputs into group results. Moreover,
discussing decision conflicts is not supported, because the survey scenario is
not specified for group solutions.

Although Microsoft Forms is not a configuration system, there are some im-
plementations that are usable for configuration systems: parameter types,
recommendation for the determination of new alternatives, project handling.
Figure 2.4 shows that the system supports many different question (param-
eter) types that are also suitable for configuration systems. Copying projects
and sharing projects via a link are other reusable features. Furthermore,
Microsoft Forms offers recommendations when defining new alternatives.

Figure 2.4: Available question(parameter) types in Microsoft Forms

17

2 Related Work

CATS

CATS (McCarthy et al., 2006) is a group recommender system designed to
help groups of users planning their skiing vacation. Therefore, CATS uses
feedback from group members to suggest products that are suitable for
the individuals and the entire group. Secondary, group recommendations
are additionally proactively generated by shared interactions. The system
collects information for creating personal profiles and group profiles. The
main interaction component of CATS is criticizing. The users can criticize
the features of vacations. Based on these criticisms, the system provides two
recommendations. First, a individual reactive recommendation to single
users and second, a proactive group recommendation. The system proposes
a strategy that averages the preferences of individuals and the preferences
of remaining members of a group. The recommendation is a combination of
the individual model and the remaining members model. This quality score
is used to rate vacation recommendations.

CATS demonstrates how to handle decisions within a group and how pref-
erences are presented to reach consensus. Displaying the preferences of
groups to facilitate the decision-making process is also used in KonfiGr.

CATS is only suitable for skiing vacations. Therefore, the recommendations
focus on problems that only occur in this domain. Additionally, CATS is
not a real configuration system. Users can only choose between predefined
destinations without any interactive constraints. Therefore, CATS is assigned
to the voting choice scenario.

PlanITpoker

PlanITpoker (Felfernig, Boratto, et al., 2018; Code First, 2019) is a tool to
estimate the effort of agile projects precisely and playfully. To do so, the
users must select cards which number estimated efforts of projects. Users
select cards faced down. After everyone has selected a card, the cards are
compared. If there is no consensus between the cards, the process is repeated
until all users have selected the same card. The effort values on the cards

18

2 Related Work

correspond to Fibonacci numbers and are especially focused on estimating
software requirements.

PlanITpoker shows how to creatively build consensus in groups. This type
of decision-making need not only be applied in IT but can be extended to
many other areas. Figure 2.6 shows the selection of playing cards and the
corresponding voting control menu.

Figure 2.5: Playful effort estimation by playing cards in PlanITpoker

19

2 Related Work

IntelliReq

IntelliReq (Ninaus et al., 2014) is a recommender system based on varieties
of recommendation approaches to support stakeholders in their require-
ments engineering process. In requirements engineering, there are different
requirements with different properties and constraints. IntelliReq supports
hidden relationships between requirements and quality status of require-
ments. Furthermore, stakeholders prioritize their high-level requirements
in an early requirement engineering phase. The result is a consistent set
of high-level requirements including a detailed effort estimation and an
implementation release plan.

IntelliReq uses content-based filtering to exploit similarities between user
preferences and item descriptions. Therefore, keywords are extracted and
compared. Alternatively, categories can be used to verify the similarity.
When defining requirements, stakeholders are supported by showing simi-
lar requirements that have already been defined by other stakeholders or by
the stakeholder himself. The dependency detection is based on content-based
filtering. Therefore, stakeholders receive suggestions for potential dependen-
cies.

IntelliReq uses group recommendation techniques to promote group con-
sensus. Requirement evaluation and negotiation are application scenarios
for the group recommendation since the stakeholders must make decisions
together. IntelliReq uses the Majority Voting algorithm for group recommen-
dations, because this algorithm has been proven in several studies (Felfernig
and Ninaus, 2012). To detect inconsistencies in the requirement models,
IntelliReq uses knowledge-based recommendations.

IntelliReq provides an intelligent user interface that allows a group of stake-
holders to evaluate their requirements supported by group recommenda-
tions. The system automatically detects potential dependencies and displays
them in a well-founded sequence. Moreover, open issues are highlighted by
traffic lights.

20

2 Related Work

As shown in Figure 1.1, release planning is one of the most similar types
of group recommender systems to configuration. Stakeholders must configure
requirements and dependencies between them. In contrast to group-based
configuration systems, IntelliReq focuses on software requirements and is
therefore only executable in this domain. However, most recommendations
and aggregation types are applicable in both recommender system types.
For example, the Majority Voting algorithm is used by IntelliReq and KonfiGr.

Microsoft Surface Configurator

The Microsoft Surface configurator is a typical product configurator which
are used by many companies that produce configurable products. However,
all these configurators only apply to a specific product and to single users.
Nevertheless, there are many areas that are comparable.

Figure 2.6: Constraint interaction in a common Microsoft Surface configuration

21

2 Related Work

Figure 2.6 shows an example of a configuration process of Microsoft Surface
Pro 6. All steps are visible in advance but can only be selected one after the
other. Furthermore, steps are interdependent. For example, the choice of
storage space determines which memories are available. Such dependencies
can also be found in KonfiGr.

Motivation

This chapter described applications most similar to KonfiGr. Further ex-
amples of configurators are summarized by Thüm, Krieter, and Schaefer,
2018. As this list of applications indicates, there are many tools in the area
of decision-making, but there is no application that is domain-independent,
group-based, and constraint-based. Furthermore, many applications have no
recommendations or other support mechanisms to reach consensus on deci-
sions. The lack of such an application was the motivation behind this master
thesis. Developing an user interface bringing all these different properties
together has proven to be a new approach facing various challenges. This
development will be explained in detail in the next chapters.

22

3 Requirements regarding the
prototype

The goal of this master thesis was to develop an application that solves con-
figuration problems that can be interpreted as complex group decision tasks.
Beforehand, some scenarios have been defined that should be configurable
by KonfiGr: ”configuring an apartment”, ”configuring a vacation”, ”config-
uring the content of an exam”, and ”configuring a car”. In the following two
chapters, the configuration of an house or an apartment is used to explain
the requirements and implementation. However, the finished prototype can
handle all before mentioned scenarios. Chapter 5 demonstrates how these
scenarios are operated in KonfiGr. Additionally, the same scenarios were
used to perform an usability study. The results of this study can be found
in Chapter 6.

During the planning phase, the functionality of the prototype was defined as
follows: A configuration (scenario) is handled in a so-called ”project”. These
projects should be managed via a dashboard. In each project, a corresponding
configuration model has to be set up. Therefore, a configuration problem
has to be defined by a set of variables V = {v1, ..., vn} with domain definitions
dom(vi), a set of constraints C = {c1, ..., cn}, a sequence of these variables, and
a set of users U = {u1, ..., un}. The variables (component types) are typically
associated with questions to identify the assignments of users. Each com-
ponent type usually represents a so-called ”step”. Therefore, the project is
divided into steps and the users navigate from step to step to assign the
variables. Constraints limit the combination of component types. Therefore,
users’ choices within a step can have an impact on the sequence of steps and
on the possible choices within other steps. The task of the administrator is to
create the configuration model based on steps and constraints. Furthermore,

23

3 Requirements regarding the prototype

the administrator adds project members and monitors voting and issue
resolving. Voting is done by all project members and can be seen as the
actual ”configuration”. Furthermore, project members should be supported
during their voting. They should see the preferences of other members
or a generated recommendation. After the voting, disagreements between
project members should be identified. For each disagreement, a conflict (issue)
should be created. These conflicts have to be resolved by project members
making compromises. The administrator defines how voting is supported
and at which point a conflict occurs. However, during the development
of KonfiGr, some changes had to be made. These changes are described in
Chapter 4. Especially, the resolving of conflicts had to be extended.

3.1 Mockup

In the course of planning a mockup was created. This section explains this
mockup and all considerations behind it. The mockup starts showing a
dashboard with proper information about the projects. This dashboard con-
tains the most important information of all created projects including their
status and number of open conflicts. As shown in Figure 3.1, the dashboard
additionally gives a clear overview about possible user interactions.

Figure 3.1: Mockup of the dashboard listing projects and their most important details

24

3 Requirements regarding the prototype

A project is defined by name, description, and an image (see Figure 3.2).
Furthermore, steps, constraints, and project members can be added. A step
(variable) reflects a configuration component type. Therefore, a step typi-
cally contains a question to identify component types. A component type in
turn can be defined by a set of alternatives or by a specific value. Therefore,
the following step types were defined:

• Whole number (value)
• Currency (value)
• Decimal (value)
• Date (value)
• Single choice (alternatives)
• Multiple choice (alternatives)
• Yes or no (alternatives)

Figure 3.2: Mockup of defining a project by basic settings

25

3 Requirements regarding the prototype

During the development of KonfiGr, the step types had to be changed. The
yes or no type has been removed because the single-choice type is easily
adjustable to this model. Furthermore, a time and an information step type
have been added.

A typical configuration model consists of several steps, which order should
be definable. Managing the sequence of steps is illustrated in Figure 3.3.

