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Kurzfassung
Plasmainstabilitäten sind von hoher Relevanz für Fusion mittels magnetischen Einschlusses.
Von besonderer Bedeutung sind „edge-localized modes“ (ELMs) bei Tokamaks, die im „H
mode“ betrieben werden. Ein Lösungsansatz zur Unterbindung dieser Art von Instabilitäten
sind eigene Spulen („ELM mitigation coils“), die resonante magnetische Störungen erzeugen.
Der damit verbundene erhöhte radiale Transport reduziert die Anzahl auftretender ELMs.

In der vorliegenden Arbeit wird das Modell der idealen Magnetohydrodynamik zugrundege-
legt, um die Auswirkungen der „ELM mitigation coils“ auf eine gegebene Gleichgewichts-
konfiguration zu simulieren. Mit Teilschritten basierend auf den Finite-Elemente-, Finite-
Differenzen- und Finite-Volumen-Methoden wird ein vorkonditioniertes Iterationsschema
zum Auffinden einer selbstkonsistenten Lösung entwickelt. Fourier-Entwicklung in toroidale
Moden ermöglicht die Reduktion auf eine zweidimensionale Darstellung.

Ausgewählte Vergleichsfälle zeigen die Gültigkeit des iterativen Ansatzes und die Repro-
duzierbarkeit zuvor veröffentlichter Resultate, die unter Verwendung anderer Methoden
entstanden sind. In Zukunft ist die Ergänzung kinetischer Codes mit dieser Methode denkbar,
wodurch sich die Berechnungsdauer erheblich reduzieren ließe.

Abstract
Plasma instabilities constitute a significant concern in magnetic confinement fusion devices.
The class of instabilities known as edge-localized modes (ELMs) is of particular importance to
tokamaks operating in high-confinement mode. One approach to suppress these instabilities
is the use of resonant magnetic perturbations (RMPs), enhancing radial transport and thus
reducing the occurrence of ELMs. These RMPs are produced by separate ELM mitigation
coils.

In this thesis, we use ideal magnetohydrodynamics to model the effect of ELM mitigation
coils on a given equilibrium configuration. We develop a preconditioned iterative scheme
that incorporates the finite element, finite difference, and finite volume methods to find
a self-consistent solution. Fourier expansion in the toroidal direction allows us to reduce
calculations to two dimensions.

Selected test cases demonstrate the validity of the iterative scheme and the reproduction of
previously published results using different methods. In the future, this approach may be
used to complement kinetic code, thereby reducing computation time considerably.
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Introduction

The need for nuclear fusion energy has been well established. The tokamak concept, which
is the basis of flagship projects like JET and ITER, still has problems controlling plasma
instabilities like the edge-localized modes (ELMs). Application of resonant magnetic perturbations
(RMPs) is one way to mitigate ELMs. To model RMPs fast and reliably, we need to understand
how magnetohydrodynamics (MHD) and the more physically correct kinetics can complement
each other. In this thesis, an iterative MHD approach based on the finite element, finite volume,
and finite difference methods is used to self-consistently calculate the plasma response to an
external perturbation. The resulting code with the tentative designation NEO-EQ may be
used as a drop-in replacement of kinetic code where applicable, and conceivably as validation.

The content of this thesis is as follows. Chapter 1 serves as a short overview of the basic
plasma physics concepts relevant to this thesis. The theory of MHD and its use in the
description of specific plasma instabilities are introduced. In chapter 2, the task of this thesis
is established, which is to compute the perturbation of a magnetohydrodynamic equilibrium.
To this end, an iterative scheme including a preconditioner is developed. Chapter 3 describes
the geometry of the tokamak device and discusses the consequences to the mathematical
formalism. In this context, the substeps of the iterative scheme are elaborated in chapters 4
and 5. In chapter 6, some implementation choices and data sources for NEO-EQ code are
described. Chapter 7 adds some special configurations which are used to test the validity of
the presented approach. Chapter 8 shows selected results and their interpretation, including
the aforementioned test cases. Finally, in chapter 9, the results and the possible applications
are summarized.

ix





Acknowledgement

First and foremost, I want to thank my supervisors Winfried Kernbichler and Christopher Al-
bert whose perpetual advice, guidance, and patience made this thesis possible in the first
place. I also want to thank Sergei Kasilov for sharing his immense knowledge, Rico Buch-
holz for the fruitful discussions, Philipp Ulbl for his support with test cases, and the other
members of the plasma physics group for their input during group discussions. Furthermore,
I am indebted to Admira Jaskić and Asmir Hrnić for additional proofreading, and my friends
and family for moral support, especially when things did not work as intended (which was,
frankly, quite often).

Без муке нема науке.

xi





Chapter 1

Basic Plasma Physics

This chapter contains a short overview of plasma physics concepts that form the basis of
this thesis. Since plasma physics is a broad field and derivations can be longwinded, we
restrict ourselves to sketches and refer to literature instead of giving details here. As such,
this chapter is based mostly on the monograph by Freidberg [5], albeit written in Gaussian
units instead of SI units.

Plasma in the physical sense may be defined as matter that is made up of free ions and
electrons that is nonetheless electrically neutral on a macroscopic scale. Besides this condition
of quasineutrality, the weak coupling condition demands that the electrostatic Coulomb energy
between the particles is lower than their kinetic energy so that Debye screening limits the
influence of the local electric field to within the Debye length. This conditions can be fulfilled
by a large set of values for density and temperature, ranging from rarefied astrophysical
plasmas like the interstellar medium to the dense electron gas in metals. Typical values for
thermonuclear plasmas in fusion devices are 𝑛 ≈ 1014 cm−3 and 𝑘B𝑇 ≈ 104 eV.

The collective behavior arising from the interactions of the moving charged particles mediated
by electric and magnetic fields becomes quite complex – no single theory can describe all
plasma phenomena and is computationally tractable at the same time. The present thesis
considers the theory of ideal magnetohydrodynamics (MHD), which is useful to determine the
macroscopic stability of a plasma. To see how it relates to other models, we sketch its derivation
via kinetic theory. In the non-relativistic limit, Newton’s equations of motion describe the
single-particle motion under the influence of the Lorentz force originating from external
fields generated by other particles in the plasma. This picture already allows a description of
particle drifts and confinement in toroidal geometry by consideration of their trajectories for a
given configuration of magnetic and electric fields. While it is theoretically possible to set up
the system of equations to fully describe the interaction of all particles among each other and
with external fields, this approach is neither computationally feasible nor desirable – knowing
the exact positions and velocities of each particle is not helpful in understanding their large-
scale collective behavior. Instead, we opt for the same level of abstraction as in statistical
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1 Basic Plasma Physics

mechanics: We take ensemble averages of the electric and magnetic fields and describe the
particles’ positions and velocities by a distribution function 𝑓𝑠(𝒓, 𝒗, 𝑡). Here, 𝒓 is position, 𝒗
is velocity, and 𝑡 is time, while 𝑠 designates the particle species (ions and electrons). The
distribution function is normalized to

∫
𝛺

d3𝑟 ∫
ℝ3

d3𝑣 𝑓𝑠(𝒓, 𝒗, 𝑡) = 1 (1.1)

for any given time 𝑡. The time evolution of 𝑓𝑠 is given by the kinetic equation

𝜕𝑓𝑠(𝒓, 𝒗, 𝑡)
𝜕𝑡 + 𝒗 ⋅ ∇𝒓𝑓𝑠(𝒓, 𝒗, 𝑡) + 𝑞𝑠

𝑚𝑠
(𝑬 + 1

𝑐 𝒗 × 𝑩) ⋅ ∇𝒗𝑓𝑠(𝒓, 𝒗, 𝑡) = (𝜕𝑓𝑠(𝒓, 𝒗, 𝑡)
𝜕𝑡 )

coll
, (1.2)

where the term on the right-hand side is the collision term modelling Coulomb collisions. 𝑞𝑠
and 𝑚𝑠 are the charge and mass of the particle species 𝑠, respectively. The plasma kinetic
equations forms the basis for kinetic theory which is able to account for a wide array of particle
effects within the plasma. To derive the fluid description of magnetohydrodynamics, we
have to take moments of the distribution function, i.e., we integrate over velocity space with
appropriate weights.

1.1 Ideal Magnetohydrodynamics
With the total number 𝑛0𝑠 of particles of species 𝑠, we derive the number density as a zeroth
moment:

𝑛𝑠(𝒓, 𝑡) = 𝑛0𝑠 ∫
ℝ3

𝑓𝑠(𝒓, 𝒗, 𝑡) d3𝑣. (1.3)

The charge density and mass density simply follow as 𝜌𝑚𝑠 = 𝑚𝑠𝑛𝑠 and 𝜌𝑞𝑠 = 𝑞𝑠𝑛𝑠, respectively.
As a first moment, we get the particle flux density

𝜞𝑠(𝒓, 𝑡) = 𝑛0𝑠 ∫
ℝ3

𝑓𝑠(𝒓, 𝒗, 𝑡)𝒗 d3𝑣, (1.4)

from which the particle velocity

𝑽𝑠(𝒓, 𝑡) = 𝜞𝑠(𝒓, 𝑡)
𝑛𝑠(𝒓, 𝑡) (1.5)

and current density

𝑱𝑠(𝒓, 𝑡) = 𝑞𝑠𝜞𝑠 = 𝑞𝑠𝑛𝑠𝑽𝑠 (1.6)

follow. Taking the second moment gives the pressure tensor as

𝘱𝑠(𝒓, 𝑡) = 𝑛0𝑠𝑚𝑠 ∫
ℝ3

𝑓𝑠(𝒓, 𝒗, 𝑡)(𝒗 − 𝑽𝑠)(𝒗 − 𝑽𝑠) d3𝑣 = 𝑛0𝑠𝑚𝑠 ∫
ℝ3

𝑓𝑠(𝒓, 𝒗, 𝑡)𝒗𝒗 d3𝑣 − 𝑚𝑠𝑛𝑠𝑽𝑠𝑽𝑠,
(1.7)
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1.1 Ideal Magnetohydrodynamics

which reduces to 𝘱𝑠 = 𝑝𝑠𝘐 in an isotropic medium, where 𝘐 is the unit tensor. The latter is
assumed when the plasma is dominated by collisions so that the distribution function takes
the form of the Maxwell distribution in velocity space. While most plasmas of interest are
not in thermodynamic equilibrium, the approximation is good enough for our needs and
ideal MHD also gives reasonable results when the assumption does not apply. Now, taking
moments of the kinetic equation yields the time evolution of the fluid quantities derived
above. Taking the zeroth moment gives

𝜕
𝜕𝑡 ∫

ℝ3
𝑓𝑠 d3𝑣 + ∇𝒓 ⋅ ∫

ℝ3
𝒗𝑓𝑠 d3𝑣 + 𝑞𝑠

𝑚𝑠
∫

ℝ3
∇𝒗 ⋅ (𝑬 + 1

𝑐 𝒗 × 𝑩) 𝑓𝑠 d3𝑣 = ∫
ℝ3

(𝜕𝑓𝑠
𝜕𝑡 )

coll
d3𝑣. (1.8)

The third integral term on the left-hand side vanishes after application of the divergence
theorem because the distribution function vanishes at infinite velocity. Likewise, the integral
of the collision term vanishes due to particle conservation. Expressing the remaining two
integrals by fluid quantities yields

𝜕𝑛𝑠
𝜕𝑡 + ∇ ⋅ (𝑛𝑠𝑽𝑠) = 0, (1.9)

which we identify as continuity equation. Taking the first moment results in

𝜕
𝜕𝑡 ∫

ℝ3
𝒗𝑓𝑠 d3𝑣 + ∇𝒓 ⋅ ∫

ℝ3
𝒗𝒗𝑓𝑠 d3𝑣 + 𝑞𝑠

𝑚𝑠
∫

ℝ3
𝒗∇𝒗 ⋅ (𝑬 + 1

𝑐 𝒗 × 𝑩) 𝑓𝑠 d3𝑣 =

= ∫
ℝ3

𝒗 (𝜕𝑓𝑠
𝜕𝑡 )

coll
d3𝑣 = 𝑹𝑠. (1.10)

Here, 𝑹𝑠 is constrained by ∑𝑠 𝑹𝑠 = 𝟎. Using integration by parts for the third integral on the
left-hand side and some more rearrangement, we get the momentum equation

𝑚𝑠𝑛𝑠 (𝜕𝑽𝑠
𝜕𝑡 + 𝑽𝑠 ⋅ ∇𝑽𝑠) + ∇ ⋅ 𝘱𝑠 − 𝑞𝑠𝑛𝑠 (𝑬 + 1

𝑐 𝑽𝑠 × 𝑩) = 𝑹𝑠. (1.11)

Now, the continuity equation connects a zeroth moment (𝑛𝑠) to a first moment (𝑽𝑠), the
momentum equation connects both to a second moment (𝘱𝑠), and so on. This hierarchy of
equations has to be truncated at some point to give a closed set of equations, which will be
discussed later. To complete the picture of two-fluid MHD, we have to consider Maxwell’s
equations:

∇ ⋅ 𝑬 = 4𝜋𝜌𝑞 = 4𝜋𝑒(𝑛𝑖 − 𝑛𝑒), (1.12)

∇ ⋅ 𝑩 = 0, (1.13)

∇ × 𝑬 = −1
𝑐

𝜕𝑩
𝜕𝑡 , (1.14)

∇ × 𝑩 = 4𝜋
𝑐 𝑱 + 1

𝑐
𝜕𝑬
𝜕𝑡 = 4𝜋

𝑐 𝑒(𝑛𝑖𝑽𝑖 − 𝑛𝑒𝑽𝑒) + 1
𝑐

𝜕𝑬
𝜕𝑡 . (1.15)
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1 Basic Plasma Physics

Here, we already used fluid quantities with indices 𝑖 and 𝑒 for ions (with an implicit atomic
number of 𝑍 = 1) and electrons, respectively. Now, we can make some simplifications. First,
quasineutrality implies 𝑛𝑒 = 𝑛𝑖 = 𝑛, so the right-hand side of eq. (1.12) vanishes. Second,
on the time scale considered in MHD, the fields are assumed to be static – such simulations
typically recalculate fields from kinetic theory after a given time increment –, so we can neglect
the time derivatives in Maxwell’s equations. As a consequence, the current density is also
divergence-free: ∇ ⋅ 𝑱 = 0. Third, we reduce the two-fluid picture to a single-fluid picture:

𝜌𝑚 = 𝑚𝑒𝑛𝑒 + 𝑚𝑖𝑛𝑖, (1.16)

𝒗 = 𝑚𝑒𝑽𝑒 + 𝑚𝑖𝑽𝑖
𝑚𝑒 + 𝑚𝑖

, (1.17)

𝑱 = 𝑱𝑒 + 𝑱𝑖 (1.18)

𝑇 = 𝑇𝑒 + 𝑇𝑖
2 , (1.19)

𝑝 = 𝑝𝑒 + 𝑝𝑖 = 2𝑛𝑇. (1.20)

This also leads to a version of Ohm’s law,

𝑬 + 1
𝑐 𝒗 × 𝑩 = 𝟎. (1.21)

Fourth, we close the moment equations by the adiabatic condition

d
d𝑡

𝑝
𝜌𝛾

𝑚
= 0, (1.22)

where 𝛾 is the adiabatic index. For a monoatomic gas, as is considered in fusion experiments,
we have 𝛾 = 5

3 . Fifth, assuming electrons redistribute much faster than the timescale consid-
ered, no essential electric fields can build up in the plasma, and resistivity is effectively zero1.
When we furthermore neglect the inertial term (the first term in eq. (1.11)), i.e., we assume a
static solution, we finally arrive at the ideal MHD force balance equation:

𝑐∇𝑝 = 𝑱 × 𝑩. (1.23)

The interpretation is that the force resulting from the thermodynamic pressure gradient is
balanced by the Lorentz force. This equation is the basis of the calculations in chapter 5.

