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Introduction

In many applications in engineering and industry the computation of a solution to
Maxwell’s equations for dielectric materials is necessary to understand occurring elec-
tromagnetic fields. Only in special cases analytic solutions are available, which motiv-
ates the research of numerical methods in this field. If the dependency on the time is
neglected Maxwell’s equations decouple and provide a system of equations for solving
the magnetostatic and electrostatic field problems independently. The electrostatic
transmission problem is discussed in [16]. Popular choices for solving partial differen-
tial equations numerically are the finite element method, see, e.g., [3, 6, 8, 36], and the
boundary element method see, e.g., [5, 12, 32, 34]. In the finite element method the
domain is decomposed into finite elements, which requires a discretization of the whole
domain and special techniques for the exterior domain in transmission problems. This
thesis focuses on the boundary element method, which has already been used for the
numerical solution of transmission problems in, e.g., [1, 2, 15, 18]. With the bound-
ary element method a partial differential equation on the domain is transformed to a
boundary integral equation. This transformation reduces the dimension of the prob-
lem to the spatial dimension of the boundary. The reduction of the problem’s spatial
dimension yields system matrices with lower dimensions compared to the finite ele-
ment method, since only the boundary has to be discretized. Another advantage of the
boundary element method is the natural handling of unbounded exteriors of bounded
domains in transmission problems. On the other hand the matrices obtained by the
boundary element method are, unlike the matrices occurring in the finite element
method, no longer sparse. Also the knowledge of an analytic fundamental solution
for the problem is required, which restricts the class of problems where the boundary
element method is applicable. Therefore both have their individual advantages and
disadvantages depending on the type of partial differential equation.

The physical background of this thesis is mainly influenced by works on plasmon
resonances of metallic nanoparticles, see, e.g., [7, 13, 37]. The foundations for this
master’s thesis were laid in the previous work [19], which was part of the project
in Technomathematics at the Institute of Applied Mathematics at the University of
Technology in Graz. The main ideas for the analytical background of the boundary
element methods are given in [1, 2, 20, 34].

In this work we will derive the electrostatic transmission problem from Maxwell’s
equations by using a scalar potential ansatz. With the help of several boundary in-
tegral operators, such as the single layer potential and the double layer potential
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8 Introduction

operator, we will obtain three boundary integral equations for solving the electrostatic
transmission problem. Furthermore we will obtain discrete versions of the variational
formulations of this boundary integral equations by using the Galerkin method. The
resulting linear systems will be used to solve the transmission problem numerically,
where we use the fast multipole method, see, e.g., [11, 27], to increase the performance.
The different formulations will be compared with respect to errors and computational
times and several efforts will be made to increase the performance.

The thesis is structured as follows: In the first chapter we will state Maxwell’s equa-
tions and we will reduce them to a decoupled system of electrostatics and magneto-
statics by making some assumptions on the domain and the physical nature of the
problem. For computations of the electric field we will see that we have to solve an
electrostatic transmission problem with the Laplace equation.

In the second chapter we will derive three boundary integral equations by using
suitable boundary integral operators following [1, 2, 20]: the single layer and double
layer potential formulations and the Steklov–Poincaré interface equation. We will also
investigate unique solvability and equivalence of these equations on the continuous
level.

In the third chapter we will use the boundary element method to state discrete
versions of the boundary integral formulations, we will provide an error analysis of
the Steklov–Poincaré operator formulation and we will prove unique solvability of this
discrete problem.

The fourth chapter is dedicated to the numerical investigation of the boundary
element methods, where bounded domains with constant permittivities in the interior
and the exterior are placed in an electric excitation. Two examples will be considered:
a unit sphere and a microscopic cube with a given side length. Since we know an
analytical solution of the transmission problem for the sphere it is suitable to test
if the numerical methods yield the orders of convergence, which we would expect
theoretically by the results we will have obtained in the third chapter. The cube on
the other hand has a geometry, which is numerically more challenging and therefore
more appropriate for testing how the methods would perform in real world applications.
The electric field and other physical quantities, like the electric dipole moment, will be
computed by several derived formulations and these methods will be compared with
respect to computational time and accuracy.

After the first computation with the beforehand derived formulations several ad-
aptions will be made to improve numerical performance in the last chapter. These
adaptions include variations in the discretization, by using the collocation method,
see, e.g., [31], or choosing graded meshes, which are characterized through a stronger
refinement and therefore smaller boundary elements closer to singularities like edges
and corners, see, e.g., [17, 29, 30]. We will also test alternative ansatz functions, which
use Dirac like point sources. Finally we will find an alternative computation of the
dipole moment for the double layer formulation.



1 Electrostatic Transmission
Problem

In this chapter we will state Maxwell’s equations, from which we will derive a decoupled
system of two equations in the static case. For this purpose we will use scalar and
vector potentials and a suitable gauge condition. The decoupled system allows us to
compute the magnetic field and the electric field independently from each other. In
this work we only consider electrostatics.

1.1 Maxwell’s Equations

Let us now consider macroscopic Maxwell’s equations in frequency space and Gaussian
units with the free charge density ρ and the electric current density j, see, e.g., [7, 16]:

∇ ·B = 0, (Gauss’s Law)

∇ ·D = 4πρ, (Coulomb’s Law)

∇×H + ikD =
4π

c
j, (Ampère’s Circuital Law)

∇× E− ikB = 0, (Faraday’s Induction Law)

where c is the speed of light, ω is the frequency, k = ω
c

is the wavenumber, D = εE
is the dielectric displacement, B = µH is the magnetic flux density, E is the electric
field, and H is the magnetic field.

With Gauss’s Law and Faraday’s Induction Law we can conclude the existence of a
vector potential A and a scalar potential Φ, see, e.g., [37, p. 40], with

B = ∇×A, (1.1)

E = −∇Φ + ikA. (1.2)

Because of the invariance under divergence or gradient, respectively, we can choose A
and Φ in such a way that they fulfill the Lorenz condition [21]

∇ ·A− ikΦ = 0. (1.3)

If we restrict our considerations to the microscopic form of Maxwell’s equations, the
Lorenz condition (1.3) in combination with Coulomb’s Law and Ampère’s Circuital

9



10 1 Electrostatic Transmission Problem

Law leads to two decoupled wave equations for A and Φ:

−∆Φ− k2Φ = 4πρ, (1.4a)

−∆A− k2A =
4π

c
j. (1.4b)

In this thesis we will only consider the solution to (1.4a) in the limit of small particles
(compared to the wavelength λ = 1

k
). In this case we can put k ≈ 0 and neglect all

retardation effects [37, p. 42].
Therefore (1.4) simplifies to the decoupled system

−∆Φ = 4πρ, (Poisson equation)

−∆A =
4π

c
j.

We are interested in the computation of E, which is why we have to solve only the
Poisson equation. If there are no external charges present the Poisson equation reduces
to the Laplace equation

−∆Φ = 0. (Laplace equation)

1.2 Transmission Problem

Let Ω ⊂ R3 be some bounded Lipschitz domain with ε(x) = ε1 for x ∈ Ω and
ε(x) = ε0 for x ∈ Ωext with Ωext := R3 \Ω. We denote the boundary of the domain by
Γ := ∂Ω. We further request 0 < ε0 < ε1.

For the solution of the Poisson equation we consider Φ = Φhom + Φpart, where Φpart is
a given solution to the Poisson equation.

Thus it remains to find Φhom as a solution of the Laplace equation with appro-
priate transmission conditions. We require Φ

∣∣
Ω

and Φ
∣∣
Ωext to fulfill the transmission

conditions given in [37]:

Φ
∣∣
Ω

(x) = Φ
∣∣
Ωext(x) for x ∈ Γ,

and

ε1

(
∂

∂n
Φ
∣∣
Ω

(x)

)
= ε0

(
∂

∂n
Φ
∣∣
Ωext(x)

)
for x ∈ Γ,

as well as the radiation condition for Φ
∣∣
Ωext

Φ
∣∣
Ωext(x) = O

(
1

|x|

)
as |x| → ∞.



1.2 Transmission Problem 11

We define Φ1 := Φhom

∣∣
Ω

and Φ0 := Φhom

∣∣
Ωext and obtain the transmission boundary

value problem

−∆Φ1(x) = 0 for x ∈ Ω, (1.5a)

−∆Φ0(x) = 0 for x ∈ Ωext, (1.5b)

Φ1(x) = Φ0(x) for x ∈ Γ, (1.5c)

ε1

(
∂

∂n
Φ1(x)

)
− ε0

(
∂

∂n
Φ0(x)

)
= (ε0 − ε1)

∂

∂n
Φpart(x) for x ∈ Γ, (1.5d)

Φ0(x) = O
(

1

|x|

)
as |x| → ∞. (1.5e)

This transmission problem differs to the one given in [1, 2] by the right hand side in
(1.5d). In the following chapters we will discuss several approaches for the solution of
this transmission problem.





2 Boundary Integral Equations

In this chapter we will consider three approaches to find a weak solution of the trans-
mission problem (1.5), using different boundary integral formulations. Afterwards
we will show that all three approaches yield equivalent solutions and that they are
uniquely solvable on the continuous level.

For easier notation we will write Φ instead of Φhom in this chapter. Most of the
representations and formulas are given in [1]. The herein used notations are similar to
the notations in [34].

2.1 Single Layer Potential Formulation

At first we will consider an indirect single layer formulation. Let w ∈ H− 1
2 (Γ) be an

unknown charge, we define the single layer potential as

Ṽ w(x) :=

∫
Γ

U∗(x, y)w(y) dsy for x ∈ Ω ∪ Ωext, (2.1)

with the fundamental solution for the Laplace equation U∗(x, y) :=
1

4π|x− y|
.

If we choose Φ := Ṽ w then continuity on the surface (1.5c) and the radiation
condition (1.5e) are satisfied. By [34, p. 118] it also holds that Φ is a weak solution
of the Laplace equation in Ω ∪ Ωext and therefore a weak solution of the Laplace
equations (1.5a) and (1.5b). It remains to satisfy the Neumann transmission (1.5d).

By [34, pp. 119-124] there holds for w ∈ H− 1
2 (Γ)

γint
1 Φ1 = (σI +K ′)w

γext
1 Φ0 = ([σ − 1]I +K ′)w

in the sense of H−
1
2 (Γ), where

(K ′w)(x) := lim
δ→0

∫
y∈Γ: |y−x|≥δ

γint
1,xU

∗(x, y)w(y) dsy for x ∈ Γ,

σ(x) := lim
δ→0

1

4πδ2

∫
y∈Ω: |y−x|=δ

dsy for x ∈ Γ,

13



14 2 Boundary Integral Equations

and γint
0 , γext

0 , γint
1 , γext

1 are the interior and exterior trace operators and conormal de-
rivatives. From (1.5d) and the fact that σ(x) = 1

2
for almost every (f.a.e.) x ∈ Γ we

conclude that (
1

2

ε1 + ε0

ε1 − ε0

I +K ′
)
w = −γint

1 Φpart on Γ. (2.2)

This is the boundary integral equation for which we wish to find a unique solution
later in this chapter.

2.2 Steklov–Poincaré Operator Formulation

The next boundary integral formulation, which we will derive, is the Steklov–Poincaré
operator formulation. The interior and exterior representation formulas will be used
to obtain this formulation.

2.2.1 Interior Steklov–Poincaré Operator

A solution of the interior Laplace equation in (1.5a) is given by the representation
formula, see, e.g., [34, p. 96],

Φ1(x) =
(
Ṽ γint

1 Φ1

)
(x)− (Wγint

0 Φ1)(x) for x ∈ Ω, (2.3)

where for v ∈ H 1
2 (Γ)

(Wv)(x) :=

∫
Γ

γint
1,yU

∗(x, y)v(y) dsy for x ∈ Ω ∪ Ωext

is the double layer potential. For the limit x→ Γ in (2.3) we obtain by [34, pp. 125-127]

γint
0 Φ1 =

(
V γint

1 Φ1

)
− ([−1 + σ]I +K)γint

0 Φ1

where V := γint
0 Ṽ and

(Kv)(x) := lim
δ→0

∫
y∈Γ: |y−x|≥δ

U∗(x, y)v(y) dsy for x ∈ Γ.

Rewriting this yields the following boundary integral equation(
V γint

1 Φ1

)
=

(
1

2
I +K

)
γint

0 Φ1. (2.4)

By [4] all operators are bounded. If we use the fact that the single layer potential V
is invertible [34, p. 139] we obtain the interior Steklov–Poincaré operator S1 and the
interior Dirichlet to Neumann map

γint
1 Φ1 = V −1

(
1

2
I +K

)
γint

0 Φ1 =: (S1γ
int
0 Φ1). (2.5)
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2.2.2 Exterior Steklov–Poincaré Operator

Similarly to the interior representation formula (2.3) we can write the solution to the
exterior Laplace equation as

Φ0(x) = −
(
Ṽ γext

1 Φ0

)
(x) + (Wγext

0 Φ0)(x) for x ∈ Ωext, (2.6)

and conclude for v ∈ H 1
2 (Γ)

(
V γext

1 Φ0

)
=

(
−1

2
I +K

)
γext

0 Φ0, (2.7)

which leads to the exterior Steklov–Poincaré operator S0 and the exterior Dirichlet to
Neumann map

γext
1 Φ0 = −V −1

(
1

2
I −K

)
γext

0 Φ0 =: −(S0γ
ext
0 Φ0). (2.8)

2.2.3 Steklov–Poincaré Boundary Integral Equation

By using the Dirichlet to Neumann maps (2.5) and (2.8) and the Dirichlet transmission
condition γext

0 Φ0(x) = γint
0 Φ1(x) = Φ(x) for x ∈ Γ we can rewrite the Neumann

transmission condition (1.5d) to

ε1(S1Φ)(x) + ε0(S0Φ)(x) = (ε0 − ε1)γint
1 Φpart(x) for x ∈ Γ. (2.9)

By applying the Dirichlet to Neumann maps (2.5) and (2.8) once more, and using the
representation formulas (2.3) and (2.6) we can compute Φ on Ω.

2.3 Double Layer Potential Formulation

For the double layer potential we would like to find a formulation that is derived
analogously to the single layer potential formulation. For this purpose we reformulate
the transmission problem (1.5) similar to [1]. We define ψ such that

−∆ψ(x) = 0 for x ∈ Ω,

γint
1 ψ(x) = −γint

1 Φpart(x) =: g(x) for x ∈ Γ,
(2.10)

where the solvability condition ∫
Γ

g(x)dsx = 0 (2.11)
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has to be fulfilled. ψ can be obtained by using the first boundary integral equation(
1

2
I +K

)
ψ = V g. (2.12)

The solution ψ to the variational formulation of the Neumann boundary value problem
(2.10) is only unique up to an additive constant, see, e.g., [34, p. 67], which is why we
use a modified variational problem with the scaling condition∫

Γ

ψ(x)dsx = 0.

We denote by

H
1
2
∗∗(Γ) :=

{
v ∈ H

1
2 (Γ) : 〈v, 1〉Γ = 0

}
the space of H

1
2 (Γ)-functions which satisfy this condition. We also define

H
1
2
∗ (Γ) :=

{
v ∈ H

1
2 (Γ) : 〈v, weq〉Γ = 0

}
,

where weq = V −11 ∈ H−
1
2 (Γ) is the natural density given in [34, p. 142]. Since

the single layer potential V −1 : H
1
2 (Γ) → H−

1
2 (Γ) is bounded and H−

1
2 (Γ)-elliptic

([34, p. 178]), we can define

〈w, v〉V −1 := 〈V −1w, v〉Γ for all w, v ∈ H
1
2 (Γ)

to be an inner product inH
1
2 (Γ). The variational formulation then is to find ψ ∈ H

1
2
∗ (Γ)

such that 〈(
1

2
I +K

)
ψ, v

〉
V −1

= 〈V g, v〉V −1 for all v ∈ H
1
2
∗ (Γ), (2.13)

which is, since V : H
− 1

2
∗ (Γ)→ H

1
2
∗ (Γ) is isomorphic ([34, p. 144]), equivalent to finding

ψ ∈ H
1
2
∗ (Γ) such that〈(

1

2
I +K

)
ψ,w

〉
Γ

= 〈V g, w〉Γ for all w ∈ H−
1
2

∗ (Γ), (2.14)

where

H
− 1

2
∗ (Γ) :=

{
w ∈ H−

1
2 (Γ) : 〈w, 1〉Γ = 0

}
.
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Since (2.13) is uniquely solvable ([34, p. 178]) (2.14) is also uniquely solvable. We

consider the modified variational formulation to find ψ∗ ∈ H
1
2
∗∗(Γ) such that〈(

1

2
I +K

)
ψ∗, w

〉
Γ

= 〈V g, w〉Γ for all w ∈ H−
1
2

∗ (Γ). (2.15)

Since the solvability condition (2.11) is satisfied, there holds that V g ∈ H
1
2
∗ (Γ). The

map
(

1
2
I +K

)
: H

1
2
∗∗(Γ) → H

1
2
∗ (Γ) is surjective, since for the solution ψ ∈ H

1
2
∗ (Γ) of

(2.14) there holds that ψ∗ = ψ+β1 ∈ H
1
2
∗∗(Γ), with β = − 〈ψ,1〉Γ|Γ| , is a solution of (2.15).

It is also injective since

(1− c̃K)‖u∗‖V −1 ≤ ‖
(

1

2
I +K

)
u∗‖V −1 for all u∗ ∈ H

1
2
∗∗(Γ),

with

c̃K =
1

2
+

√
1

4
− cV1 c̃D1 ,

where cV1 and c̃D1 are the ellipticity constants of the single layer boundary integral
operator V and of the hypersingular boundary integral operator D := −γint

1 W , re-
spectively. This can be shown analogous to [34, p. 149, Thm. 6.26]. Therefore the
modified variational formulation (2.15) again defines a unique solution of (2.10).

Next we provide a formulation which defines another solution of the Neumann prob-
lem (2.10) but is easier to solve numerically than (2.15).

Lemma 2.1. The problem (2.15) is equivalent to the problem of finding ψ̃ ∈ H 1
2 (Γ)

such that〈(
1

2
I +K

)
ψ̃, w

〉
Γ

+ 〈ψ̃, 1〉Γ〈w, 1〉Γ = 〈V g, w〉Γ for all w ∈ H−
1
2 (Γ), (2.16)

with

(ψ̃ + α1) = ψ∗ ∈ H
1
2
∗∗(Γ),

where α = γ
|Γ|2 , γ = −〈V g, 1〉Γ + 〈(1

2
I +K)ψ∗, 1〉Γ = −〈V g, 1〉Γ + 〈(1

2
I +K)ψ̃, 1〉Γ.

Proof. First we observe that
(

1
2
I +K

)
ψ̃ =

(
1
2
I +K

)
ψ∗, since

(
1
2
I +K

)
1 = 0.

Let ψ∗ ∈ H
1
2
∗∗(Γ) be a solution of (2.15) and let w ∈ H−

1
2 (Γ) be arbitrary. Then

w = w∗ + β1 with w∗ ∈ H−
1
2

∗ (Γ) and β = 1
|Γ|〈w, 1〉. Therefore it is sufficient to show
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(2.16) for w ∈ H−
1
2

∗ (Γ) and for w = 1. For w ∈ H−
1
2

∗ (Γ) there holds 〈w, 1〉Γ = 0 and

therefore (2.16). For w = 1 we have for ψ∗ ∈ H
1
2
∗∗(Γ) that

0 = |Γ|〈ψ∗, 1〉Γ = 〈1, 1〉Γ〈ψ̃, 1〉Γ + α〈1, 1〉Γ〈1, 1〉Γ
= 〈1, 1〉Γ〈ψ̃, 1〉Γ + γ

= 〈1, 1〉Γ〈ψ̃, 1〉Γ − 〈V g, 1〉Γ +

〈(
1

2
I +K

)
ψ̃, 1

〉
Γ

,

which is equivalent to (2.16) for w = 1. In total we have shown (2.16) for w ∈ H− 1
2 (Γ).