Figure 3.3: Mockup of the overview of the steps of the project

To limit the combinations of steps, constraints can be added. Constraints
can be used to define which values or alternatives of steps can be combined
with values or alternatives of other steps. These definitions are specified by
conditions and actions. Conditions must be fulfilled for the actions to be
executed. Additionally, conditions should be able to be linked by logical
operators (see Figure 3.4). The example in this figure defines that if the
type of house (t) is a bungalow or a villa, the living area (l) must be larger
than 50, but smaller than the plot area (p). Moreover, only swimming pool
and garage are available as facilities (f). This constraint can be formulated as:
c : {t = bungalow ∨ t = villa→ l > 50 ∧ l < p ∧ f 6= swimming pool ∧ f 6= garage}.

26

3 Requirements regarding the prototype

Figure 3.4: Mockup of defining a constraint to restrict specific facilities and the living area
for specific house types

Two different user roles were defined. First, the administrator who creates
the configuration model and who has special rights to monitor the configu-
ration. All other users can vote projects and resolve issues (conflicts). Users
must be signed in in order to change their voting, discuss their decisions,
or to rate choices in the case of a conflict. Project members are specified for
each project, as shown in Figure 3.5.

Illustrated in Figure 3.6, the voting is supported by showing the preferences
of other users or a generated recommendation. User preferences are the vi-
sualization of the choices of all other project members. The recommendation
is the result of an aggregation function with the user preferences as input.
Whether and which of these two sections are shown should be adjustable.
These functions also generate overall result.

27

3 Requirements regarding the prototype

Figure 3.5: Mockup of the member handling in a project

Figure 3.6: Mockup of voting the price of a house supported by showing user preferences
and a recommendation

28

3 Requirements regarding the prototype

After the voting, a result should be visible, illustrated in Figure 3.7. In-
consistencies between project members should be highlighted and these
inconsistencies should be also resolvable. Doing so, the administrators de-
fine at which point a conflict occurs. This resolving of conflicts is supported
by various techniques.

Figure 3.7: Mockup of the result of the house configuration showing a conflict because of
inconsistency between the members

KonfiGr was developed according to this mockup. However, during the de-
velopment minor changes had to be made. Thus, the design was embellished
and adapted to the standards of the institute. Additionally, more importance
was given to conflict resolving which features a greater variety of options
to resolve a conflict. Furthermore, conflict resolving was integrated into a
separate area.

29

3 Requirements regarding the prototype

3.2 Development Environment

The task behind the thesis was ordered by the Institute of Software Technology.
The institute has guidelines and rules for creating such web applications to
compare, merge, supplement, and reuse the code in a better way. Addition-
ally, the deployment of multiple web applications is easier if the applications
are all of the same type.

Shown in Figure 3.8, a JAR file built by Thymeleaf, Spring Boot, and Bootstrap
is running on a Tomcat web server in a Debian system. On the Debian server
there is a MySQL database to store all the data.

Figure 3.8: Software architecture

Spring Boot

Spring Boot (Pivotal Software, 2019) is an extension of the well-known Java
Spring Framework. The Java Spring Framework is an open-source framework to
develop Java applications. It is specialized to simplify the programming with
Java. The Spring Boot extension allows building a runnable Spring Application
file that needs no external XML configurations or libraries. This stand-alone
Spring-based Java application is much easier to handle.

30

3 Requirements regarding the prototype

Thymeleaf

Thymeleaf (The Thymeleaf Team, 2019) is a modern server-side Java template
engine. With Thymeleaf HTML templates can be developed in an easy and
powerful way. Thymeleaf was chosen, among other things, because of its
support of Spring modules.

Bootstrap

Bootstrap (Mark Otto, 2019) is a very popular HTML, JS, and CSS framework
for developing web applications. The focus of Bootstrap is on responsive,
mobile-first projects. Nevertheless, the development of KonfiGr focused on
desktop design. The simple grid system allows the developer to easily de-
sign websites for devices of all shapes.

31

4 Implementation

This chapter contains a detailed description of the implementation of Kon-
fiGr. It describes in which parts the application can be divided into, how
each of these parts works, which technologies were used, and in which
environment these technologies were used. This chapter reflects primarily
on technical aspects. Details about the user interface of KonfiGr are explained
in Chapter 5. Furthermore, this chapter explains the implementation based
on an example of configuring an apartment.

4.1 Application Structure

The system can be divided into several parts. These parts are explained in
detail in this chapter.

• Knowledge engineering
• Voting
• Aggregation
• Recommendation
• Conflict detection and resolving

4.2 Knowledge Engineering

The application is knowledge-based and domain-independent. Therefore,
domain experts and knowledge engineers define the configuration model.

32

4 Implementation

This process is called knowledge engineering. Sometimes a knowledge engi-
neer is also a domain expert. The knowledge engineers have specific rights
to define the model. Therefore, they are also specified as administrators in
KonfiGr. On the contrary, the domain experts know how the product or ser-
vice is internally structured. They know all the product’s components and
which alternatives for each component are available. They also know how
these components interact and which solutions are possible. The knowledge
engineers are assigned to put this knowledge into a model by creating a
KonfiGr project. In the case of the apartment configurator, the domain expert
might be a real estate agent, because he knows which components make up
a property and how these components interact. If this real estate agent is
also technically savvy, he could also do the job of the knowledge engineer.
Otherwise, an engineer has to build the knowledge base in KonfiGr based on
the agent’s knowledge. Each project represents a product or a service and
each KonfiGr step typically represents a component of this product. More-
over, constraints can be used to define interactions between components.

Figure 4.1 shows the entity relationship model of all entities involved in
the knowledge engineering phase. This model includes only the key fields.
Moreover, it is designed in a way that a project consists of various steps and
constraints. Additionally, a step has choices (alternatives) or a step is defined
by a specific value (attribute). On the other hand, a constraint has actions
and conditions. These conditions are grouped by hierarchies. With the help
of these entities, products of any domain can be virtually reproduced.

Project

The goal of each project is to configure a specific product or a specific
service. To define this product or service, a project has a name, a description,
and an image. The example project in this chapter is named ”Apartment
Profile”. Additionally, each project has a status. The status of a project in the
knowledge engineering phase is called draft. A valid project must have at
least one step but the number of constraints are optional.

33

4 Implementation

Figure 4.1: Entity relationship model of the knowledge engineering phase to build up a
configuration model

34

4 Implementation

Step

A configuration step is some sort of question to identify a component. Kon-
fiGr already offers many step types and different settings for these types.
This is necessary to support as many different component types as possible.
Therefore, for each step the administrator defines the step type. To represent
a list of alternatives (choices), there are the single-choice and the multiple-
choice type. To represent numbers, there are the whole number, decimal, and
currency type. Additionally, there are the date, the time, and the information
type.

Step Types:

• Single choice (sc)
• Multiple choice (mc)
• Whole number (wn)
• Decimal (dn)
• Currency (cu)
• Date (da)
• Time (ti)
• Information (in)

Configuration problems can be defined as constraint satisfaction problems
(CSP). Felfernig, Hotz, et al., 2014 defines CSP by ”a triple (V, D, C) where
V is a set of finite domain variables {v1, v2, ..., vn}, D represents variable
domains {dom(v1), dom(v2), ..., dom(vn)}, and C represents a set of con-
straints defining restrictions on the possible combinations of variable values
(c1, c2, ..., cm)”. The set of constraints C is the combination of the union of
customer preferences PREF and the configuration knowledge base CKB.
The set of variables (steps) V and the corresponding variable domains of
the Apartment Profile project can be defined as follows:

V = {Object Type (o), Contract Type (c), Budget (b), Space (s), District (d),
Rooms (r), Facilities (f)}.

35

4 Implementation

dom(o) = [{Maisonnette, Penthouse, Basement Apartment, Any Type, Stu-
dio Apartment}, mc]
dom(c) = [{Purchase, Rent}, sc]
dom(b) = [cu],
dom(s) = [wn, 30-200],
dom(d) = [{Inner City, St. Leonhard, Geidorf, Lend, Gries, Jakomini, Liebe-
nau, St. Peter}, mc]
dom(r) = [wn, 1-10],
dom(f) = [{Balcony, Garden, Parking Lot, Elevator}, mc].

Choice (Alternatives)

The single-choice and multiple-choice types are representing a set of alter-
natives. These alternatives are called choices and must be defined in the
knowledge engineering phase. The difference between the two types is that
the single-choice type allows only one choice. In the Apartment Profile project
the steps Object Type, Contract Type, District, and Facilities are composed of
sets of choices.

Value (Attribute)

Whole numbers, decimals, currencies, times, and dates identify a specific value.
The user must enter a value that can be limited by a maximum and mini-
mum value. In the Apartment Profile project, the steps Space and Rooms are
whole number types and the step Budget is a currency type.

Information

When using the information type, the voter just receives information prede-
fined by the knowledge engineer. For example, an information step could act
as an initial step to display a welcome message.