1This is where the designation ideal comes from – non-ideal MHD considers effects caused by finite resistivity.
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1.2 Flux Surfaces

1.2 Flux Surfaces
Scalar multiplication of eq. (1.23) with the magnetic field or current density yields the impor-
tant relations

𝑩 ⋅ ∇𝑝 = 𝑱 ⋅ ∇𝑝 = 0, (1.24)

which means that the current density and magnetic field lines lie on surfaces of constant
pressure. They are in general not parallel to each other, but neither do they have a component
perpendicular to these surfaces. By casting the magnetic field in Clebsch form given by
eq. (3.25), we see that 𝑩 ⋅ ∇𝜓 = 0, so they are also surfaces of constant magnetic flux1 𝜓,
which is why they are commonly called flux surfaces. Any quantity that is constant on a
flux surface is called a flux surface quantity accordingly. Application of Hamiltonian theory
to the differential equation determining magnetic field lines shows that nested flux surfaces
appear in systems with axisymmetry, such as tokamaks. In the poloidal plane, these curves
are described by the Grad–Shafranov equation

𝛥∗𝜓 = −𝐵𝜑
d𝐵𝜑

d𝜓 − 𝑅2 d𝑝
d𝜓, (1.25)

where the differential operator 𝛥∗ is defined as

𝛥∗𝜓 = 𝑅 𝜕
𝜕𝑅 ( 1

𝑅
𝜕𝜓
𝜕𝑅) + 𝜕2𝜓

𝜕𝑅2 , (1.26)

making eq. (1.25) a nonlinear partial differential equation of second order. Note that due to
the Shafranov shift, the nested flux surfaces are not concentric, but the magnetic axis – the
innermost flux surface, degenerated to a point in the poloidal plane – is shifted outwards from
the geometric center of the torus. Furthermore, usual tokamak configurations also have an X
point2, where the magnetic field lines cross, so that the flux surface is not closed. This flux
surface is called the separatrix, and in our calculations, we only consider the plasma volume
contained within the separatrix. We also speak of the last closed flux surface (LCFS) because
we count the nested flux surfaces starting from the magnetic axis, going outward.

Now we shall consider an important flux surface quantity, the safety factor 𝑞. For every toroidal
transit (Δ𝜑 = 2𝜋), the magnetic field line traverses the poloidal angle Δ𝜗. The latter is averaged
over a number of toroidal transits 𝑘 to give the average rotational transform 𝜄 (lowercase iota):

𝜄 = lim
𝑛→∞

1
𝑁

𝑁
∑
𝑘=1

Δ𝜗𝑘. (1.27)

1For a detailed discussion, see section 3.1.
2The magnetic axis is also called O point by analogy.
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1 Basic Plasma Physics

The safety factor 𝑞 is then defined by

𝑞 = 2𝜋
𝜄 (1.28)

When the magnetic field line closes on itself after a finite number of toroidal transits, 𝑞 is
rational and the flux surface on which it attains that value is called a rational flux surface. In
this case, more than one magnetic field line is necessary to trace out the flux surface. If 𝑞 is
irrational, the magnetic field line never closes on itself and will trace out the entire flux surface
(given infinite time and ergodicity). Since the rational numbers are a dense subset of the real
numbers, an irrational flux surface may be approximated arbitrarily close by a rational flux
surface and vice versa. The actual values of 𝑞 are relevant to the macroscopic stability of the
plasma: 𝑞 has to be larger than one over the entire plasma volume, and it has to be larger than
two on the plasma edge. Otherwise, kink instabilities will appear. This shows that despite all
the simplifications and assumptions, ideal MHD is useful to estimate macroscopic stability of
the plasma.

Of particular concerns are the edge-localized modes (ELMs) that can appear in high-confinement
mode or H-mode, the most common mode of tokamak operation. The radial pressure profile
will steepen, and when it becomes too steep, the pressure gradient force ejects particles
which are then lost from confinement and can damage the reactor wall. One approach to
handle these instabilities is to utilize ELM mitigation coils which induce resonant magnetic
perturbations (RMPs). These are non-axisymmetric perturbations to an otherwise axisymmetric
MHD equilibrium configuration. A resonance appears at a flux surface with rational 𝑞
corresponding to the ratio of the poloidal and toroidal mode numbers of the perturbation; for
details see section 7.1. At the resonance, tearing modes and chains of narrow magnetic islands
appear, across which particle transport is enhanced. This avoids the build-up of pressure
and could be used to control ELMs. Ideal MHD cannot describe tearing modes and magnetic
islands, but the inclusion of sheet currents from tearing mode theory, which we touch upon in
section 5.3, alleviates this shortcoming somewhat.

6



Chapter 2

Stationary Linear Perturbation of Ideal
MHD Equilibrium

In this chapter, we develop the equations that model the effect of a non-axisymmetric pertur-
bation on an axisymmetric ideal MHD equilibrium, setting up the tasks for the next chapters.
Section 2.1 introduces an iterative scheme to solve the equations in a self-consistent manner,
while section 2.2 discusses its solution employing a preconditioner.

For the intended application on stationary (compared to MHD mode eigenfrequencies) non-
axisymmetric magnetic perturbations by external coils, we consider a perturbed ideal MHD
equilibrium for pressure 𝑝, currents 𝑱 and magnetic field 𝑩 fulfilling

∇𝑝 = 1
𝑐 𝑱 × 𝑩, (2.1)

∇ × 𝑩 = 4𝜋
𝑐 𝑱, (2.2)

∇ ⋅ 𝑩 = 0. (2.3)

Starting with a given MHD equilibrium fulfilling eqs. (2.1) and (2.3) denoted by subscripts
“0”, linear order equations for an external magnetic perturbation (denoted by 𝛿) split into a
vacuum and a plasma part (subscript v and p, respectively) are

∇𝛿𝑝 = 1
𝑐 (𝑱0 × 𝛿𝑩 + 𝛿𝑱 × 𝑩0) , (2.4)

𝛿𝑩 = 𝛿𝑩v + 𝛿𝑩p , (2.5)

𝛿𝑩v = 1
𝑐 ∮ 𝐼c(𝒓′) d𝒍′ × 𝒓

|𝒓 − 𝒓′|3 , (2.6)

𝛿𝑩p = ∇ × 𝛿𝑨, (2.7)

∇ × (∇ × 𝛿𝑨) = 4𝜋
𝑐 𝛿𝑱, (2.8)

⇒ ∇ ⋅ 𝛿𝑩 = ∇ ⋅ 𝛿𝑱 = 0. (2.9)
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2 Stationary Linear Perturbation of Ideal MHD Equilibrium

Here the perturbation field in vacuum, 𝛿𝑩v, is pre-evaluated by a Biot–Savart integral over
external1 coil currents 𝐼c(𝒓′). This induces a plasma response, resulting in the current density
perturbation 𝛿𝑱. The perturbation field from currents within the plasma, 𝛿𝑩p, is in turn
computed from 𝛿𝑱, again giving rise to a plasma response current. Now, the linearized force
balance eq. (2.4) is used to compute 𝛿𝑱 for given 𝛿𝑩 whereas eq. (2.8) yields 𝛿𝑩p for given 𝛿𝑱.

The solution of eq. (2.4) can further be split into two steps: First the pressure perturbation 𝛿𝑝
is found, and then the plasma current density 𝛿𝑱 is computed using the condition ∇ ⋅ 𝛿𝑱 = 0.
For an unperturbed equilibrium with nested flux surfaces, both steps can be performed in a
radially local manner if a field-aligned computational grid is used, which will become clear
in the following sections. Radial coupling happens by the combination of the two individual
steps since their effective radial locations of computation are shifted by a half-step in radial
grid distance.

Equation (2.4) and eq. (2.8) are solved in an alternating way until convergence is reached, as
described in section 2.1. In addition, a preconditioner is used to enhance convergence, which
we discuss in section 2.2. This approach is also used by Albert et al. [1].

2.1 Iteration Scheme
From eq. (2.4), we calculate the current perturbation2 from a given magnetic field perturbation.
This can be done with kinetic code (e.g., NEO-2) or with MHD, as is discussed in chapter 5.
In either case, we can write the computation in compact form,

𝛿𝑱 = �̂�𝛿𝑩 = �̂� (𝛿𝑩v + 𝛿𝑩p) , (2.10)

with an abstract operator �̂� representing the computation. It acts on the full magnetic pertur-
bation, that is the contribution from the vacuum field 𝛿𝑩v produced by external coils and the
plasma response field 𝛿𝑩p.

From a given current perturbation, eq. (2.8) is used to compute the plasma response field
𝛿𝑩p. This kind of problem is commonly solved with a finite element method, as described in
chapter 4. In a similar manner as before, the operator �̂� represents this calculation step:

𝛿𝑩p = �̂�𝛿𝑱. (2.11)

Since we only take the current enclosed in the plasma volume into account, only the plasma
response field 𝛿𝑩p is affected. The external coils whose current produces the vacuum pertur-
bation 𝛿𝑩v are assumed to have infinite impedance so that we can neglect feedback from the
plasma response. 𝛿𝑩v is essentially fixed by eq. (2.6).

1i.e. entirely outside the plasma region
2and in an intermediate step, the pressure perturbation
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Substituting 𝛿𝑱 from eq. (2.10) in eq. (2.11) and using a shorthand �̂� = �̂��̂� gives

�̂� (𝛿𝑩v + 𝛿𝑩p) = 𝛿𝑩p, (2.12)

�̂�𝛿𝑩v = ( ̂1 − �̂�) 𝛿𝑩p, (2.13)

( ̂1 − �̂�)−1 �̂�𝛿𝑩v = 𝛿𝑩p. (2.14)

The first term can be rewritten in the form of a Neumann series, a generalisation of geometric
series to operators, assuming the series converges:

( ̂1 − �̂�)−1 =
∞
∑
𝑘=0

�̂�𝑘. (2.15)

This way a consistent solution for 𝛿𝑩p can be computed from 𝛿𝑩v by repeated application of
�̂�, given explicitly by the infinite series

𝛿𝑩p = ( ̂1 + �̂� + �̂�2 + ⋯ ) �̂�𝛿𝑩v =
∞
∑
𝑘=1

�̂�𝑘𝛿𝑩v =
∞
∑
𝑘=1

𝛿𝑩(𝑘). (2.16)

In eq. (2.16) each term is given by the recurrence relation

𝛿𝑩(𝑘+1) = �̂�𝛿𝑩(𝑘). (2.17)

Adding the vacuum field as the initial value,

𝛿𝑩(0) = 𝛿𝑩v (2.18)

the series’ terms are accumulated for the self-consistent solution:

𝛿𝑩 =
∞
∑
𝑘=0

𝛿𝑩(𝑘). (2.19)

Alternatively, eq. (2.12) can be expanded,

𝛿𝑩p = �̂� (𝛿𝑩v + 𝛿𝑩p) = �̂� (𝛿𝑩v + �̂� (𝛿𝑩v + 𝛿𝑩p)) = ⋯ , (2.20)

yielding a fixed-point iteration for 𝛿𝑩:

𝛿𝑩[𝑘+1] = �̂�𝛿𝑩[𝑘] + 𝛿𝑩v. (2.21)

Compared to the previous approach, this one is cumulative, i.e., it immediately produces the
next approximation of the full perturbation. In other words, it corresponds to the sequence of
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2 Stationary Linear Perturbation of Ideal MHD Equilibrium

partial sums of the previous infinite series:

𝛿𝑩[𝜅] =
𝜅

∑
𝑘=0

𝛿𝑩(𝑘). (2.22)

For this to be consistent, the initial value is also given by the vacuum field,

𝛿𝑩[0] = 𝛿𝑩v. (2.23)

For illustration, both approaches are compared side-by-side in table 2.1. Figure 2.1 additionally
illustrates the substeps of each iteration step modelled by �̂�.

Table 2.1: Comparison of iteration with series (non-cumulative) and sequence (cumulative)

iteration step: 𝛿𝑩(𝑘) = �̂�𝛿𝑩(𝑘−1) 𝛿𝑩[𝑘] = �̂�𝛿𝑩[𝑘−1] + 𝛿𝑩v,
initial value: 𝛿𝑩(0) = 𝛿𝑩v 𝛿𝑩[0] = 𝛿𝑩v,

step 1: 𝛿𝑩(1) = �̂�𝛿𝑩(0) = �̂�𝛿𝑩v 𝛿𝑩[1] = �̂�𝛿𝑩[0] + 𝛿𝑩v = �̂�𝛿𝑩v + 𝛿𝑩v,
step 2: 𝛿𝑩(2) = �̂�𝛿𝑩(1) = �̂�2𝛿𝑩v 𝛿𝑩[2] = �̂�𝛿𝑩[1] + 𝛿𝑩v = (�̂�2 + �̂� + ̂𝐼) 𝛿𝑩v,

explicit form: 𝛿𝑩(𝜅) = �̂�𝜅𝛿𝑩v 𝛿𝑩[𝜅] =
𝜅

∑
𝑘=0

�̂�𝑘𝛿𝑩v,

full perturbation: 𝛿𝑩 =
∞
∑
𝑘=0

�̂�𝑘𝛿𝑩v 𝛿𝑩 = 𝛿𝑩[∞],

full plasma response: 𝛿𝑩p =
∞
∑
𝑘=1

�̂�𝑘𝛿𝑩v 𝛿𝑩p = 𝛿𝑩[∞] − 𝛿𝑩v.