Now let ψ̃ ∈ H 1
2 (Γ) be a solution of (2.16). Let w ∈ H−

1
2

∗ (Γ), then 〈w, 1〉Γ = 0 and
we conclude from (2.16)

〈V g, w〉Γ =

〈(
1

2
I +K

)
ψ̃, w

〉
Γ

=

〈(
1

2
I +K

)
ψ∗, w

〉
Γ

.

It remains to show that ψ∗ ∈ H
1
2
∗∗(Γ). For this purpose we insert w = 1 in (2.16) and

obtain

0 = |Γ|〈ψ̃, 1〉Γ +

〈(
1

2
I +K

)
ψ̃, 1

〉
Γ

− 〈V g, 1〉Γ

= |Γ|〈ψ̃, 1〉Γ + γ

= |Γ|
〈
ψ̃ +

γ

|Γ|2
1, 1

〉
Γ

= |Γ|〈ψ∗, 1〉Γ.

Since ψ∗ = (ψ̃+α1), it is also a solution to the Neumann problem (2.10). Our next
step is to consider the ansatz

Φ1(x) :=
1

ε1

(
Φ̃1(x) + (ε1 − ε0)ψ̃(x)

)
for x ∈ Ω,

Φ0(x) :=
1

ε0

Φ̃0(x) for x ∈ Ωext,
(2.17)

where

−∆Φ̃1(x) = 0 for x ∈ Ω, (2.18)

−∆Φ̃0(x) = 0 for x ∈ Ωext, (2.19)

and therefore Φ̃1 and Φ̃0 satisfy the Laplace equations (1.5a) and (1.5b).
For the radiation condition (1.5e) we obtain

Φ̃0(x) = O
(

1

|x|

)
as |x| → ∞. (2.20)
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From the Neumann transmission condition (1.5d) we conclude for x ∈ Γ

ε1γ
int
1 Φ1(x)− ε0γ

ext
1 Φ0(x) = γint

1 Φ̃1(x) + (ε1 − ε0)γint
1 ψ̃(x)− γext

1 Φ̃0(x)

= γint
1 Φ̃1(x)− γext

1 Φ̃0(x)− (ε1 − ε0)γint
1 Φpart(x).

Hence we require for the new transmission problem the Neumann transmission condi-
tion

γint
1 Φ̃1 = γext

1 Φ̃0. (2.21)

For (1.5c) we have

ε0Φ̃1 − ε1Φ̃0 = (ε0 − ε1)ε0ψ̃. (2.22)

Altogether we have now obtained a new transmission problem (2.18)–(2.22). For
this problem we proceed in the same way as for the single layer potential, but now we
use the double layer ansatz for an unknown charge v ∈ H 1

2 (Γ):

Φ̃(x) := −(Wv)(x) for x ∈ Ω ∪ Ωext, (2.23)

and use the restrictions Φ̃1 = Φ̃
∣∣
Ω

and Φ̃0 = Φ̃
∣∣
Ωext , which satisfy the Laplace equations

(2.18), (2.19), the radiation condition (2.20), and the Neumann transmission condition
(2.21). An application of the interior and exterior trace operators gives

γint
0 Φ̃1 = − ((σ − 1)I +K) v,

γext
0 Φ̃0 = − (σI +K) v,

in the sense of H
1
2 (Γ).

From the jump condition (2.22) we conclude the boundary integral equation , see,
e.g., [1], (

1

2

ε1 + ε0

ε1 − ε0

I +K

)
v(x) = −ε0ψ̃(x) on Γ. (2.24)

2.4 Equivalence of Formulations and Unique

Solvability

In this section we will prove that all three formulations are equivalent and also uniquely
solvable on the continuous level. The theorems and proofs are analogous to the proofs
in [1].

Theorem 2.2 ([1, pp. 121–122]). Let w ∈ H−
1
2 (Γ) be a solution of the single layer

integral operator equation (2.2), let Φ ∈ H 1
2 (Γ) be a solution of the Steklov–Poincaré

operator equation (2.9), and let v ∈ H 1
2 (Γ) be a solution of the double layer integral

operator equation (2.24). Then there hold the following relations:

Φ(x) = (V w)(x) = − 1

ε0

(
1

2
I +K

)
v(x) for x ∈ Γ.
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Proof. Let us first rewrite the single layer potential boundary integral equation (2.2)
as

ε1

(
1

2
I +K ′

)
w(x) + ε0

(
1

2
I −K ′

)
w(x) = −(ε1 − ε0)γint

1 Φpart(x) f.a.e. x ∈ Γ,

and in the following, by using the identity I = V −1V , as

ε1

(
1

2
I +K ′

)
V −1V w(x) + ε0

(
1

2
I −K ′

)
V −1V w(x)

= −(ε1 − ε0)γint
1 Φpart(x) f.a.e. x ∈ Γ.

With the symmetry relation V K ′ = KV , see, e.g., [34, p. 138], we conclude K ′V −1 =
V −1K and therefore we obtain

ε1V
−1

(
1

2
I +K

)
V w(x) + ε0V

−1

(
1

2
I −K

)
V w(x)

= −(ε1 − ε0)γint
1 Φpart(x) f.a.e. x ∈ Γ.

With the Steklov–Poincaré operators S1 = V −1
(

1
2
I +K

)
and S0 = V −1

(
1
2
I −K

)
we

further obtain

ε1S1V w(x) + ε0S0V w(x) = −(ε1 − ε0)γint
1 Φpart(x) f.a.e. x ∈ Γ,

which shows the equivalence with the Steklov–Poincaré operator equation (2.9) when
introducing Φ = V w.

Let us now consider the double layer integral operator equation (2.24), i.e.,

ε1

(
1

2
I +K

)
v(x) + ε0

(
1

2
I −K

)
v(x) + (ε1 − ε0)ε0ψ̃(x) = 0 f.a.e. x ∈ Γ.

Recall, that ψ̃ is a solution of the Neumann boundary value problem (2.10). Hence,
by using the boundary integral equation (2.12) and by multiplying the double layer
integral equation with

(
1
2
I +K

)
we obtain

ε1

(
1

2
I +K

)(
1

2
I +K

)
v(x) + ε0

(
1

2
I +K

)(
1

2
I −K

)
v(x)

+ (ε1 − ε0)ε0

(
1

2
I +K

)
ψ̃(x) = 0 f.a.e. x ∈ Γ,

and therefore

ε1

(
1

2
I +K

)(
1

2
I +K

)
v(x) + ε0

(
1

2
I +K

)(
1

2
I −K

)
v(x)

− (ε1 − ε0)ε0

(
V γint

1 Φpart

)
(x) = 0 f.a.e. x ∈ Γ.
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Recall that

ε0Φ(x) = Φ̃0(x) = −
(

1

2
I +K

)
v(x) f.a.e. x ∈ Γ.

Hence we conclude

ε1

(
1

2
I +K

)
[−ε0Φ(x)] + ε0

(
1

2
I −K

)
[−ε0Φ(x)]

− (ε1 − ε0)ε0

(
V γint

1 Φpart

)
(x) = 0 f.a.e. x ∈ Γ,

and in the following

ε1

(
1

2
I +K

)
Φ(x) + ε0

(
1

2
I +K

)
Φ(x)

+ (ε1 − ε0)
(
V γint

1 Φpart

)
(x) = 0 f.a.e. x ∈ Γ.

An application of the inverse single layer integral operator V −1 finally results in the
Steklov–Poincaré operator equation (2.9).

As a consequence of Theorem 2.2 we see that unique solvability of one formulation
yields unique solvability of the others.

Theorem 2.3 ([1, p. 122]). Let 0 < ε0 ≤ ε1. The operator

1

2
I +

ε1 − ε0

ε1 + ε0

K = I −
(

1

2
I − ε1 − ε0

ε1 + ε0

K

)
: H

1
2 (Γ)→ H

1
2 (Γ)

admits a unique inverse by the Neumann series(
1

2
I +

ε1 − ε0

ε1 + ε0

K

)−1

=
∞∑
k=0

(
1

2
I − ε1 − ε0

ε1 + ε0

K

)k
,

i.e., the operator
1

2
I − ε1 − ε0

ε1 + ε0

K : H
1
2 (Γ)→ H

1
2 (Γ)

is a contraction satisfying∥∥∥∥(1

2
I − ε1 − ε0

ε1 + ε0

K

)
v

∥∥∥∥
V −1

≤ 1

2

(
1 +

ε1 − ε0

ε1 + ε0

)
‖v‖V −1

for all v ∈ H 1
2 (Γ).

Proof. For v ∈ H
1
2 (Γ) we use an equivalent norm which is induced by the inverse

single layer boundary integral operator,

‖v‖V −1 :=
√
〈V −1v, v〉Γ.
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Note that we have, see, e.g.,[35, pp. 745–746] and [34, p. 151],∥∥∥∥(1

2
I −K

)
v

∥∥∥∥
V −1

≤ ‖v‖V −1 for all v ∈ H
1
2 (Γ),

where the equality holds for all constant v. Then,∥∥∥∥(1

2
I − ε1 − ε0

ε1 + ε0

K

)
v

∥∥∥∥
V −1

=

∥∥∥∥ε1 − ε0

ε1 + ε0

(
1

2
I −K

)
v +

1

2

(
1− ε1 − ε0

ε1 + ε0

)
v

∥∥∥∥
V −1

≤ ε1 − ε0

ε1 + ε0

∥∥∥∥(1

2
I −K

)
v

∥∥∥∥
V −1

+
1

2

(
1− ε1 − ε0

ε1 + ε0

)
‖v‖V −1

≤
[
ε1 − ε0

ε1 + ε0

+
1

2

(
1− ε1 − ε0

ε1 + ε0

)]
‖v‖V −1

=
1

2

(
1 +

ε1 − ε0

ε1 + ε0

)
‖v‖V −1 .

As a consequence of Theorem 2.2 together with Theorem 2.3 we conclude unique
solvability of the three formulations (2.2), (2.9), and (2.24).

2.5 Evaluation of the Electric Field

In this section we show how to evaluate the electric field E on the continuous level.
After computing the scalar potential Φ as the solution of the transmission problem
(1.5) we can use the representation of the electric field as given in (1.2) with k = 0 to
obtain

E(x) = −∇Φpart(x)−∇Φ(x) for x ∈ R3. (2.25)

For the single layer potential formulation (2.2) and the Steklov–Poincaré formulation
(2.9) the evaluation in the general case follows directly from (2.25), i.e.

E(x) = −∇Φpart(x)−∇(Ṽ w)(x) for x ∈ R3 \ Γ, (2.26)

for the single layer formulation and

E(x) = −∇Φpart(x)−∇Φhom(x) for x ∈ R3, (2.27)

for the Steklov–Poincaré formulation, where Φhom is given by the representa-
tion formulas (2.3) and (2.6), respectively. For the evaluation in the case of the
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double layer formulation we use the ansatz (2.17) to obtain

E(x) = −∇Φpart(x) +
1

ε1

∇(Wv)(x)

− ε1 − ε0

ε1

(∇(Ṽ g)(x)−∇(Wψ̃)(x)) for x ∈ Ω,

E(x) = −∇Φpart(x) +
1

ε0

∇(Wv)(x) for x ∈ Ωext.

(2.28)

2.5.1 Simply Connected Domain

It is well known that, if Ω is simply connected,

E(x) = −∇Φpart(x)−∇Φ1(x)→ 0 for x ∈ Ω as ε1 →∞.

In this case we are interested in a more robust computation of the electric field on the
discrete level, since otherwise high values of ε1 could cause troubles. Analogous to [1]
we consider the same ansatz (2.17) as in the double layer potential formulation, where
the interior solution was denoted by

Φ1(x) :=
1

ε1

(
Φ̃1(x) + (ε1 − ε0)ψ̃(x)

)
for x ∈ Ω,

and ψ̃ is a solution to the Neumann boundary value problem (2.10). From the evalu-
ation of the electric field by (2.25) we obtain

ε1E(x) = ε1 (−∇Φpart(x)−∇Φ(x))

= −ε0∇Φpart(x)−∇Φ̃1(x) + (ε1 − ε0)
(
−∇Φpart(x)−∇ψ̃(x)

)
= −ε0∇Φpart(x)−∇Φ̃1(x) for x ∈ Ω,

since there holds

∇ψ̃ = −∇Φpart

by definition in (2.10).
By using this result we are able to compute alternative representations of the electric

field. If Ω is simply connected we compute the electric field for the single layer
formulation by

E(x) = ∇(Ṽ wj)(x)−∇(Ṽ w)(x) for x ∈ Ω, (2.29)

where wj ∈ H−
1
2 (Γ) is a solution of(

1

2
I +K ′

)
wj = −γint

1 Φpart on Γ. (2.30)
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Analogously to the derivation of the stabilized variational formulation (2.16) we can
obtain a similar stabilized variational formulation for (2.30), where we want to find

w̃j ∈ H−
1
2 (Γ) with〈(

1

2
I +K ′

)
w̃j, v

〉
Γ

+ 〈w̃j, 1〉Γ〈v, 1〉Γ = 〈−γint
1 Φpart, v〉Γ for all v ∈ H

1
2 (Γ) (2.31)

and ∇(Ṽ wj)(x) = ∇(Ṽ w̃j)(x).
For the Steklov–Poincarè interface equation we compute an alternative to the

gradient of the particular solution by finding ψ̃ ∈ H 1
2 (Γ) with

〈S1ψ̃, v〉Γ + 〈ψ̃, 1〉Γ〈v, 1〉Γ = 〈−γint
1 Φpart, v〉Γ for all v ∈ H

1
2 (Γ),

and calculating the Neumann datum tj ∈ H−
1
2 (Γ) by

〈V tj, w〉Γ =

〈(
1

2
I +K

)
ψ̃, w

〉
Γ

for all w ∈ H−
1
2 (Γ).

Then we compute the electric field by

E(x) = (∇(Ṽ tj(x)−∇(Wψ̃)(x))−∇Φ(x) for x ∈ Ω. (2.32)

For the double layer potential formulation the evaluation in the domain changes
from (2.28) to

E(x) = −ε0

ε1

∇Φpart(x) +
1

ε1

∇(Wv)(x) for x ∈ Ω. (2.33)
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In this chapter we will discuss discrete formulations of the boundary integral formu-
lations (2.2), (2.9), and (2.24). We will only concern ourselves with unique solvability
and error analysis of the Steklov–Poincaré operator formulation, since the analysis
of the other two formulations is more involved and would go beyond the scope of
this work. We will use Galerkin variational formulations to obtain systems of linear
equations and choose discrete spaces, which seem to be most convenient for implement-
ation. For ` = 1, . . . , N we define h` := diam τ` and denote by h := max

`∈{1,...,N}
h`. For

a function v we denote by vh the discrete approximation and by v the corresponding
vector in RN , if the discrete space is span{ψ`}N`=1, i.e.

vh =
N∑
`=1

ψ`v`.

3.1 Single Layer Potential Formulation

For the single layer potential formulation (2.2) we consider its equivalent variational
formulation, which has a unique solution by Theorem 2.3, where we want to find
w ∈ H− 1

2 (Γ) such that〈(
1

2

ε1 + ε0

ε1 − ε0

I +K ′
)
w, z

〉
Γ

=
〈
−γint

1 Φpart, z
〉

Γ
for all z ∈ H

1
2 (Γ).

The Galerkin variational formulation is to find a piecewise constant approximation
wh ∈ S0

h(Γ) = span{ψ0
`}N`=1 such that〈(

1

2

ε1 + ε0

ε1 − ε0

I +K ′
)
wh, zh

〉
Γ

=
〈
−γint

1 Φpart, zh
〉

Γ
for all zh ∈ S0

h(Γ).

The corresponding linear system reads(
1

2

ε1 + ε0

ε1 − ε0

M̃h + K̃ ′h

)
w = f 0, (3.1)

where for k, ` = 1, . . . , N

M̃h[k, `] = 〈ψ0
` , ψ

0
k〉Γ, K̃ ′h[k, `] = 〈K ′ψ0

` , ψ
0
k〉Γ, f 0

k = 〈−γint
1 Φpart, ψ

0
k〉Γ.

25
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By using the evaluation of the electric field (2.26) and inserting wh instead of w we
are able to compute a numerical approximation of the electric field by

Ẽ(x) = −∇Φpart(x)−∇(Ṽ wh)(x) for x ∈ R3. (3.2)

In the case of a simply connected domain we have to compute an approximation
wj,h ∈ S0

h(Γ) of w̃j as given in the stabilized formulation (2.31). The linear system for
this purpose is given by (

1

2
M̃h + K̃ ′h + a a>

)
wj = f 0,

where for k = 1, . . . , N

ak = 〈ψ0
k, 1〉Γ.

We evaluate the electric field as in (2.29) by

Ẽ(x) = ∇Ṽ (wj,h − wh)(x) for x ∈ Ω. (3.3)

3.2 Steklov–Poincaré Operator Formulation

Now we consider a variational formulation of the Steklov–Poincaré operator formula-
tion (2.9), where we aim to find Φ ∈ H 1

2 (Γ) such that

〈(ε1S1 + ε0S0) Φ, z〉Γ = 〈(ε0 − ε1)γint
1 Φpart, z〉Γ for all z ∈ H

1
2 (Γ). (3.4)

For the discretization of (3.4) we use piecewiese linear and globally continuous basis
functions, i.e. the space S1

h(Γ) = span{ψ1
m}Mm=1 and obtain a Galerkin variational

formulation to find Φ̂h ∈ S1
h(Γ) such that

〈(ε1S1 + ε0S0) Φ̂h, zh〉Γ = 〈(ε0 − ε1)γint
1 Φpart, zh〉Γ for all zh ∈ S1

h(Γ).

Since a direct discretization of the Steklov–Poincaré operators S0 and S1 is not possible
in general, we will use symmetric approximations [34, p.284] instead.

For v ∈ H 1
2 (Γ) the interior and exterior Steklov–Poincaré operators are given by

S1v = Dv +

(
1

2
I +K ′

)
V −1

(
1

2
I +K

)
v = Dv +

(
1

2
I +K ′

)
w1,

S0v = Dv +

(
1

2
I −K ′

)
V −1

(
1

2
I −K

)
v = Dv +

(
1

2
I −K ′

)
w0,
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where w1 = V −1
(

1
2
I +K

)
v ∈ H−

1
2 (Γ) and w0 = V −1

(
1
2
I −K

)
v ∈ H−

1
2 (Γ) are

unique solutions of the variational problems

〈V w1, τ〉Γ =

〈(
1

2
I +K

)
v, τ

〉
Γ

for all τ ∈ H−
1
2 (Γ),

〈V w0, τ〉Γ =

〈(
1

2
I −K

)
v, τ

〉
Γ

for all τ ∈ H−
1
2 (Γ).

Approximations of S1 and S0 are defined by

S̃1v = Dv +

(
1

2
I +K ′

)
w1,h, (3.5a)

S̃0v = Dv +

(
1

2
I −K ′

)
w0,h, (3.5b)

where wi,h ∈ S0
h(Γ) are the unique solutions of the variational problems

〈V w1,h, τh〉Γ =

〈(
1

2
I +K

)
v, τh

〉
Γ

for all τh ∈ S0
h(Γ), (3.6a)

〈V w0,h, τh〉Γ =

〈(
1

2
I −K

)
v, τh

〉
Γ

for all τh ∈ S0
h(Γ). (3.6b)

We obtain a perturbed variational formulation, where we want to find Φh ∈ S1
h(Γ)

such that〈(
ε1S̃1 + ε0S̃0

)
Φh, zh

〉
Γ

=
〈

(ε0 − ε1)γint
1 Φpart, zh

〉
Γ

for all zh ∈ S1
h(Γ). (3.7)

The corresponding Galerkin matrices are given by

S1,h = Dh +

(
1

2
M>

h +K>h

)
V −1
h

(
1

2
Mh +Kh

)
, (3.8a)

S0,h = Dh +

(
1

2
M>

h −K>h
)
V −1
h

(
1

2
Mh −Kh

)
, (3.8b)

where

Dh[m,n] = 〈Dψ1
n, ψ

1
m〉Γ, Kh[k, n] = 〈Kψ1

n, ψ
0
k〉Γ,

Mh[k, n] = 〈ψ1
n, ψ

0
k〉Γ, Vh[k, `] = 〈V ψ0

` , ψ
0
k〉Γ,

for m,n = 1, . . . ,M and k, ` = 1, . . . , N .
From (3.7) we obtain the linear system

(ε1S1,h + ε0S0,h) Φ = (ε1 − ε0)f 1, (3.9)
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where for k = 1, . . . ,M

f 1
k =

〈
−γint

1 Φpart, ψ
1
k

〉
Γ
.