36

4 Implementation

Constraint

Constraints (Felfernig, Hotz, et al., 2014) can be used to define restrictions
on the possible combinations of step values. In KonfiGr, a constraint consists
of conditions and actions. The constraints apply not only to the configura-
tion of the individual user, but also to the aggregated group result. Simple
applications that work with only one component type typically use commu-
tative constraints. The order of assignments is not relevant for commutative
constraints. In KonfiGr, the sequence of the steps is still relevant, but in
future work, the assignment should be possible in both directions. Fur-
thermore, KonfiGr uses primitive constraints and basic relations. There are
various types of constraints and still room for improvement, as explained
by Felfernig, Hotz, et al., 2014. Additionally, KonfiGr uses forward checking to
reduce the size of variables in the domain. Felfernig, Hotz, et al., 2014 de-
scribe forward checking as: ”Depending on the value selected for the current
variable, the values of the instantiated variables that can’t be a support for
the selected value are eliminated from their corresponding domains.” The
set of constraints in the Apartment Profile project are defined as follows:

CKB = {c1 : o 6= Maissonette ∧ o 6= Penthouse ∧ o 6= Any Type ∧ o 6=
Studio Apartment→ f 6= Balcony ∧ f 6= Elevator,
c2 : c = Purchase→ b > 10.000 ∧ b < 1.500.000,
c3 : c = Rent→ b > 300 ∧ b < 10.000}

Condition

A condition specifies the verification of the value of a specific step. The
verification types are different depending on the step type. The knowledge
engineer has the choice between equal, unequal, greater than, less than, contains,
contains not, has data, and has no data. The values can be compared with new
defined values or values of other steps of the same type. Additionally, condi-
tions can be grouped by logical AND and OR links into several hierarchical
levels to support higher-order constraints.

37

4 Implementation

Action

There are several actions to choose from. Each action refers to a specific step.
The action types vary depending on the step type. If the step is a single-choice
or multiple-choice type, then individual choices can be disabled or removed.
On the contrary, if the step is a number, date, or time type, then the allowed
range can be changed. Furthermore, all step types can be skipped or a
default value can be assigned to them. Incidentally, the effect of defining
default values is explained by Wang and Mo, 2018.

In addition to the steps and constraints, the administrator must specify the
project members. All project members are entitled to vote. The administrator
ends the knowledge engineering phase by activating the project. If the project
has the status active, no changes to the configuration model are possible. If
the knowledge engineer still wants to change the model, the project has to
be deactivated, but in that case all existing votings are lost.

4.3 Voting

In KonfiGr, voting is the process of configuring a product or service. The
group of users configures a solution according to a predefined knowledge
base. The voting can be supported by showing a recommendation and by
showing user preferences. These supporting mechanisms are explained in
Section 4.5.

Basically, the users configure one individual step after the other. The se-
quence of these steps is specified in the knowledge base. The constraints
are checked forward and no inconsistent values can be chosen, because the
constraints are always ”arc consistency”. Felfernig, Hotz, et al., 2014 explain
arc-consistency as ”property that must be fulfilled by combinations of vari-
ables v1 and v2 that are connected via a binary constraint c9

b: each value in
the domain of v1 must have at least one corresponding value in the domain
of v2 such that cb is fulfilled. Note that arc-consistency is directed; if variable

38

4 Implementation

Figure 4.2: Entity relationship model of the voting process

39

4 Implementation

v1 is arc-consistent with variable v2 this does not necessarily mean that v2 is
arc-consistent with v1.”. The constraints are not commutative, because the
sequence of steps matters.

4.4 Aggregation

The goal of a group-based configuration is to come to a group solution.
Therefore, the individual configurations must be aggregated to one result.
While the project is active, a temporary result is visible in which inconsistent
data and conflicts may exist. The aggregation is done per step and therefore,
the aggregation type is also specified per step. Nevertheless, the constraints
apply not only to the individual configurations, but also to the group result.
KonfiGr primarily uses simple methods and algorithms to aggregate the
data. Table 4.1 shows the supported aggregation types per step type.

For multiple-choice and single-choice steps the system supports mathematical
functions of the Set Theory and the Majority Voting algorithm. Steps identi-
fying a specific value can be aggregated by basic mathematical functions.
Furthermore, the date type additionally supports the Majority Voting.

Table 4.1: Supported aggregation functions per step type
∪ ∩ \ MAJ MIN MAX AVG Median SUM

Single-choice,
multiple-choice x x x x

Whole number,
decimal, and
currency

x x x x x

Time x x x x
Date x x x x x

40

4 Implementation

The following aggregation functions are explained by an example with do-
main definitions of a given set of facility types dom(f) = {Balcony, Garden,
Parking Lot, Elevator} and a set of users U = {A, B, C}.

Table 4.2: Voting example of a given set of facility types and a set of users
Balcony Garden Parking Lot Elevator

A X X
B X X
C X X

Intersection (∪) The result of this aggregation method is composed of all
choices chosen by every user. The result of the example in Table 4.2 would
be {Garden}.

Set Union (\) The result of this aggregation method is composed of all
choices chosen by at least one user. The result of the example in Table 4.2
would be {Balcony, Garden, Parking Lot}.

Difference (∩) The result of this method is composed of all choices chosen
by none of the users. The result of the example in Table 4.2 would be
{Elevator}.

Majority Voting (MAJ) MAJ arranges the choices by the number of times
they were selected. The resulting sequence of the example in Table 4.2 would
be {1: Garden, 2: Balcony, 3: Parking Lot, 4: Elevator}.

Table 4.3: Voting example of a whole number value by users U = {A, B, C}
A 3

B 10

C 5

Minimum Value (MIN) The result is the lowest value. The result of the
example in Table 4.3 would be {3}.

Maximum Value (MAX) The result is the highest value. The result of the
example in Table 4.3 would be {10}.

41

4 Implementation

Average Value (AVG) The result is the average value. The result of the
example in Table 4.3 would be {6}.

Median Value The result is the median value. The result for the example
in Table 4.3 would be {5}.

Sum The result is the sum of all entered values. The result of the example in
Table 4.3 would be {18}.

In the Apartment Profile project, the steps have the following aggregation
functions {agg(v1), agg(v2), ..., agg(vn)}:

agg(o) = {MAJ},
agg(c) = {MAJ},
agg(b) = {AVG},
agg(s) = {MAX},
agg(d) = {∩},
agg(r) = {Median},
agg(f) = {MAJ}

These definitions combined with the definitions of the restrictions in Section
4.6 specify that the result will be composed of the most chosen object type,
the most chosen contract type, the average of all entered budget values, the
maximum entered space value, all non-chosen districts, the median of all
entered room numbers, and the two most chosen facility types.

4.5 Recommendation

In group decisions it is necessary to achieve consensus. There are many tech-
niques that support votings to reach consensus, but often these techniques
influence individual votings. Depending on the domain or even depending
on the step, these influences are intentional or not. KonfiGr supports two rec-
ommendation techniques. Firstly, it is possible to show a recommendation
based on an aggregation function and secondly, the preferences of all other

42

4 Implementation

project members can be displayed. The knowledge engineer must configure
the type of recommendation per step.

Recommendation based on Aggregation

The first recommendation type is based on aggregation functions and is just
called ”recommendation” in KonfiGr. This type uses the same aggregation
functions as when generating the group solutions. Therefore, the recom-
mendation can show, among other things, the temporary result of a step.
However, the aggregation functions of the recommendation and the result
generation can also differ, as shown in the following example:

The question of this example step is: ”Which districts do you want to avoid?”.
User A and user B have voted while the recommendation aggregation type
is set union, but the result aggregation type is difference. The idea behind this
definition is to let users pick districts that are not suitable for them. Then
the suitable districts remain as solution. In contrast, all districts that are
already excluded will be recommended.

pre fAd = {Inner City, Geidorf, Lend, Gries}
pre fBd = {St. Leonhard, Gries, Jakomini, Lend}

Recommendation:

recd = {Inner City, Geidorf, Lend, Gries, St. Leonhard, Jakomini}

Solution:

CONFd = {Liebenau, St. Peter}

User Preferences

Another recommendation technique of the application is ”showing the user
preferences”. These user preferences are simply the selections of all project
members. In the example about districts, dA and dB would be displayed to
the next voter. The knowledge engineer decides whether the preferences are
never visible, always visible, or only visible after the early phase. Showing

43

4 Implementation

the user preferences only after the early phase could avoid biases in group
decisions. In KonfiGr, the early phase is over after one third of the project
members have submitted their votings.

4.6 Conflict Detection and Resolving

The administrator closes the project after all project members have voted.
Then the result is scanned for conflicts. Conflicts arise when voters disagree
on one result of a step. The knowledge engineers have to define these dis-
agreements. However, there are only two types of conflict:

First, a conflict may occur in single-choice and multiple-choice steps if the
number of resulting choices of the aggregation function does not match the
number defined in the step settings. In the Apartment Profile example, the
defined number of resulting choices for the Facilities step is 2. However, if the
result consists of just one single choice or more than 2 choices, the project
members have to fix this.

Second, a conflict may also occur in number, date, and time steps, if the
accepted difference is exceeded. In the Apartment Profile example, the accepted
difference of the room step is 2. If one user chooses 1 and another user chooses
4, a conflict arises, because the difference exceeds the acceptable limit.

The restrictions {res(v1), res(v2), ..., res(vn)) of the Apartment Profile example
are defined as follows:

res(o) = {1},
res(c) = {1},
res(b) = {∞},
res(s) = {10},
res(d) = {∞},

44

4 Implementation

res(r) = {2},
res(f) = {2}

Conflicts can be resolved in several ways:

• The users change their selections
• The administrator selects the final choices
• The users weight the choices and these weightings in turn are rated

by an algorithm
• The values are approximated

Of course, the administrator can only select the final choices or weight
choices, if it is a multiple-choice or single-choice step. On the contrast, the
approximation of values only works for number, time, and date steps.