For the implementation of preconditioned iterations (see section 2.2), the cumulative approach
is more convenient. To reproduce the intermediate summands, we use eq. (2.22) and arrive at

𝛿𝑩(𝑘) = 𝛿𝑩[𝑘] − 𝛿𝑩[𝑘−1]. (2.24)

2.2 Enhanced Convergence with Preconditioned Iterations
Both approaches outlined in section 2.1 hinge on the convergence of the Neumann series in
eq. (2.15). The convergence criterion for the similar geometric series of scalars is not directly
applicable to operators but to their corresponding spectrum of eigenvalues. Thus we shall
now consider a discretized equation of finite dimension 𝑁.
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𝛿𝑩[𝑘] 𝛿𝑱[𝑘] 𝛿𝑝[𝑘]

𝛿𝑩[𝑘] 𝛿𝑱[𝑘] 𝛿𝑝[𝑘+1]

𝛿𝑩[𝑘] 𝛿𝑱[𝑘+1] 𝛿𝑝[𝑘+1]

𝛿𝑩[𝑘+1] 𝛿𝑱[𝑘+1] 𝛿𝑝[𝑘+1]

1.

2.2.

3.

Figure 2.1: Individual steps within an iteration of �̂�. Grey symbols designate quantities
from the previous iteration. Step 1 uses a finite difference method, outlined in section 5.1,
to compute the next iteration of the pressure perturbation as an intermediary. Step 2 uses a
finite volume method, discussed in section 5.2, to compute the next iteration of the current
perturbation. Both are grouped together in �̂� and solve the linearized MHD force balance.
Step 3 then computes the magnetic field perturbation using the finite element method from
chapter 4 to solve Ampère’s equation represented by �̂�, completing the cycle.

We start from the fixed-point relation of the previous section which has the general form

𝒙 = �̂�𝒙 + 𝒙0. (2.25)

𝒙 serves as a shorthand for 𝛿𝑩 and a reminder that the derivations in this section are not
just valid for the specific problem of calculating magnetic fields. Similarly, 𝒙0 stands in
for 𝛿𝑩v. Assuming the linear operator �̂� is non-singular, we can formally write down an
eigendecomposition

�̂� = �̂��̂��̂�−1, (2.26)

where �̂� is a diagonal matrix with the eigenvalues,

�̂� =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜆1
𝜆2

⋱
𝜆𝑁

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝝀 ̂𝐼, (2.27)

�̂� contains the corresponding eigenvectors as its columns,

�̂� = (𝒗1, 𝒗2, … , 𝒗𝑁) , (2.28)

and �̂�−1 is the inverse of �̂�. 𝒙 can then be expressed in the eigenbasis with components 𝑥′
𝑘,

𝒙 =
𝑁

∑
𝑘=1

𝑥′
𝑘𝒗𝑘 = �̂�𝒙′, (2.29)

11



2 Stationary Linear Perturbation of Ideal MHD Equilibrium

and transformed back to the original basis by the inverse,

𝒙′ = �̂�−1𝒙. (2.30)

Rearranging eq. (2.25) to

( ̂𝐼 − �̂�) 𝒙 = 𝒙0, (2.31)

multiplying from the left with �̂�−1 and expanding in the eigenbasis yields

(�̂�−1 ̂𝐼�̂�⏟
̂𝐼

−�̂�)𝒙′ = 𝒙′
0. (2.32)

Solving for 𝒙′ gives

𝒙′ = ( ̂𝐼 − �̂�)−1 𝒙′
0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
1−𝜆1

1
1−𝜆2

⋱
1

1−𝜆𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥′
01

𝑥′
02
⋮

𝑥′
0𝑁

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.33)

which can then be transformed back to the original basis. This approach yields a solution
without resorting to series expansion and associated considerations of convergence, instead
inverting the matrix directly. However, full diagonalization of �̂� is computationally expensive,
but partial diagonalization can be used to enhance convergence, or permit convergence at all,
as will be seen below.

Applying the eigendecomposition to the operator series, we see that repeated application of
�̂� simplifies to

�̂�𝑛𝒙0 = (�̂��̂��̂�−1) (�̂��̂��̂�−1) ⋯ (�̂��̂��̂�−1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘

𝒙0 = �̂��̂�𝑛�̂�−1𝒙0 = �̂��̂�𝑛𝒙′
0 =

𝑁
∑
𝑘=1

𝜆𝑛
𝑘 𝑥′

0𝑘𝒗𝑘. (2.34)

Comparing this to the solution in eq. (2.33), it becomes apparent that convergence of the
Neumann operator series is equivalent to the convergence of the geometric series of all
eigenvalues. Since the geometric series only converges for |𝜆𝑘| < 1 (and only reasonably fast
for |𝜆𝑘| ≪ 1), we need direct inversion for the largest eigenvalues, i.e. partial diagonalization.
To find the largest eigenvalues, we use the Arnoldi method summarized in appendix B. This
is a Krylov subspace method that reduces to the Lanczos method for Hermitian matrices
and is also used as part of the generalized minimal residual method (GMRES). It does not
involve matrix-matrix multiplication but only matrix-vector multiplication. Thus the linear
operator needs not be given explicitly in matrix form, only its action on a given vector, which
is fulfilled in our case for �̂�.

Using the Arnoldi method will give us good approximations to the largest 𝑟 eigenvalues,
denoted as 𝝀𝑟 or equivalently �̂�𝑟 and commonly called Ritz eigenvalues, as well as an or-
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thonormal set of associated eigenvectors, this time arranged in an 𝑁 × 𝑟 matrix �̂�𝑟. The latter
span the Krylov subspace of the full eigenspace. Instead of the eigenvalue equation of full
rank,

�̂�𝒗𝑘 = 𝜆𝑘𝒗𝑘 ∀𝑘 = 1, 2, … , 𝑁, (2.35)

or equivalently,

�̂��̂� = 𝝀�̂� = �̂��̂�, (2.36)

we can write down the reduced eigenvalue equation in the Krylov subspace,

�̂��̂�𝑟 = 𝝀𝑟�̂�𝑟 = �̂�𝑟�̂�𝑟. (2.37)

Note that, compared to the eigenvalue equation in full space, the 𝑟 × 𝑟 matrix �̂�𝑟 has to be to
the right of the 𝑁 × 𝑟 matrix �̂�𝑟.

With the largest 𝑟 eigenvalues now known, we want to find a preconditioner that modifies the
direct iteration step in eq. (2.25) so that the largest eigenvalues do not contribute. Usually,
this is written by left-multiplying eq. (2.31) by the inverse of a full-rank linear operator:

�̂�−1 ( ̂𝐼 − �̂�) 𝒙 = �̂�−1𝒙0. (2.38)

We choose

�̂�−1 = ̂𝐼 − ̂𝐴 (2.39)

with some general matrix ̂𝐴. Equation (2.38) then becomes

( ̂𝐼 − ̂𝐴 − ( ̂𝐼 − ̂𝐴) �̂�) 𝒙 = ( ̂𝐼 − ̂𝐴) 𝒙0, (2.40)

which can be rearranged to resemble eq. (2.31),

( ̂𝐼 − ̂�̄�) 𝒙 = ̄𝒙0, (2.41)

with a modified iteration step

̂�̄� = ̂𝐴 + ( ̂𝐼 − ̂𝐴) �̂� (2.42)

and a modified initial value

̄𝒙0 = ( ̂𝐼 − ̂𝐴) 𝒙0. (2.43)
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By analogy, we can then write the explicit preconditioned iteration step as

̄𝒙[𝑘+1] = ̂�̄� ̄𝒙[𝑘] + ̄𝒙0. (2.44)

Replacing the modified quantities on the right-hand side according to their definitions and
rearranging gives

̄𝒙[𝑘+1] = ̂𝐴 ̄𝒙[𝑘] + ( ̂𝐼 − ̂𝐴) (�̂� ̄𝒙[𝑘] + 𝒙0) . (2.45)

Now the last term in parentheses reproduces the direct, unmodified iteration yielding an
unmodified 𝒙[𝑘+1],

̄𝒙[𝑘+1] = ̂𝐴 ̄𝒙[𝑘] + ( ̂𝐼 − ̂𝐴) 𝒙[𝑘+1], (2.46)

which can again be rearranged for a final result,

̄𝒙[𝑘+1] = 𝒙[𝑘+1] − ̂𝐴 (𝒙[𝑘+1] − ̄𝒙[𝑘]) . (2.47)

Compared to the direct iterations, only one additional matrix-vector multiplication is neces-
sary, but see below for details.

Now, all we need is to compute ̂𝐴. We required that the largest 𝑟 eigenvalues do not contribute
to iterations, so we demand

̂�̄�𝒗𝑘
!= 𝟎 ∀𝑘 ≤ 𝑟. (2.48)

This can be compactly rewritten and expanded via eqs. (2.37) and (2.42) to give

̂�̄��̂�𝑟 = ̂𝐴�̂�𝑟 + ( ̂𝐼 − ̂𝐴) �̂��̂�𝑟 = ̂𝐴�̂�𝑟 + ( ̂𝐼 − ̂𝐴) �̂�𝑟�̂�𝑟
!= ̂0. (2.49)

This can in turn be rearranged to

̂𝐴�̂�𝑟 (�̂�𝑟 − ̂𝐼) != �̂�𝑟�̂�𝑟. (2.50)

Right-multiplying with the inverse of �̂�𝑟 − ̂𝐼 yields

̂𝐴�̂�𝑟
!= �̂�𝑟�̂�𝑟 (�̂�𝑟 − ̂𝐼)−1 . (2.51)

Now �̂�𝑟 is not square and thus cannot be inverted, but we can add a unity term on the right-
hand side:

̂𝐴�̂�𝑟
!= �̂�𝑟�̂�𝑟 (�̂�𝑟 − ̂𝐼)−1 (�̂�†

𝑟 �̂�𝑟)
−1

�̂�†
𝑟 �̂�𝑟. (2.52)
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By direct comparison it can be seen that a solution is given by

̂𝐴 ≡ �̂�𝑟�̂�𝑟 (�̂�𝑟 − ̂𝐼)−1 (�̂�†
𝑟 �̂�𝑟)

−1
�̂�†

𝑟 . (2.53)

The inner part can be grouped to the inverse of an 𝑟 × 𝑟 matrix �̂�𝑟,

�̂�𝑟 = �̂�†
𝑟 �̂�𝑟 (�̂�𝑟 − ̂𝐼) . (2.54)

This can then be conveniently inverted using the LAPACK routine zgesv to solve for �̂� in

�̂�𝑟�̂� = ̂𝐼. (2.55)

Since ̂𝐴 is constant during iterations, these computations would only need to be done once
before preconditioned iterations start. Note that in practice though, ̂𝐴 is not stored explicitly,
since 𝑟 ≪ 𝑁 – in test runs, 𝑟 ≈ 101, 𝑁 ≈ 105. Instead of keeping 𝑁2 entries of the dense matrix

̂𝐴 in storage, we keep 𝑁𝑟 entries of �̂�𝑟 and 𝑟2 entries of �̂�𝑟�̂�−1
𝑟 . Applying the matrices on a

given 𝒙 from right to left then requires additional matrix-vector multiplications, but in the
worst case, this involves only 2𝑁𝑟 + 𝑟2 floating-point operations compared to 𝑁2 for one
matrix-vector multiplication with full ̂𝐴. For an overview on matrix sizes, see table 2.2.

Table 2.2: Dimensions of quantities used in derivation of preconditioned iterations.

Quantity Dimension

𝒙 𝑁
𝝀𝑟 𝑟
𝒗𝑘 𝑁
�̂�𝑟 𝑟 × 𝑟
�̂�𝑟 𝑁 × 𝑟
�̂�†

𝑟 𝑟 × 𝑁
̂𝐴 𝑁 × 𝑁

�̂�𝑟 𝑟 × 𝑟

It should be noted that the approximation error of the Ritz eigenvalues relative to the true
eigenvalues decreases with the size of the Krylov subspace. This means that more Arnoldi
iterations should be completed than is purely necessary for the expected number of eigenval-
ues with absolute value below a given threshold. Even if most of them are not used in the
preconditioner, without sufficient accurcy in the largest eigenvalues the preconditioner will
fail to assure convergence. As a rule of thumb, there should be 2 to 3 times as many Arnoldi
iterations as there are Ritz eigenvalues used with the preconditioner.
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Chapter 3

Geometrical Considerations

Even when the magnetic field is not axisymmetric, the cross-section retains its shape in
tokamak devices, which stands in contrast to stellarator-type devices. It stands to reason to
take the periodicity in the symmetry direction, i.e., the cylindrical angle 𝜑, into account. The
non-axisymmetric magnetic perturbation field in cylindrical coordinates (𝑅, 𝜑, 𝑍) can then be
expanded as a Fourier series:

𝛿𝑩(𝑅, 𝜑, 𝑍) =
∞
∑

𝑛=−∞
𝑩𝑛(𝑅, 𝑍)ei𝑛𝜑 (3.1)

Note that only the component functions are transformed; the basis vectors which generally
depend on the transformation variable are unaffected. This means 𝛿𝑩 and 𝑩𝑛 share the same
geometrical basis.

As all equations are linear, a superposition of multiple harmonics is easily possible. Here
we limit the analysis to an axisymmetric unperturbed equilibrium and a single toroidal
perturbation harmonic

𝛿𝑩 = Re(𝑩𝑛ei𝑛𝜑) (3.2)

with fixed 𝑛 and we use the same notation for other perturbed quantities. Note that 𝑛 ≠ 0;
such a perturbation is necessarily small and considered part of the axisymmetric equilibrium.
Thus an index 0 unambiguously refers to equilibrium quantities1. Also, since 𝛿𝑩 is real-valued,
it follows that

𝑩𝑛 = 𝑩∗
−𝑛, (3.3)

where the asterisk denotes complex conjugation. Hence, only positive 𝑛 are considered
without loss of generality.

1This choice and further conventions are also listed in appendix A.2.
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In axisymmetric coordinate systems, such as the aforementioned cylindrical system (𝑅, 𝜑, 𝑍),
eqs. (2.4) and (2.9) are to be solved for harmonics in the toroidal angle 𝜑:

∇𝑝𝑛 + i𝑛𝑝𝑛∇𝜑 = 1
𝑐 (𝑱0 × 𝑩𝑛 + 𝑱𝑛 × 𝑩0) , (3.4)

∇ ⋅ 𝑱pol
𝑛 + i𝑛𝐽𝜑

𝑛 = 0. (3.5)

now with a two-dimensional ∇ operator acting in the poloidal (𝑅𝑍) plane. The explicit
definition depends on the coordinate system used and is outlined in section 3.1.