By using discrete versions of the boundary integral equations (2.4) and (2.7), i.e. by
solving

Vht1 =

(
1

2
Mh +Kh

)
Φ, (3.10a)

Vht0 =

(
1

2
Mh −Kh

)
Φ, (3.10b)

we obtain discrete approximations t1,h and t0,h of the interior and exterior Neumann
data t1 = γint

1 Φ and t0 = γext
1 Φ, respectively.

The evaluation of the electric field is done by using the representation formulas (2.3)
and (2.6) on the discrete approximations Φh and ti,h. On the transmission interface
we use evaluation in the centers xk of the triangles τk with normal direction nk to get
an approximation

Ẽ(xk) = −∇Φpart(xk)− (ti,knk +∇ΓΦh(xk)) , (3.11)

where ∇Γ denotes the tangential derivative. In the case of a simply connected domain
we replace −∇Φpart as described in the modified evaluation (2.32):

E(xk) = (∇(Ṽ tj,h)(xk)−∇(Wψ̃h)(xk))− (ti,knk +∇ΓΦh(xk)) . (3.12)

3.2.1 Error Analysis

We would like to give error estimates for various quantities for which we are interested
in the numerical computation. We start with estimating the L2(Γ)-error of the solution
Φh ∈ S1

h(Γ) of the perturbed variational problem (3.7). For this purpose we need some
other estimates beforehand.

Lemma 3.1 ([26, 28, 34]). The approximate Steklov–Poincaré operators S̃0, S̃1 are

bounded, i.e. S̃i : H−
1
2 (Γ)→ H−

1
2 (Γ) satisfy

‖S̃iv‖H− 1
2 (Γ)
≤ cS̃i2 ‖v‖H 1

2 (Γ)
for all v ∈ H

1
2 (Γ).

Moreover, S̃1 is H
1
2 (Γ)-semi-elliptic,

〈S̃1v, v〉Γ ≥ cD1 |v|2H 1
2 (Γ)

for all v ∈ H
1
2 (Γ),

S̃0 is H
1
2 (Γ)-elliptic,

〈S̃0v, v〉Γ ≥ c‖v‖2

H
1
2 (Γ)

for all v ∈ H
1
2 (Γ),
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and they satisfy the error estimates

‖(Si − S̃i)v‖H− 1
2 (Γ)
≤ c inf

τh∈S0
h(Γ)
‖Siv − τh‖H− 1

2 (Γ)
.

Remark 3.1. Analogously to [34, Theorem 12.11] we can conclude boundedness and

an error estimate for the approximate exterior Steklov–Poincaré operator S̃0. S̃0 is not
only H

1
2 (Γ)-semi-elliptic, but also H

1
2 (Γ)-elliptic. A proof is given in [26] following the

main idea of [28, Lemma 1.93].

With the results for the interior and exterior operators in mind we can easily provide
an approximation error for the operator A := (ε1S1 + ε0S0), occurring in the Steklov–
Poincaré formulation, by using triangle inequality.

Corollary 3.2. The approximate operator Ã := (ε1S̃1 + ε0S̃0) : H−
1
2 (Γ)→ H−

1
2 (Γ) is

bounded

‖Ãv‖
H− 1

2 (Γ)
≤ cÃ2 ‖v‖H 1

2 (Γ)
for all v ∈ H

1
2 (Γ).

Moreover, Ã is H
1
2 (Γ)-elliptic,

〈Ãv, v〉Γ ≥ c‖v‖2

H
1
2 (Γ)

for all v ∈ H
1
2 (Γ),

and satisfies the error estimate

‖(A− Ã)v‖
H− 1

2 (Γ)

≤ c

(
inf

τh∈S0
h(Γ)
‖S1v − τh‖H− 1

2 (Γ)
+ inf

τh∈S0
h(Γ)
‖S0v − τh‖H− 1

2 (Γ)

)
.

(3.13)

Now we are able to prove a first error estimate for the solution Φ ∈ H 1
2 (Γ) of the

analytic Steklov–Poincaré variational formulation (3.4) and the solution Φh ∈ S1
h(Γ)

of the perturbed variational formulation (3.7).

Lemma 3.3. Let s ∈ [−1
2
, 1], SiΦ ∈ Hs

pw(Γ), Φ ∈ Hs+1(Γ) and γint1 Φpart ∈ H−
1
2 (Γ).

Then there is a unique solution Φh ∈ S1
h(Γ) of the variational problem (3.7) satisfying

‖Φ− Φh‖H 1
2 (Γ)
≤ chs+

1
2 (|Φ|Hs+1(Γ) + |S1Φ|Hs

pw(Γ) + |S0Φ|Hs
pw(Γ)).

If furthermore Si : Hs+1(Γ)→ Hs(Γ) is bounded then

‖Φ− Φh‖H 1
2 (Γ)
≤ chs+

1
2‖Φ‖Hs+1(Γ).
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Proof. Since Ã is H
1
2 (Γ)-elliptic by Corollary 3.2 we can use the Strang Lemma, see,

e.g., [34, p. 192] to obtain unique solvability and

‖Φ− Φh‖H 1
2 (Γ)
≤ c

(
inf

vh∈S1
h(Γ)
‖Φ− vh‖H 1

2 (Γ)
+ ‖(A− Ã)Φ‖

H− 1
2 (Γ)

)
.

We use the approximation property of S1
h(Γ), see, e.g., [34, p. 241], to obtain

inf
vh∈S1

h(Γ)
‖Φ− vh‖H 1

2 (Γ)
≤ chs+

1
2 |Φ|Hs+1(Γ).

The error estimate (3.13) together with the approximation property of S0
h(Γ), given in

[34, p. 237], yields

‖Φ− Φh‖H 1
2 (Γ)
≤ c hs+

1
2 (|Φ|Hs+1(Γ) + |S1Φ|Hs

pw(Γ) + |S0Φ|Hs
pw(Γ)).

If Si : Hs+1(Γ) → Hs(Γ) is bounded then |SiΦ|Hs
pw(Γ) ≤ ‖Φ‖Hs+1(Γ) and therefore the

second estimate follows.

Using an Aubin–Nitsche trick [14] we are able to provide an error estimate for the
operator approximation in Hµ(Γ) with µ ∈ [−2,−1

2
].

Lemma 3.4. For some µ ∈ [−2,−1
2
] assume that V : H−1−µ(Γ) → H−µ(Γ) is con-

tinuous and bijective and
(

1
2
I ±K ′

)
: Hµ(Γ)→ Hµ(Γ) are continuous. Let s ∈ [−1

2
, 1]

and let v ∈ Hs+1(Γ) such that Siv ∈ Hs
pw(Γ). Then there holds the error estimate

‖(A− Ã)v‖Hµ(Γ) ≤ chs−µ(|S1v|Hs
pw(Γ) + |S0v|Hs

pw(Γ)).

If furthermore Si : Hs+1(Γ)→ Hs(Γ) is bounded then

‖(A− Ã)v‖Hµ(Γ) ≤ chs−µ‖v‖Hs+1(Γ).

Proof. We consider the error of S̃1, the exterior case is analogous. By definition (3.5)
and boundedness of

(
1
2
I +K ′

)
we have got

‖(S1 − S̃1)v‖Hµ(Γ) =

∥∥∥∥(1

2
I +K ′

)
(w1 − w1,h)

∥∥∥∥
Hµ(Γ)

≤ ‖w1 − w1,h‖Hµ(Γ).

By an Aubin–Nitsche trick [34, Theorem 12.3] for the auxiliary problem (3.6) we have
an error estimate for w1,h given by

‖w1 − w1,h‖Hµ(Γ) ≤ chs−µ|w1|Hs
pw(Γ).

By using the identity w1 = V −1
(

1
2
I +K

)
v = S1v we obtain

‖(S̃1 − S1)v‖Hµ(Γ) ≤ chs−µ|S1v|Hs
pw(Γ).
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Therefore we can conclude

‖(A− Ã)v‖Hµ(Γ) ≤ ε0‖(S̃0 − S0)v‖Hµ(Γ) + ε1‖(S̃1 − S1)v‖Hµ(Γ)

≤ chs−µ(|S1v|Hs
pw(Γ) + |S0v|Hs

pw(Γ)).

By using boundedness of Si the second result follows.

Our next goal is to obtain an Hµ(Γ)-error estimate of the potential Φ for µ ∈ [−1, 1
2
].

For this purpose we will use the H
1
2 (Γ)-projection Q

1
2
h to S1

h(Γ) and its properties,
which we will provide in the following lemma:

Lemma 3.5 ([34, p. 241]). Let u ∈ Hs(Γ), s ∈ [1
2
, 2]. We define the H

1
2 (Γ)-projection

Q
1
2
h : Hs(Γ)→ S1

h(Γ) by

〈Q
1
2
hu, vh〉H 1

2 (Γ)
= 〈u, vh〉H 1

2 (Γ)
for all vh ∈ S1

h(Γ). (3.14)

Then there holds

‖u−Q
1
2
hu‖H 1

2 (Γ)
≤ chs−

1
2 |u|Hs(Γ).

Now we are able to prove an Hµ(Γ)-error of the potential, using the ideas given by
[10] and [34].

Theorem 3.6. For some s ∈ [1
2
, 2] let Φ ∈ Hs(Γ) be the unique solution of the continu-

ous variational problem (3.4) and let Φh ∈ S1
h(Γ) be the unique solution of the discrete

variational problem (3.7). Let the assumptions of Lemma 3.3 and Lemma 3.4 hold
true. Assume that A := (ε1S1 + ε0S0) : H1−µ(Γ)→ H−µ(Γ) is bounded and bijective
for µ ∈ [−1, 1

2
]. Then there holds the error estimate

‖Φ− Φh‖Hµ(Γ) ≤ chs−µ‖Φ‖Hs(Γ).

Proof. We start by using duality and the bijectivity of A

‖Φ− Φh‖Hµ(Γ) = sup
06=w∈H−µ(Γ)

〈Φ− Φh, w〉Γ
‖w‖H−µ(Γ)

= sup
06=v∈H1−µ(Γ)

〈A(Φ− Φh), v〉Γ
‖Av‖H−µ(Γ)

≤ c

(
sup

06=v∈H1−µ(Γ)

〈A(Φ− Φh), v〉Γ
‖v‖H1−µ(Γ)

)
.

From the variational problems (3.4) and (3.7) we can conclude that for vh ∈ S1
h(Γ)

there holds 〈AΦ, vh〉Γ = 〈ÃΦh, vh〉Γ. It follows that

〈A(Φ− Φh), vh〉Γ = 〈(Ã− A)Φh, vh〉Γ.
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Therefore we can add in the H
1
2 (Γ)-projection Q

1
2
hv and obtain

〈A(Φ− Φh), v〉Γ = 〈A(Φ− Φh), v −Q
1
2
hv〉Γ + 〈A(Φ− Φh), Q

1
2
hv〉Γ

= 〈A(Φ− Φh), v −Q
1
2
hv〉Γ + 〈(Ã− A)Φh, Q

1
2
hv〉Γ

= 〈A(Φ− Φh), v −Q
1
2
hv〉Γ︸ ︷︷ ︸

=:I

+ 〈(Ã− A)(Φh − Φ), Q
1
2
hv〉Γ︸ ︷︷ ︸

=:II

+ 〈(Ã− A)Φ, Q
1
2
hv〉Γ︸ ︷︷ ︸

=:III

.

We estimate term I by using boundedness of A, Lemma 3.3, and Lemma 3.5:

|〈A(Φ− Φh), v −Q
1
2
hv〉Γ| ≤ ‖A(Φ− Φh)‖H− 1

2 (Γ)
‖v −Q

1
2
hv‖H 1

2 (Γ)

≤ c‖Φ− Φh‖H 1
2 (Γ)

h
1
2
−µ‖v‖H1−µ(Γ)

≤ chs−µ‖Φ‖Hs(Γ)‖v‖H1−µ(Γ).

For the second term II we first use the energy error of the potential Φ given in
Lemma 3.3 and selfadjointness of A and Ã:

|〈(Ã− A)(Φh − Φ), Q
1
2
hv〉Γ| = |〈Φh − Φ, (Ã− A)Q

1
2
hv〉Γ|

≤ ‖Φ− Φh‖H 1
2 (Γ)
‖(Ã− A)Q

1
2
hv‖H− 1

2 (Γ)

≤ chs−
1
2‖Φ‖Hs(Γ)‖(Ã− A)Q

1
2
hv‖H− 1

2 (Γ)
.

We estimate ‖(Ã−A)Q
1
2
hv‖H− 1

2 (Γ)
by using duality and the selfadjointness of A and Ã:

‖(Ã− A)Q
1
2
hv‖H− 1

2 (Γ)
= sup

06=u∈H
1
2 (Γ)

〈(Ã− A)Q
1
2
hv, u〉Γ

‖u‖
H

1
2 (Γ)

= sup
06=u∈H

1
2 (Γ)

〈Q
1
2
hv, (Ã− A)u〉Γ
‖u‖

H
1
2 (Γ)

.

Now we use again the error estimate of the projection from Lemma 3.5 and the ap-
proximation error of Ã from Lemma 3.4 to estimate the denominator:

|〈Q
1
2
hv, (Ã− A)u〉Γ| ≤ |〈Q

1
2
hv − v, (Ã− A)u〉Γ|+ |〈v, (Ã− A)u〉Γ|

≤ ‖Q
1
2
hv − v‖H 1

2 (Γ)
‖(Ã− A)u‖

H− 1
2 (Γ)

+ ‖v‖H1−µ(Γ)‖(Ã− A)u‖H−1+µ(Γ)

≤ ch
1
2
−µ‖v‖H1−µ(Γ)‖u‖H 1

2 (Γ)
.

Altogether we now have

|〈(Ã− A)(Φh − Φ), Q
1
2
hv〉Γ| ≤ chs−µ‖Φ‖Hs(Γ)‖v‖H1−µ(Γ).



3.2 Steklov–Poincaré Operator Formulation 33

The third term III is estimated analogously to the second one

|〈(Ã− A)Φ, Q
1
2
hv〉Γ| ≤ |〈(Ã− A)Φ, Q

1
2
hv − v〉Γ|+ |〈(Ã− A)Φ, v〉Γ|

≤ ‖(Ã− A)Φ‖
H− 1

2 (Γ)
‖Q

1
2
hv − v‖H 1

2 (Γ)

+ ‖(Ã− A)Φ‖H−1+µ(Γ)‖v‖H1−µ(Γ)

≤ chs−µ‖Φ‖Hs(Γ)‖v‖H1−µ(Γ).

The assertion follows by summation of the terms I, II, and part III.

We will now consider errors for the approximate Neumann data t1,h and t0,h given
by (3.10).

Lemma 3.7. For i ∈ {0, 1} let ti ∈ H−
1
2 (Γ) be the unique solution of

〈V ti, τ〉Γ =

〈(
1

2
I ±K

)
Φ, τ

〉
Γ

for all τ ∈ H−
1
2 (Γ).

There exists a unique solution ti,h ∈ S0
h(Γ) with

〈V ti,h, τh〉Γ =

〈(
1

2
I ±K

)
Φh, τh

〉
Γ

for all τh ∈ S0
h(Γ).

If the assumptions of Lemma 3.3 are satisfied then there holds the error estimate

‖ti − ti,h‖H− 1
2 (Γ)
≤ chs+

1
2‖Φ‖Hs+1(Γ).

Proof. Since V is H
1
2 (Γ)-elliptic we can use the Strang Lemma [34, Th. 8.3] to obtain

unique solvability and the error estimate

‖ti − ti,h‖H− 1
2 (Γ)
≤ c

(
inf

wh∈S0
h(Γ)
‖ti − wh‖H− 1

2 (Γ)
+ cK2 ‖(Φ− Φh)‖H 1

2 (Γ)

)
.

By the approximation error of S0
h(Γ) [34, Th.10.4] and the identity SiΦ = ti we obtain

inf
wh∈S0

h(Γ)
‖ti − wh‖H− 1

2 (Γ)
≤ chs+

1
2 |SiΦ|Hs

pw(Γ) ≤ chs+
1
2‖Φ‖Hs+1(Γ).

Together with the boundedness of
(

1
2
I ±K

)
and the H

1
2 (Γ)-error for the potential Φh

from Lemma 3.3 the assertion follows.

Theorem 3.8. Let the assumptions of Theorem 3.6 and Lemma 3.7 hold true. Assume
that for µ ∈ [−2,−1

2
] the operators

(
1
2
I ±K

)
: H1+µ(Γ) → H1+µ(Γ) are bounded.

Then there holds that

‖ti − ti,h‖Hµ(Γ) ≤ chs−µ‖Φ‖Hs+1(Γ).
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Proof. We use the bijectivity and boundedness of V : H−1−µ(Γ)→ H−µ(Γ) to obtain

‖ti − ti,h‖Hµ(Γ) = sup
06=v∈H−µ(Γ)

〈ti − ti,h, v〉Γ
‖v‖H−µ(Γ)

≤ c sup
06=w∈H−1−µ(Γ)

〈V (ti − ti,h), w〉Γ
‖w‖H−1−µ(Γ)

.

Now we add and subtract the L2(Γ)-projection Qh : Hs(Γ)→ S0
h(Γ) with the property

[34, Cor.10.3]

‖w −Qhw‖H− 1
2 (Γ)
≤ ch−

1
2
−µ‖w‖H−1−µ(Γ), (3.15)

to get

‖ti − ti,h‖Hµ(Γ) ≤ sup
0 6=w∈H−1−µ(Γ)

〈V (ti − ti,h), w −Qhw〉Γ
‖w‖H−1−µ(Γ)

+ sup
0 6=w∈H−1−µ(Γ)

〈V (ti − ti,h), Qhw〉Γ
‖w‖H−1−µ(Γ)

.

We note that

〈V (ti − ti,h), wh〉Γ =

〈(
1

2
I ±K

)
(Φ− Φh), wh

〉
Γ

for all wh ∈ S0
h(Γ),

and thus

‖ti − ti,h‖Hµ(Γ) ≤ sup
06=w∈H−1−µ(Γ)

〈V (ti − ti,h), w −Qhw〉Γ
‖w‖H−1−µ(Γ)

+ sup
06=w∈H−1−µ(Γ)

〈(
1
2
I ±K

)
(Φ− Φh), Qhw

〉
Γ

‖w‖H−1−µ(Γ)

.

For the first term we have by boundedness of V , Lemma 3.7, and the above projection
property (3.15)

|〈V (ti − ti,h), w −Qhw〉Γ| ≤ ‖ti − ti,h‖H− 1
2 (Γ)
‖w −Qhw‖H− 1

2 (Γ)

≤ chs−µ‖Φ‖Hs+1(Γ)‖w‖H−1−µ(Γ).

For the second term we use the boundedness of (1
2
I ± K), the projection property

(3.15), the H1+µ(Γ)-error estimate of Φh in Theorem 3.6, and Lemma 3.3∣∣∣∣〈(1

2
I±K

)
(Φ− Φh), Qhw

〉
Γ

∣∣∣∣
≤
∣∣∣∣〈(1

2
I ±K

)
(Φ− Φh), w

〉
Γ

∣∣∣∣+

∣∣∣∣〈(1

2
I ±K

)
(Φ− Φh), Qhw − w

〉
Γ

∣∣∣∣
≤ c

(
‖Φ− Φh‖H1+µ(Γ)‖w‖H−1−µ(Γ) + h−

1
2
−µ‖Φ− Φh‖H 1

2 (Γ)
‖w‖H−1−µ(Γ)

)
≤ chs−µ‖Φ‖Hs+1(Γ)‖w‖H−1−µ(Γ).