When weighting choices, the voters assign importance to each choice, vary-
ing from 1 to 10. A progress bulk shows how many voters have already
weighted. After that, the administrator resolves the conflict by selecting one
of the following algorithms:

Least Misery (LMS) This algorithm ranks the choices by the lowest evalu-
ations. The highest of all lowest ratings is the highest ranked choice. This
algorithm leads to choices that no one really dislikes.

Average (AVG) This algorithm calculates the average rating of each choice.

Average without Misery (AVM) This algorithm also calculates the average
rating of each choice, but removes those whose individual rating is below a
defined threshold. In KonfiGr this threshold is defined as 3.

Table 4.4 shows that the three algorithms can result to three different solu-
tions (highlighted in bold).

45

4 Implementation

Table 4.4: Weighting example presenting the algorithms least misery, average, and average
without misery

User A User B User C LMS AVG AVM
Balcony 3 7 8 3 6 6

Garden 8 4 9 4 7 7
Parking Lot 5 5 5 5 5 5

Elevator 8 2 2 2 4 8

Regardless of the step type, each voter can comment on conflicts to start a
discussion. Discussions are very important for decision-making. Discussions
can prevent biases and assist in finding a solution.

In group-based configurations, the biggest challenge is finding a solution
that will satisfy everyone. The way to achieve consensus depends on domain,
group size, and many other factors. KonfiGr already offers some different
types of resolving conflicts to achieve consensus. However, a main purpose
of this work was to find out, if the usability of the used approaches is
satisfying the end user. The next chapter shows the working with KonfiGr
based on some use cases.

46

5 Use Cases

This chapter presents the user interface of KonfiGr based on practical ex-
amples. The first use case is called ”Apartment Profile”. This example has
already been used in Chapter 4 to explain the details of the implementation.
This use case will introduce the typical process of a project in KonfiGr. Addi-
tionally, this chapter explains three more projects. All these use cases were
used for the usability test, the results of which are presented in Chapter 6.

5.1 Apartment Profile

In this use case, a group of users wants to create a profile for searching
apartments. Therefore, one user must be familiar with this topic area. This
user is called domain expert. Knowledge engineers in turn are those users who
insert the domain information into a KonfiGr project. This whole process is
called knowledge engineering. In practice, the domain expert could be a real
estate agent, enabling his clients to create search profiles via KonfiGr to find
suitable apartments for them.

Knowledge Engineering

Typically, the domain expert defines a model that represents all information
about the domain. An overview of the configuration model of this use case
is shown in Figure 5.1. More information about the knowledge model in this
example is explained in Chapter 4. The model consists of seven components
and two constraints. The group has to make a decision regarding object type,
contract type, budget, space, district, rooms, and facilities to create their search
profile.

47

5 Use Cases

Figure 5.1: Configuration model of the apartment search profile

Additionally, there are two constraints between the components in this
model. The first constraint implies that the available budget range depends
on the contract type. This is the case, because a purchase price is much higher

48

5 Use Cases

than a rent. In the second constraint, the available facilities depend on the
object type, as a ground floor apartment do not have a balcony or elevator. The
task of the knowledge engineer is to integrate this whole model into KonfiGr.
The following section explains this process in detail. When the knowledge
engineer creates a project, he defines a name, a description, and an image, as
shown in Figure 5.2.

Figure 5.2: Project creation formula in the Apartment Profile project

After defining these basic project descriptions, the knowledge engineer
creates the individual steps. A step typically corresponds to a component
type of the configuration model. Figure 5.3 shows the full definition of
the step that identifies the object type. Each step must have a name and a
step type. Furthermore, except for information steps, each step must have a
preference aggregation type. This type indicates how the individual votings
are merged. Since the knowledge engineer wants users to be able to select

49

5 Use Cases

Figure 5.3: Defining the object type step in the Apartment Profile project

50

5 Use Cases

more than one object type, he assigns the multiple-choice step type for this
example step. He inserts all available object types as choices. Additionally,
the knowledge engineer selects ”most selected choices” as preference aggregation
type and defines 1 as number of choices in the final result. This configuration
should result in a single object type that has been chosen most frequently. If
the result does not contain exactly the defined number of choices, an issue
is created. Therefore, the number of choices in the final result is marked as
issue relevant (see Figure 5.3). Furthermore, the visibility of user preferences is
activated as always. Therefore, users can decide based on the decisions of
other voters. The recommendation is also activated and it shows the ”choices
selected by all voters”. Displaying the user preferences or the recommendation
is an additional influence for users to make their decisions.

The following sections do not explain all step configurations in detail, but
the most important parts of them. Figure 5.4 provides an overview of all
steps of this example project.

Figure 5.4: Overview of the steps in the Apartment Profile project

51

5 Use Cases

The contract type step has to find out, if users want to buy or rent an apart-
ment. Therefore, the step is a single-choice type containing two choices. The
aggregation function of this step is the ”most selected choice”. In order to
avoid biases in this decision and to support reaching consensus, the user
preferences are only displayed after the early phase. In KonfiGr, the early
phase is over after a third of users have voted. Figure 5.5 not only shows how
to choose the visibility of user preferences, but also an helpful information
box as it can be found throughout the whole application.

Figure 5.5: Selection of the visibility of the user preferences

The budget step is defined as the currency type. The individual values are
summarized to the average value.

The space step is defined as a whole number, and the system only allows
entries between 30 and 200. Additionally, the entries can only differ by 10 or
less, as shown in Figure 5.6. This accepted difference is issue relevant. Therefore,

Figure 5.6: Advanced settings of the space step

52

5 Use Cases

if the difference is too high, an issue is created. Moreover, the result of this
step is formed by the minimum value of all individual values.

A different aggregation variant was used for the district step. ”Choices selected
by no user” was assigned, because users should choose which districts they
want to exclude, rather than their preferred districts.

The room step is defined as a whole number from 1 to 10 and an accepted
difference of 1. The aggregation type of this step is the median.

After all steps have been defined, the constraints can be created. One of
these constraints limits the use of the balcony and the elevator. If the user has
selected apartment types that are only located on the ground floor, the balcony

Figure 5.7: Constraint to disable balcony and elevator for ground floor apartments

53

5 Use Cases

and elevator should not be available. Figure 5.7 shows the configuration of
this constraint. The conditions are linked by default by logical AND links.
However, complex logical groupings can be formed between conditions.
Figure 5.8 shows such a complex example with several hierarchical levels.

Figure 5.8: Complex example of connecting conditions

In this use case, the knowledge engineer has created three KonfiGr con-
straints to map the two dependencies in the data model. The list of these
constraints is shown in Figure 5.9. One of these constraints sets the budget
range from 100,000 to 1,500,000, if the contract type is purchase. Another

Figure 5.9: Overview of the constraints in the project

54

5 Use Cases

constraint sets the budget range from 300 to 3,000, if the contract type is rent.
The last constraint disables the balcony and the elevator, if the object type does
not contain a type that is located above the ground floor (see Figure 5.7).
The constraints are checked during the voting of individual users and the
generation of the group result.

Finally, the administrator adds the members who should be able to vote.
Incidentally, in this example, all users have colors as names, as shown in
Figure 5.10.

Figure 5.10: Overview of the members in the project

Once the knowledge engineering process is completed, the knowledge engi-
neer activates the project to enable voting.

Voting

The following section shows the voting process and how this process can be
supported. Users usually start from the project overview (see Figure 5.11).
The apartment project is active. Therefore, users can vote or view the tem-
porary result. Projects with status draft are still in the knowledge engineering
phase. Closed projects can no longer be voted. In contrast to finished projects,
closed projects have no final result, because they have still issues that must
be resolved.

55

5 Use Cases

Figure 5.11: Dashboard of the projects

The voting will be explained based on a few cutouts from different users.
The explanation begins with the first step. The user green votes first, shown
in Figure 5.12. The visibility of recommendation and user preferences is
enabled but not visible, because there is no data yet.

Figure 5.12: Voting of the object type

56

5 Use Cases

After the users green and blue have submitted their votings, the user yel-
low votes. In Figure 5.13, the user yellow receives help by seeing the user
preferences of other users and a recommendation generated from these
preferences. These two aids can be activated independently per step.

Figure 5.13: Voting of the object type showing a recommendation and user preferences

In Figure 5.14, the user green votes the district step. The user can skip the
step, because this step is not mandatory.

57

5 Use Cases

Figure 5.14: Voting example of the district step

Completing the voting, the users may either change their answers or finally
submit their voting (see Figure 5.15). After submitting the voting, users can
only change their voting, if an issue occurs.

Figure 5.15: Finishing page after voting

Once a user has voted, a temporary result is displayed, shown in Figure
5.16. This result changes after each voting. Therefore, the temporary result
does not indicate issues. Once a user has voted, the administrator can close
the project. After that, the group result is checked for conflicts. An issue is

58

5 Use Cases

created for each conflict. These issues have to be resolved. If no conflict is
found, the project is set directly to finished.

Figure 5.16: Temporary project result of the Apartment Profile project

59

5 Use Cases

Issue Resolving

During the closing of the project, the system checks whether the selection of
the choices aggregates to a clear group result and whether the values are not
too far apart from each other. Details about the aggregation are explained
in Section 4.6. Figure 5.17 shows the issues found in this example.

Figure 5.17: Overview of all founded issues of the Apartment Profile project

The issues are visible to all members of the project. Open issues are dis-
played on the dashboard and on the result page (see Figure 5.18).