3.1 Coordinate Conventions
We generally follow the notational convention of D’haeseleer et al. [4], which we will succinctly
summarize in this section. When using curvilinear coordinates in three-dimensional Euclidean
space, two complementary vector bases can be defined. Using coordinates 𝑢1, 𝑢2, 𝑢3, the basis
vectors 𝒆1, 𝒆2, 𝒆3 are defined as tangent-basis vectors, which means they follow the coordinate
curves at a given point 𝒓:

𝒆𝑘(𝒓) = 𝜕𝒓
𝜕𝑢𝑘 , 𝑘 = 1, 2, 3. (3.6)

This means that the corresponding coordinate 𝑢𝑘 is varied while the other two are held
constant. Alternatively, the direction of a basis vector may be defined as a normal vector on
the associated coordinate surface, i.e., where 𝑢𝑘 is held constant, and the other two coordinates
are varied. These reciprocal basis vectors are then related to the gradient:

𝒆𝑘(𝒓) = ∇𝑢𝑘(𝒓), 𝑘 = 1, 2, 3. (3.7)

Note that with this definition, neither basis set is necessarily normalized or even orthogonal.
They are however pairwise orthonormal by definition, so that

𝒆𝑖 ⋅ 𝒆𝑗 = 𝛿𝑗
𝑖 , (3.8)

where the indices are kept in the same position with the Kronecker delta. As a consequence,
the following relations between basis vectors are also given, where 𝑖, 𝑗, 𝑘 is an even permutation:

𝒆𝑖 = 𝒆𝑗 × 𝒆𝑘

𝒆𝑖 ⋅ (𝒆𝑗 × 𝒆𝑘)
, 𝒆𝑖 =

𝒆𝑗 × 𝒆𝑘

𝒆𝑖 ⋅ (𝒆𝑗 × 𝒆𝑘). (3.9)

An abstract vector 𝒗 can be expanded in either basis, using the Einstein summation convention:

𝒗 = (𝒗 ⋅ 𝒆𝑘)𝒆𝑘 = 𝑣𝑘𝒆𝑘, 𝒗 = (𝒗 ⋅ 𝒆𝑘)𝒆𝑘 = 𝑣𝑘𝒆𝑘. (3.10)
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3.1 Coordinate Conventions

In the first case using tangent-basis vectors, the component 𝑣𝑘 is called the contravariant
component. In the second case using reciprocal basis vectors, the component 𝑣𝑘 is called the
covariant component. Conversion between the two bases is accomplished via the components
of the metric tensor 𝘨,

𝑣𝑖 = 𝑔𝑖𝑗𝑣𝑗, 𝑣𝑖 = 𝑔𝑖𝑗𝑣𝑗, (3.11)

where the summation convention is implicit and the metric tensor components are defined as

𝑔𝑖𝑗 = 𝒆𝑖 ⋅ 𝒆𝑗, 𝑔𝑖𝑗 = 𝒆𝑖 ⋅ 𝒆𝑗. (3.12)

The determinant 𝑔 = det 𝘨 of the metric tensor appears further in the following vector
calculations and is related to the Jacobian 𝐽 of the coordinate system defined by the 𝑢𝑘, again
with 𝑖, 𝑗, 𝑘 an even permutation:

𝐽 = √𝑔 = √det 𝘨 = 𝒆𝑖 ⋅ (𝒆𝑗 × 𝒆𝑘). (3.13)

With the nabla operator represented as

∇ = 𝒆𝑘 𝜕
𝜕𝑢𝑘 , (3.14)

the gradient follows:

∇𝛷 = 𝜕𝛷
𝜕𝑢𝑘 𝒆𝑘. (3.15)

The divergence is most simply defined in terms of contravariant components,

∇ ⋅ 𝒗 = 1
√𝑔

𝜕
𝜕𝑢𝑘 (√𝑔𝑣𝑘), (3.16)

while the curl in its simplest form uses covariant components and returns contravariant
components:

∇ × 𝒗 =
𝜀𝑖𝑗𝑘

√𝑔
𝜕𝑣𝑗

𝜕𝑢𝑖 𝒆𝑘. (3.17)

Here, 𝜀𝑖𝑗𝑘 is the Levi–Cività symbol. On occasion, parallel or perpendicular components with
respect to the magnetic field 𝑩 are needed:

𝒗∥ = (𝒗 ⋅ �̂�)�̂� = (𝒗 ⋅ 𝒉)𝒉, (3.18)
𝒗⟂ = −�̂� × (�̂� × 𝒗) = −𝒉 × (𝒉 × 𝒗). (3.19)

Here, �̂� denotes the unit vector of 𝑩, but in the special case of the magnetic field, 𝒉 may be
used as well.
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3 Geometrical Considerations

With these conventions set forth, we can define the necessary coordinate systems. We use
two different right-handed coordinate systems, one cylindrical and one pseudotoroidal. As
cylindrical coordinates we use (𝑅, 𝜑, 𝑍) with 𝜑 running counter-clockwise as seen from above,
so

𝑥 = 𝑅 cos 𝜑, 𝑦 = 𝑅 sin 𝜑, 𝑧 = 𝑍. (3.20)

These coordinates are used in computations and for meshes. They are orthogonal, as can be
seen from the metric tensor, which is given by

𝘨 =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝑅2 0
0 0 1

⎞⎟⎟⎟⎟
⎠

. (3.21)

In general curvilinear coordinates, different basis vectors and vector components can have
different physical dimensions depending on the coordinates used. Especially when dealing
with numerical data, it would be desirable to use a representation with the “right” units and
a normalized basis. In the given cylindrical coordinates, 𝒆𝑅 and 𝒆𝑍 are normalized and equal
to 𝒆𝑅 and 𝒆𝑍 respectively, as are the corresponding components. In Cartesian coordinates, the
basis vectors in toroidal direction are given by

𝒆𝜑 = 𝑅 cos 𝜑 𝒆𝑥 + 𝑅 sin 𝜑 𝒆𝑦, 𝒆𝜑 = 1
𝑅 cos 𝜑 𝒆𝑥 + 1

𝑅 sin 𝜑 𝒆𝑦. (3.22)

These point in the same direction and are easily normalized. Taking into account these
dimensions of the basis vectors, we can write the physical toroidal component as

𝐵(𝜑) = 1
𝑅𝐵𝜑 = 𝑅𝐵𝜑, (3.23)

where the parentheses signify that it is the physical component and not the covariant com-
ponent. Note that eq. (3.23) is not necessarily true in other coordinate systems using the 𝜑
coordinate because 𝒆𝜑 and 𝒆𝜑 might not point in the same direction.

In regards to this coordinate system, we can characterize the experimental setup. When
viewing the poloidal plane, 𝐵0(𝜑) points in the negative 𝜑 direction, the plasma current 𝐼p

points in the positive 𝜑 direction and the poloidal field 𝑩pol
0 is going in the clockwise direction.

Poloidal-toroidal decomposition of the equilibrium field 𝑩0 then yields the representation

𝑩0 = 𝑩pol
0 + 𝑩tor

0 , (3.24)

where

𝑩pol
0 = ∇𝜓 × ∇𝜑, (3.25)

𝑩tor
0 = 𝐵0𝜑∇𝜑. (3.26)
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3.1 Coordinate Conventions

Here, 𝜓 is the normalized disc poloidal flux, i.e.

𝜓 = 1
2𝜋𝛹pol = 1

2𝜋 ∫ 𝑩0 ⋅ d𝑺, (3.27)

where 𝑺 is the disc that at a point of evaluation (𝑅𝑆, 𝑍𝑆) is given by 𝑅 ≤ 𝑅𝑆, 𝑍 = 𝑍𝑆. The
orientation of 𝑺 fixes the sign1 of 𝜓. Here, 𝜓 is expected to increase towards the magnetic axis
– 𝜓min is located at the outermost flux surface and 𝜓max is located at the magnetic axis. This
leads to the following contravariant components for 𝑩pol

0 in cylindrical coordinates (see also
[12]):

𝐵𝑅
0 = (∇𝜓 × ∇𝜑)𝑅 = − 1

𝑅
𝜕𝜓
𝜕𝑍, (3.28)

𝐵𝑍
0 = (∇𝜓 × ∇𝜑)𝑍 = 1

𝑅
𝜕𝜓
𝜕𝑅. (3.29)

Note that the toroidal field coils produce a magnetic field that is roughly proportional to 1
𝑅 ,

so 𝐵0𝜑 is assumed to be constant over the entire plasma volume.

The second set of coordinates represent a distorted pseudotoroidal system used as symmetry
flux coordinates for derivations in sections 6.2 and 7.1. We keep the toroidal angle 𝜑, but
the poloidal plane is spanned by a pseudoradial flux surface label 𝜚 centered at the magnetic
axis and a poloidal angle 𝜗. 𝜚 and 𝜗 are chosen so that magnetic field lines are straight in
these coordinates, requiring the solution of a magnetic differential equation involving 𝑩0. As a
consequence, 𝜗 is not a geometric angle by itself, but there is a one-to-one correspondence
with the poloidal angle in an elementary geometric sense. On the other hand, 𝜚 can be any
quantity that is constant on a flux surface and strictly monotonous in the radial direction.
While it is common to use 𝜓 as the flux surface label, for derivations, we keep the more
intuitive notation of D’haeseleer et al. [4] where 𝜚 is increasing towards the outside of the
torus, i.e., 𝜚 = −𝜓. With 𝜗 pointing in the counter-clockwise direction, (𝜚, 𝜑, 𝜗) constitutes a
right-hand system. While this deviates from D’haeseleer et al. [4], where 𝜁 = 𝜋

2 − 𝜑 is used
instead, it is consistent with the COCOS 3 convention of Sauter et al. [12], where an overview
of possible combinations of coordinates are considered along with conversion between these
choices and a procedure to check the consistency. As a consequence, the safety factor 𝑞 is
positive, and one of a few equivalent definitions is

𝑞 =
𝐵𝜑

0
𝐵𝜗

0
. (3.30)

The sign of 𝑞 describes the sign of the helicity in (𝜑, 𝜗) and can be explicitly computed as

1Since 𝑩0 is not defined outside the plasma volume and only ∇𝜓 enters calculations, 𝜓 is defined up to a
constant and thus could be shifted to change sign. However, the sign of ∇𝜓 is fixed.
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3 Geometrical Considerations

described in section 6.3. The Jacobian of symmetry flux coordinates (𝜚, 𝜑, 𝜗) is

√𝑔 = −1
𝐵𝜗

0
= − 𝑞

𝐵𝜑
0

= −𝑞𝑅2

𝐵0𝜑
. (3.31)

The change of sign in comparison to D’haeseleer et al. [4] is due to the reversed toroidal angle.
This way, √𝑔 is still positive.

For the sake of completeness and since it will be used extensively in chapter 5, the ∇ operator
shall be given explicitly for the gradient and divergence in cylindrical coordinates:

∇𝛷 = 𝜕𝛷
𝜕𝑅 𝒆𝑅 + 𝜕𝛷

𝜕𝜑 𝒆𝜑 + 𝜕𝛷
𝜕𝑍 𝒆𝑍, (3.32)

∇ ⋅ 𝒗 = 1
𝑅

𝜕
𝜕𝑅(𝑅𝑣𝑘) + 𝜕

𝜕𝜑𝑣𝜑 + 1
𝑅

𝜕
𝜕𝑍(𝑅𝑣𝑍). (3.33)

In the last term, a factor of 𝑅 is kept for the sake of symmetry. Now, when we apply the
Fourier transform 𝜕

𝜕𝜑 → i𝑛, we get

∇𝛷 = 𝜕𝛷𝑛
𝜕𝑅 𝒆𝑅 + i𝑛𝛷𝑛𝒆𝜑 + 𝜕𝛷𝑛

𝜕𝑍 𝒆𝑍, (3.34)

∇ ⋅ 𝒗 = 1
𝑅

𝜕
𝜕𝑅(𝑅𝑣𝑘

𝑛) + i𝑛𝑣𝜑
𝑛 + 1

𝑅
𝜕

𝜕𝑍(𝑅𝑣𝑍
𝑛 ). (3.35)

For convenience, we will sometimes use the ∇ operator in two-dimensional form as a notational
shorthand with the gradient:

∇𝛷 = ∇𝛷𝑛 + i𝑛𝛷𝑛𝒆𝜑. (3.36)

It should be clear from context wheter ∇ is supposed to be two- or three-dimensional. For
example, in ∇𝜑 it is three-dimensional since ∇𝜑 only has a toroidal component, while for
purely poloidal quantities like ∇𝜓 or ∇𝑝𝑛, two-dimensional and three-dimensional ∇ yield
the same result.

In some derivations, we also use a Fourier series expansion for the poloidal angle 𝜗 with
poloidal mode number 𝑚, i.e.

𝑩𝑛(𝜚, 𝜗) =
∞
∑

𝑚=−∞
𝑩𝑚𝑛(𝜚)ei𝑚𝜗. (3.37)

In contrast to expansion in toroidal modes, poloidal modes are not fully linearly independent
and mode coupling will occur due to to the toroidal geometry. Also, since the expansion is
applied to generally complex Fourier coefficients 𝑩𝑛, eq. (3.3) cannot be applied and negative
𝑚 have to be considered as well. Using 𝜗 directly incurs solving the magnetic differential
equation, whereas little is gained due to linear dependence. Nevertheless, it is useful in
analytic derivations.
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3.2 Discretization and Local Coordinate System

Lastly, we shall introduce the flux surface average for an arbitrary quantity 𝛷 in a toroidal
system, which D’haeseleer et al. [4] define as

⟨𝛷⟩ =
∫2𝜋

0 ∫2𝜋
0 √𝑔𝛷 d𝜑 d𝜗

∫2𝜋
0 ∫2𝜋

0 √𝑔 d𝜑 d𝜗
. (3.38)

3.2 Discretization and Local Coordinate System
So far, we have given a fairly general description of the problem without explicit reference
to numerical methods, apart maybe from the iteration scheme in section 2.1. One necessary
modification is the discretization of the problem. The finite element method outlined in
chapter 4 uses a discretization of the computational domain, i.e., it introduces a triangular grid.
While other tilings are possible, triangulation is the simplest, and for triangles, the Delaunay
algorithm is unique. The latter maximizes the triangles’ minimal interior angle, which is
desirable because a more elongated triangle shape reduces the quality of approximations on
it. However, we choose to align the grid on flux surfaces in order to use the associated special
properties.