By summation we obtain the assertion.
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3.3 Double Layer Potential Formulation

For the double layer potential formulation (2.24) we first compute a discrete approxim-

ation ψ̃h ∈ S1
h(Γ) of ψ̃ ∈ H 1

2 (Γ), which we need for the computation of v ∈ H 1
2 (Γ). We

use piecewiese linear and globally continuous basis functions {ψ1
m}Mm=1 in the Galerkin

variational formulation of (2.16) to obtain the linear system(
1

2
M̂h + K̂h + b b>

)
ψ̃ = V̂hg,

where for m,n = 1, . . . ,M, ` = 1, . . . , N

M̂h[m,n] = 〈ψ1
n, ψ

1
m〉Γ, K̂h[m,n] = 〈Kψ1

n, ψ
1
m〉Γ,

V̂h[m, `] = 〈V ψ0
` , ψ

1
m〉Γ, bm = 〈ψ1

m, 1〉Γ,

and g ∈ RM is the vector of the L2(Γ)-projections gh ∈ S0
h(Γ) of −γint

1 Φpart onto S0
h(Γ).

Now we consider the discrete version of (2.24), which is to find vh ∈ S1
h(Γ) such that(

1

2

ε1 + ε0

ε1 − ε0

M̂h + K̂h

)
v = −ε0M̂hψ̃. (3.16)

Finally, we use vh and ψ̃h to compute approximations of the electric field by the
evaluation (2.28):

Ẽ(x) = −∇Φpart(x) +
1

ε1

∇(Wvh)(x)

− ε1 − ε0

ε1

(∇(Ṽ gh)(x)−∇(Wψ̃h)(x)) for x ∈ Ω,

Ẽ(x) = −∇Φpart(x) +
1

ε0

∇(Wvh)(x) for x ∈ Ωext.

(3.17)

In the case of a simply connected domain the evaluation of the electric field changes
as given in the modified evaluation (2.33) to

Ẽ(x) = −ε0

ε1

∇Φpart(x) +
1

ε1

∇(Wvh)(x) for x ∈ Ω. (3.18)





4 Numerical Examples

In this chapter we will consider two applications for the given formulations, the unit
sphere and a cube with side length a. The quantities, which we had beforehand, i.e. the
densities of the single layer potential and double layer potential formulations computed
by (2.2) and (2.24), the potential obtained from the three formulations (3.7), (4.10),
(4.11) and the electric field calculated by the standard evaluations (3.2), (3.11), (3.17)
and the modified evaluations (3.3), (3.12) and (3.18) will be computed numerically
and compared with respect to errors and computational times. Furthermore we will
introduce two additional physical quantities.

We consider ε0 to be the vacuum permittivity, i.e. ε0 = 8.8541878...× 10−12 A2 s4

kg m3 , and
ε1 = ε0εr with different values of the relative permittivity εr. We restrict ourselves to
incoming waves of the form

Einc(x) = E0e
iω
√
ε0µ0d·x for x ∈ R3,

with ‖d‖2 = 1, which corresponds to −∇Φpart in Section 1.2 and µ0 = 4π× 10−7 V s
A m

is
the vacuum permeability. In the quasi-static case we can approximate the incoming
wave by Einc

qs (x) ≡ E0.

Throughout this chapter we also use the modified evaluations (2.29), (2.32) and
(2.33) in the case of a simply connected domain, since we will only consider domains
with this property. For the linear systems we will use the fast multipole method, see,
e.g., [11, 27], with a maximal level of 6 or 7, a polynomial degree of 6 or 7 and a
nearfield parameter of 3.5.

For our error computations we use the L2(Γ)-norm and the norm ‖ · ‖V , which is
given by

‖w‖2
V =

1

4π

∫
Γ

w(x)

∫
Γ

1

|x− y|
w(y)dsydsx, (4.1)

to calculate a relative error in H−
1
2 (Γ), as the single layer boundary integral operator

V induces an equivalent norm. We calculate the norms on the finest refinement level
and the integrals by a seven-point approximation.

37
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4.1 Dipole Moment and Scattering Cross Section

Before we discuss some numerical examples we introduce two additional quantities.
We are interested in their computation and possible error estimates for the numerical
approximations.

The first quantity of interest is the electric dipole moment p = ‖p‖2,

p[j] := ε0

∫
Γ

xjσ(x)dsx, j = 1, 2, 3, (4.2)

which is ”a measure of the separation of positive and negative electrical charges within
a system”([38]). The occurring σ is the surface charge density, which can be computed
by

σ := Es
0

∣∣
∂Ωext · n− Es

1

∣∣
∂Ω
· n, (4.3)

where Es := E − Einc
qs is the scattered electric field. It corresponds to the density

function w in the single layer potential formulation (2.2).
In our setting it is possible to calculate an approximation for (4.2) by

p̃ = ε0

∫
Γ

x σh(x)dsx = ε0

N∑
`=1

∫
τ`

x σh(x)dsx = ε0

N∑
`=1

σ`|τ`|xs`, (4.4)

where σ` is the constant σh(x) for x ∈ τ` and xs` is the center of τ`.
For the numerical computation of σ in the single layer potential approach we solve

the system of linear equations (3.1), which yields an approximation of σ by

σSLh = wh. (4.5)

For the Steklov–Poincaré interface equation we plug the evaluation of the electric
field (2.27) into (4.3) to obtain

σ = γint
1 Φ1 − γext

1 Φ0,

which corresponds to a numerical approximation by

σSPh = t1,h − t0,h. (4.6)

For the double layer formulation we use the computed internal and external electric
fields Ẽ1 and Ẽ0 in the centers of the elements to obtain

σDLh = (Ẽ0 − Ẽ1) · n. (4.7)
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Lemma 4.1. Let σ, σh ∈ Hµ(Γ) for some µ ∈ R and let p̃ := ‖p̃‖2, where p̃ is the
approximation given by (4.4). Then there holds that

|p− p̃| ≤ c‖σ − σh‖Hµ(Γ).

Remark 4.1. In fact µ is restricted by the given error estimates for σ and σh. In
the case of the Steklov–Poincaré formulation we will see that we are able to give an
estimate for µ ≥ −2.

Proof. We start by using triangle inequality to obtain

|p− p̃| = |‖p‖2 − ‖p̃‖2| ≤ ‖p− p̃‖2 =

√√√√ 3∑
j=1

(p[j]− p̃[j])2.

For j ∈ {1, 2, 3} we have

|p[j]− p̃[j]| =

∣∣∣∣∣∣ε0

∫
Γ

xj σ(x)dsx − ε0

∫
Γ

xj σh(x)dsx

∣∣∣∣∣∣
= ε0

∣∣∣∣∣∣
∫
Γ

xj(σ(x)− σh(x))dsx

∣∣∣∣∣∣ = ε0|〈xj, σ − σh〉Γ|.

Since xj is a linear function of x ∈ R3 it is arbitrarily smooth and we obtain by using
duality

|p[j]− p̃[j]| ≤ ε0‖xj‖H−µ(Γ)‖σ − σh‖Hµ(Γ).

Hence we have

|p− p̃| ≤ ε0‖σ − σh‖Hµ(Γ)

√√√√ 3∑
j=1

‖xj‖2
H−µ(Γ) ≤ c‖σ − σh‖Hµ(Γ)

The second physical quantity, which we would like to discuss is the scattering cross
section, which is given by

Csca =
1

6π
ω4µ2

0p
2 (4.8)

in the quasi-static case. We will show that the error convergence is asymptotically
equal to the error behavior of the dipole moment.
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Lemma 4.2 ([25]). For the approximation

C̃sca =
1

6π
ω4µ2

0p̃
2

of the scattering cross section Csca there holds

|Csca − C̃sca| = O(|p− p̃|).

Proof. We define δ := p− p̃ and therefore p̃ = p− δ. We have

|p2 − p̃2| = |(p+ p̃)(p− p̃)| = |2p− δ||δ|

and hence

lim
σh→σ

∣∣∣∣∣ |Csca − C̃sca||p− p̃|

∣∣∣∣∣ =
1

6π
ω4µ2

0 lim
δ→0

|p2 − p̃2|
|p− p̃|

=
1

6π
ω4µ2

0 lim
δ→0

|2p− δ||δ|
|δ|

=
1

6π
ω4µ2

0 lim
δ→0
|2p− δ| <∞

Using (4.16) and Lemma 4.2 we obtain for Φ ∈ Hs(Γ), s ∈ [1
2
, 2]:

|Csca − C̃sca| = O(hs−µ). (4.9)

4.2 Sphere

Our first example is a sphere with radius r = 1, incoming wave E0 = (0, 0, 1)> and
relative permittivity εr = 5. We discretize the geometry with different uniformly
refined levels L = 0, . . . , 7 by 8 · 4L plane triangles with nodes on the sphere surface,
where the corresponding number of panels and nodes are given by Table 4.1.

For the sphere we have analytical solutions for all occurring quantities, see, e.g.,
[16, p. 114]. We will start with the density of the single layer potential ansatz wh,
which is computed by (3.1), and the double layer density vh, which is calculated by
(3.16). For the Steklov–Poincaré formulation we observe the errors of the Neumann
data th.

Densities and Neumann data

For the densities of the single layer potential and double layer potential approaches
we have analytical solutions given by

w(x) = 3

∣∣∣∣εr − 1

εr + 2

∣∣∣∣ ‖E0‖2x3
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Level Panels Nodes

0 8 6
1 32 18
2 128 66
3 512 258
4 2048 1026
5 8192 4098
6 32768 16386
7 131072 65538

Table 4.1: Number of nodes and panels of the sphere

and

v(x) = −3ε0

∣∣∣∣εr − 1

εr + 2

∣∣∣∣ ‖E0‖2x3.

For the Neumann data we have

t1(x) =

∣∣∣∣εr − 1

εr + 2

∣∣∣∣ ‖E0‖2n(x)3,

where n(x) is the normal vector in x and

t0(x) = −3

∣∣∣∣εr − 1

εr + 2

∣∣∣∣ ‖E0‖2

(
x3 −

n(x)3

3

)
.

We denote by vL, wL, and t1,L for L = 0, . . . , 7 the approximate solutions of the single
layer density, the double layer density, and the interior Neumann data of the Steklov–
Poincaré formulation on the corresponding levels. The relative errors for wL in ‖ · ‖V
and the relative errors of vL, wL, and t1,L in ‖ · ‖L2(Γ), as well as the estimate orders of
convergence are given in Table 4.2. We observe that the convergence rate of the double
layer density is approximately 2.00, which corresponds to the highest order expected
by the approximation property of S1

h(Γ). The convergence rate of the single layer
density is about 1.85, where we would expect only 1.5 by the approximation property
of S0

h(Γ). The convergence order of the interior Neumann data is approximately 1.00,
which is the highest order that could be obtained by Theorem 3.8. Note that we do
not consider the effects of the approximation of the sphere in our error analysis. It can
be shown that this additional approximation does not reduce the order of convergence
[23, 24].

Potential

In this section we will study the errors made by the different approaches, when com-
puting the potential Φ. For the single layer and double layer formulation we obtain
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L ‖wL−w‖V
‖w‖V

eoc
‖vL−v‖L2(Γ)

‖v‖L2(Γ)
eoc

‖t1,L−t1‖L2(Γ)

‖t1‖L2(Γ)
eoc

0 2.20e-1 7.70e-2 2.05e-3
1 7.94e-2 1.47 3.12e-2 1.31 3.62e-2 −4.14
2 2.24e-2 1.82 8.47e-3 1.88 1.52e-2 1.25
3 6.11e-3 1.88 1.74e-3 2.28 5.87e-3 1.37
4 1.66e-3 1.88 4.11e-4 2.09 2.51e-3 1.23
5 4.54e-4 1.87 9.97e-5 2.04 1.07e-3 1.24
6 1.28e-4 1.82 2.61e-5 1.93 4.97e-4 1.10
7 3.76e-5 1.77 6.15e-6 2.09 2.77e-4 0.84

Table 4.2: Sphere with εr = 5.0, Errors of the densities

the potentials from the densities by using the single layer ansatz (2.1) and the double
layer ansatz (2.23). Therefore we have

ΦSL
h := Ṽ wh (4.10)

and

ΦDL
h := −Wvh. (4.11)

For the Steklov–Poincaré interface equation the potential ΦSP
h is computed directly by

(3.7). We compare the relative errors with respect to the L2(Γ)-norm to the analytical
solution

Φ(x) = −
(

3

εr + 2

)
‖E0‖2x3. (4.12)

The numerical results are given in Table 4.3. The L2(Γ)-errors are computed on
every level by seven point integration. We observe quadratic convergence for all three
formulations. For the Steklov–Poincaré formulation this is what we expect by Theorem
3.6. In the two other cases it corresponds to the order in the approximation property
of S1

h(Γ).
For the double layer potential we have

‖ΦDL
h − Φ‖L2(Γ) =

1

ε0

‖Φ̃DL
0,h − Φ̃0‖L2(Γ) ≤ c‖vh − v‖L2(Γ). (4.13)

Hence we expect the same convergence rates for potential and density, which corres-
ponds to our observation of both having quadratic convergence, see Table 4.2.

If we assume that there holds

‖wh − w‖H−1(Γ) ≤ ch
1
2‖wh − w‖H− 1

2 (Γ)
,
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L
‖ΦSLL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

‖ΦDLL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

‖ΦSPL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 3.61e-1 2.45e-1 2.05e-3
1 1.09e-1 1.73 7.80e-2 1.65 1.50e-2 −2.87
2 2.78e-2 1.97 1.93e-2 2.02 4.27e-3 1.81
3 6.89e-3 2.01 4.89e-3 1.98 1.14e-3 1.91
4 1.70e-3 2.02 1.22e-3 2.01 2.98e-4 1.93
5 4.23e-4 2.01 3.03e-4 2.01 7.63e-5 1.96
6 1.05e-4 2.01 7.56e-5 2.00 1.93e-5 1.98
7 2.62e-5 2.00 1.89e-5 2.00 4.89e-6 1.98

Table 4.3: Sphere with εr = 5.0, Errors of the potentials

then we obtain a similar estimate for the single layer potential by linearity and
boundedness of V : H−1(Γ)→ L2(Γ), see [4]:

‖ΦSL
h − Φ‖L2(Γ) = ‖V (wh − w)‖L2(Γ)

≤ c‖wh − w‖H−1(Γ) ≤ ch
1
2‖wh − w‖H− 1

2 (Γ)
.

(4.14)

Therefore we would expect that the convergence rate of the potential is half an order
higher as the one given by the density, but actually the rates are 2.00 and 1.85.

Furthermore we see that we obtain the smallest errors on every level, if we use the
Steklov–Poincaré interface equation and the largest errors by using the single layer
formulation. The Steklov–Poincaré solution is roughly one level better than the other
two solutions.

Electric field

Next we consider the electric field. We use the calculations given in Chapter 3, i.e. for
the single layer potential formulation we compute the electric field by (3.2), for the
Steklov–Poincaré approach by (3.11) and for the double layer potential formulation
by (3.17). The analytical solution for the electric field on the sphere is given by

E =

(
0, 0,

3

εr + 2

)>
.

The numerical results for the standard calculation are given in Table 4.4. In Table
4.5 one can find results for the adapted calculation for a simply connected domain,
i.e. computing the electric field for the single layer approach by (3.3), for the Steklov–
Poincaré formulation by (3.12) and for the double layer potential approach by (3.18).
For the electric fields given by the single layer and double layer approach we obtain

linear convergence of the errors, for the Steklov–Poincaré formulation the order of
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L
‖ESLL −E‖V
‖E‖V

eoc
‖EDLL −E‖V
‖E‖V

eoc
‖ESPL −E‖V
‖E‖V

eoc

0 3.35e-1 6.08e-2 2.74e-3
1 1.59e-1 1.07 3.34e-2 0.86 2.28e-2 −3.06
2 8.26e-2 0.95 1.74e-2 0.94 7.14e-3 1.68
3 4.39e-2 0.91 9.01e-3 0.95 2.10e-3 1.76
4 2.28e-2 0.94 4.62e-3 0.96 6.14e-4 1.77
5 1.16e-2 0.97 2.35e-3 0.98 1.75e-4 1.81
6 5.87e-3 0.99 1.18e-3 0.99 5.04e-5 1.80
7 2.95e-3 0.99 5.94e-4 0.99 1.52e-5 1.73

Table 4.4: Sphere with εr = 5.0, Errors of the electric field

L
‖ESLL −E‖V
‖E‖V

eoc
‖EDLL −E‖V
‖E‖V

eoc
‖ESPL −E‖V
‖E‖V

eoc

0 4.86e-1 6.08e-2 8.36e-3
1 1.98e-1 1.30 3.43e-2 0.83 2.22e-2 −1.41
2 7.55e-2 1.39 1.75e-2 0.97 7.06e-3 1.65
3 3.43e-2 1.14 9.02e-3 0.96 2.07e-3 1.77
4 1.71e-2 1.00 4.63e-3 0.96 5.95e-4 1.80
5 8.66e-3 0.98 2.35e-3 0.98 1.65e-4 1.85
6 4.37e-3 0.99 1.18e-3 0.99 4.52e-5 1.87
7 2.20e-3 0.99 5.94e-4 0.99 1.25e-5 1.85

Table 4.5: Sphere with εr = 5.0, Errors of the electric field, simply connected

convergence is approximately 1.8. The errors of the Steklov–Poincaré formulation are
by far the lowest ones. By comparing Table 4.4 and Table 4.5 we see that the single
layer approach and the Steklov–Poincaré formulation perform slightly better, when
calculating the electric field by the modified computation in the simply connected
case. If we assume that that the convergence rate of the electric field is similar to the
one of E · n we are able to provide some estimates for the electric field.

For the single layer potential formulation we obtain, in the case of calculation for
simply connected domains, with (3.3) the estimate:

‖ESL·n− E · n‖
H− 1

2 (Γ)

= ‖∇Ṽ (wj,h − wh) · n− (−∇Φpart −∇(Ṽ w)) · n‖
H− 1

2 (Γ)

≤ ‖∇(Ṽ wj,h) · n− (−∇Φpart) · n‖H− 1
2 (Γ)

+ ‖∇(Ṽ (w − wh)) · n‖H− 1
2 (Γ)

,
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and hence we have

‖ESL·n− E · n‖
H− 1

2 (Γ)

≤ ‖∇(Ṽ wj,h) · n− (−∇Φpart) · n‖H− 1
2 (Γ)︸ ︷︷ ︸

(∗)

+c‖w − wh‖H− 1
2 (Γ)

. (4.15)

We will study the term (∗) later. In the general case we obtain by using (3.2)

‖ESL · n− E · n‖
H− 1

2 (Γ)
≤ ‖∇(Ṽ (w − wh)) · n‖H− 1

2 (Γ)

≤ c‖w − wh‖H− 1
2 (Γ)

.

Hence we could assume that the convergence rate for the error of the electric field
computed by the single layer approach behaves like the error of the single layer density,
which is not the case, since we have only 1.0, the expected maximal convergence rate
by the approximation property is 1.5 and the actual observed convergence rate in
Table 4.2 was 1.85.

For the double layer approach by similar calculations using the evaluations (3.17)
and (3.18) and assuming

‖vh − v‖H 1
2 (Γ)
≤ ch−

1
2‖vh − v‖L2(Γ),

we obtain

‖EDL · n− E · n‖
H− 1

2 (Γ)

≤

{
ch−

1
2‖v − vh‖L2(Γ) simply conn.,

c
(
h−

1
2‖v − vh‖L2(Γ) + ‖g − gh‖H− 1

2 (Γ)
+ ‖ψ̃ − ψ̃h‖H 1

2 (Γ)

)
else.

This means the convergence rate should be half an order lower than the one obtained
by the double layer density in the L2(Γ)-norm, which is not the observed result, since
we see 1.00 for the electric field and 2.00 for the density.