Depending on the step type, users have various options to resolve issues.
The single-choice and multiple-choice steps can be resolved by weighting or by
the administrator by selecting the final choices. Value (attribute) steps can
be resolved by an approximation. Beside that, all steps can be resolved by the
users changing their minds. In order to demonstrate the different variants
of resolving issues, the object type step is resolved by weighting, the space step
is resolved by changing one’s own mind, and the room step is resolved by an
approximation.

The three voters have chosen apartment and maisonette the same number of
times. Therefore, the result is not clear. The user green starts the weighting,

60

5 Use Cases

Figure 5.18: Temporary result showing all issues after closing the Apartment Profile project

61

5 Use Cases

shown in Figure 5.19. The user can see which step is affected, why an
issue was created, and how the other users have voted. While weighting,

Figure 5.19: Example of resolving an issue by weighting

62

5 Use Cases

users rank the importance of each choice from 1 to 10. The progress of de-
livered weightings indicates how many users have already completed their
weighting. Furthermore, users can add comments to issues to discuss their
decisions.

In Figure 5.20, the administrator checks the progress of the delivered weight-
ings. If the administrator considers the progress to be high enough, he can
choose an algorithm to generate a solution. Therefore, the administrator
can choose between the algorithms least misery, average, and average without
misery.

Figure 5.20: Resolving an issue by choosing an algorithm to rate the weightings

The system used the weightings in Figure 5.21 to identify penthouse as the
final result for this step. Resolving this first issue, resolved a second issue

Figure 5.21: Weighting example of the object type step in the Apartment Profile project

63

5 Use Cases

too. The system could not select two facilities, because elevator, balcony, and
garden were chosen the same number of times. However, as the object type
has changed to penthouse and a constraint indicates that penthouses may not
have a garden, there are only two possible facilities left. Therefore, this issue
is also resolved.

The issue of the space step is resolved by the administrator by approximating
the values to the average value (see Figure 5.22).

Figure 5.22: Example of resolving an issue by approximation

The room step is resolved by user green by changing his value for the number
of rooms from 5 to 6, as shown in Figure 5.23.

If all issues are resolved, the administrator can finish the project. The final
result is visible for all members of the project. Furthermore, administrators
have the right to view the votings of all members.

The results of the remaining steps contain also interesting properties and
are explained in the following sections. Two constraints define the influence
of the contract type on the price. Figure 5.24 shows that the user green chose

64

5 Use Cases

Figure 5.23: Example of resolving an issue by changing the own value

purchase and therefore had to specify a purchase price. However, since rent is
the final result, the voting of the user green has become irrelevant.

Figure 5.24: Step results of the contract type and price in the Apartment Profile project

65

5 Use Cases

Furthermore, users had to choose districts they did not want to live in. The
result is composed of the remaining districts (see Figure 5.25).

Figure 5.25: Result of the district step

To sum up, this example has shown all important parts of the KonfiGr user
interface in detail. The other use cases are only briefly described in the
following sections.

66

5 Use Cases

5.2 Exam Definer

Exam Definer is a project where a group of tutors defines the content of an
exam. Therefore, they have to make decisions on topics, exam questions, and
administrative details. The project is defined by the following knowledge
base:

• V = {topics (t), question type (q), free text questions (f), multiple-choice
questions (m), multiple-choice type (mt), permission of documents
(pd), duration (d), date of exam (da), number of rooms (r)}

• dom(t) = [{recommenders, configurators, decision psychology & AI,
software engineering & AI, self-organizing systems}, mc],
dom(q) = [{free text questions, free text questions & multiple-choice
questions, multiple choice questions}, sc],
dom(f) = [5 - 20, wn],
dom(m) = [5 - 20, wn],
dom(mt) = [{answers must be completely correct, there are partial
points}, sc],
dom(do) = [{yes, no}, sc],
dom(d) = [30 - 120, wn],
dom(da) = [27.05.2019 - 31.05.2019, da],
dom(r) = [{HS i13, HS i8, HS i9, HS FSI 1, HS i11}, mc]

• C = {c1 : q 6= free text questions ∧ q 6= free text questions & multiple-
choice questions→ skip f,
c2: q 6= free text questions & multiple-choice questions ∧ q 6= multiple-
choice questions→ skip m ∧ skip mt}

• agg(t) = {∩},
agg(q) = {MAJ},
agg(f) = {AVG},
agg(m) = {AVG},
agg(mt) = {MAJ},
agg(do) = {MAJ},
agg(d) = {Median},

67

5 Use Cases

agg(da) = {MAJ},
agg(r) = {∪}

• res(t) = {∞},
res(q) = {1},
res(f) = {3},
res(m) = {3},
res(mt) = {1},
res(do) = {1},
res(d) = {∞},
res(da) = {1},
res(r) = {∞}

All topics selected by all members are part of the test. The number of topics
is not limited. Moreover, the users need to decide whether to ask only free
text questions, if they ask only multiple-choice questions, or if they want to
ask a combination of this two question types. The most commonly chosen
variant is the result. The constraints define whether the free text question
step, the multiple-choice question step, and the multiple-choice type step are
displayed, depending on the selected question type. The free text question
step and the multiple-choice question step determine the number of questions.
The individual values must not differ by more than 3. The multiple-choice
type step, on the other hand, clarifies whether multiple-choice questions also
contain partial points. Additionally, users must decide on the permission of
documents step. This is a yes or no question where the most selected answer
wins. The duration of the exam is clarified in minutes by a whole number step.
The result is the median of all entered values. Users can choose between 5

days to set the date of the exam. The most frequently selected date is the
final date of the exam. Finally, suitable rooms are identified by summarizing
all rooms selected by all group members.

After the configuration, the tutors know which topics to use, how to ask
questions, when the exam should take place, how long the exam will be,
whether documents will be allowed, and which rooms are suitable.

68

5 Use Cases

5.3 Car Configurator

In this use case, a family configures their new car. The aim is to find
suitable car models and to identify important buyer details. In practice, a
car dealer can sort his available models by their characteristics and create
a configuration model. An example of such a model is defined by the
following knowledge base:

• V = {Manufacturer (m), Vehicle Type (v), Actuator Type (a), Car State
(cs), Registration Date (r), Mileage (m), Budget (b), Color (c), Extras
(e), Suitable Cars (sc)}

• dom(m) = [{BMW, Audi, VW}, mc],
dom(v) = [{SUV, Coupe, Limousine}, sc],
dom(a) = [{Gas, Hybrid, Diesel}, mc],
dom(cs) = [{New Car, Used Car}, sc],
dom(r) = [da]
dom(m) = [wn],
dom(b) = [cu],
dom(c) = [{White, Black, Red, Blue, Silver}, sc],
dom(e) = [{NAVI, All-wheel, Air-conditioning System, Multi-function
Steering wheel, Xenon Lights, Trailer Hitch, Parking Assistant}, mc],
dom(sc) = [{Audi Q2, Audi Q3, Audi Q5, Audi Q7, Audi A5 Coupe,
Audi TT Coupe, Audi A3, Audi A4, Audi A6, Audi A8, BMW X1,
BMW X3, BMW X5, BMW X7, BMW 6er, BMW 8er, BMW i8 Coupe,
BMW 3er, BMW 5er, BMW 7er, VW T-Cross, VW Toureg, VW T-Roc,
VW Tiguan, VW Scirocco, VW Arteon, VW Passat B8}, mc]

• C = {c1 : m 6= Audi → sc 6= Audi Q2 ∧ sc 6= Audi Q3 ∧ sc 6= Audi
Q5 ∧ sc 6= Audi Q7 ∧ sc 6= Audi A5 Coupe ∧ sc 6= Audi TT Coupe ∧
sc 6= Audi A3 ∧ sc 6= Audi A4 ∧ sc 6= Audi A6 ∧ sc 6= Audi A8,
c2: m 6= BMW → sc 6= BMW X1 ∧ sc 6= BMW X3 ∧ sc 6= BMW X5

∧ sc 6= BMW X7 ∧ sc 6= BMW 6er ∧ sc 6= BMW 8er ∧ sc 6= BMW i8
Coupe ∧ sc 6= BMW 3er ∧ sc 6= BMW 5er ∧ sc 6= BMW 7er,
c3: m 6= VW → sc 6= VW T-Cross ∧ sc 6= VW Touareg ∧ sc 6= VW
T-Roc ∧ sc 6= VW Scirocco ∧ sc 6= VW Arteon ∧ sc 6= VW Passat B8,
c4: v 6= Coupe→ sc 6= Audi A5 Coupe ∧ sc 6= Audi TT Coupe ∧ sc

69

5 Use Cases

6= BMW 6er ∧ sc 6= BMW 8er ∧ sc 6= BMW i8 Coupe ∧ sc 6= VW
Scirocco,
c5: v 6= Limousine→ sc 6= Audi A3 ∧ sc 6= Audi A4 ∧ sc 6= Audi A6