We choose a set of nested flux surfaces, e.g., a number 𝑛flux of curves of constant 𝜓, which are
equidistant between the magnetic axis and the X point. These are then intersected by rays
originating from the magnetic axis. Note that these rays are not curves of constant 𝜗, as these
are generally not straight in (𝑅, 𝑍) coordinates. As a result, between any two flux surfaces
there is a ring or strip of quadrangles going around in poloidal direction. These quadrangles
are then diagonally split into triangles, yielding two different types of triangles: One has two
points on the outer and one point on the inner flux surface, the other has one point on the
inner and two points on the outer flux surface. An exception is the innermost ring containing
the magnetic axis, where there is only one type of triangles and no quadrangles to split. This
kind of grid is depicted in fig. 3.1 where concentric circles are used to illustrate the nested
flux surfaces.

For reasons that will become more apparent in sections 5.2 and 7.1, we use symbolic names
instead of numbers to refer to edges and nodes. In the implementation, these names are
mapped to their numerical index (see chapter 6). The label f designates the edge that approxi-
mates the flux surface, i.e., it is parallel to the flux surface in the infinitesimal limit. The labels
i and o are chosen so that some flux is imagined to enter the triangle at edge i and exit at edge
o, again entering the next triangle through edge i and so on, going around the ring in poloidal
direction. The nodes are labeled by the corresponding uppercase letter of the opposite edge.
These labels are also annotated in fig. 3.1. Note that the labels are necessarily local to each
triangle.

Furthermore, for each edge we use a local orthogonal coordinate system on each triangle edge
with 𝒍 the vector of length 𝑙 along the edge in counter-clockwise orientation, 𝒏 the outward
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(a) The innermost triangle strip of
the grid with the magnetic axis at
its center. Edge f lies on the flux
surface in the infinitesimal limit.

i

o
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o
i

f

F

I
O

F

O

I

(b) One of the outer triangle strips of the grid with
two alternating kinds of triangles with edge f lying
on the inner and outer flux surface respectively.

Figure 3.1: The 2D mesh is given by a triangulation of poloidal cross-sections of the nested
flux surfaces, resulting in rings. The cross-sections are assumed to be circular for illustration
purposes.

normal of length 𝑙 and ∇𝜑 pointing inside the plane. We obtain relations

𝒍 × 𝒏 = 𝑙2𝑅∇𝜑, (3.39)
𝒏 × 𝑅∇𝜑 = 𝒍, (3.40)
𝑅∇𝜑 × 𝒍 = 𝒏. (3.41)

This is illustrated for a small sector on one ring in fig. 3.2.

Since edge f is approximated to lie on the flux surface, some properties carry over. In particular,
since flux surfaces are surfaces of constant 𝜓 and 𝑝0, in the infinitesimal limit we have

𝒏f ∥ ∇𝜓 ∥ ∇𝑝0, (3.42)

as well as

𝑩0 ⋅ 𝒏f = 0, 𝑱0 ⋅ 𝒏f = 0. (3.43)

Likewise, it should be noted that ∇𝜑 is perpendicular to all purely poloidal quantities which
includes, apart from those designated with superscript “pol”, all local coordinate vectors 𝒍
and 𝒏, Fourier coefficients with subscript 𝑛, as well as ∇𝜓 and ∇𝑝0.
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𝒍i

𝒍f

𝒍o

𝒏i

𝒏f

𝒏o

𝒍o 𝒍f

𝒍i
𝒏o

𝒏f

𝒏i

⊗⊗
∇𝜑

∇𝜑

Figure 3.2: Schematic of the local coordinate system.

3.3 Representation of Fields on the Grid
Another approximation made in the finite element method is the choice of a basis to represent
a scalar or vector field locally on one element of the grid. Scalar fields like the pressure
perturbation can be approximated with Lagrange elements of the lowest order where the
degrees of freedom are the values on the nodes, and any value within the triangle is interpolated
from the values of its nodes. Many other choices are available, but this is the simplest option
to implement, and it is sufficient for our needs. For vector fields, some more considerations
are necessary; see chapter 4 for more details. We are mostly interested in the representation
of the magnetic flux density and the current density, both of which characteristically show
zero divergence. Thus it is necessary to choose a basis that yields a well-defined divergence.
This is guaranteed by Raviart–Thomas elements, where, in the lowest-order case, the degrees
of freedom are the fluxes of the vector field across the triangle edges:

𝛹𝑘 = ∫
𝛤𝑘

𝑅𝑩pol
𝑛 ⋅ ̂𝒏 d𝑙 ≈ 𝑅(𝛤𝑘)𝑩pol

𝑛 (𝛤𝑘) ⋅ 𝒏𝑘, (3.44)

𝐼𝑘 = ∫
𝛤𝑘

𝑅𝑱pol
𝑛 ⋅ ̂𝒏 d𝑙 ≈ 𝑅(𝛤𝑘)𝑱pol

𝑛 (𝛤𝑘) ⋅ 𝒏𝑘. (3.45)

There are a few things to note here. Firstly, the factor 𝑅 is included due to the metric in
cylindrical coordinates and the fact that the integrand derives from the divergence theorem.
Secondly, ̂𝒏 is normalized, but 𝒏 is not, so the length of the edge is included as a factor.
Lastly, the integral is approximated by evaluation at only a single point, the edge midpoint 𝛤𝑘.
Conversely, to interpolate the value at given point 𝒓 within a triangle, each degree of freedom
𝛹𝑘 or 𝐼𝑘 is multiplied by the vectorial basis formed by the vector connecting 𝒓 and the node
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opposing edge 𝑘, weighted with the triangle area 𝑆𝛺:

𝑩𝑛(𝒓) = 𝛹f(𝒓 − 𝒓F) + 𝛹i(𝒓 − 𝒓I) + 𝛹o(𝒓 − 𝒓O)
2𝑆𝛺

, (3.46)

𝑱𝑛(𝒓) = 𝐼f(𝒓 − 𝒓F) + 𝐼i(𝒓 − 𝒓I) + 𝐼o(𝒓 − 𝒓O)
2𝑆𝛺

, (3.47)

Note that the value is well-defined only within the triangle but not on the edge: while the flux
across the edge, i.e. the normal component of the field is consistent with the neighbouring
triangle, the component along the edge is not necessarily continuous across triangles.

On a general note, we indicate the point of evaluation in parentheses after the field in question:
𝒓(𝑘) refers to the node with number 𝑘, as in 𝑝𝑛(𝒓(𝑘)), 𝛤 (𝑘)

𝑒 refers to the midpoint of edge 𝑒 on
triangle with number 𝑘, as in 𝑝𝑛(𝛤 (𝑘)

𝑒 ) or 𝑩𝑛(𝛤 (𝑘)
𝑘 ), and 𝛺(𝑘) refers to a “shifted centroid”, as

in 𝑝𝑛(𝛺(𝑘)) or 𝑩𝑛(𝛺(𝑘)). This shifted centroid is calculated by assigning double weight to
node F, i.e. (1

2 , 1
4 , 1

4) in barycentric coordinates where the first coordinate is defined relative to
node F. This assures that this shifted centroid is halfway between flux surfaces, as the actual
centroid is closer to the flux surface on which nodes I and O lie, thus alternating between the
two flux surfaces from one triangle to the next. To get an idea of this behaviour, refer to fig. 3.2,
where the ⊗ symbols indicating the ∇𝜑 basis vectors are placed at these shifted centroids.

Furthermore, toroidal components of vector fields are approximated by a single value, evalu-
ated at the aforementioned shifted centroid:

𝛹𝜑 = ∫
𝛺

𝑅𝐵𝜑
𝑛 d𝑆 ≈ 𝑆𝛺𝑅(𝛺)𝐵𝜑

𝑛 (𝛺), (3.48)

𝐼𝜑 = ∫
𝛺

𝑅𝐽𝜑
𝑛 d𝑆 ≈ 𝑆𝛺𝑅(𝛺)𝐽𝜑

𝑛 (𝛺). (3.49)

These degrees of freedom are usually set to a value that assures zero divergence in conjunction
with the degrees of freedom of the associated triangle in the poloidal plane.

Some further interpolations will become necessary, using the approximations now established.
In the formulae derived in chapter 5, terms of the form 𝒗 ⋅ ∇𝜓 appear, where 𝒗 is an arbitrary
vector, usually the vector of a triangle edge or some field quantity. In the latter case, this
reduces to the projection on the normal vector of an edge, since we represent perturbed vector
fields by Raviart–Thomas elements. The relation of the degrees of freedom to the contravariant
𝜓 component of the magnetic perturbation on edge f is derived here as an example, as we use
it for computations in sections 5.1 and 7.1. The general expression on a given triangle is given
by

𝐵𝜓
𝑛 (𝛤f) = 𝑩𝑛(𝛤f) ⋅ ∇𝜓(𝛤f) = 𝑩𝑛(𝛤f) ⋅ ̂𝒏f

𝜕𝜓
𝜕𝑛f

(𝛤f). (3.50)

Here we used the fact that the gradient of 𝜓 is parallel to 𝒏f. To approximate the directional
derivative on 𝛤f, first consider fig. 3.3. The indices ±1 here refer to the adjacent outer and
inner flux surface that are realized on grid points. Likewise, 𝛺(±1) refers to the triangles that
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3.3 Representation of Fields on the Grid

touch the adjacent flux surfaces and edge f in question. 𝑎f refers to the altitude of edge f on a
given triangle. Since 𝒏f is pointing toward the outer flux surface, i.e. it is defined in regard to

𝒏f

𝜓(−1)

𝜓(0)

𝜓(+1)

𝑎(+1)
f

𝑎(−1)
f

𝑙f

𝛺(−1)

𝛺(+1)

Figure 3.3: Geometrical considerations in the calculation of 𝐵𝜓
𝑛 (𝛤f).

𝛺(−1), the difference in 𝜓 is computed in the same direction, while the distance between the
flux surfaces is approximated by the sum of the altitudes:

𝜕𝜓
𝜕𝑛f

(𝛤f) ≈ 𝜓(+1) − 𝜓(−1)

𝑎(+1)
f + 𝑎(−1)

f
. (3.51)

The altitudes can be calculated via triangle area and edge length,

𝑆𝛺(±1) =
𝑙f𝑎

(±1)
f
2 , (3.52)

yielding

𝜕𝜓
𝜕𝑛f

(𝛤f) ≈ 𝑙f
2

𝜓(+1) − 𝜓(−1)

𝑆𝛺(+1) + 𝑆𝛺(−1)
. (3.53)

Now, remembering that 𝒏f = 𝑙f ̂𝒏f and that the degrees of freedom are given by 𝛹f =
𝑅(𝛤f)𝑩𝑛(𝛤f) ⋅ 𝒏f, we can put everything together and arrive at a direct relation between
𝐵𝜓

𝑛 and the degrees of freedom:

𝐵𝜓
𝑛 (𝛤f) ≈ 𝑩𝑛(𝛤f) ⋅ 𝑙f ̂𝒏f

2
𝜓(+1) − 𝜓(−1)

𝑆𝛺(+1) + 𝑆𝛺(−1)
= 𝛹f

2𝑅
𝜓(+1) − 𝜓(−1)

𝑆𝛺(+1) + 𝑆𝛺(−1)
. (3.54)

When 𝒏f and 𝛹f are defined in regard to 𝛺(+1) instead, both quantities switch sign. Since 𝐵𝜓
𝑛

does not depend on the choice of triangle, the sign on the right-hand side of eq. (3.54) would
also change in this case.

Another useful quantity is the covariant 𝜗 component of a vector field, here derived for the
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3 Geometrical Considerations

example of the current perturbation,

𝐽𝑛𝜗 = 𝑱𝑛 ⋅ 𝒆𝜗 = 𝑱𝑛 ⋅ √𝑔 (𝒆𝜚 × 𝒆𝜑) = −𝑱𝑛 ⋅ √𝑔(∇𝜓 × ∇𝜑) = 𝑱𝑛 ⋅
𝑞𝑩pol

0
𝐵𝜑

0
, (3.55)

where we used eq. (3.31) in the last step.
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Chapter 4

Numerical Treatment of the Magnetic
Field Perturbation

In this chapter, the calculation of the magnetic field from the current density is described, i.e.
the explicit form of �̂� in eq. (2.11). The implementation uses FreeFem++ by Hecht [6], while
the mathematical background is outlined in section 4.1, which is based on the book by Jin [9].
For a more specific discussion and thorough derivations for the problem at hand, see Seeber
[13]. Finally, the application of the Fourier transform is elaborated in section 4.2, based on
the papers by Heyn et al. [7] and Albert et al. [1].

The finite element method can be used to numerically solve partial differential equations,
specifically boundary value problems. Before delving into the details of the method, we shall
look at how this applies to eq. (2.8). Using an identity from vector analysis, we get

∇ × (∇ × 𝑨) = ∇(∇ ⋅ 𝑨) − (∇ ⋅ ∇)𝑨 = 4𝜋
𝑐 𝑱. (4.1)

Without loss of generality, we use the Coulomb gauge with

∇ ⋅ 𝑨 = 0 (4.2)

and eq. (4.1) reduces to

(∇ ⋅ ∇)𝑨 =∶ Δ𝑨 = −4𝜋
𝑐 𝑱, (4.3)

where Δ is the Laplacian. For vector arguments, the latter only takes on a simple form for
Cartesian coordinates:

( 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 ) 𝐴𝑘 = −4𝜋
𝑐 𝐽𝑘 ∀𝑘 = 𝑥, 𝑦, 𝑧. (4.4)

Thus the differential equation for the Cartesian components of the magnetic vector potential
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4 Numerical Treatment of the Magnetic Field Perturbation

is of the Poisson type,

Δ𝛷 = 𝑓 . (4.5)

This is an elliptical partial differential equation of second order, so the solution shall be twice
continuously differentiable on the given domain, i.e. 𝛷 ∈ 𝐶2(𝛺). For this type of PDE, a
unique solution exists when one of the following boundary conditions is imposed on the
boundary 𝛤 = 𝜕𝛺.

• A Dirichlet boundary condition imposes functional values on the boundary:

𝛷(𝒓) = 𝛾D(𝒓) ∀𝒓 ∈ 𝛤.

• A Neumann boundary condition imposes normal derivatives on the boundary:

∇𝛷(𝒓) ⋅ 𝒏(𝒓) = 𝛾N(𝒓) ∀𝒓 ∈ 𝛤.

There is an additional compatibility condition that has to be satisfied by the inhomo-
geneities of Poisson’s equation and the boundary condition:

∮
𝛤

𝛾N(𝒓) d𝛤 = ∫
𝛺

𝑓 (𝒓) d𝛺.

• A Robin boundary condition imposes a weigehted sum of Dirichlet and Neumann
boundary conditions:

𝐶D𝛷(𝒓) + 𝐶𝑁∇𝛷(𝒓) ⋅ 𝒏(𝒓) = 𝛾R(𝒓) ∀𝒓 ∈ 𝛤.