For the Steklov–Poincaré operator formulation we have by evaluation (3.11)

‖ESP · n− E · n‖
H− 1

2 (Γ)
≤ ‖ti,h − ti‖H− 1

2 (Γ)

for the standard calculation, where ti corresponds to the respective Neumann datum,
and by evaluation (3.12)

‖ESP · n− E · n‖
H− 1

2 (Γ)

≤
(
‖(−∇Φpart − (∇(Ṽ (S1ψ̃h))−∇(Wψ̃h))) · n‖H− 1

2 (Γ)
+ ‖t1,h − t1‖H− 1

2 (Γ)

)
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L
|pSLL −p|

p
eoc

|pDLL −p|
p

eoc
|pSPL −p|

p
eoc

0 7.52e-1 7.25e-1 6.84e-1
1 3.45e-1 1.12 3.60e-1 1.01 2.97e-1 1.21
2 1.05e-1 1.71 1.36e-1 1.40 8.84e-2 1.75
3 2.77e-2 1.93 5.04e-2 1.43 2.32e-2 1.93
4 7.00e-3 1.98 2.03e-2 1.32 5.87e-3 1.98
5 1.75e-3 2.00 8.85e-3 1.20 1.47e-3 2.00
6 4.39e-4 2.00 4.10e-3 1.11 3.68e-4 2.00
7 1.10e-4 2.00 1.97e-3 1.06 9.21e-5 2.00

Table 4.6: Sphere with εr = 5.0, Errors of the dipole moment

for the adapted calculation in case of a simply connected domain. Therefore we would
expect a convergence rate, which is lower or equal to the convergence rate of the
Neumann data in the H

1
2 (Γ)-norm. By Theorem 3.8 we expect an order of convergence

of 1.5. In Table 4.5 we observe an order of 1.85, which is higher than the expected
1.5. Note that we have not taken into account the boundary approximation in these
considerations.

Dipole moment and scattering cross section

The analytical value of the electric dipole moment is given by

p = 4πε0

∣∣∣∣εr − 1

εr + 2

∣∣∣∣ ‖E0‖2.

We calculate approximations p̃ of the dipole moment as shown in Section 4.1 and we
investigate the relative error |p̃−p|

p
. Thus we obtain the errors in Table 4.6.

For the single layer approach we observe quadratic convergence. By Lemma 4.1 we
have

|p− pSL| ≤ c‖w − wh‖Hµ(Γ),

for some µ ≤ −1
2
. Hence we also have that the convergence order of the dipole should

be greater equal to the one obtained by the single layer density. This is satisfied by
the quadratic order, since the convergence rate obtained by the single layer density
was only 1.8.

We also observe quadratic convergence for the Steklov–Poincaré formulation. With
Lemma 4.1 we obtain, since σ ∈ H− 1

2 (Γ), σSPh ∈ L2(Γ) and therefore σ, σSPh ∈ Hµ(Γ),
that there holds

|p− pSP | ≤ c‖σ − σSPh ‖Hµ(Γ) ≤ c
(
‖t0 − t0,h‖Hµ(Γ) + ‖t1 − t1,h‖Hµ(Γ)

)
.
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L
|CSLsca,L−Csca|

Csca
eoc

|CDLsca,L−Csca|
Csca

eoc
|CSPsca,L−Csca|

Csca
eoc

0 9.38e-1 9.24e-1 9.00e-1
1 5.71e-1 0.72 5.90e-1 0.65 5.05e-1 0.83
2 1.99e-1 1.52 2.53e-1 1.22 1.69e-1 1.58
3 5.46e-2 1.87 9.84e-2 1.36 4.58e-2 1.88
4 1.40e-2 1.97 4.01e-2 1.29 1.17e-2 1.97
5 3.51e-3 1.99 1.76e-2 1.19 2.94e-3 1.99
6 8.77e-4 2.00 8.18e-3 1.11 7.36e-4 2.00
7 2.19e-4 2.00 3.93e-3 1.06 1.84e-4 2.00

Table 4.7: Sphere with εr = 5.0, Errors of the scattering cross section

We now restrict µ ≥ −2, since then Theorem 3.8 is applicable if we additionally
assume that the operators

(
1
2
I ±K

)
: H−1(Γ) → H−1(Γ) are bounded. This holds

true for the sphere by [4]. By using Theorem 3.8 there holds the error estimate

|p− pSP | ≤ chs+2‖Φ‖Hs+1(Γ), (4.16)

for s ∈ [−1
2
, 1]. This error analysis neglects the approximation of the sphere by plane

triangles. This additional error was investigated in [23, 24] and an error estimate for
the potential with quadratic order was proven. Similarly, we observe only quadratic
convergence in Table 4.6. A quadratic convergence rate was observed for two and three
dimensions in a similar setting of a transmission problem in [22].

For the double layer potential we obtain linear convergence of the dipole moment,
which is plausible, since by

|p− pDL| ≤ c
(
‖EDL

0 − E0‖Hµ(Γ) + ‖EDL
1 − E1‖Hµ(Γ)

)
, (4.17)

the convergence rate is greater or equal than the order of convergence of the electric
field, for which we observed 1.0 in Table 4.5.

The errors for the scattering cross section (4.8) are given in Table 4.7. We see that
the errors behaves like the errors of the dipole moments at higher levels, which we
expect by Lemma 4.2. We also observe that for the higher levels the scattering cross
section error is approximately twice the error of the dipole for all three formulations.
Therefore it suffices to consider the dipole error for the comparison of computational
times, which is our next task.

Comparison of computational times

In Tables 4.8 and 4.9 the single layer potential ansatz, the double layer potential
formulation, and the Steklov–Poincaré operator formulation are compared with respect
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L
‖ESLL −E‖V
‖E‖V

Time(sec.)
‖EDLL −E‖V
‖E‖V

Time(sec.)
‖ESPL −E‖V
‖E‖V

Time(sec.)

0 4.86e-1 0 6.08e-2 0 8.36e-3 0
1 1.98e-1 0 3.43e-2 0 2.22e-2 0
2 7.55e-2 0 1.75e-2 0 7.06e-3 0
3 3.43e-2 0 9.02e-3 3 2.07e-3 5
4 1.71e-2 3 4.63e-3 15 5.95e-4 72
5 8.66e-3 14 2.35e-3 83 1.65e-4 184
6 4.37e-3 76 1.18e-3 365 4.52e-5 927
7 2.20e-3 240 5.94e-4 1087 1.25e-5 3205

Table 4.8: Sphere with εr = 5.0, Errors of the electric field with times

L
|pSLL −p|

p
Time(sec.)

|pDLL −p|
p

Time(sec.)
|pSPL −p|

p
Time(sec.)

0 0.75 0 0.73 0 0.68 0
1 0.35 0 0.36 0 0.30 0
2 0.11 0 0.14 0 8.84e-2 0
3 2.77e-2 0 5.04e-2 3 2.32e-2 5
4 7.00e-3 3 2.03e-2 15 5.87e-3 72
5 1.75e-3 14 8.85e-3 83 1.47e-3 184
6 4.39e-4 76 4.10e-3 365 3.68e-4 927
7 1.10e-4 240 1.97e-3 1087 9.21e-5 3205

Table 4.9: Sphere with εr = 5.0, Errors of the dipole moment with times

to the computational times (without the postprocessing time needed for the error
computation) and the accuracy of the dipole moment and the electric field.

When computing the electric field, we observe, that, with respect to the com-
putational times on the same mesh, the single layer approach is the fastest one.
The Steklov–Poincaré formulation has the longest computational times. But the ob-
served order of convergence for the electric field is highest for the Steklov–Poincaré
formulation and about the same for the other two formulations. We see that the
Steklov–Poincaré formulation at refinement level 3 yields an error for the electric field,
which is comparable to the error of the single layer approach on level 7 and the error of
the double layer approach on level 5. With respect to the computational time for this
error value the Steklov–Poincaré formulation outperforms the other two formulations.
On the other hand the double layer approach performs better than the single layer
approach.

However, if we take a look at the dipole errors, the errors of the single layer ap-
proach are comparable to the errors of the Steklov–Poincaré approach on every level,
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but the single layer approach is much faster than the other two formulations. The
Steklov–Poincaré formulation performs better than the double layer approach, since
the error on level 4 is comparable to the error of the double layer formulation on
level 7. This could be caused by the different approximations used for the computa-
tion of the dipole moment, where we do not have to do an extra computation for the
single layer to obtain the surface charge density. The convergence orders of the errors
of the single layer and Steklov–Poincaré formulations are very similar, whereas the
convergence order for the double layer approach is not as high.

4.3 Cube

In this example we consider a microscopic particle in the form of a cube Ω = [0, a]3,
where a = 1 nm, with εr = 2.25 (glas), E0 = (0, 0, 1)>, and wavelength ν = 400 nm
in Ωext (ω = 4.7091 · 1015[rad/s]). We discretize the geometry with refinement steps
L ∈ {0, . . . , 7} by 24 · 4L plane triangles, where the corresponding number of panels
and nodes are given in Table 4.10. We also consider εr = 50000 to test the numerical
stability of the approaches. For the cube we do not have analytical solutions at hand.
Therefore we use approximations of the best versions on the finest level as reference
solutions. The formulation, which is used as reference may differ for various considered
quantities.

In the computation we use a grid of the cube [0, 1]3, hence a scaling of the input
data and output data is necessary.

4.3.1 Scaling

Let ϕ : Ω = [0, a]3 → [0, 1]3 = Ω∗, x 7→ 1
a
· x =: x∗. We define Ω∗ := ϕ(Ω) and also

Ωext
∗ := ϕ(Ωext) and Γ∗ := ϕ(Γ). For a function f : Ω → R we define f ∗ : Ω∗ → R as

f ∗(x∗) := f(x), where x = ϕ−1(x∗). For the gradient of a function there holds

a · ∇f(ϕ−1(x∗)) = ∇∗f ∗(x∗) for x∗ ∈ Ω∗.

When we use this properties on (1.5) we obtain the dimensionless problem

−∆∗Φ∗1(x∗) = 0 for x∗ ∈ Ω∗, (4.18a)

−∆∗Φ∗0(x∗) = 0 for x∗ ∈ Ωext
∗ , (4.18b)

Φ∗1(x∗) = Φ∗0(x∗) for x∗ ∈ Γ∗, (4.18c)

εr

(
∂∗

∂n
Φ∗1(x∗)

)
−
(
∂∗

∂n
Φ∗0(x∗)

)
= (1− εr)(0, 0, a)> · n for x∗ ∈ Γ∗, (4.18d)

Φ∗0(x∗) = O
(

1

|x∗|

)
as |x∗| → ∞. (4.18e)
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Level Panels Nodes

0 24 14
1 96 50
2 384 194
3 1536 770
4 6144 3074
5 24576 12290
6 98304 49154
7 393216 196610

Table 4.10: Number of nodes and panels of the cube

A surface integral on Γ∗ can be computed as

a2 ·
∫
Γ∗

f(x∗)dsx∗ =

∫
Γ

f(x)dsx.

The transformation of the fundamental solution U∗ is

U∗(ϕ(x), ϕ(y)) =
1

4π|ϕ(x)− ϕ(y)|
=

a

4π|x− y|
= a · U∗(x, y).

With the mentioned properties it can be easily seen that the boundary integral op-
erators transform in the following way for w∗ ∈ H−

1
2 (Γ∗), v

∗ ∈ H
1
2 (Γ∗), x

∗ ∈ Ω∗:

(Ṽ ∗w∗)(x∗) =
1

a
· (Ṽ (w∗ ◦ ϕ))(ϕ−1(x∗)), (4.19a)

(V ∗w∗)(x∗) =
1

a
· (V (w∗ ◦ ϕ))(ϕ−1(x∗)), (4.19b)

(K ′∗w∗)(x∗) = (K ′(w∗ ◦ ϕ))(ϕ−1(x∗)), (4.19c)

(K∗v∗)(x∗) = (K(v∗ ◦ ϕ))(ϕ−1(x∗)), (4.19d)

(W ∗v∗)(x∗) = (W (v∗ ◦ ϕ))(ϕ−1(x∗)), (4.19e)

(D∗v∗)(x∗) = a · (D(v∗ ◦ ϕ))(ϕ−1(x∗)). (4.19f)

The single layer formulation (2.2) of the transformed problem (4.18) is(
1

2

ε1 + ε0

ε1 − ε0

I +K ′∗
)
w∗ = (0, 0, a)> · n on Γ∗,

which can be transformed using (4.19) to obtain(
1

2

ε1 + ε0

ε1 − ε0

I +K ′
)

(
1

a
w∗ ◦ ϕ) = (0, 0, 1)> · n on Γ.
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If we compare this to the single layer formulation of the original problem (1.5) we
obtain that

wh =
1

a
w∗h ◦ ϕ,

where wh is the solution of the single layer formulation (2.2) and not the direct trans-
formation of w∗h. Using the evaluation of the single layer potential formulation (2.26)
we get

Ẽ(x) = (0, 0, 1)> − 1

a
∇∗(Ṽ ∗w∗h)(ϕ(x)) for x ∈ R3.

In the same manner we can transform the Steklov–Poincaré operator formulation (2.9)

by S∗i v
∗(x∗) = a · (Si(v∗ ◦ ϕ))(ϕ−1(x∗)) for v∗ ∈ H 1

2 (Γ∗) to obtain

ti,h =
1

a
t∗i,h ◦ ϕ for i = 1, 2,

Φh = Φ∗h ◦ ϕ,

and by using the evaluation (2.27)

Ẽ(x) = (0, 0, 1)> − 1

a

(
∇∗(Ṽ ∗t∗1,h)(ϕ(x))−∇∗(W ∗Φ∗h)(ϕ(x))

)
for x ∈ Ω,

Ẽ(x) = (0, 0, 1)> +
1

a

(
∇∗(Ṽ ∗t∗0,h)(ϕ(x))−∇∗(W ∗Φ∗h)(ϕ(x))

)
for x ∈ Ωext.

If we do the same for the double layer formulation (2.24) we observe

vh = v∗h ◦ ϕ,
ψ̃h = ψ̃∗h ◦ ϕ,

and hence the electric field can be evaluated as in (2.28) by

Ẽ(x) = (0, 0, 1)> +
1

a

(
1

ε1

∇∗(W ∗v∗h)(ϕ(x))− ε1 − ε0

ε1

∇∗ψ̃∗h(ϕ(x))

)
for x ∈ Ω,

Ẽ(x) = (0, 0, 1)> +
1

a

(
1

ε0

∇∗(W ∗v∗h)(ϕ(x))

)
for x ∈ Ωext.

4.3.2 Error Convergence Study for εr = 2.25

Now we study the errors and convergence rates of the occurring quantities for the cube
with relative permittivity εr = 2.25.
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L ‖wL−w7‖V
‖w7‖V

eoc
‖vL−v7‖L2(Γ)

‖v7‖L2(Γ)
eoc

0 8.49e-2 2.59e-2
1 4.12e-2 1.04 9.31e-3 1.47
2 2.13e-2 0.95 3.00e-3 1.63
3 1.12e-2 0.93 1.00e-3 1.58
4 5.86e-3 0.94 3.58e-4 1.48
5 2.94e-3 1.00 1.43e-4 1.32
6 1.28e-3 1.20 6.26e-5 1.19
7 0.00 0.00

Table 4.11: Cube with εr = 2.25, Errors of the densities

L
‖ΦSLL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

‖ΦDLL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

‖ΦSPL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

0 6.08e-2 3.58e-2 8.78e-2
1 1.99e-2 1.61 1.52e-2 1.24 2.96e-2 1.57
2 6.83e-3 1.54 5.19e-3 1.55 9.38e-3 1.66
3 2.45e-3 1.48 1.73e-3 1.59 3.09e-3 1.60
4 9.11e-4 1.43 5.84e-4 1.57 1.06e-3 1.54
5 3.48e-4 1.39 2.01e-4 1.54 3.77e-4 1.49
6 1.36e-4 1.36 6.81e-5 1.56 1.43e-4 1.40
7 5.29e-5 1.36 0.00e0 6.98e-5 1.03

Table 4.12: Cube with εr = 2.25, Errors of the potentials

Densities

For the single layer and double layer density we use the respective solutions on the
seventh level for computing the relative errors. In Table 4.11 we see, that the conver-
gence rate of the double layer density is approximately 1.45, whereas the convergence
rate of the single layer density is about 0.95. Both convergence rates are lower than
the ones obtained for the sphere, which is reasonable, since the sphere is the domain
with smoother boundary. For a transmission problem with jumping coefficients we
expect reduced regularity by [5].

Potential

Since the potential of the double layer approach on level 7 seems to be the best
approximation we choose it as reference solution of the potential. The L2(Γ)-errors
are computed by prolongation to the finest level and 7 point integration. In Table 4.12
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we observe that the estimated convergence rate of the single layer potential is about 1.4,
therefore the convergence rate is approximately half an order higher as the convergence
rate of the density, which is the expected outcome, see (4.14).

For the double layer potential we observe that the order of convergence is about
1.55, which is similar to the convergence rate of the double layer density in L2(Γ), and
therefore also as expected by (4.13).

For the Steklov–Poincaré operator formulation we obtain an order of 1.5.

Electric field

We use the approximation EDL
7 of the double layer approach at level 7 as reference

solution for the relative approximate H−
1
2 (Γ)-errors of the electric field, as it is ap-

proximately of the same accuracy as the Steklov–Poincaré formulation, but faster and
therefore more convenient in practice. The numerical results based on the standard
approach and the simply connected version are given in Tables 4.13 and 4.14. In
Table 4.13 we observe linear convergence for all three formulations. Based on the
error tables the choice of the solution obtained from the double layer approach as ref-
erence solution seems appropriate. Both other formulations converge up to the seventh
refinement level to this solution. The error on the seventh level of the Steklov–Poincaré
formulation is smaller than the error of the double layer approach on level 6, which is
why it is hard to say, if it is still meaningful, since at this point the two approaches
are comparable.

In all three approaches we observe a lower convergence rate than for the sphere in
Tables 4.4 and 4.5, which is expected by the reduced regularity of the solution [5]. If we
compare the standard computation to the adapted one for simply connected domains,
we observe that the double layer approach yields similar errors with a convergence rate
of 1.0. The same holds true for the Steklov–Poincaré operator formulation. Concerning
the single layer approach we obtain a discrepancy between the two variants, where the

L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

0 5.07e-2 4.40e-2 4.25e-2
1 2.63e-2 0.94 2.32e-2 0.93 2.36e-2 0.85
2 1.37e-2 0.94 1.22e-2 0.93 1.26e-2 0.91
3 7.08e-3 0.95 6.38e-3 0.93 6.66e-3 0.92
4 3.61e-3 0.97 3.26e-3 0.97 3.46e-3 0.95
5 1.79e-3 1.01 1.55e-3 1.07 1.69e-3 1.03
6 8.67e-4 1.04 5.96e-4 1.38 7.17e-4 1.24
7 5.01e-4 0.79 0.00e0 2.13e-4 1.75

Table 4.13: Cube with εr = 2.25, Errors of the electric field
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L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

0 3.44e-1 4.40e-2 4.32e-2
1 2.13e-1 0.69 2.32e-2 0.93 2.39e-2 0.86
2 1.35e-1 0.66 1.22e-2 0.93 1.27e-2 0.91
3 8.67e-2 0.63 6.38e-3 0.93 6.72e-3 0.92
4 5.66e-2 0.62 3.26e-3 0.97 3.49e-3 0.94
5 3.71e-2 0.61 1.55e-3 1.07 1.71e-3 1.03
6 2.44e-2 0.61 5.96e-4 1.38 7.28e-4 1.24
7 1.59e-2 0.61 0.00e0 2.18e-4 1.74

Table 4.14: Cube with εr = 2.25, Errors of the electric field, simply connected

L
‖∇(Ṽ wj,h)·n−(−∇Φpart)·n‖V

‖(−∇Φpart)·n‖V
eoc

0 2.62e-1
1 1.60e-1 0.71
2 1.00e-1 0.68
3 6.43e-2 0.64
4 4.19e-2 0.62
5 2.75e-2 0.61
6 1.81e-2 0.60
7 1.19e-2 0.60

Table 4.15: Cube, Errors of the particular solution

convergence rate of the standard computation is 1.0 and the order for the adapted
computation is 0.6. We can explain this difference by the term (∗) occurring in the
estimate (4.15). In Table 4.15 we see that this part causes the lower convergence rate
of the electric field, since its order of convergence is 0.6. Therefore we can assume
linear convergence of the electric field.