∧ sc 6= Audi A8 ∧ sc 6= BMW 3er ∧ sc 6= BMW 5er ∧ sc 6= BMW 7er
∧ sc 6= VW Arteon ∧ sc 6= VW Passat B8,
c6: v 6= SUV → sc 6= Audi Q2 ∧ sc 6= Audi Q3 ∧ sc 6= Audi Q5 ∧
sc 6= Audi Q7 ∧ sc 6= BMW X1 ∧ sc 6= BMW X3 ∧ sc 6= BMW X7 ∧
sc 6= VW T-Cross ∧ sc 6= VW Touareg ∧ sc 6= VW T-Roc ∧ sc 6= VW
Tiguan,
c7: a 6= Gas→ sc 6= Audi TT Coupe,
c8: a 6= Gas ∧ a 6= Diesel → sc 6= Audi Q2 ∧ sc 6= Audi Q3 ∧ sc 6=
Audi A3 ∧ sc 6= BMW X3 ∧ sc 6= BMW X7 ∧ sc 6= BMW 6er ∧ sc 6=
BMW 8er ∧ sc 6= VW T-Cross ∧ sc 6= VW T-Roc ∧ sc 6= VW Scirocco
∧ sc 6= VW Arteon,
c9 : a 6= Hybrid → cs 6= Audi Q7 ∧ sc 6= Audi A8 ∧ sc 6= BMW i8
Coupe,
c10: a 6= Hybrid ∧ a 6= Diesel→ sc 6= Audi Q5 ∧ sc 6= Audi A4 ∧ sc
6= Audi A6,
c11: cs 6= Used Car→ skip r ∧ skip m,
c12: skip sc}

• agg(m) = {MAJ},
agg(v) = {MAJ},
agg(a) = {∩},
agg(cs) = {MAJ},
agg(r) = {AVG},
agg(m) = {MAX},
agg(b) = {SUM},
agg(c) = {MAJ},
agg(e) = {∩},
agg(sc) = {\}

• res(m) = {2},
res(v) = {1},
res(a) = {1},
res(cs) = {1},
res(r) = {∞},

70

5 Use Cases

res(m) = {∞},
res(b) = {3.000},
res(c) = {1},
res(e) = {∞},
res(sc) = {∞}

In contrast to the Exam Definer example in Section 5.2, this project contains
a solution step. This solution step Suitable Cars is not evaluated directly by
users, but indirectly by the choices of voters in other steps. Therefore, the
solution step is skipped by the constraint c12. Most other constraints set the
result of the Suitable Cars step by the results of the Manufacturer, Vehicle Type,
and Actuator Type steps. When selecting used cars, users must also vote on
the Registration Date and Mileage steps. Moreover, users decide on budget,
color, and extras.

71

5 Use Cases

5.4 Vacation Planning

In this example, a group of friends or a family wants to set a vacation desti-
nation. Therefore, a travel agency creates a configurator. This configurator is
set up based on the travel destination information specified in the following
knowledge base. The group decides not only on the destination, but also
on important travel information such as budget, number of passengers,
duration, and activities.

• V = {Category (ca), Continent (co), Budget (b), Fellow Passenger (fp),
Vacation Period (vp), Accommodation Type (at), Activities (a), Desti-
nation (d)}

• dom(ca) = [{City, Beach, Nature, Skiing}, mc],
dom(co) = [{Europe, North America, South America, Asia}, mc],
dom(b) = [cu],
dom(fp) = [0 - 5, wn],
dom(vp) = [1 - 30, wn],
dom(at) = [{Hotel, Apartment, Hostel, Guesthouse}, sc],
dom(a) = [{Bicycle rental, Swimming, Museum, Concert, Theater, Sport
Event, Wine and Dine, Bus Tour, Sauna}, mc],
dom(d) = [{New York, Miami, Chicago, Buenos Aires, Sao Paulo,
Rio de Janeiro, London, Vienna, Lissabon, Bangkok, Dubai, Tokio,
Ko Samui, Saint Tropez, Bahamas, Grand Canyon, Galapagos Island,
Dolomites, Plitvicer Lakes, Li River, Aspen, Beaver Creek, Las Lenas,
Kitzbühel, St. Moritz, Muju}, mc]

• C = {c1: ca 6= Beach → d 6= Bahamas ∧ d 6= Ko Samui ∧ d 6= Saint
Tropez,
c2: ca 6= Beach ∧ ca 6= City → d 6= Miami ∧ d 6= Buenos Aires ∧ d
neq Sao Paulo ∧ d 6= Rio de Janeiro ∧ d 6= Lissabon,
c3: ca 6= Beach ∧ ca 6= City ∧ ca 6= Skiing→ d 6= Dubai,
c4: ca 6= City→ d 6= New York ∧ d 6= Chicago ∧ d 6= London ∧ d 6=
Vienna ∧ d 6= Bangkok ∧ d 6= Tokio,
c5: ca 6= Nature ∧ ca 6= Skiing→ d 6= Aspen ∧ d 6= Beaver Creek ∧ d
6= Las Lenas ∧ d 6= Kitzbühel ∧ d 6= St. Moritz ∧ d 6= Muju,
c6: co 6= Asia→ d 6= Bangkok ∧ d 6= Muju ∧ d 6= Li River ∧ d 6= Ko

72

5 Use Cases

Samui ∧ d 6= Tokio ∧ d 6= Dubai,
c7: co 6= North America→ d 6= New York ∧ d 6= Beaver Creek ∧ d 6=
Aspen ∧ d 6= Grand Canyon ∧ d 6= Bahamas ∧ d 6= Chicago ∧ d 6=
Miami,
c8: co 6= South America→ d 6= Buenos Aires ∧ d 6= Las Lenas ∧ d 6=
Galapagos Island ∧ d 6= Macho Picchu ∧ d 6= Rio de Janeiro ∧ d 6=
Sao Paulo,
c9: co 6= Europe → d 6= London ∧ d 6= St. Moritz ∧ d 6= Kitzbühel
∧ d 6= Plitvicer Lakes ∧ d 6= Dolomites ∧ d 6= Saint Tropez ∧ d 6=
Lissabon ∧ d 6= Vienna,
c10: skip d}

• agg(ca) = {MAJ},
agg(co) = {∩},
agg(b) = {MIN},
agg(fp) = {SUM},
agg(vp) = {AVG},
agg(at) = {MAJ},
agg(a) = {∩},
agg(d) = {\}

• res(ca) = {2]},
res(co) = {1},
res(b) = {∞},
res(fp) = {∞},
res(vp) = {3},
res(at) = {1},
res(a) = {∞},
res(d) = {∞}

As in the Car Configurator project, there is also a solution step in this project.
This Destination step depends on the results of the Category and Continent
steps. Additionally, the group decides on important travel information. They
agree on a budget, the number of passengers is summed up, the vacation

73

5 Use Cases

period is arranged, the type of accommodation is planned, and the suitable
activities are listed.

This chapter illustrated practical use cases in KonfiGr. Doing so, the user
interface has been explained in detail. These examples have also shown
that KonfiGr is fully functional and already useful, although it is just a
first prototype of such an application. The next chapter summarizes the
evaluation of an usability test including these use cases. Finally, Chapter 7

explains how to improve KonfiGr.

74

6 User Study

A usability test was performed with N=13 participants to check the current
status of KonfiGr and to analyze potential improvements. The result of this
study will be discussed in this chapter. The usability test was based on
following projects, already mentioned in Chapter 5: Apartment Profile, Exam
Definer, Car Configurator, and Vacation Planning. Each project was assigned
to a team of 3 to 4 members. One member of each team was appointed ad-
ministrator. The participants were all technically skilled, but lacked detailed
knowledge of group-based configuration. Since the knowledge engineering
process is very extensive, only voting and resolving issues has been tested.
Therefore, each team received access to a predefined project. Furthermore, a
questionnaire was created, which at the end of the usability test each user
had to fill out. This questionnaire consisted of 10 System Usability Scale (SUS)
questions that assess the usability of a system and 6 general questions. The
usability test procedure was defined as follows:

• The administrator activates the project
• All members of the group vote
• The administrator closes the project
• All issues found are resolved by the team
• The administrator finishes the project
• All members of the group fill out the questionnaire

System Usability Scale Questions

Figure 6.1 shows the evaluation of the SUS questions. The result of this
evaluation is on average positive. This outcome suggests that the system is
already usable, but there is room for improvements.

75

6 User Study

Figure 6.1: SUS evaluation: average ratings, N=13 (1 = I do not agree, ..., 5 = I totally agree)

General Questions

Potential improvements were identified on the basis of general questions.
The outcome of these 6 general questions will be presented in this section.
Therefore, the overall experience of the participants is summarized per
question.

How would you describe your overall experience with the application?

The reviews show that the design is appealing and that the voting is fairly
easy and understandable for most participants. However, there are some
ambiguities in the user interface that need to be solved. Some participants
were overall very satisfied with the system, but others had difficulties with
it. Especially, generating group results by merging all the individual votings
was incomprehensible to most of the users. Graphical representations could

76

6 User Study

make the merging process more understandable. This will be an important
but very extensive task in future work.

What did you like the most about using this application?

The fact that the system has been kept as simple as possible despite its
extensive functionality is well received by users. The overall idea behind the
system was also perceived as reasonable. Additionally, the e-mail notifica-
tions were mentioned as very helpful.

What did you like the least?

One user was surprised to see no group recommendation. When someone
votes first, there is still no data to generate a recommendation. This should
be communicated to the user to avoid ambiguity.

Some users criticized the knowledge base of the project. In this way, the
impression of the system depends strongly on the respective project. Of
course, the system itself can only have a limited impact on how knowledge
engineers create their projects. Therefore, users should be able to provide
feedback on the configuration model to the administrator.