This has to be distinguished from a Cauchy boundary condition where Dirichlet and
Neumann boundary conditions are imposed on the same point independently of each
other. For elliptical PDEs, this usually is not a well-posed problem and may lead to an
overdetermined set of equations.

• Mixed boundary conditions are enforced when any of the above is imposed on each piece
of the boundary, e.g. Dirichlet boundary conditions on 𝛤D and Neumann boundary
conditions on 𝛤N. In the latter example, it is necessary that

𝛤N ∪ 𝛤D = 𝛤, 𝛤N ∩ 𝛤D = ∅

holds to avoid the aforementioned problem with Cauchy boundary conditions.

Even though we applied this categorization to Cartesian components, it holds in any coordi-
nate system since a simple geometrical coordinate transform does not change the type of the
PDE and thus the finite element method is applicable. It should be noted, however, that we
can not prescribe all vector components at the same time; according to Bíró [3], the normal and
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4.1 Outline of the Ritz and Galerkin Methods

tangential components have to be separated. For the normal components, we can prescribe
the magnetic surface charge density 𝑏,

𝑩 ⋅ 𝒏 = −𝑏, (4.6)

which has to fulfill the additional condition that

∮
𝛤

𝑏 d𝛤 = − ∮
𝛤

𝑩 ⋅ 𝒏 d𝛤 = − ∫
𝛺

∇ ⋅ 𝑩 d𝛺 = 0.

For the tangential component, the magnetic surface current density 𝑲 can be prescribed,

𝑩 × 𝒏 = 4𝜋
𝑐 𝑲, (4.7)

which has to fulfill the additional condition that

4𝜋
𝑐 ∮

𝛤
𝑲 d𝛤 = ∮

𝛤
𝑩 × 𝒏 d𝛤 = − ∫

𝛺
∇ × 𝑩 d𝛺 = −4𝜋

𝑐 ∫
𝛺

𝑱 d𝛺.

When deriving the weak formulation in the following section, these two options will be
assigned to their corresponding boundary conditions.

4.1 Outline of the Ritz and Galerkin Methods
The finite element method is used to solve problems of the general form

ℒ𝛷 = 𝑓 , (4.8)

where 𝛷 and 𝑓 are arbitrary functions and ℒ is a differential operator. For the Ritz method, ℒ
is assumed to be a real differential operator that is self-adjoint and positive definite, i.e.

⟨ℒ𝑢, 𝑣⟩ = ⟨𝑢, ℒ𝑣⟩, (4.9)

⟨ℒ𝑢, 𝑢⟩
⎧{
⎨{⎩

> 0 𝑢 ≠ 0,
= 0 𝑢 = 0

(4.10)

in regard to a scalar product defined by

⟨𝑢, 𝑣⟩ = ∫
𝛺

𝑢𝑣∗ d𝛺. (4.11)

The solution of the differential equation corresponds to the minimum of the functional

𝐹(𝛷) = 1
2⟨ℒ𝛷, 𝛷⟩ − 1

2⟨𝛷, 𝑓 ⟩ − 1
2⟨𝑓 , 𝛷⟩, (4.12)
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4 Numerical Treatment of the Magnetic Field Perturbation

i.e. 𝛿𝐹 = 0 and 𝛿(𝛿𝐹) > 0, where 𝛿𝐹 is the variation. Now, the problem is discretized by
projecting 𝛷 into a finite subspace of the full solution space, i.e. it is approximated by

�̃� =
𝑁

∑
𝑘=1

𝐶𝑘𝑣𝑘 = 𝑪 ⋅ 𝒗, (4.13)

where 𝐶𝑘 are constant expansion coefficients or degrees of freedom and 𝑣𝑘 are basis functions
which will be defined later. Now, the variational form in eq. (4.12) can be cast into an algebraic
form,

𝜕
𝜕𝐶𝑘

𝐹(�̃�) = 0 ∀𝑘 = 1, 2, … , 𝑁. (4.14)

This results in a system of 𝑁 linear equations of 𝑁 unknowns,

�̂�𝑪 = 𝒔. (4.15)

Here, �̂� is the stiffness matrix1 given by

𝐾𝑗𝑘 = 1
2 ∫

𝛺
𝑣𝑗ℒ𝑣𝑘 + 𝑣𝑘ℒ𝑣𝑗 d𝛺 = ∫

𝛺
𝑣𝑗ℒ𝑣𝑘 d𝛺 ∀𝑗, 𝑘 = 1, 2, … , 𝑁, (4.16)

where we used eq. (4.9) in the last equality. The load vector1 𝒔 is given by

𝑠𝑘 = ∫
𝛺

𝑣𝑘𝑓 d𝛺 ∀𝑘 = 1, 2, … , 𝑁. (4.17)

Now, describing the whole domain 𝛺 by a limited set of basis functions 𝒗 would entail the
construction of complicated basis function to cover the whole domain. Instead, we discretize
the computational domain into the eponymous finite elements, which we already discussed in
section 3.2. The basis functions are then defined to extend only over one element and to be
zero on all others. This allows a reasonable approximation of almost arbitrary functions by
simple polynomial basis functions over arbitrary domains. Equation (4.15) is then defined
for each of the 𝑀 finite elements, yielding a set of 𝑀𝑁 linear equations in 𝑀𝑁 unknowns.
Since only a few neighboring finite elements are connected, �̂� then takes the shape of a band
matrix, for which efficient numerical solutions are available.

The conventional Ritz method also has its shortcomings. When ℒ is not self-adjoint or positive
definite, the Ritz method has to be modified. For example, complex ℒ are not self-adjoint with
the scalar product defined in eq. (4.11). Furthermore, if inhomogeneous boundary conditions
are applied, the functional 𝐹 has to be extended by a function that fulfills this boundary
condition. For all these generalized cases, the Galerkin method may be used instead, which
also does not require the construction of a variational form. Observing that �̃� is only an
approximation to 𝛷, inserting the former into the original differential eq. (4.8) will leave a

1These quantities derive their names from the application of the method to problems of solid mechanics in
civil engineering.
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4.1 Outline of the Ritz and Galerkin Methods

residue, i.e.

ℒ�̃� − 𝑓 ≠ 0. (4.18)

Now, another approach to approximate the minimum of the functional 𝐹 is to minimize the
residues 𝑟𝑘 with regard to weighting functions 𝑤𝑘,

𝑟𝑘 = ∫
𝛺

𝑤𝑘 (ℒ�̃� − 𝑓 )⏟⏟⏟⏟⏟
≠0

d𝛺. (4.19)

For the Galerkin method, the weighting functions 𝑤𝑘 are the same as the basis functions 𝑣𝑘.
This approach also results in a system of 𝑁 linear equations of 𝑁 unknowns, as in eq. (4.15).
Here, �̂� is only symmetric if ℒ is self-adjoint, in which case the equations are the same as
with the Ritz method.

The weighting functions 𝑤𝑘 are also called test functions in the context of the weak formulation
of the differential equation, where they are used to apply integration by parts or analogs
thereof, such as Green’s identities or the divergence theorem. This allows the enforcement of
the boundary conditions since integrals on the boundary will appear. As an illustration, we
shall derive the weak formulation of eq. (2.8) based on the treatment by Bíró [3]. To this end,
we take a dot product of eq. (2.8) with a vectorial test function 𝒘, integrate over 𝛺, and apply
the divergence theorem:

∫
𝛺

𝒘 ⋅ (∇ × (∇ × 𝑨)) d𝛺 = 4𝜋
𝑐 ∫

𝛺
𝒘 ⋅ 𝑱 d𝛺,

∫
𝛺

(∇ × 𝒘) ⋅ (∇ × 𝑨) d𝛺 − ∫
𝛺

∇ ⋅ (𝒘 × (∇ × 𝑨)) d𝛺 = 4𝜋
𝑐 ∫

𝛺
𝒘 ⋅ 𝑱 d𝛺,

∫
𝛺

(∇ × 𝒘) ⋅ (∇ × 𝑨) d𝛺 − ∮
𝛤
(𝒘 × (∇ × 𝑨)) ⋅ 𝒏 d𝛤 = 4𝜋

𝑐 ∫
𝛺

𝒘 ⋅ 𝑱 d𝛺,

∫
𝛺

(∇ × 𝒘) ⋅ (∇ × 𝑨) d𝛺 − ∮
𝛤

𝒘 ⋅ ((∇ × 𝑨) × 𝒏) d𝛤 = 4𝜋
𝑐 ∫

𝛺
𝒘 ⋅ 𝑱 d𝛺. (4.20)

The second integral on the left-hand side shows that a Neumann boundary condition of the
form

(∇ × 𝑨) × 𝒏 = 4𝜋
𝑐 𝑲, (4.21)

corresponding to the tangential component in eq. (4.7), appears as a natural boundary condition
of the weak form. Equation (4.21) can be used to replace the expression in the weak formulation
to impose the boundary condition. For the Dirichlet boundary condition, we make the
connection to eq. (4.6) via

𝑨 × 𝒏 = 𝜶, (4.22)
∇ ⋅ (𝑨 × 𝒏) = ∇ ⋅ 𝜶 = −𝑏,
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4 Numerical Treatment of the Magnetic Field Perturbation

𝒏 ⋅ (∇ × 𝑨) − 𝑨 ⋅ (∇ × 𝒏)⏟
𝟎

= −𝑏,

𝒏 ⋅ (∇ × 𝑨) = 𝑩 ⋅ 𝒏 = −𝑏,

where 𝜶 is an auxiliary function also depending on the gauge of 𝑨. Since it cannot be connected
to the weak formulation in eq. (4.20), eq. (4.22) is an essential boundary condition; it poses direct
restrictions on the degrees of freedom at the boundary elements in the form 𝐶𝑗 = 𝛼𝑗 (see
eq. (4.15)) for all affected 𝑗. By setting

𝐾𝑗𝑘 = 𝛿𝑗𝑘 ∀𝑘 = 1, 2, … , 𝑀𝑁, (4.23)

𝑠𝑗 = 𝛼𝑗, (4.24)

𝑠𝑘 → 𝑠𝑘 − 𝐾𝑘𝑗 ∀𝑘 ≠ 𝑗, (4.25)

we ensure 𝐾𝑘𝑗 = 𝛿𝑘𝑗 and thus �̂� stays symmetric. Now, the 𝑗th row and column can be omitted
without changing the solution, reducing the dimension of the system of equations. A less
sophisticated alternative is the penalty method, where we employ a sufficiently large value ℎ
and set

𝐾𝑗𝑗 = ℎ, (4.26)

𝑠𝑗 = ℎ𝛼𝑗. (4.27)

This approximates the boundary condition eq. (4.22) and also leaves �̂� symmetric.

Finally, we have to choose appropriate basis functions which approximate the underlying
solution space. While we initially demanded that the solution be twice continuously differ-
entiable, i.e., 𝐴𝑘 ∈ 𝐶2(𝛺), the weak formulation suggests this is not strictly necessary. The
integration by parts – or equivalently the divergence theorem used in eq. (4.20) – gives rise to
the notion of the weak derivative. Applied to eq. (4.20), this means that there can be a valid
solution with ∇ × 𝑨 even when ∇ × (∇ × 𝑨) only exists in the weak sense that the application
of the divergence theorem is valid and the integral exists. Thus also weak solutions are allowed,
and the underlying solution space is a Sobolev space. For our problem, the relevant Sobolev
spaces are defined in relation to the 𝐿2 norm

‖𝑤‖2 = √∫
𝛺

|𝑤|2 d𝛺, (4.28)

so that they are at least square-integrable:

𝐿2(𝛺) = {𝑤 ∶ 𝛺 → ℂ | ‖𝑤‖2 < ∞}. (4.29)

Now the Sobolev space 𝐻1(𝛺) consists of functions whose first derivatives along all coordi-
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nates 𝑢𝑘 are also square-integrable:

𝐻1(𝛺) = {𝑤 ∈ 𝐿2(𝛺) | 𝜕
𝜕𝑢𝑘 𝑤 ∈ 𝐿2(𝛺)}. (4.30)

This is the appropriate function space for scalar functions whose gradient appears in the
weak formulation. They are approximated by Lagrange elements whose degrees of freedom
of lowest order are the values on nodes of the finite elements. An example would be the
pressure 𝑝, if it were to appear in the weak formulation. Another important Sobolev space
𝐻(div, 𝛺) which is defined for vector-valued functions 𝒘 as

𝐻(div, 𝛺) = {𝑤𝑖 ∈ 𝐿2(𝛺) | ∇ ⋅ 𝒘 ∈ 𝐿2(𝛺)}. (4.31)

Whenever we need the divergence of a vector field, e.g., for 𝑱 and 𝑩, this is the appropriate
function space to consider. It is approximated by Raviart–Thomas elements with vector-
valued basis functions and the perpendicular component of edges as degrees of freedom for
lowest-order elements. This means that the perpendicular component is continuous across
edges, which is important for the application of the divergence theorem. On the other hand,
the parallel component on edges might be discontinuous across elements. While we have
introduced these two function spaces and basis functions already in section 3.2, we still need
a function space for 𝑨 with a well-defined curl. 𝐻(rot, 𝛺) is defined accordingly:

𝐻(rot, 𝛺) = {𝑤𝑖 ∈ 𝐿2(𝛺) | (∇ × 𝑤)𝑢𝑘 ∈ 𝐿2(𝛺)}. (4.32)

The associated basis functions are the Nédélec elements. Like the Raviart–Thomas elements,
they use vectorial basis function, but the degrees of freedom are the parallel components along
edges, which is necessary for the application of Stokes’ theorem. The continuity conditions are
also reversed compared to Raviart–Thomas elements, i.e., parallel components are continuous
across edges, but the perpendicular components might be discontinuous. Finally, another
useful property of these function spaces is the de Rham complex, which shows the relation
between these function spaces and the differential operators mediating between them. We
can write it concisely as

𝐻1(𝛺)
grad
−−−→ 𝐻(rot, 𝛺) rot−−→ 𝐻(div, 𝛺) div−−→ 𝐿2(𝛺). (4.33)

The interpretation is as follows: Applying the curl to a function from 𝐻(rot, 𝛺) yields a result
in 𝐻(div, 𝛺). Thus when we take the curl of 𝑨 ∈ 𝐻(rot, 𝛺), the result 𝑩 ∈ 𝐻(div, 𝛺) meets
our demand of a well-defined divergence.