We now make the same assumptions on the electric field as in Section 4.2. Hence
we expect the same convergence rate for the single layer density in H−

1
2 (Γ) and the

electric field in H−
1
2 (Γ), which corresponds to the observed behavior. For the double

layer formulation linear convergence is the expected outcome, since the density has
approximately an order of 1.5 in L2(Γ). The errors of the electric field, obtained by
the Steklov–Poincaré formulation, also show linear convergence. The considerations in
Section 4.2 show that this corresponds to the expectation, as we guess that Φ ∈ H 3

2 (Γ),
since the convergence rate in Table 4.12 is 1.5.
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L
|pSLL −p

SP
7 |

pSP7
eoc

|pDLL −p
SP
7 |

pSP7
eoc

|pSPL −p
SP
7 |

pSP7
eoc

0 6.11e-2 5.41e-2 4.64e-3
1 1.95e-2 1.65 2.37e-2 1.19 2.23e-3 1.06
2 5.86e-3 1.73 9.47e-3 1.32 5.93e-4 1.91
3 1.72e-3 1.76 3.59e-3 1.40 1.76e-4 1.76
4 5.04e-4 1.77 1.26e-3 1.51 5.57e-5 1.66
5 1.48e-4 1.77 3.73e-4 1.75 1.76e-5 1.66
6 4.47e-5 1.73 5.90e-5 2.66 4.59e-6 1.94
7 1.47e-5 1.60 3.60e-5 0.71 0.00

Table 4.16: Cube with εr = 2.25, Errors of the dipole moment

L
|CSLsca,L−C

SP
sca,7|

CSPsca,7
eoc

|CDLsca,L−C
SP
sca,7|

CSPsca,7
eoc

|CSPsca,L−C
SP
sca,7|

CSPsca,7
eoc

0 1.18e-1 1.05e-1 9.31e-3
1 3.85e-2 1.62 4.68e-2 1.17 4.47e-3 1.06
2 1.17e-2 1.72 1.89e-2 1.31 1.19e-3 1.91
3 3.45e-3 1.76 7.16e-3 1.40 3.51e-4 1.76
4 1.01e-3 1.77 2.52e-3 1.51 1.11e-4 1.66
5 2.96e-4 1.77 7.47e-4 1.75 3.52e-5 1.66
6 8.95e-5 1.73 1.18e-4 2.66 9.19e-6 1.94
7 2.95e-5 1.60 7.20e-5 0.71 1.21e-16 36.14

Table 4.17: Cube with εr = 2.25, Errors of the scattering cross section
.

Dipole moment and scattering cross section

We use the approximations given by the Steklov–Poincaré formulation on the seventh
refinement level as reference solutions for the dipole moment and the scattering cross
section. The results are shown in Tables 4.16 and 4.17. For the single layer approach we
observe an estimated order of convergence of approximately 1.77, which is as expected
to be higher than the convergence order of 1.0 in Table 4.11 of the single layer density.
For the errors of the dipole moment obtained by the double layer approach we would
expect a rate higher than the one obtained for the errors of the electric field of the
double layer approach, see (4.17). This holds true, since we observe an estimated order
of 1.6, while the order of the electric field in Table 4.14 is 1.0. In the case of computing
the errors of the Steklov–Poincaré operator formulation the order of convergence is
approximately 1.7. This is slightly lower than the convergence rate for the sphere in
Table 4.6, which is 2.0. In Table 4.17 we observe again that the errors of the scattering
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L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

0 3.44e-1 0 4.40e-2 0 4.32e-2 0
1 2.13e-1 1 2.32e-2 0 2.39e-2 0
2 1.35e-1 1 1.22e-2 3 1.27e-2 3
3 8.67e-2 5 6.38e-3 21 6.72e-3 62
4 5.66e-2 12 3.26e-3 69 3.49e-3 177
5 3.71e-2 30 1.55e-3 173 1.71e-3 582
6 2.44e-2 84 5.96e-4 482 7.28e-4 2045
7 1.59e-2 293 0.00e0 1477 2.18e-4 8420

Table 4.18: Cube with εr = 2.25, Errors of the electric field with times

cross section behaves like the errors of the dipole moments at higher levels. We also
see that for the higher levels the scattering cross section error is approximately twice
the error of the dipole for all three formulations. Therefore it suffices also for this case
to consider only the dipole moment for comparison of computational times.

Comparison of computational times

In Tables 4.18 and 4.19 the modified versions (3.3), (3.12), and (3.18) for simply
connected domains for the single layer potential ansatz, the Steklov–Poincaré operator
formulation, and the double layer potential formulation are compared with respect
to the computational times (without the postprocessing time needed for the error
computation) and the accuracy of the dipole moment and the electric field.

In Table 4.18 the accuracy of the electric field of the single layer approach is not
as good as the observed accuracy in the other two formulations. The double layer
approach is much faster than the Steklov–Poincaré formulation, if we aim for the

L
|pSLL −p

SP
7 |

pSP7
Time(sec.)

|pDLL −p
SP
7 |

pSP7
Time(sec.)

|pSPL −p
SP
7 |

pSP7
Time(sec.)

0 6.11e-2 0 5.41e-2 0 4.64e-3 0
1 1.95e-2 1 2.37e-2 0 2.23e-3 0
2 5.86e-3 1 9.47e-3 3 5.93e-4 3
3 1.72e-3 5 3.59e-3 21 1.76e-4 62
4 5.04e-4 12 1.26e-3 69 5.57e-5 177
5 1.48e-4 30 3.73e-4 173 1.76e-5 582
6 4.47e-5 84 5.90e-5 482 4.59e-6 2045
7 1.47e-5 293 3.60e-5 1477 0.00e0 8420

Table 4.19: Cube with εr = 2.25, Errors of the dipole with times
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same accuracy of the electric field.
In Table 4.19 one can observe for the dipole moment that the single layer formu-

lation is far better with respect to computational performance than the other two
formulations. The error of the sixth level is lower than the error of the double layer
approach on level 6 and the error of the Steklov–Poincaré formulation on level 4. On
the other hand the computational time needed is half the time of the Steklov–Poincaré
formulation and less than a fifth of the double layer’s computational time. We can
also conclude that the double layer performs worst.

Figure 4.1: Electric field of the cube, single layer approach, εr = 2.25

Figure 4.2: Electric field of the cube, Steklov–Poincaré formulation, εr = 2.25
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Figure 4.3: Electric field of the cube, double layer approach, εr = 2.25

In Figures 4.1–4.3 plots of the electric fields, computed by the different formulations
with the modified variant in the simply connected case, are given. We see that the
fields for the Steklov–Poincaré and double layer formulations are similar, only the
electric field of the single layer approach seems to be inaccurate at edges and corners.

4.3.3 Error Convergence Study for εr = 50000

Densities

For the single layer and double layer density we use the respective solutions on the
seventh level for computing the relative errors in Table 4.20.

The observed convergence rate for the double layer density is approximately 1.2,

L ‖wL−w7‖V
‖w7‖V

eoc
‖vL−v7‖L2(Γ)

‖v7‖L2(Γ)
eoc

0 3.34e-1 1.11e-1
1 1.83e-1 0.87 3.96e-2 1.49
2 1.05e-1 0.80 1.44e-2 1.46
3 6.20e-2 0.77 5.67e-3 1.35
4 3.61e-2 0.78 2.38e-3 1.25
5 1.98e-2 0.87 1.07e-3 1.15
6 9.14e-3 1.12 4.88e-4 1.13
7 0.00e0 0.00e0

Table 4.20: Cube with εr = 50000, Errors of the densities
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L
‖ΦSLL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

‖ΦDLL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

‖ΦSPL −ΦDL7 ‖L2(Γ)

‖ΦDL7 ‖L2(Γ)
eoc

0 2.52e-1 1.18e-1 1.72e-3
1 1.01e-1 1.32 4.99e-2 1.24 4.65e-4 1.89
2 4.04e-2 1.32 1.77e-2 1.50 1.27e-4 1.88
3 1.65e-2 1.29 6.75e-3 1.39 3.70e-5 1.77
4 6.89e-3 1.26 2.76e-3 1.29 1.13e-5 1.71
5 2.93e-3 1.23 1.17e-3 1.23 3.53e-6 1.68
6 1.26e-3 1.21 5.05e-4 1.21 1.04e-6 1.76
7 5.46e-4 1.21 2.10e-4 1.26 0.00e0

Table 4.21: Cube with εr = 50000, Errors of the potentials

whereas the convergence rate of the single layer density is about 0.8. Both convergence
rates are lower than the ones obtained for a lower relative permittivity, where we
observed 1.45 and 0.95, respectively. The reduced regularity is again as expected
by [5].

Potential

For the relative permittivity εr = 50000 the potential of the Steklov–Poincare formu-
lation on level 7 seems to be the best approximation, therefore we choose it as the
reference solution for error computation of the potentials in Table 4.21. The L2(Γ)-
errors are computed by prolongation to the finest level and seven point integration. In
Table 4.21 the estimated convergence rate of the single layer potential is 1.25. There-
fore the convergence rate is approximately half an order higher as the convergence rate
of the single layer density, which is the expected outcome, see (4.14). For the double
layer potential we observe that the order of convergence is 1.25, which is similar to the
convergence rate of the density, see (4.13). We obtain an order of 1.7 for the Steklov–
Poincaré operator formulation. This order is surprisingly higher than the convergence
rate of the potential in Table 4.12 for εr = 2.25, which was linear.

Electric field

We use the approximation EDL
7 of the double layer approach at level 7, which was

obtained by the simply connected version (3.18), as reference solution for the relative

H−
1
2 (Γ)-errors of the electric field, as it is approximately of the same accuracy as the

Steklov–Poincaré formulation, but faster and thus more convenient in practice. In
Table 4.22 we see that for higher permittivities the standard calculations of the single
layer and double layer electric fields do not converge. Only the Steklov–Poincaré
solution converges, but the errors are high. With the adapted calculations (3.3),
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L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

0 2.91e3 3.72e-1 1.99e1
1 1.62e3 0.84 3.46e-1 0.10 8.07e0 1.30
2 1.23e3 0.40 4.30e-1 −0.31 3.54e0 1.19
3 3.69e3 −1.59 8.60e-1 −1.00 1.65e0 1.10
4 4.98e3 −0.43 1.09e0 −0.34 7.97e-1 1.05
5 5.42e1 6.52 1.14e-1 3.26 3.97e-1 1.01
6 4.66e1 0.22 1.22e-1 −0.09 2.03e-1 0.97
7 2.43e1 0.94 0.00e0 1.03e-1 0.98

Table 4.22: Cube with εr = 50000, Errors of the electric field

L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
eoc

0 5.57e-1 1.80e-1 2.13e-1
1 3.75e-1 0.57 1.03e-1 0.81 1.23e-1 0.80
2 2.51e-1 0.58 6.02e-2 0.77 7.22e-2 0.77
3 1.68e-1 0.58 3.55e-2 0.76 4.33e-2 0.74
4 1.13e-1 0.58 2.03e-2 0.80 2.54e-2 0.77
5 7.52e-2 0.58 1.07e-2 0.92 1.43e-2 0.83
6 4.96e-2 0.60 4.51e-3 1.25 8.51e-3 0.75
7 3.20e-2 0.63 0.00e0 2.18e-3 1.97

Table 4.23: Cube with εr = 50000, Errors of the electric field, simply connected

(3.18), and (3.12) the result is by far better, all three formulations converge and the
errors are reasonable small as we can observe in Table 4.23. The choice of the solution
obtained from the double layer approach as reference solution seems appropriate. Both
other formulations converge up to the seventh refinement level to this solution. The
error on the seventh level of the Steklov–Poincaré formulation is smaller than the error
of the double layer approach on level 6, therefore they are comparable on this level.
We observe that the accuracy is not as high as in the case of εr = 2.25 for all three
formulations. Only the single layer approach yields the same order of 0.6, which could
be due to the fact that the convergence rate of the auxiliary calculation in Table 4.15 is
the limiting factor, see (4.15). The error of the Steklov–Poincaré formulation on level
7 is close to the one on level 6, which indicates that level 7 is not relevant anymore,
since it may be as close to the real value as the double layer solution of level 7. Both
the double layer approach and the Steklov–Poincaré formulation have a convergence
rate of about 0.8. This order seems appropriate for the double layer approach, since
it is approximately half an order lower than the double layer density, see Table 4.20.
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L
|pSLL −p

SP
7 |

pSP7
eoc

|pDLL −p
SP
7 |

pSP7
eoc

|pSPL −p
SP
7 |

pSP7
eoc

0 2.49e-1 1.12e-1 8.00e-2
1 9.96e-2 1.32 2.82e-2 1.98 2.64e-2 1.60
2 3.81e-2 1.39 3.69e-3 2.93 9.28e-3 1.51
3 1.43e-2 1.41 1.15e-2 −1.64 3.40e-3 1.45
4 5.37e-3 1.42 1.10e-2 0.07 1.25e-3 1.44
5 2.00e-3 1.43 8.45e-3 0.38 4.37e-4 1.52
6 7.17e-4 1.48 5.97e-3 0.50 1.23e-4 1.83
7 2.28e-4 1.65 4.05e-3 0.56 0.00e0

Table 4.24: Cube with εr = 50000, Errors of the dipole moment

L
|CSLsca,L−C

SP
sca,7|

CSPsca,7
eoc

|CDLsca,L−C
SP
sca,7|

CSPsca,7
eoc

|CSPsca,L−C
SP
sca,7|

CSPsca,7
eoc

0 4.35e-1 2.11e-1 1.54e-1
1 1.89e-1 1.20 5.56e-2 1.92 5.20e-2 1.56
2 7.47e-2 1.34 7.40e-3 2.91 1.85e-2 1.49
3 2.85e-2 1.39 2.32e-2 −1.65 6.80e-3 1.44
4 1.07e-2 1.41 2.21e-2 0.07 2.50e-3 1.44
5 3.99e-3 1.43 1.70e-2 0.38 8.74e-4 1.52
6 1.43e-3 1.48 1.20e-2 0.50 2.46e-4 1.83
7 4.57e-4 1.65 8.11e-3 0.56 1.18e-16 40.92

Table 4.25: Cube with εr = 50000, Errors of the scattering cross section
.

Dipole moment and scattering cross section

We use the approximations given by the Steklov–Poincaré formulation on the seventh
refinement level as reference solutions for the dipole moment (4.2) and the scattering
cross section (4.8). The results are given in Tables 4.24 and 4.25. The single layer
approach yields an estimated order of convergence of approximately 1.4, which is
higher than the convergence rate of the single layer density and therefore it seems
to be plausible. For the errors of dipole moment obtained by the Steklov–Poincaré
operator formulation the order of convergence is approximately 1.5. For the dipole
moment generated by the double layer approach the determination of a convergence
rate seems to be difficult and the errors on higher levels are larger than for the other
two formulations. Again we observe that the errors of the scattering cross section in
Table 4.25 behave like the errors of the dipole moments at higher levels. We also see
that for the higher levels the scattering cross section error is approximately twice the
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L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

‖EDLL −E
DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

‖ESPL −E
DL
7 ‖V

‖EDL7 ‖V
Time(sec.)

0 0.56 0 0.18 0 0.21 0
1 0.38 0 0.10 1 0.12 1
2 0.25 0 6.02e-2 5 7.22e-2 4
3 0.17 3 3.55e-2 16 4.33e-2 60
4 0.11 11 2.03e-2 54 2.54e-2 197
5 7.52e-2 29 1.07e-2 143 1.43e-2 614
6 4.96e-2 89 4.51e-3 441 8.51e-3 2259
7 3.20e-2 288 0.00 1517 2.18e-3 8834

Table 4.26: Cube with εr = 50000, Errors of the electric field with times

L
|pSLL −p

SP
7 |

pSP7
Time(sec.)

|pDLL −p
SP
7 |

pSP7
Time(sec.)

|pSPL −p
SP
7 |

pSP7
Time(sec.)

0 2.49e-1 0 1.12e-1 0 8.00e-2 0
1 9.96e-2 0 2.82e-2 1 2.64e-2 1
2 3.81e-2 0 3.69e-3 5 9.28e-3 4
3 1.43e-2 3 1.15e-2 16 3.40e-3 60
4 5.37e-3 11 1.10e-2 54 1.25e-3 197
5 2.00e-3 29 8.45e-3 143 4.37e-4 614
6 7.17e-4 89 5.97e-3 441 1.23e-4 2259
7 2.28e-4 288 4.05e-3 1517 0.00e0 8834

Table 4.27: Cube with εr = 50000, Errors of the dipole with times

error of the dipole for all three formulations. Therefore it suffices once more to consider
only the dipole moment for comparison of computational times. We can observe that
overall convergence rates are lower with a difference of 0.2-0.3 to the lower permittivity
εr = 2.25.

Comparison of computational times

In Tables 4.26 and 4.27 the single layer potential ansatz, the double layer potential
formulation, and the Steklov–Poincaré operator formulation are compared with respect
to the computational times (without the postprocessing time needed for the error
computation) and the accuracy of the dipole moment and the electric field. The
double layer approach is better than the single layer approach, as the error of the
double layer approach on level 4 is lower than the error of the single layer formulation
on level 7, and the computational time is significantly lower. We can also observe
that the errors and computational times of the double layer approach are on every
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Figure 4.4: Electric field of the cube, single layer approach, εr = 50000

level smaller or similar to the errors and computational times of the Steklov–Poincaré
formulation. The accuracy of the single layer approach is worse than the accuracy
observed for the other two formulations, where the double layer approach is much faster
than the Steklov–Poincaré formulation, if we aim for the same accuracy of the electric
field. For the dipole moment we obtain a similar result as in the case of a smaller
relative permittivity εr = 2.25 in Table 4.16. The Steklov–Poincaré formulation on
level 5 yields an error that is comparable to the error of the single layer approach on
level 7, where the single layer approach is much faster. On the other hand we see that
the errors computed by the double layer approach differ on higher levels significantly
to the ones given by the other two methods. We can conclude that the double layer
approach is not as good as the other two methods for computing the dipole moment,
when considering big relative permittivities.

Figure 4.5: Electric field of the cube, Steklov–Poincaré formulation, εr = 50000
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Figure 4.6: Electric field of the cube, double layer approach, εr = 50000

In the plots of the electric field in Figures 4.4 – 4.6 we can see that the electric
field seems to be meaningful for physical applications, if computed by the double layer
approach and the Steklov–Poincaré formulation, but the same is not quite true for the
single layer approach close to corners and edges.

4.4 Summary

With our observations from Tables 4.22 and 4.23 in mind we see that, as expected
beforehand, the modified versions (3.3), (3.12), and (3.18) for computing the electric
field in simply connected domains are useful, if the relative permittivity εr is high. On
the other hand, if εr is low, we see, by comparing Tables 4.13 and 4.14, that we should
always consider if the modified version is needed, since it could cause an extra error.
Depending on the quantity that we want to compute and the given geometry, all three
formulations (2.2), (2.9), and (2.24) have their advantages and disadvantages. Different
formulations may be the best approach with respect to the time needed to achieve the
same accuracy. The single layer approach performs best in all considered examples,
if we aim at computing the dipole moment. However the electric field computed by
the single layer approach seems to be critical in the physical interpretation, since we
observe unphysical fields in the layer of boundary elements along corners and edges.
The double layer is most suitable for computing the electric field of the cube, but the
errors for the dipole moment are high compared to the other two formulations. The
Steklov–Poincaré formulation is best for computing the electric field of the sphere. It
seems to be the most stable of all three formulations, since its performance is in all
examples in the first or second place and it shows convergence, where the other two
formulations do not, see Tables 4.22 and 4.23. On the other hand the Steklov-Poincaré
formulation is also most demanding computationally.



5 Alternative Methods and
Modifications

In this chapter various adaptions will be tested to find additional improvements for
the numerical computations. We will test different discretization methods for the
single layer potential formulation such as the collocation method in Section 5.1 or
point sources as ansatz functions in Section 5.2. Furthermore we will change the
discretization of the boundary by applying a graded mesh refinement in Section 5.3.
Finally we will use a different approach for calculating the dipole moment for the
double layer potential formulation in Section 5.4.