Resolving issues is still a bit confusing and should be more intuitive. For
example, to suggest solutions would be helpful in making this process quick
and easy.

What, if anything, surprised you about the experience?

The participants were surprised by the simplicity of the system. They ex-
pected more complex options, but not all users had to resolve all types
of issues and therefore did not see the full functions of the system. For
example, one user missed weightings, though a weighting mechanism is
present in resolving issues. However, the concept of weightings should
already be part of the voting process. This in turn would probably prevent

77

6 User Study

many issues in advance. Allover, this improvement is one of the main tasks
for future work.

What, if anything, caused you frustration?

Some users were not satisfied with their result. This criticism is in turn
mainly due to the specific content of the knowledge base.

Unfortunately, working in teams asynchronously can lead to long waiting
times, which are very frustrating. Adding timers or reminders can shorten
these waiting times.

How would you improve this application?

The participants want the system to be more interactive. They also want
to understand how the results and the recommendations are generated in
a user-optimized way. Furthermore, the result page should show details
about resolved issues. Overall, the usability and understandability of the
entire system should be further improved.

The whole process of resolving issues has to be simplified. There may al-
ready be too many options. Limiting these possibilities could vastly simplify
the process.

Another great idea for improving the system is adding choices during the
voting by the users themselves. However, it should be noted that members
who voted earlier did not have this choice.

This chapter discussed the reviews of the participants who took part in
the usability test. Areas that need to be improved have been identified by
this test. Therefore, the next chapter summarizes the current status of the
application and provides suggestions for improvements. By and large, the
participants were already very satisfied with KonfiGr, even though it is a
first prototype.

78

7 Conclusion

This chapter gives an overview of the current version of KonfiGr. It describes
which areas have already been developed, but also which areas should be
improved in future work. Some potential improvements have already been
mentioned in the previous chapters. These and other improvements will be
summarized in this chapter.

7.1 Actual Status of KonfiGr

KonfiGr is a prototype of an intelligent user interface for managing group-
based knowledge-based domain-independent configurations. The topic of con-
figuration is a very far-reaching one. The implementation of all possible
techniques and variants of this topic provides therefore enough work for
several projects. The task of this master thesis was to develop a first proto-
type, which contains just the most important functions.

As mentioned in Chapter 4 and Chapter 5, KonfiGr is, among other things,
a domain-independent application. The prototype is therefore not limited to
specific products or services and can be used in any domain. In order to be
able to define all products and services, there are steps and constraints in
KonfiGr. To represent the different component types, there are many step
types. Constraints between steps allow to define complex products or services.
Moreover, KonfiGr supports the most common aggregation functions for
generating group results. The same aggregation functions are used when
generating group recommendations. In addition to recommendations, user
preferences can be displayed to influence the votings of project members.

79

7 Conclusion

Furthermore, at each step it is possible to decide at which point a conflict oc-
curs. Thus, opinions that are extremely different are recognized and have to
be resolved. KonfiGr already offers several variants to do so. KonfiGr proves
that the efficient configuration of complex products or services within a
group of users is possible.

7.2 Future Works

KonfiGr is a complete application that is already fully functional. Moreover,
the usability test has proven that the system is already useful. However,
there are still many areas that could be improved. Suggestions for improve-
ments are covered in this section.

Project

The way projects are managed in KonfiGr could be further improved. For
example, there should be options to copy or share a project. Additionally, a
history of project changes would be very helpful.

Member

In practice, users make their group decisions with the same set of certain
people. Therefore, there should be a possibility to form teams. In these teams
there should be a point system to give higher weights to the responses of
group members, who have made compromises in the past. This idea is
already mentioned by Felfernig, Boratto, et al., 2018. Furthermore, adding
notifications in the navigation bar area can increase the interactivity and
usability of KonfiGr. Another useful feature would be a chat to better discuss
decisions. Typically, there is much to discuss in order to reach consensus in
a group decision. In any case, more attention needs to be paid to this area
in the future.

80

7 Conclusion

Step

KonfiGr already supports many different step types. The knowledge engi-
neer can choose between single-choice and multiple-choice types to form a
list of alternatives. Issues of such steps can be resolved by weighting. This
weighting should also be a separate step type. Furthermore, the date type
should provide a calendar for picking dates. Additionally, the administrator
should be able to limit the selection not only to one period, but to multiple
periods or several days. Users should then be able to agree on a single day
or a period of days like in Doodle (see Chapter 2).

Constraints

Currently, it is only possible to create constraints between two steps. In the
future, it should be possible to create conditions including choices which
affects other choices of the same step. Moreover, there are many different
possibilities to built up knowledge bases. In future work, other variants
should be considered.

Usability

The usability of KonfiGr is a main factor for success and must be further
improved. In particular, graphic elements such as diagrams could commu-
nicate information to users in a better way. The usability test has shown
that it is important for users to understand the results. The users should
also know how their choices affect the result. In the best case, this should
be communicated to the users in a simply way and without much effort for
the users.

Avoiding Biases

In Chapter 2, different types of biases in group decisions have been listed.
Some of them can already be prevented, while others still need additional
functions to avoid them. For example, the serial position effect could be
avoided by randomizing the order of choices. The polarization effect can

81

7 Conclusion

be avoided by adding a possibility to lead a discussion during the voting
process. In short, these biases should be taken into account in future work.

Resolving Issues

KonfiGr supports some approaches to resolve issues, but not every approach
is available for every step type. The ability of an administrator to select a
final result should be supported in all step types. Additionally, there should
be more algorithms to automatically resolve issues. Moreover, the system
should provide recommendations for resolving issues. Furthermore, resolved
conflicts should be visible for users. Once teams exist, issues should be
resolved according to compromises made in the past.

Currently, resolving an issue of a step sometimes changes the selection of a
user. Thus, the results of related steps of this user is no longer usable, if this
result is no longer possible due to constraints. In the future, it should be
possible for users to have a vote on these steps again.

Recommender Systems for Knowledge Engineering

Recommender systems can be used to improve knowledge engineering. The
knowledge engineering bottleneck is a major problem in configuration. Felfernig,
Reiterer, et al., 2013 shows how recommenders can support knowledge engi-
neering to avoid this problem. Currently, it is difficult for non-technicians to
design complicated configurations. Clever recommendations could facilitate
this problem.

In regard to all these suggestions, one can conclude that KonfiGr can be ex-
tended to many areas, because group-based configuration is a far-reaching and
growing topic, which always offers new insights and thus new possibilities
for improvements. The goal is to improve the application and to receive
feedback by means of further tests and to further develop the system based
on this feedback. In any case, group-based configuration is a topic that could
become increasingly important in the near future. Therefore, research on
this topic has to be continued.

82

Bibliography

Adomavicius, Gediminas and Alexander Tuzhilin (2005). “Toward the next
generation of recommender systems: A survey of the state-of-the-art
and possible extensions.” In: IEEE Transactions on Knowledge & Data
Engineering 6, pp. 734–749 (cit. on p. 4).

Aggarwal, Charu C et al. (2016). Recommender systems. Springer (cit. on p. 4).
Ardissono, Liliana et al. (2003). “A framework for the development of per-

sonalized, distributed web-based configuration systems.” In: Ai Magazine
24.3, pp. 93–93 (cit. on p. 4).

Burke, Robin (2000). “Knowledge-based recommender systems.” In: Ency-
clopedia of library and information systems 69.Supplement 32, pp. 175–186

(cit. on p. 5).
Burke, Robin (2002). “Hybrid recommender systems: Survey and experi-

ments.” In: User modeling and user-adapted interaction 12.4, pp. 331–370

(cit. on p. 5).
Burke, Robin (2007). “Hybrid web recommender systems.” In: The adaptive

web. Springer, pp. 377–408 (cit. on p. 5).
Chen, Li and Pearl Pu (2007). “Hybrid critiquing-based recommender sys-

tems.” In: Proceedings of the 12th international conference on Intelligent user
interfaces. ACM, pp. 22–31 (cit. on p. 5).

Chen, Li and Pearl Pu (2012). “Critiquing-based recommenders: survey and
emerging trends.” In: User Modeling and User-Adapted Interaction 22.1-2,
pp. 125–150 (cit. on p. 5).

Code First (2019). PlanITpoker. url: https://www.planitpoker.com/ (visited
on 01/29/2019) (cit. on p. 18).

Cöster, Rickard et al. (2002). “Enhancing web-based configuration with
recommendations and cluster-based help.” In: (cit. on p. 4).

Doodle AG (2019). Doodle. url: https://doodle.com (visited on 01/24/2019)
(cit. on p. 15).

83

https://www.planitpoker.com/
https://doodle.com

Bibliography

Falkner, Andreas, Alexander Felfernig, and Albert Haag (2011). “Recom-
mendation technologies for configurable products.” In: Ai Magazine 32.3,
pp. 99–108 (cit. on p. 4).

Felfernig, Alexander, Muesluem Atas, et al. (2016). “Towards group-based
configuration.” In: International Workshop on Configuration 2016 (Con-
fWS’16), pp. 69–72 (cit. on pp. 1, 3, 11).

Felfernig, Alexander, Ludovico Boratto, et al. (2018). Group Recommender
Systems: An Introduction. Springer (cit. on pp. 1, 3–8, 11–15, 18, 80).

Felfernig, Alexander and Robin Burke (2008). “Constraint-based recom-
mender systems: technologies and research issues.” In: Proceedings of
the 10th international conference on Electronic commerce. ACM, p. 3 (cit. on
pp. 4, 5).