4.2 Reduction to two dimensions
As a further simplification, we want to apply the poloidal-toroidal decomposition discussed
in chapter 3. In the appendix of their paper, Heyn et al. [7] describe the basics of the procedure.
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4 Numerical Treatment of the Magnetic Field Perturbation

𝑨(𝑅, 𝜑, 𝑍) is split into an axisymmetric part �̄�(𝑅, 𝑍) and an non-axisymmetric part �̃�(𝑅, 𝜑, 𝑍).
When we apply the Fourier transform to the latter, there is no contribution from the mode
𝑛 = 0 by definition. Following that, we gauge �̃� so that ̃𝐴𝜑 = 0, which is accomplished by the
transformation

�̃� → �̃� − ∇ ∫
𝜑

𝜑min

̃𝐴𝜑 d𝜑′, (4.34)

which reduces to

�̃� → �̃� −
∇ ̃𝐴𝑛𝜑

i𝑛 (4.35)

since we only consider a single harmonic 𝑛 ≠ 0. The magnetic field perturbation 𝑩𝑛 is then
given as

𝐵𝑅
𝑛 = i𝑛

𝑅 𝐴𝑛𝑍, 𝐵𝜑
𝑛 = 1

𝑅 (𝜕𝐴𝑛𝑅
𝜕𝑍 − 𝜕𝐴𝑛𝑍

𝜕𝑅 ) , 𝐵𝑍
𝑛 = −i𝑛

𝑅 𝐴𝑛𝑅. (4.36)

This reduces the problem to the poloidal plane and we only need to solve

−𝑅 𝜕
𝜕𝑍 (𝜕𝐴𝑛𝑅

𝜕𝑍 − 𝜕𝐴𝑛𝑍
𝜕𝑅 ) + 𝑛2

𝑅 𝐴𝑛𝑅 = 4𝜋
𝑐 𝑅𝐽𝑅

𝑛 , (4.37)

𝑅 𝜕
𝜕𝑅 (𝜕𝐴𝑛𝑅

𝜕𝑍 − 𝜕𝐴𝑛𝑍
𝜕𝑅 ) + 𝑛2

𝑅 𝐴𝑛𝑍 = 4𝜋
𝑐 𝑅𝐽𝑍

𝑛 . (4.38)

Integration by parts in coordinate space yields the weak formulation as

∫
𝛺

𝑅 (𝜕𝐴𝑛𝑅
𝜕𝑍 − 𝜕𝐴𝑛𝑍

𝜕𝑅 ) (𝜕𝑤𝑅
𝜕𝑍 − 𝜕𝑤𝑍

𝜕𝑅 ) + 𝑛2

𝑅 (𝐴𝑛𝑅𝑤𝑅 + 𝐴𝑛𝑍𝑤𝑍) d𝑅 d𝑍 =

= 4𝜋
𝑐 ∫

𝛺
𝑅(𝐽𝑅

𝑛 𝑤𝑅 + 𝐽𝑍
𝑛 𝑤𝑍) d𝑅 d𝑍, (4.39)

where 𝒘 is a test function with the restriction 𝑤𝜑 = 0. Note that the integral on the boundary is
already omitted, as we impose a homogeneous Neumann boundary condition. As Albert et al.
[1] note: “If 𝛺 is [extended] with a large enough current-free region around the actual domain
of interest, this description is suited to approximately describe the decay of the magnetic field
at infinite distance.”
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Chapter 5

Linearized MHD Force Balance

In this chapter, we derive a solution of the linearized MHD force balance from eq. (3.4) in
the field-aligned geometry described in chapter 3. This corresponds to the application of
the �̂� operator in eq. (2.10) occurring in the iterations outlined in section 2.1. Section 5.1
concerns the intermediate step of computing the pressure perturbation from the magnetic
field perturbation, which is necessary for the computation of the current perturbation derived
in section 5.2. Finally, in section 5.3, we discuss the extension of the ideal MHD model by the
inclusion of sheet currents.

5.1 Pressure Perturbation
Multiplying eq. (3.4) by 𝑩0 yields

𝑐𝑩0 ⋅ ∇𝑝𝑛 + i𝑛𝑐𝑝𝑛𝑩0 ⋅ ∇𝜑 = −𝑩𝑛 ⋅ (𝑱0 × 𝑩0) = −𝑐𝑩𝑛 ⋅ ∇𝑝0

𝑩pol
0 ⋅ ∇𝑝𝑛 + i𝑛𝑝𝑛𝐵𝜑

0 = −𝐵𝜓
𝑛 𝑝′

0(𝜓). (5.1)

To solve this equation on one flux surface, we use a lowest-order finite difference method.
Nodes are indexed by superscript (𝑘) and 𝒓(𝑘) is the position of node (𝑘), whereas 𝒍(𝑘)

f =
𝒓(𝑘+1) − 𝒓(𝑘) is the counter-clockwise vector between nodes on edge 𝛤 (𝑘)

f . ∇𝑝𝑛 is approximated
at the midpoint of edge 𝛤 (𝑘)

f as finite difference of 𝑝𝑛 at nodes (𝑘) and (𝑘 +1). 𝑝𝑛 is accordingly
approximated at the midpoint as the arithmetic mean of the values at these nodes. With a
shorthand 𝑝(𝑘)

𝑛 = 𝑝𝑛(𝒓(𝑘)) for the degrees of freedom we get

𝑩pol
0 (𝛤 (𝑘)

f ) ⋅
𝒍(𝑘)
f

𝑙(𝑘)
f

𝑝(𝑘+1)
𝑛 − 𝑝(𝑘)

𝑛

𝑙(𝑘)
f

+ i𝑛𝐵𝜑
0 (𝛤 (𝑘)

f )𝑝(𝑘+1)
𝑛 + 𝑝(𝑘)

𝑛
2 = −d𝑝0

d𝜓 (𝛤 (𝑘)
f )𝐵𝜓

𝑛 (𝛤 (𝑘)
f ), (5.2)
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5 Linearized MHD Force Balance

where a unit vector along the edge is used to get the correct sign for the gradient in the
direction of the poloidal magnetic field. Reordering in terms of the unknowns yields

(𝑏𝑘 + 𝑎𝑘)𝑝(𝑘+1)
𝑛 + (𝑏𝑘 − 𝑎𝑘)𝑝(𝑘)

𝑛 = 𝑠𝑘 (5.3)

with

𝑎𝑘 = 𝑩pol
0 (𝛤 (𝑘)

f ) ⋅
̂𝒍(𝑘)

f

𝑙(𝑘)
f

, (5.4)

𝑏𝑘 =
i𝑛𝐵𝜑

0 (𝛤 (𝑘)
f )

2 , (5.5)

𝑠𝑘 = −d𝑝0
d𝜓 (𝛤 (𝑘)

f )𝐵𝜓
𝑛 (𝛤 (𝑘)

f ). (5.6)

In matrix form this scheme is written as

𝐾𝑗𝑘𝑝(𝑘)
𝑛 = 𝑠𝑗, (5.7)

where the elements of the matrix �̂� are

𝐾𝑗𝑘 = (𝑏𝑗 + 𝑎𝑗)𝛿𝑗−1,𝑘 + (𝑏𝑗 − 𝑎𝑗)𝛿𝑗𝑘. (5.8)

Note that for 𝑁 nodes with periodic boundary conditions 𝑝(0)
𝑛 = 𝑝(𝑁)

𝑛 , indices “wrap around”,
resulting in the following shape for the stiffness matrix:

�̂� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑏1 − 𝑎1 𝑏1 + 𝑎1 0 … 0
0 𝑏2 − 𝑎2 𝑏2 + 𝑎2 … 0
0 0 𝑏3 − 𝑎3 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝑏𝑁 + 𝑎𝑁 0 0 … 𝑏𝑁 − 𝑎𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

5.2 Current Perturbation
To derive an expression for the degrees of freedom of 𝑱𝑛, we start from the linear force balance
in eq. (3.4) and put the unknown current perturbation on one side:

𝑱𝑛 × 𝑩0⏟
(I)

= 𝑐(∇𝑝𝑛 + i𝑛𝑝𝑛∇𝜑)⏟⏟⏟⏟⏟⏟⏟⏟⏟
(II)

− 𝑱0 × 𝑩𝑛⏟
(III)

. (5.9)

Taking a scalar product of some edge 𝒍 – in the course of this derivation, we don’t indicate
evaluation at the edge midpoint 𝛤 to avoid cluttering up the equations – with term (I) in
eq. (5.9) yields

𝒍 ⋅ (𝑱𝑛 × 𝑩0) = 𝒍 ⋅ (𝑱𝑛 × (∇𝜓 × ∇𝜑 + 𝐵0𝜑∇𝜑)) (5.10)
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5.2 Current Perturbation

with the definiton of the equilibrium field from eq. (3.24). Cyclic permutation gives

𝒍 ⋅ (𝑱𝑛 × 𝑩0) = 𝑱𝑛 ⋅ ((∇𝜓 × ∇𝜑) × 𝒍 + 𝐵0𝜑∇𝜑 × 𝒍), (5.11)

where another triple product formula and the definition of the local coordinates from eq. (3.41)
can be applied:

𝒍 ⋅ (𝑱𝑛 × 𝑩0) = 𝑱𝑛 ⋅ ((𝒍 ⋅ ∇𝜓)∇𝜑 +
𝐵0𝜑
𝑅 𝒏) . (5.12)

Changing from co- to contravariant coordinates and carrying out the scalar product yields

𝒍 ⋅ (𝑱𝑛 × 𝑩0) = (𝒍 ⋅ ∇𝜓)𝐽𝜑
𝑛 + 𝑅𝐵𝜑

0 𝑱pol
𝑛 ⋅ 𝒏. (5.13)

On the right-hand side, we can insert the definition from eq. (3.40), reorder and in the result
replace the definition from eq. (3.25), giving

𝒍 ⋅ ∇𝜓 = (𝒏 × 𝑅∇𝜑) ⋅ ∇𝜓 = −𝑅𝑩pol
0 ⋅ 𝒏. (5.14)

Finally,

𝒍 ⋅ (𝑱𝑛 × 𝑩0) = 𝑅𝐵𝜑
0 𝑱pol

𝑛 ⋅ 𝒏 − 𝑅𝐽𝜑
𝑛 𝑩pol

0 ⋅ 𝒏. (5.15)

Multiplying term (II) of eq. (5.9) by 𝒍 simply gives

𝒍 ⋅ (∇𝑝𝑛 + i𝑛𝑝𝑛∇𝜑) = 𝒍 ⋅ ∇𝑝𝑛. (5.16)

We repeat the same procedure for term (III) of eq. (5.9) and expand the cross product by
poloidal-toroidal decomposition:

𝒍 ⋅ (𝑱0 × 𝑩𝑛) = 𝒍 ⋅ (𝐵𝑛𝜑𝑱pol
0 × ∇𝜑 + 𝐽0𝜑∇𝜑 × 𝑩pol

𝑛 ). (5.17)

For the second term in parentheses, we again use cyclic permutation and the definition from
eq. (3.41):

𝒍 ⋅ (∇𝜑 × 𝑩pol
𝑛 ) = 𝑩pol

𝑛 ⋅ (𝒍 × ∇𝜑)

= − 1
𝑅𝑩pol

𝑛 ⋅ 𝒏. (5.18)

To simplify the first term in parentheses, we start from the equilibrium in eq. (2.1) and apply
some of the previously used identities:

𝑐∇𝑝0 = 𝑱0 × 𝑩0

= 𝑱pol
0 × (𝐵0𝜑∇𝜑) + 𝐽0𝜑∇𝜑 × (∇𝜓 × ∇𝜑)
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5 Linearized MHD Force Balance

= 𝑱pol
0 × (𝐵0𝜑∇𝜑) +

𝐽0𝜑

𝑅2 ∇𝜓

= 𝑱pol
0 × (𝐵0𝜑∇𝜑) + 𝐽𝜑

0 ∇𝜓. (5.19)

Rearrangement yields

𝑱pol
0 × ∇𝜑 = 1

𝐵0𝜑
(𝑐∇𝑝0 − 𝐽𝜑

0 ∇𝜓) . (5.20)

The intermediate result is

𝒍 ⋅ (𝑱0 × 𝑩𝑛) =
𝐵𝑛𝜑

𝐵0𝜑
(𝑐∇𝑝0 − 𝐽𝜑

0 ∇𝜓) ⋅ 𝒍 −
𝐽0𝜑

𝑅 𝑩pol
𝑛 ⋅ 𝒏. (5.21)

Reusing eq. (5.14) and rearranging, we get

𝒍 ⋅ (𝑱0 × 𝑩𝑛) =
𝐵𝑛𝜑

𝐵0𝜑
𝑐∇𝑝0 ⋅ 𝒍 + 𝑅𝐽𝜑

0
⎛⎜
⎝

𝐵𝑛𝜑

𝐵0𝜑
𝑩pol

0 ⋅ 𝒏 − 𝑩pol
𝑛 ⋅ 𝒏⎞⎟

⎠
. (5.22)

Combining eqs. (5.15), (5.16) and (5.22), eq. (5.9) is transformed to eq. (5.23):

𝑅𝐵𝜑
0 𝑱pol

𝑛 ⋅ 𝒏 − 𝑅𝐽𝜑
𝑛 𝑩pol

0 ⋅ 𝒏 = 𝑐 ⎛⎜
⎝

∇𝑝𝑛 −
𝐵𝑛𝜑
𝐵0𝜑

∇𝑝0
⎞⎟
⎠

⋅ 𝒍 − 𝑅𝐽𝜑
0

⎛⎜
⎝

𝐵𝑛𝜑
𝐵0𝜑

𝑩pol
0 ⋅ 𝒏 − 𝑩pol

𝑛 ⋅ 𝒏⎞⎟
⎠

. (5.23)

On edges i and o where 𝑩pol
0 ⋅ 𝒏 ≠ 0, we can divide by this term and we obtain an expression

for 𝐽𝜑
𝑛 in terms of 𝑱pol

𝑛 ⋅ 𝒏 and quantities which are known at this point:

𝑅𝐽𝜑
𝑛 = 𝐽𝑛(𝜑) = 𝑅𝐵𝜑

0
𝑱pol
𝑛 ⋅ 𝒏

𝑩pol
0 ⋅ 𝒏

+ 𝑐
𝑩pol

0 ⋅ 𝒏
⎛⎜
⎝

𝐵𝑛𝜑

𝐵0𝜑
∇𝑝0 − ∇𝑝𝑛

⎞⎟
⎠

⋅ 𝒍 + 𝑅𝐽𝜑
0

⎛⎜⎜
⎝

𝐵𝑛𝜑

𝐵0𝜑
− 𝑩pol

𝑛 ⋅ 𝒏
𝑩pol

0 ⋅ 𝒏
⎞⎟⎟
⎠

. (5.24)