5.1 Collocation

Additionally to the three approaches (3.1), (3.7), and (3.16) where we used the Galer-
kin method, we test the single layer potential formulation (3.1) with the collocation
method, where the collocation points are chosen to be the centers of the boundary ele-
ments. We use the fast multipole method with the same settings as for the Galerkin
method. In Tables 5.1 – 5.3 we see the results for the sphere and the cube.

In the case of the sphere we compare the results to the results in Tables 4.5 and 4.6.
We observe that, although the initial errors on the first levels for the electric field are
higher, the order of convergence for both computations is linear. For the relative dipole
error on the other hand the order of convergence is 1.0, which is not as high as for
the Galerkin method, where we have approximately quadratic convergence. If we aim
at the same accuracy the computational times are higher, when using the collocation
method. This can be seen if we compare the sixth level of the collocation method,
which takes 34 seconds to compute, to the fourth levels in Tables 4.8 and 4.9, where
comparable errors are achieved in only 3 seconds.

We compare the collocation results for the cube to Tables 4.14, 4.16, 4.23 and 4.24.
We observe higher initial errors of the electric field and the dipole moment. We also
notice a slightly lower convergence rate for the electric field. The errors that we
obtain for the dipole moment are higher than for the Galerkin method, therefore the
Galerkin method seems to yield better approximations. Also the computational times
for comparable accuracies are again higher for the collocation method, which can be
seen in Tables 4.18, 4.26, 4.19, and 4.27.

65
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L
‖ESLL −E‖V
‖E‖V

eoc
|pSLL −p|

p
eoc Time(sec.)

0 5.48e-1 7.64e-1 0
1 3.90e-1 0.49 4.14e-1 0.89 0
2 2.51e-1 0.64 1.80e-1 1.20 0
3 1.47e-1 0.77 7.80e-2 1.20 0
4 8.05e-2 0.87 3.56e-2 1.13 1
5 4.22e-2 0.93 1.68e-2 1.08 6
6 2.16e-2 0.96 8.16e-3 1.04 34
7 1.09e-2 0.98 4.02e-3 1.02 113

Table 5.1: Computational results of the single layer approach for the sphere by colloc-
ation, εr = 5.0

L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

|pSLL −p
SP
7 |

pSP7
eoc Time(sec.)

0 4.36e-1 9.54e-2 0
1 3.37e-1 0.37 5.09e-2 0.91 0
2 2.51e-1 0.43 2.69e-2 0.92 0
3 1.82e-1 0.46 1.43e-2 0.91 2
4 1.30e-1 0.49 7.64e-3 0.90 7
5 9.12e-2 0.51 4.12e-3 0.89 18
6 6.34e-2 0.52 2.22e-3 0.89 67
7 4.37e-2 0.54 1.21e-3 0.88 222

Table 5.2: Computational results of the single layer approach for the cube by colloca-
tion, εr = 2.25

L
‖ESLL −E

DL
7 ‖V

‖EDL7 ‖V
eoc

|pSLL −p
SP
7 |

pSP7
eoc Time(sec.)

0 6.63e-1 3.48e-1 0
1 5.48e-1 0.27 2.29e-1 0.60 0
2 4.34e-1 0.33 1.48e-1 0.63 1
3 3.37e-1 0.37 9.51e-2 0.64 2
4 2.53e-1 0.41 6.07e-2 0.65 6
5 1.85e-1 0.45 3.87e-2 0.65 28
6 1.34e-1 0.47 2.45e-2 0.66 66
7 9.48e-2 0.49 1.55e-2 0.66 231

Table 5.3: Computational results of the single layer approach for the cube with colloc-
ation, εr = 50000
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5.2 Discretization Variants

Next we will consider two alternative discretizations of the single layer potential for-
mulation (2.2). We choose Dirac like ansatz functions and matching test functions,
following the ideas given in [9]. In particular we consider point sources in the centers
of the elements and in the nodes. The errors of the approximations of the potentials
will be investigated for different discretizations.

5.2.1 Point Sources in Centers of the Elements

We consider the ansatz function

w̃h(x) =
N∑
k=1

w̃kδ(x− x̂k) for x ∈ Γ,

where x̂k is the center of the element τk and δ(·) is the Dirac delta function. With the
single layer formulation (2.2) and by using piecewise constant test functions we get〈(

1

2

ε1 + ε0

ε1 − ε0

I +K ′
)
w̃h, ψ

0
k

〉
Γ

=
〈
−γint

1 Φpart, ψ
0
k

〉
Γ

for k = 1, . . . , N.

By computing 〈
w̃h, ψ

0
k

〉
Γ

=
N∑
`=1

w̃`

∫
Γ

ψ0
k(x)δ(x− x̂`)dsx = w̃k

and 〈
K ′w̃h, ψ

0
k

〉
Γ

=

∫
Γ

ψ0
k(x)

∫
Γ

γint
1,xU

∗(x, y)
N∑
`=1

w̃`δ(y − ŷ`)dsydsx

=
N∑
`=1

w̃`

∫
Γ

ψ0
k(x)γint

1,xU
∗(x, ŷ`)dsx =

N∑
`=1

w̃`(Kψ
0
k)(ŷ`)

we obtain (
1

2

ε1 + ε0

ε1 − ε0

I + K̃>h

)
w̃ = f 0, (5.1)

where for k, ` = 1, . . . , N

K̃h[`, k] = (Kψ0
k)(ŷ`), f 0

k = 〈−γint
1 Φpart, ψ

0
k〉Γ.

We denote by wh the approximation of the density obtained by the standard single
layer approach (3.1), i.e.,

wh =
N∑
k=1

wkψ
0
k, on Γ.
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Since (3.1) is comparable to (5.1), if we approximate the integration by evaluation in
the centers, we are tempted to demand

∫
τk

(wh(x)− w̃h(x))dsx = 0. Thus we obtain for

k = 1, . . . , N
w̃k ≈ wk|τk|. (5.2)

This corresponds to a scaling of the original coefficients. We can also evaluate the
single layer potential for w̃h by

Φ̃SL
h (x) = V w̃h(x) =

N∑
k=1

w̃kU
∗(x, ỹk) for x ∈ Γ, (5.3)

in contrast to the original computation

ΦSL
h (x) = V wh(x) =

N∑
k=1

wk

∫
τk

U∗(x, y)dsy for x ∈ Γ. (5.4)

We denote by Φ̃SL
L and ΦSL

L the corresponding numerical computations on level L and
by Φ the analytic solution (4.12) for the sphere. For the computation of the L2(Γ)-error

of Φ̃h we have tested several approaches for the numerical integration to ensure the
error computation is not a limiting factor for the observed order of convergence. The
seven point formula used before cannot be used due to the singularities in the centers
of the elements. In the first integration variant we start by using linear interpolation
on Φ̃h in the vertices to obtain

I1
hΦ̃h(x) =

M∑
i=1

ψ1
i (x)(V w̃h)(xi) for x ∈ Γ, (5.5)

and afterwards compute the L2(Γ)-error of the linear interpolation with the seven
point formula. The second variant uses Gauß quadrature, avoiding the centers of the
elements as evaluation points. For the third variant we refine every triangle to six
triangles, such that the center is a node for every subtriangle and the other used nodes
are the original triangle nodes and the midpoints of the edges. Now we can use the
seven point formula on the six subtriangles.

All three variants yield linear convergence as can be seen in Table 5.4. Thus we
conclude that linear convergence is characteristic for the method (5.1), whereas the
original formulation had quadratic convergence in Table 4.3.

To better understand this discrepancy we also consider the potential computed by
the L2(Γ)-projection of the analytic density w onto S0

h. We use transformation (5.2)

to compute another approximation Φ̂h with coefficients ŵk = wk|τk| by

Φ̂h(x) =
N∑
k=1

wk|τk|U∗(x, ỹk) for x ∈ Γ. (5.6)
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L
‖Φ̃SL,V 1

L −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

‖Φ̃SL,V 2
L −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

‖Φ̃SL,V 3
L −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 8.11e-1 5.94e-1 6.38e-1
1 4.57e-1 0.83 2.97e-1 1.00 2.65e-1 1.27
2 2.03e-1 1.17 1.44e-1 1.04 1.19e-1 1.16
3 9.01e-2 1.17 6.96e-2 1.05 5.40e-2 1.14
4 4.18e-2 1.11 3.41e-2 1.03 2.56e-2 1.07
5 2.00e-2 1.06 1.69e-2 1.01 1.26e-2 1.03

Table 5.4: Sphere with εr = 5.0, Errors of the potentials, evaluation (5.3), point
sources in centers of elements (5.1)

L
‖Φ̂SL,V 2

L −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 5.81e-1
1 2.77e-1 1.07
2 1.16e-1 1.25
3 5.14e-2 1.17
4 2.40e-2 1.10
5 1.16e-2 1.05

Table 5.5: Sphere with εr = 5.0, Errors of the potential with the second variant for
the error computation and L2(Γ)-projection of the analytic density as input
for evaluation (5.6), point sources in centers of elements

For all three integration variants we observe linear convergence. As an example the
errors computed with the second variant are given in Table 5.5. Since the convergence
is again linear we conclude that the reduced order of convergence is due to the different
computation of the potentials.

By using relation (5.2) we are able to compute another approximation Φ̌h from w̃h
by

Φ̌h(x) =
N∑
k=1

w̃k
|τk|

∫
τk

U∗(x, y)dsy for x ∈ Γ. (5.7)

Now we observe quadratic convergence for all integration variants. For instance using
the first integration variant we obtain Table 5.6.

Summary

For Φh based on wh ∈ S0
h, computed by (5.4), we observed quadratic convergence in

several implementations of the L2(Γ)-error. For various implementations of the L2(Γ)-
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L
‖Φ̌SL,V 1

L −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 3.74e-1
1 1.22e-1 1.62
2 3.30e-2 1.89
3 8.38e-3 1.97
4 2.10e-3 2.00

Table 5.6: Sphere with εr = 5.0, Errors of the potential with the first variant for the
error computation and solution of (5.1) as input for evaluation (5.7), point
sources in centers of elements

error only linear convergence for Φ̃h, computed by (5.3), was obtained. If we use (5.2)
to scale the coefficients of the L2(Γ)-projection of the analytic solution Q0

hw = wh
to w̃h and compute Φ̂h by (5.6) we observe only linear convergence. Vice versa the
scaled coefficients of w̃h plugged into Φ̌h, see (5.7), provide quadratic convergence. As
we use the same error routines for both versions we may assume that these routines
are correct. We assume reasonable quality of w̃h as we observe quadratic convergence
after scaling. We see two possible reasons for the reduced order. The first possibility
is insufficient accuracy in the evaluation of the solution. As the interpolation of the
solution by piecewise linear functions has reduced order we are tempted to exclude
this case. The second possibility is a reduced approximation quality of the Dirac
functions. We guess and observe that any transformation to w̃h in the space of linear
combinations of point sources in the centers of the elements implies the reduced order
of convergence.

5.2.2 Point Sources in the Nodes

We consider the ansatz function

w̃h(x) =
M∑
k=1

w̃kδ(x− xk) for x ∈ Γ,

where xk is the k-th node of the mesh. Analogous to the derivation of (2.2) we have
for the general jump term σ, that((

σ +
ε0

ε1 − ε0

)
I +K ′

)
w = −γint

1 Φpart on Γ. (5.8)

Using piecewise linear, globally continuous test functions we get〈((
σ +

ε0

ε1 − ε0

)
I +K ′

)
w̃h, ψ

1
k

〉
Γ

=
〈
−γint

1 Φpart, ψ
1
k

〉
Γ

for k = 1, . . . ,M.
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By computing 〈
w̃h, ψ

1
k

〉
Γ

=
M∑
`=1

w̃`

∫
Γ

ψ1
k(x)δ(x− x`)dsx = w̃k

and

〈
K ′w̃h, ψ

1
k

〉
Γ

=

∫
Γ

ψ1
k(x)

∫
Γ

γint
1,xU

∗(x, y)
M∑
`=1

w̃`δ(y − y`)dsydsx

=
M∑
`=1

w̃`

∫
Γ

ψ1
k(x)γint

1,xU
∗(x, y`)dsx =

M∑
`=1

w̃`(Kψ
1
k)(y`)

we obtain ((
σ +

ε0

ε1 − ε0

)
I + K̂>h

)
w̃ = f 1, (5.9)

where for k, ` = 1, . . . ,M

K̂h[`, k] = Kψ1
k(y`), f 1

k = 〈−γint
1 Φpart, ψ

1
k〉Γ.

We denote by wh the L2(Γ)-projection of the analytic solution w onto S1
h and the

related coefficients wk, therefore

wh =
M∑
k=1

wkψ
1
k, on Γ. (5.10)

We can also compute the potential with w̃h by

Φ̃SL
h (x) = V w̃h(x) =

M∑
k=1

w̃kU
∗(x, yk) for x ∈ Γ (5.11)

in contrast to the original computation

ΦSL
h (x) = V wh(x) =

M∑
k=1

wk
∑

τ⊂supp(ψ1
k)

∫
τ

U∗(x, y)ψ1
k(y)dsy for x ∈ Γ. (5.12)

We denote by Φ̃SL
L and ΦSL

L the corresponding numerical computations and by Φ
the analytic solution (4.12) for the sphere. In Table 5.7 we observe linear convergence

for Φ̃SL
h .
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L
‖Φ̃SLL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 4.50e-1
1 2.74e-1 0.72
2 1.52e-1 0.85
3 7.82e-2 0.96
4 3.94e-2 0.99
5 1.97e-2 1.00

Table 5.7: Sphere with εr = 5.0, Errors of the potential computed by numerical integ-
ration with 7 point quadrature rule, evaluation (5.11), point sources in the
nodes (5.9)

L
‖Φ̂SLL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 4.32e-1
1 2.70e-1 0.68
2 1.51e-1 0.84
3 7.78e-2 0.95
4 3.92e-2 0.99
5 1.97e-2 1.00

Table 5.8: Sphere with εr = 5.0, Errors of the potential computed by numerical in-
tegration with 7 point quadrature rule with the L2(Γ)-projection of the
analytic density as input for evaluation (5.14), point sources in the nodes
(5.9)

As for the point sources in the centers we try to map the function w̃h into S1
h(Γ).

Similar to relation (5.2) we find a scaling for k = 1, . . . ,M

w̃k ≈ wk

 ∑
τ⊂supp(ψ1

k)

∫
τ

ψ1
k(x)dsx

 = wk

 ∑
τ⊂supp(ψ1

k)

|τ |
3

 . (5.13)

By using relation (5.13) we are again able to compute another approximation Φ̂h based
on the coefficients of the L2(Γ)-projection wh by

Φ̂h(x) =
M∑
k=1

wk

 ∑
τ⊂supp(ψ1

k)

|τ |
3

U∗(x, yk) for x ∈ Γ. (5.14)

With this computation we obtain the results given in Table 5.8. We again observe
linear convergence.
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L
‖Φ̌SLL −Φ‖L2(Γ)

‖Φ‖L2(Γ)
eoc

0 3.42e-1
1 1.16e-1 1.57
2 3.27e-2 1.82
3 9.48e-3 1.79
4 2.58e-3 1.88

Table 5.9: Sphere with εr = 5.0, Errors of the potential computed by numerical in-
tegration with 7 point quadrature rule and solution of (5.9) as input for
evaluation (5.15), point sources in the nodes

Analogous to Subsection 5.2.1 we use (5.13) to compute another approximation Φ̌h

by

Φ̌h(x) =
M∑
k=1

w̃k∑
τ⊂supp(ψ1

k)

|τ |
3

∑
τ⊂supp(ψ1

k)

∫
τ

U∗(x, y)ψ1
k(y)dsy for x ∈ Γ. (5.15)

This potential converges quadratically, as can be seen in Table 5.9.

Summary

For the approximation Φh, computed by (5.12), based on wh ∈ S0
h given by (5.10)

we observed quadratic convergence of the L2(Γ)-error. On the other hand only linear

convergence for Φ̃SL
h in (5.11) was obtained. If we use the relation of the densities (5.13)

to scale the coefficients of the L2(Γ)-projection of an analytic solution Q1
hw = wh to w̃h

and compute Φ̂h by (5.14) we observe only linear convergence. Vice versa the scaled
coefficients of w̃h plugged into Φ̌h, computed by (5.15), provide quadratic convergence.
As we use the same error routines for both versions we may assume that this routines
are correct. We assume reasonable quality of w̃h as we observe quadratic convergence
in Table 5.9. We guess and observe that any transformation to w̃h in the space of linear
combinations of point sources in the nodes implies the reduced order of convergence.

5.3 Graded Meshes for the Cube

Additionally to the uniform refinement of the cube we will consider an adaptive re-
finement of the mesh. As we expect corner and edge singularities in the solution of
the transmission problem, we refine the meshes towards edges and corners. Remember
that h was defined by h := max

`∈{1,...,N}
h`, with h` := diam τ`. We approximate the dis-

tance of the triangle τ` to a corner x(j) of the cube, j = 1, . . . , 8, by r`,j := |xs` − x(j)|,
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where xs` is the center of the `-th element. The distance to an edge E ∈ Eh, where Eh
is the set of all edges of the cube, is r`,E := inf

x∈E
|x− xs`|. Additionally to the uniform

refinement steps, which we had before, we use refinement conditions for a graded mesh
analogous to the ones given in [17, 29, 30] to further refine triangles close to edges and
corners. We refine until there holds for all ` = 1, . . . , N :

h` ≤ h

(
r`,j
c1

)1−µ1

for j = 1, . . . , 8,

h` ≤ h

(
r`,E
c2

)1−µ2

for E ∈ Eh,

h` ≤ 2−L,

(5.16)

where µ1, µ2 ∈ (0, 1] and c1, c2 ∈ (0, 1]. Note that the refinement happens after scaling
to the unit cube, hence the level L in the third condition corresponds to the number
of uniform refinement steps, as before. In contrast to the prior refinement strategy
we now use newest vertex bisection. For the choice of the parameters we did some
testing until we found suitable values. No theoretical investigation was done, only a
numerical case study to evaluate the possible improvement by graded meshes. The
estimated order of convergence was calculated with respect to the number of panels
NL for a level L ∈ {0, . . . , 7} by

eocL =
log(errL/errL−1)

log(
√
NL−1/

√
NL)

.

For a uniform refinement we have
√
NL−1/

√
NL = 1

2
and therefore this corresponds

to the eoc that we had before. We evaluate the errors of the dipole moment. The
chosen reference solution is the approximation obtained by computation of the Steklov–
Poincaré formulation on the finest graded mesh.

5.3.1 Cube with εr = 2.25

For the relative permittivity εr = 2.25 we first tuned the parameter µ2 of the grading
with respect to the edges. After finding a good choice for µ2 the second parameter
µ1, which indicates the grading in the direction of corners was adjusted, such that we
obtained a slightly better approximation than we would have had without doing this
extra grading. The other constants are chosen similar to [29]. The explicit choice of
the parameters for this relative permittivity is

c1 = 0.2, µ1 = 0.6, c2 = 0.1, µ2 = 0.8.