Felfernig, Alexander, Gerhard Friedrich, Dietmar Jannach, et al. (2015).
“Constraint-based recommender systems.” In: Recommender systems hand-
book. Springer, pp. 161–190 (cit. on p. 5).

Felfernig, Alexander, Gerhard Friedrich, Monika Schubert, et al. (2009).
“Plausible repairs for inconsistent requirements.” In: Twenty-First Inter-
national Joint Conference on Artificial Intelligence (cit. on p. 4).

Felfernig, Alexander, Lothar Hotz, et al. (2014). Knowledge-based configuration:
From research to business cases. Newnes (cit. on pp. 1, 2, 10, 11, 35, 37, 38).

Felfernig, Alexander, Michael Jeran, et al. (2014). “Basic approaches in recom-
mendation systems.” In: Recommendation Systems in Software Engineering.
Springer, pp. 15–37 (cit. on p. 4).

Felfernig, Alexander and Gerald Ninaus (2012). “Group recommendation
algorithms for requirements prioritization.” In: Recommendation Systems
for Software Engineering (RSSE), 2012 Third International Workshop on.
IEEE, pp. 59–62 (cit. on p. 20).

Felfernig, Alexander, Stefan Reiterer, et al. (2013). “Recommender Systems
for Configuration Knowledge Engineering.” In: Configuration Workshop.
Citeseer, pp. 51–54 (cit. on pp. 8, 82).

Felfernig, Alexander, Johannes Spöcklberger, et al. (2018). “Configuring
Release Plans.” In: Proceedings of the 20th Configuration Workshop. CEUR-
WS. org (cit. on p. 3).

Felfernig, Alexander, Martin Stettinger, et al. (2014). “Towards Open Config-
uration.” In: Configuration Workshop. Citeseer, pp. 89–94 (cit. on pp. 1, 3,
8).

84

Bibliography

Felfernig, Alexander, Juha Tiihonen, et al. (2018). “20 th International Con-
figuration Workshop.” In: (cit. on p. 2).

Felfernig, Alexander, Christoph Zehentner, et al. (2011). “Group decision
support for requirements negotiation.” In: International Conference on
User Modeling, Adaptation, and Personalization. Springer, pp. 105–116 (cit.
on p. 3).

Graz University of Technology (2018). Choiclaweb. url: https : / / www .

choiclaweb.com (visited on 01/24/2019) (cit. on p. 14).
Jameson, Anthony, Stephan Baldes, and Thomas Kleinbauer (2004). “Two

methods for enhancing mutual awareness in a group recommender sys-
tem.” In: Proceedings of the working conference on Advanced visual interfaces.
ACM, pp. 447–449 (cit. on p. 3).

Jannach, Dietmar et al. (2010). Recommender systems: an introduction. Cam-
bridge University Press (cit. on p. 4).

Koren, Yehuda and Robert Bell (2015). “Advances in collaborative filtering.”
In: Recommender systems handbook. Springer, pp. 77–118 (cit. on p. 5).

Mark Otto, Jacob Thornton (2019). Bootstrap. url: https://getbootstrap.
com/docs/3.3/ (visited on 01/28/2019) (cit. on p. 31).

Mathew, Praveena, Bincy Kuriakose, and Vinayak Hegde (2016). “Book Rec-
ommendation System through content based and collaborative filtering
method.” In: 2016 International Conference on Data Mining and Advanced
Computing (SAPIENCE). IEEE, pp. 47–52 (cit. on p. 5).

McCarthy, Kevin et al. (2006). “Group recommender systems: a critiquing
based approach.” In: Proceedings of the 11th international conference on
Intelligent user interfaces. ACM, pp. 267–269 (cit. on pp. 5, 18).

Microsoft (2019). Microsoft Forms. url: https://forms.office.com (visited
on 01/24/2019) (cit. on p. 16).

Ninaus, Gerald et al. (2014). “INTELLIREQ: Intelligent Techniques for Soft-
ware Requirements Engineering.” In: ECAI, pp. 1161–1166 (cit. on p. 20).

Pivotal Software (2019). Spring Boot. url: https://spring.io/projects/
spring-boot (visited on 01/28/2019) (cit. on p. 30).

Reinecke, Katharina et al. (2013). “Doodle around the world: online schedul-
ing behavior reflects cultural differences in time perception and group
decision-making.” In: Proceedings of the 2013 conference on Computer sup-
ported cooperative work. ACM, pp. 45–54 (cit. on p. 15).

85

https://www.choiclaweb.com
https://www.choiclaweb.com
https://getbootstrap.com/docs/3.3/
https://getbootstrap.com/docs/3.3/
https://forms.office.com
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Bibliography

Ricci, Francesco, Lior Rokach, and Bracha Shapira (2011). “Introduction to
recommender systems handbook.” In: Recommender systems handbook.
Springer, pp. 1–35 (cit. on p. 4).

Sabin, Daniel and Rainer Weigel (1998). “Product configuration frameworks-
a survey.” In: IEEE Intelligent Systems and their applications 13.4, pp. 42–49

(cit. on p. 2).
Schafer, J Ben et al. (2007). “Collaborative filtering recommender systems.”

In: The adaptive web. Springer, pp. 291–324 (cit. on p. 5).
Stettinger, Martin (2014). “Choicla: Towards domain-independent decision

support for groups of users.” In: Proceedings of the 8th ACM Conference
on Recommender systems. ACM, pp. 425–428 (cit. on p. 14).

Stettinger, Martin and Alexander Felfernig (2014). “Choicla: Intelligent deci-
sion support for groups of users in the context of personnel decisions.”
In: Proceedings of the ACM RecSys’ 2014 IntRS Workshop, pp. 28–32 (cit. on
p. 14).

Stettinger, Martin, Alexander Felfernig, Gerhard Leitner, and Stefan Reiterer
(2015). “Counteracting anchoring effects in group decision making.” In:
International Conference on User Modeling, Adaptation, and Personalization.
Springer, pp. 118–130 (cit. on p. 14).

Stettinger, Martin, Alexander Felfernig, Gerhard Leitner, Stefan Reiterer,
and Michael Jeran (2015). “Counteracting serial position effects in the
choicla group decision support environment.” In: Proceedings of the 20th
international conference on intelligent user interfaces. ACM, pp. 148–157

(cit. on p. 14).
Stumptner, Markus (1997). “An overview of knowledge-based configura-

tion.” In: Ai Communications 10.2, pp. 111–125 (cit. on pp. 2, 4).
The Thymeleaf Team (2019). Thymeleaf. url: https://www.thymeleaf.org

(visited on 01/28/2019) (cit. on p. 31).
Thüm, Thomas, Sebastian Krieter, and Ina Schaefer (2018). “Product Con-

figuration in the Wild: Strategies for Conflicting Decisions in Web Con-
figurators.” In: 20 th International Configuration Workshop, p. 1 (cit. on
p. 22).

Tiihonen, Juha and Alexander Felfernig (2010). “Towards recommending
configurable offerings.” In: International journal of mass customisation 3.4,
pp. 389–406 (cit. on p. 4).

86

https://www.thymeleaf.org

Bibliography

Tiihonen, Juha and Alexander Felfernig (2017). “An introduction to person-
alization and mass customization.” In: Journal of Intelligent Information
Systems 49.1, pp. 1–7 (cit. on p. 2).

Tran, Trang et al. (2016). “An extension of CHOICLA User Interfaces for
Configurable Products.” In: RS-BDA’16 Workshop (cit. on p. 14).

Trewin, Shari (2000). “Knowledge-based recommender systems.” In: Ency-
clopedia of library and information science 69.Supplement 32, p. 180 (cit. on
p. 5).

Tseng, Hwai-En, Chien-Chen Chang, and Shu-Hsuan Chang (2005). “Apply-
ing case-based reasoning for product configuration in mass customiza-
tion environments.” In: Expert Systems with Applications 29.4, pp. 913–925

(cit. on p. 4).
Van Meteren, Robin and Maarten Van Someren (2000). “Using content-based

filtering for recommendation.” In: Proceedings of the Machine Learning in
the New Information Age: MLnet/ECML2000 Workshop, pp. 47–56 (cit. on
p. 5).

Wang, Yue and Daniel Yiu-Wing Mo (2018). “The Effect of Default Options
on Consumer Decisions in the Product Configuration Process.” In: 20 th
International Configuration Workshop, p. 31 (cit. on p. 38).

Zhang, Linda L (2014). “Product configuration: a review of the state-of-the-
art and future research.” In: International Journal of Production Research
52.21, pp. 6381–6398 (cit. on p. 2).

Zhang, Linda L et al. (2014). “Open Configuration: a New Approach to
Product Customization.” In: Configuration Workshop, pp. 75–79 (cit. on
p. 8).

87

	Abstract
	Kurzfassung
	Introduction
	Related Work
	Related Literature
	Related Applications

	Requirements regarding the prototype
	Mockup
	Development Environment

	Implementation
	Application Structure
	Knowledge Engineering
	Voting
	Aggregation
	Recommendation
	Conflict Detection and Resolving

	Use Cases
	Apartment Profile
	Exam Definer
	Car Configurator
	Vacation Planning

	User Study
	Conclusion
	Actual Status of KonfiGr
	Future Works

	Bibliography