The corresponding numbers of panels and nodes of the graded meshes as well as the
mesh widths hmax are given in Table 5.10. Note that the seventh level is technically



5.3 Graded Meshes for the Cube 75

Level Panels Nodes hmax

0 24 14 1.0000
1 144 74 0.5000
2 480 242 0.2500
3 2160 1082 0.1250
4 10464 5234 0.0625
5 39504 19754 0.0313
6 154416 77210 0.0156
7 318912 159458 0.0110

Table 5.10: Number of nodes, panels and mesh widths of the graded meshes for relative
permittivity ε = 2.25

only a ”half” level better than the sixth level since no full uniform refinement step was
done from the sixth to the seventh level. Instead just one bisection of the triangles
was done, which results in hmax on the sixth level being only a factor

√
2 smaller than

the next level. The graded mesh on the fifth level is shown in Figure 5.1. On this

Figure 5.1: Graded mesh on the fifth level obtained by refinement conditions (5.16)
for ε = 2.25

level there are one and a half additional refinement steps towards the edge and three
additional refinement steps towards the corner. As reference solutions we select the
solutions obtained by computation of the Steklov–Poincaré formulation on the seventh
level on the graded mesh, since this seems to yield a better solution than the reference
solutions, which we had before.
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L
|pSLL −p

SP
7 |

pSP7
eoc

|pDLL −p
SP
7 |

pSP7
eoc

|pSPL −p
SP
7 |

pSP7
eoc

0 6.11e-2 5.41e-2 4.64e-3
1 1.79e-2 1.37 2.64e-2 0.80 1.82e-3 1.04
2 6.34e-3 1.72 1.27e-2 1.22 5.98e-4 1.85
3 1.51e-3 1.91 3.97e-3 1.54 1.20e-4 2.14
4 3.32e-4 1.92 1.56e-5 7.02 2.71e-5 1.89
5 1.02e-4 1.77 2.51e-4 −4.18 5.63e-6 2.37
6 2.93e-5 1.84 2.56e-4 −0.03 1.21e-6 2.26
7 1.43e-5 1.97 3.79e-4 −1.08 0.00

Table 5.11: Cube with graded mesh, εr = 2.25, Errors of the dipole moment

L N
|pSL−A
L −pSP7 |

pSP7
eoc Time N

|pSLL −p
SP
7 |

pSP7
eoc Time

0 24 6.11e-2 0 24 6.11e-2 0
1 144 1.79e-2 1.37 0 96 2.12e-2 1.53 0
2 480 6.34e-3 1.72 0 384 6.87e-3 1.63 0
3 2160 1.51e-3 1.91 2 1536 2.15e-3 1.68 3
4 10464 3.32e-4 1.92 7 6144 6.59e-4 1.70 3
5 39504 1.02e-4 1.77 21 24576 2.01e-4 1.71 9
6 154416 2.93e-5 1.84 71 98304 6.11e-5 1.72 46
7 318912 1.43e-5 1.97 130 393216 1.96e-5 1.64 172

Table 5.12: Cube with graded mesh, εr = 2.25, Comparison of single layer errors for
adaptive and uniform refinement

We obtain the errors of the dipole moment given in Table 5.11. We observe higher
orders of convergence for the single layer approach and the Steklov–Poincaré formu-
lation, compared to uniform refinement. The double layer approach yields a good
approximation and a surprisingly good fourth level, the fifth level again matches the
expectation, but afterwards the errors only get worse.

In Table 5.12 we compare the results of the adaptive refinement pSL−A to the results
obtained by the uniform refinement with newest vertex bisection. We observe an
improved order of convergence of approximately 1.9, where the uniform refinement
only yields 1.7. On the seventh level the adaptive refinement has a smaller error and
the computational time is lower than for the uniform refinement.
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Level Panels Nodes hmax

0 24 14 1.0000
1 144 74 0.5000
2 960 482 0.2500
3 3360 1682 0.1250
4 18864 9434 0.0625
5 79920 39962 0.0313
6 285888 142946 0.0156

Table 5.13: Number of nodes, panels and mesh widths of the graded meshes for relative
permittivity ε = 50000

5.3.2 Cube with εr = 50000

For a relative permittivity εr = 50000 we again first tuned the parameter µ2 of the
grading with respect to the edges. After finding a good choice for µ2 the second
parameter µ1 for grading in the direction of corners was set to µ1 = µ2 − 0.2 as for
the first case in Section 5.3.1. The explicit choice of the parameters for this relative
permittivity is

c1 = 0.2, µ1 = 0.4, c2 = 0.1, µ2 = 0.6.

The corresponding numbers of panels and nodes of the graded meshes as well as the
mesh widths hmax are given in Table 5.13. The parameters provide meshes with a
stronger grading.

Figure 5.2: Graded mesh on the fourth level obtained by refinement conditions (5.16)
for ε = 50000
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L
|pSLL −p

SP
6 |

pSP6
eoc

|pDLL −p
SP
6 |

pSP6
eoc

|pSPL −p
SP
6 |

pSP6
eoc

0 0.25 0.11 8.01e-2
1 8.79e-2 1.16 4.41e-2 1.04 2.39e-2 1.35
2 2.01e-2 1.55 1.16e-2 1.41 3.74e-3 1.96
3 7.64e-3 1.55 1.52e-2 −0.43 1.18e-3 1.84
4 1.76e-3 1.70 1.58e-2 −0.05 1.86e-4 2.14
5 4.74e-4 1.81 1.29e-2 0.28 2.16e-5 2.99
6 1.40e-4 1.91 7.72e-3 0.81 0.00

Table 5.14: Cube with graded mesh, εr = 50000, Errors of the dipole moment

L N
|pSL−A
L −pSP6 |

pSP6
eoc Time N

|pSLL −p
SP
6 |

pSP6
eoc Time

0 24 0.25 0 24 0.25 1
1 144 8.79e-2 1.16 0 96 0.10 1.27 0
2 960 2.01e-2 1.55 4 384 4.13e-2 1.31 2
3 3360 7.64e-3 1.55 17 1536 1.65e-2 1.33 2
4 18864 1.76e-3 1.70 50 6144 6.52e-3 1.34 5
5 79920 4.74e-4 1.81 71 24576 2.58e-3 1.34 11
6 285888 1.40e-4 1.91 242 98304 1.01e-3 1.35 49

Table 5.15: Cube with graded mesh, εr = 50000, Comparison of single layer errors for
adaptive and uniform refinement

The graded mesh on the fourth level is shown in Figure 5.2. As reference solutions we
choose the solutions obtained by the Steklov–Poincaré formulation on the sixth level on
the graded mesh, since this seems to yield a better solution than the reference solutions,
which we had before. We obtain the errors of the dipole moment given in Table
5.14. We observe higher order of convergence for the single layer approach and the
Steklov–Poincaré formulation, compared to the uniform refinement. The double layer
approach again performs worse with no observable convergence order, but reasonable
approximations. In Table 5.15 we compare the results of the adaptive refinement pSL−A

to the results obtained by the uniform refinement. We observe an improved order of
convergence of approximately 1.8, where the uniform refinement only yields 1.35. In
terms of computational times for the same accuracy uniform refinement seems to be
better, since the computational time of its sixth level is comparable to the time needed
by the computation with graded meshes on the fourth level, but the error is lower. As
we would expect, the singularities of the electric field computed on the graded meshes
are easier to identify at the corners than for the electric field computed on the uniform
mesh, as can be seen in Figures 5.3–5.5.
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Figure 5.3: Electric field computed by the single layer formulation on the graded mesh
for ε = 50000

Figure 5.4: Electric field computed by the double layer formulation on the graded mesh
for ε = 50000

Figure 5.5: Electric field computed by the Steklov–Poincaré formulation on the graded
mesh for ε = 50000
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5.4 Improved Dipole Moment for the Double Layer

Formulation

As we observed in previous numerical experiments, see, e.g. Tables 4.6, 4.16, and 4.24,
the performance of the double layer formulation is rather unsatisfactory when it comes
to computing the dipole moment. For this reason we are interested in an alternative
calculation of the surface charge density σDLh instead of (4.7). We plug the evaluation
of the interior electric field (3.18) and exterior electric field (3.17) into (4.7) to obtain

σDLh = −ε1 − ε0

ε1

γint
1 Φpart +

ε1 − ε0

ε1ε0

Dvh on Γ.

Since Dvh is in H−
1
2 (Γ) we want to test with piecewise linear and globally continuous

basis functions {ψ1
m}Mm=1. The question is, which ansatz functions we should choose to

be the basis functions of σDLh . We know that σ ∈ H− 1
2 (Γ), hence piecewise constant

basis functions {ψ0
`}N`=1 seem to be appropriate. But the problem is, that we would

obtain a mass matrix, which is not invertible. Thus we use the dual boundary space,
see, e.g., [33], and introduce

Wh := span{ψ̃k}Mk=1,

where the ψ̃k are piecewise constant functions on the dual boundary elements τ̃k as-
sociated with the interior nodes xk. The dual boundary element τ̃k is defined by
the centers xs` of τ` ⊂ suppψ1

k and the midpoints of the related element edges. The
resulting Galerkin–Petrov variational problem is to find σDLh ∈ Wh such that〈

σDLh , ψ1
m

〉
Γ

=
ε1 − ε0

ε1

〈
−γint

1 Φpart, ψ
1
m

〉
Γ

+
ε1 − ε0

ε1ε0

〈
Dvh, ψ

1
m

〉
Γ
,

for m = 1, . . . ,M . This variational problem yields the linear system

G̃hσ
DL =

ε1 − ε0

ε1

f 1 +
ε1 − ε0

ε1ε0

Dhv,

where

Dh[m,n] = 〈Dψ1
n, ψ

1
m〉Γ, G̃h[m, k] = 〈ψ̃0

k, ψ
1
m〉Γ,

f 1
m =

〈
−γint

1 Φpart, ψ
1
m

〉
Γ
,

for m,n, k = 1, . . . ,M and

σDLh =
M∑
k=1

σDLk ψ̃0
k.
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L N
|p̃DLL −p|

p
eoc Time

|pDLL −p|
p

eoc Time
|pSPL −p|

p
eoc Time

0 8 0.67 0 0.73 1 0.68 0
1 32 0.29 1.19 0 0.36 1.01 0 0.30 1.21 0
2 128 8.78e-2 1.74 0 0.14 1.40 1 8.84e-2 1.75 0
3 512 2.31e-2 1.93 1 5.05e-2 1.43 4 2.32e-2 1.93 6
4 2048 5.86e-3 1.98 6 2.03e-2 1.32 8 5.87e-3 1.98 75
5 8192 1.47e-3 1.99 39 8.85e-3 1.20 71 1.47e-3 2.00 196
6 32768 3.69e-4 1.99 215 4.10e-3 1.11 348 3.68e-4 2.00 1008
7 131072 9.21e-5 2.00 877 1.97e-3 1.06 1168 9.21e-5 2.00 3446

Table 5.16: Sphere with εr = 5.0, Comparison of double layer dipole moment errors
for standard computation (4.7) and computation on the dual mesh (5.17)

The quadratic matrix G̃h is invertible by [33] and therefore we are able to solve this
linear system. Since σDLh now has different basis functions we also have to change the
calculation of the dipole moment (4.4) to

p̃DL = ε0

∫
Γ

x σDLh (x)dsx = ε0

M∑
k=1

∫
τ̃k

x σDLh (x)dsx = ε0

M∑
k=1

σDLk |τ̃k|x̃sk, (5.17)

where x̃sk is the center of the k-th dual element. We compare the errors of the new
results, where we denote the approximation of the dipole moment computed by (5.17)
on the L-th level by p̃DLL , to the previous errors, where we denote the approximation
of the dipole moment computed by (4.7) on the L-th level by pDLL .

The comparison for the sphere can be found in Table 5.16. Additionally we have
added the performance of the dipole moment calculated by the Steklov–Poincaré op-
erator formulation, since we observed the lowest errors for the computation of the
dipole moment for this formulation. The error of the dipole moment obtained by the
original calculation (4.7) on the seventh level is comparable to the error of the adapted
computation’s (5.17) dipole moment on the fifth level, but the original computation
took 1168 seconds for this task, whereas the new calculation only took 39 seconds.
We conclude that the performance has increased drastically in comparison to the ori-
ginal calculation (4.7). Additionally the errors of the dipole moment computed by the
double layer approach are now as small as the errors of the dipole moment computed
by the Steklov–Poincaré operator formulation, but with much lower computational
times. Also the convergence rate has increased to the expected quadratic convergence.

With this observations in mind it seems to be appropriate to use the dipole mo-
ment generated by the double layer formulation as reference solution for the following
comparisons on the cube.
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L N
|p̃DLL −p̃

DL
7 |

p̃DL7
eoc Time

|pDLL −p̃
DL
7 |

p̃DL7
eoc Time

0 24 6.73e-4 1 5.41e-2 2
1 96 9.37e-6 6.17 1 2.37e-2 1.19 1
2 384 8.46e-5 −3.17 8 9.47e-3 1.32 8
3 1536 3.67e-5 1.20 17 3.59e-3 1.40 13
4 6144 1.21e-5 1.60 21 1.26e-3 1.51 82
5 24576 3.40e-6 1.83 37 3.70e-4 1.76 166
6 98304 6.34e-7 2.42 145 5.54e-5 2.74 103
7 393216 0.00 440 3.87e-5 0.52 439

Table 5.17: Cube with εr = 2.25, Comparison of double layer dipole moment errors
for standard computation (4.7) and computation on the dual mesh (5.17)

L N
|p̃DLL −p̃

DL
7 |

p̃DL7
eoc Time

|pDLL −p̃
DL
7 |

p̃DL7
eoc Time

0 24 2.44e-2 0 0.11 0
1 96 8.82e-3 1.47 2 2.82e-2 1.98 1
2 384 3.60e-3 1.29 8 3.65e-3 2.95 4
3 1536 1.40e-3 1.36 13 1.15e-2 −1.65 31
4 6144 5.37e-4 1.39 23 1.09e-2 0.07 40
5 24576 1.92e-4 1.48 45 8.41e-3 0.38 50
6 98304 5.46e-5 1.82 142 5.93e-3 0.50 150
7 393216 0.00 467 4.01e-3 0.57 510

Table 5.18: Cube with εr = 50000, Comparison of double layer dipole moment errors
for standard computation (4.7) and computation on the dual mesh (5.17)

In Table 5.17 we compared the old and the new dipole moments for the cube with
εr = 2.25. The error of the new dipole moment computed by (5.17) on the first level
is already smaller than the error of the dipole moment computed by (4.7) on the
finest level, but it is unusually small. The second level is what we would expect by
an approximate convergence order of 1.5. The error of the new dipole moment on
the third level is again smaller than the error of the old dipole moment on the finest
level. Comparing computational times yields that the performance has increased. The
observed order of convergence is approximately the same for both variants.

In Table 5.18 we compared the dipole moment for the cube with εr = 50000. In
contrast to the standard computation of the dipole moment in Table 4.24 we are able
to observe convergence. Furthermore the error on the second level is already smaller
than every error of the dipole moment computed by (4.7), and again the difference in
computational times is immense.
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L N
|p̃DL−A
L −p̃DL−A

7 |
p̃DL−A

7

eoc Time
|pDL−A
L −p̃DL−A

7 |
p̃DL−A

7

eoc Time

0 24 6.77e-4 0 5.41e-2 0
1 144 1.84e-4 1.45 2 2.64e-2 0.80 1
2 480 1.23e-4 0.66 3 1.27e-2 1.22 7
3 2160 1.18e-5 3.12 7 3.96e-3 1.54 16
4 10464 4.01e-5 −1.55 23 9.40e-6 7.66 78
5 39504 1.13e-6 5.38 74 2.57e-4 −4.98 88
6 154416 1.06e-6 0.10 217 2.63e-4 −0.03 267
7 318912 0.00 407 3.86e-4 −1.06 470

Table 5.19: Cube with εr = 2.25, Comparison of double layer dipole moment errors
for standard computation (4.7) and computation on the dual mesh (5.17)

L N
|p̃DL−A
L −p̃DL−A

7 |
p̃DL−A

7

eoc Time
|pDL−A
L −p̃DL−A

7 |
p̃DL−A

7

eoc Time

0 24 2.39e-2 0 0.11 0
1 144 9.89e-3 0.99 1 4.37e-2 1.04 1
2 960 1.44e-3 2.03 19 1.21e-2 1.36 6
3 3360 1.34e-4 3.79 38 1.56e-2 −0.42 20
4 18864 1.39e-4 −0.04 69 1.63e-2 −0.04 64
5 79920 6.95e-4 −2.23 218 1.34e-2 0.27 249
6 285888 0.00 809 8.19e-3 0.77 866

Table 5.20: Cube with εr = 50000, Comparison of double layer dipole moment errors
for standard computation (4.7) and computation on the dual mesh (5.17)

We have also tested the new calculation of the dipole for the graded meshes of
Section 5.3. The obtained errors for the cube with εr = 2.25 are given in Table 5.19.
We observe that the errors are significantly lower on almost all levels. Both variants
seem to have some outliers, but if we compare the error of the new calculation (5.17)
on the third level to the lowest error of the standard computation (4.7), we observe
an improvement from 78 seconds to only 7 seconds for the same accuracy. For both
variants the convergence order, if there even is one, is hard to determine.

In Table 5.20 we compared the errors of the original calculation (4.7) and the new
computation (5.17) for the cube with εr = 50000 and adaptive refinement. Again no
convergence order seems to be appropriate for both computations. The difference in
computational performance is huge, the error of the new calculation on the first level
is comparable to the error of the old calculation on the finest level, where we observe
computational times of only one second and 866 seconds, respectively.





6 Conclusions

In the first part of this thesis we reviewed important details of the previous work
[1, 2, 19] to obtain necessary mathematical tools to further deepen our understanding
of using boundary element methods for the electrostatic transmission problem.

We started on the continuous level, where we derived three boundary integral for-
mulations: the single layer potential formulation (2.2), the Steklov–Poincaré interface
equation (2.9), and the double layer potential formulation (2.24). With these boundary
integral equations we were able to compute various quantities analytically, such as the
potential of the electric field, densities for single layer and double layer formulations,
and Neumann data. The equivalence of these three formulations, their unique solvab-
ility, as well as the standard evaluation of the electric field and the evaluation in the
special case of a simply connected domain were discussed. We stated related Galerkin
variational formulations and the corresponding linear systems (3.1), (3.9), and (3.16).
We also showed how to compute approximations of several physical quantities on the
discrete level.

As important extension of [1] we were able to perform an error analysis for the Steklov–
Poincaré interface equation in Section 3.2.1, which provides us with theoretical orders
of convergence for the errors of the numerical approximations of the potential and the
Neumann data in weaker norms. We also found that, additionally to the continuous
formulation, the discrete Steklov–Poincaré operator formulation is uniquely solvable.

We tested the proposed methods for three test cases relevant in the study on plasmon
resonances of metallic nanoparticles, see, e.g., [7, 13, 37]. We started in Section 4.2
with the unit sphere and a relative permittivity of εr = 5.00. In comparison to
[2] we increased the number of considered quantities for the numerical computations
to obtain a better insight, how this quantities are connected and to understand the
underlying theoretical behaviors to a greater degree. From the experiments we learned,
that it depends on the considered quantity, which formulation one should prefer. For
the computation of the potential the Steklov–Poincaré formulation yields the smallest
error. It also performs better than the single layer and the double layer approach,
when computing the electric field. If someone is interested in the dipole moment or
scattering cross section the single layer potential formulation should be chosen for the
numerical computation.

For the cube with a relative permittivity of εr = 2.25 we found that, compared to
the sphere, the convergence orders were lower and the errors higher, which was to be
expected. We observed that the electric field given by the single layer potential was
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worse than the electric field obtained with the standard calculation, if it was computed
by the modified version (3.3) for simply connected domains. After a detailed investig-
ation we found that the approximation of the particular solution yields an additional
error. Therefore it is in general recommendable to make sure if the modified version
provides the better results. When considering the cube, not the Steklov–Poincaré
formulation, but the double layer formulation is most advisable for computing the
potential and the electric field. For a high relative permittivity of εr = 50000 we
observed lower convergence rates and higher errors for all three approaches compared
to the sphere and the cube with lower permittivity. The double layer approach turned
out to be the most stable formulation for the electric field. The approximation of the
electric field for high relative permittivity by the single layer potential seems to be
inappropriate for physical applications. We also found that the modified version for
simply connected domains indeed increases the computational performance of all three
formulations, which was to be expected by the higher relative permittivity.

Finally, we tested several approaches to improve the numerical performance of the
considered formulations in Chapter 5. We evaluated alternative discretization vari-
ants, including the popular collocation method. This method turned out not to be
competitive to the Galerkin method with respect to postprocessing quantities like the
dipole moment. Alternative ansatz functions with Dirac like point sources were tested,
but the results showed that this approach was also inferior to the standard compu-
tation. On the other hand we achieved very good results by using graded meshes.
Such meshes, adaptively refined towards corners and edges, help to realize higher or-
ders of convergence for non-smooth solutions. At last, we suggested an alternative
evaluation of the dipole moment for the double layer formulation, as the standard
evaluation provided linear convergence only. The proposed projection of the surface
charge density to piecewise constants on the dual mesh yields quadratic convergence
and very accurate approximations of the dipole moment and therefore it should be
used customarily for the computation of the dipole moment with the double layer
formulation.
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