On edge f, 𝑩pol
0 ⋅ 𝒏 = 0 and ∇𝑝0 ⋅ 𝒍 = 0 (compare eq. (5.14)), thus from eq. (5.23), no connection

between 𝐽𝜑
𝑛 and 𝑱pol

𝑛 ⋅ 𝒏 can be made, but the latter expression can be given in terms of already
known quantities:

𝑅𝑱pol
𝑛 ⋅ 𝒏 = 𝑐∇𝑝𝑛 ⋅ 𝒍

𝐵𝜑
0

+ 𝑅
𝐽𝜑
0

𝐵𝜑
0

𝑩pol
𝑛 ⋅ 𝒏. (5.25)

With these relations established, we now consider the divergence of the perturbation current
from eq. (3.5). In cylindrical coordinates it reads, after multiplication by 𝑅,

𝜕
𝜕𝑅(𝑅𝐽𝑘

𝑛) + i𝑛𝑅𝐽𝜑
𝑛 + 𝜕

𝜕𝑍(𝑅𝐽𝑘
𝑛) = 0. (5.26)
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5.2 Current Perturbation

Using the divergence theorem this can also be written in integral form in a specific triangular
mesh element 𝛺(𝑘) as

∮
𝜕𝛺(𝑘)

𝑅𝑱pol
𝑛 ⋅ ̂𝒏 d𝑙 + i𝑛 ∫

𝛺(𝑘)
𝑅𝐽𝜑

𝑛 d𝑅 d𝑍 = 0. (5.27)

Here the first integral is performed over the 1-dimensional element boundary 𝜕𝛺(𝑘) = 𝛤 (𝑘).
The first term is split into three contributions,

∮
𝜕𝛺(𝑘)

𝑅𝑱pol
𝑛 ⋅ ̂𝒏 d𝑙 = ∫

𝛤(𝑘)
i ,𝛤(𝑘)

o
𝑅𝑱pol

𝑛 ⋅ ̂𝒏 d𝑙 + ∫
𝛤(𝑘)

f
𝑅𝑱pol

𝑛 ⋅ ̂𝒏 d𝑙𝑥, (5.28)

where edge f is tangential to an adjacent flux surface and edges i and o are not. Using the
notation for currents established in eq. (3.45), we have

𝐼i + 𝐼o + i𝑛 ∫
𝛺

𝑅𝐽𝜑
𝑛 d𝑆 = −𝐼f. (5.29)

𝐼f is already known from eq. (5.25) and therefore acts as a source on the right-hand side.
We take the remaining currents 𝐼i and 𝐼o as unknowns. Since the current 𝐼o flowing out of
one triangle is equal to the current −𝐼i flowing into the next triangle, these unknowns are
connected on one strip of triangles, and we expect a system of equations similar to the one
in section 5.1. The degrees of freedom and the unknowns are illustrated in fig. 5.1 with the
unknowns marked in red, along with the indexing described further below.

𝐼(2)
i

𝐼(2)
f

𝐼(2)
o

𝐼(7)
o

𝐼(7)
f

𝐼(7)
i

⊗
𝐼(2)
𝜑

⊗
𝐼(7)
𝜑

𝐼(5)

Figure 5.1: Schematic of the degrees of freedom and unknowns in the calculation of currents.

Now, we deviate from eq. (3.49) and use a different approximation for the remaining integral:

i𝑛𝐼𝜑 = i𝑛 ∫
𝛺

𝑅𝐽𝜑
𝑛 d𝑆 ≈ i𝑛𝑆𝛺

𝑅(𝛤i)𝐽𝜑
𝑛 (𝛤i) + 𝑅(𝛤o)𝐽𝜑

𝑛 (𝛤o)
2 . (5.30)

In this approximation, a term 𝑅(𝛤f)𝐽𝜑
𝑛 (𝛤f) is neglected because within one strip of triangles,

edge f alternates between the inner and outer flux surface and this “oscillation” of sample
points would carry over to the approximation values, which is similar to the argument
regarding the shifted centroid in section 3.3. Furthermore, 𝐽𝜑

𝑛 (𝛤f) ⋅ 𝒏 can’t be reformulated
in terms of 𝑱pol

𝑛 (𝛤f) via eq. (5.24), which would introduce the former as another unknown
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5 Linearized MHD Force Balance

and lead to an overdetermined set of equations, possibly violating divergence-freeness. So
instead, 𝐼𝜑 on each triangle is given by

i𝑛𝐼𝜑 = i𝑛 ∫
𝛺

𝑅𝐽𝜑
𝑛 d𝑆 ≈ i𝑛𝑆𝛺

2
⎛⎜⎜
⎝

𝐵𝜑
0 (𝛤i)

𝑩pol
0 (𝛤i) ⋅ 𝒏i

𝐼i +
𝐵𝜑

0 (𝛤o)
𝑩pol

0 (𝛤o) ⋅ 𝒏o
𝐼o + ⋯ ⎞⎟⎟

⎠
, (5.31)

where we effectively reduced 𝐼𝜑 to 𝐼i, 𝐼o and already known terms by the relation between
𝑱pol
𝑛 ⋅ 𝒏 and 𝐽𝜑

𝑛 in eq. (5.24). The remaining terms are moved to the right-hand-side as sources
𝑠, so the discretized equation in each triangle 𝛺 is

⎛⎜⎜
⎝

1 + i𝑛𝑆𝛺
2

𝐵𝜑
0 (𝛤i)

𝑩pol
0 (𝛤i) ⋅ 𝒏i

⎞⎟⎟
⎠

𝐼i + ⎛⎜⎜
⎝

1 + i𝑛𝑆𝛺
2

𝐵𝜑
0 (𝛤o)

𝑩pol
0 (𝛤o) ⋅ 𝒏o

⎞⎟⎟
⎠

𝐼o = 𝑠. (5.32)

The source term is given by

𝑠 = −𝐼f − i𝑛𝑆𝛺
2 ∑

𝑘=i,o

𝑐
𝑩pol

0 ⋅ 𝒏𝑘

⎛⎜
⎝

𝐵𝑛𝜑

𝐵0𝜑
∇𝑝0 − ∇𝑝𝑛

⎞⎟
⎠

⋅ 𝒍𝑘 + 𝑅𝐽𝜑
0

⎛⎜⎜
⎝

𝐵𝑛𝜑

𝐵0𝜑
− 𝑩pol

𝑛 ⋅ 𝒏𝑘

𝑩pol
0 ⋅ 𝒏𝑘

⎞⎟⎟
⎠

, (5.33)

where we again ommited evaluation at 𝛤𝑘 for the sake of brevity. Note that 𝑩𝑛(𝛤𝑘) ⋅ 𝒏𝑘 can be
directly retrieved from 𝛹𝑘, while 𝐵𝑛𝜑(𝛤𝑘) has to be calculated by averaging adjacent 𝐵𝑛𝜑(𝛺).
The directional derivatives 𝒍𝑘 ⋅ ∇𝑝𝑛(𝛤𝑘) are approximated by a difference quotient with values
taken at the nodes (for indexing see fig. 3.1),

𝒍i ⋅ ∇𝑝𝑛(𝛤i) = 𝑙i ̂𝒍i ⋅ ∇𝑝𝑛(𝛤i) = 𝑙i
𝜕𝑝𝑛
𝜕𝒍i

(𝛤i) ≈ 𝑙i
𝑝𝑛(𝒓O) − 𝑝𝑛(𝒓F)

‖𝒓O − 𝒓F‖ = 𝑝𝑛(𝒓O) − 𝑝𝑛(𝒓F), (5.34)

𝒍o ⋅ ∇𝑝𝑛(𝛤o) = 𝑙o ̂𝒍o ⋅ ∇𝑝𝑛(𝛤o) = 𝑙o
𝜕𝑝𝑛
𝜕𝒍o

(𝛤o) ≈ 𝑙o
𝑝𝑛(𝒓F) − 𝑝𝑛(𝒓I)

‖𝒓F − 𝒓I‖
= 𝑝𝑛(𝒓F) − 𝑝𝑛(𝒓I), (5.35)

where the sign has to be reversed for the type of triangle with node F on the outer flux surface.
This is actually a shortcoming of the convention that nodes are named according to their
opposite edges; in the implementation, we use a subroutine that gives the nodes of edges in
consistent counter-clockwise order, so this case distinction is not necessary at this level. The
same logic applies to 𝒍 ⋅ ∇𝑝0 terms.

For the global1 indexing scheme, we call the ingoing current into triangle (𝑘) counted in
counter-clockwise direction 𝐼(𝑘). In triangle (𝑘), this is equal to 𝐼i = −𝐼(𝑘) and 𝐼o = 𝐼(𝑘+1). This
is also illustrated in fig. 5.1, where triangles are counted from one starting at the right end of
the sketch. The matrix form of eq. (5.32) is then

𝐾𝑗𝑘𝐼(𝑘) = 𝑠𝑗, (5.36)

1in this case only referring to the current triangle strip, as opposed to the local indexing of individual triangles
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5.3 Current Sheets

where the elements of the stiffness matrix �̂� are

𝐾𝑗𝑘 = − ⎛⎜⎜
⎝

1 + i𝑛𝑆𝛺(𝑗)

2
𝐵𝜑

0 (𝛤 (𝑗)
i )

𝑩pol
0 (𝛤 (𝑗)

i ) ⋅ 𝒏(𝑗)
i

⎞⎟⎟
⎠

𝛿𝑗𝑘 + ⎛⎜⎜
⎝

1 + i𝑛𝑆𝛺(𝑗)

2
𝐵𝜑

0 (𝛤 (𝑗)
o )

𝑩pol
0 (𝛤 (𝑗)

o ) ⋅ 𝒏(𝑗)
o

⎞⎟⎟
⎠

𝛿𝑗+1,𝑘. (5.37)

5.3 Current Sheets
We have not considered one aspect of resonances yet. Starting from the static MHD equilibrium
in eq. (2.1), we see that only the normal component of the current density is relevant, i.e.

∇𝑝 = 1
𝑐 𝑱⟂ × 𝑩, (5.38)

while the parallel component 𝑱∥ = 𝐽∥𝒉 is not fixed. Nevertheless, 𝑱 must have zero divergence:

−∇ ⋅ 𝑱⟂ = ∇ ⋅ 𝐽∥𝑩
𝐵 = 𝑩 ⋅ ∇𝐽∥

𝐵 . (5.39)

Expanding in flux symmetry coordinates gives

−∇ ⋅ 𝑱⟂ = (𝐵𝜗 𝜕
𝜕𝜗 + 𝐵𝜑 𝜕

𝜕𝜑) 𝐽∥

𝐵 = 𝐵𝜗 ( 𝜕
𝜕𝜗 + 𝑞 𝜕

𝜕𝜑) 𝐽∥

𝐵 , (5.40)

which is rearranged to

−∇ ⋅ 𝑱⟂

𝐵𝜗 = ( 𝜕
𝜕𝜗 + 𝑞 𝜕

𝜕𝜑) 𝐽∥

𝐵 (5.41)

and Fourier transformed to

𝑠𝑚𝑛 = i(𝑚 + 𝑛𝑞) [𝐽∥

𝐵 ]
𝑚𝑛

, (5.42)

where the left-hand side has been grouped together in the Fourier coefficient 𝑠𝑚𝑛. Rearranging
yields

𝑠𝑚𝑛
i(𝑚 + 𝑛𝑞) = [𝐽∥

𝐵 ]
𝑚𝑛

. (5.43)

For comparison, translation to the conventions of this thesis of eq. (1) in the paper by Wael-
broeck [14] gives

[𝐽∥

𝐵 ]
𝑚𝑛

= 4𝜋𝑝′(𝜚)
⟨𝐵2⟩ ∑

𝑚,𝑛

𝒢𝑚𝑛(𝜚)
𝑞(𝜚) − 𝑚

𝑛
+ 𝐶𝑚𝑛𝛿 (𝑞(𝜚) − 𝑚

𝑛 ) , (5.44)
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5 Linearized MHD Force Balance

where the 𝒢𝑚𝑛 are geometric factors and the 𝐶𝑚𝑛 are integration constants. The additional
delta distribution term in eq. (5.44) is apparently missing from eq. (5.43) and we […] to add
it in order to better capture the physical behaviour of the sheet currents. To approximate
the delta distribution, we consider the distortion 𝛿𝜓 of flux surfaces, specifically eq. (7.5). A
similar expression can be derived by expanding eq. (5.1) in flux symmetry coordinates, giving

𝐵𝜗
0

𝜕
𝜕𝜗𝑝𝑛 + i𝑛𝑝𝑛𝐵𝜑

0 = −𝐵𝜓
𝑛 𝑝′

0(𝜓), (5.45)

which is again rearranged to

𝜕
𝜕𝜗𝑝𝑛 + i𝑛𝑞𝑝𝑛 = −𝑝′

0(𝜓)𝐵𝜓
𝑛

𝐵𝜗
0

(5.46)

and Fourier transformed to

i𝑚𝑝𝑚𝑛 + i𝑛𝑞𝑝𝑚𝑛 = −𝑝′
0(𝜓) ⎡⎢

⎣

𝐵𝜓
𝑛

𝐵𝜗
0

⎤⎥
⎦𝑚

, (5.47)

which is finally rearranged to

𝑝𝑚𝑛 =
−𝑝′

0(𝜓)
i(𝑚 + 𝑛𝑞)

⎡⎢
⎣

𝐵𝜓
𝑛

𝐵𝜗
0

⎤⎥
⎦𝑚

. (5.48)

When a resonance occurs at poloidal mode number 𝑚0, around the affected flux surface the
pressure perturbation is dominated by the associated Fourier coefficient,

𝑝𝑚0𝑛 ≫ 𝑝𝑚𝑛 ∀𝑚 ≠ 𝑚0 (5.49)

and thus

𝑝𝑛 ≈ ei𝑚0𝜗𝑝𝑚0𝑛. (5.50)

Putting everything together, we approximate the sheet current by

[𝐽∥

𝐵 ]
𝑚𝑛

= 𝐶𝑚𝑛𝑝𝑚𝑛𝛿𝑚𝑚0
, (5.51)

or, after an inverse Fourier transform,

𝐽∥
𝑛 = 𝐶𝑚0𝑛𝐵0𝑝𝑛. (5.52)

For a given set of 𝐶𝑚𝑛 values, we project 𝐽∥
𝑛 onto currents 𝐼i and 𝐼o, which we add to the

values computed in section 5.2 in between the flux surfaces where 𝑞 is closest to the respective
𝑚/𝑛 resonance. 𝐼f has no contribution from this parallel current, so 𝐼𝜑 is modified to uphold
divergence-freeness.
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Chapter 6

Preprocessing of Input Data

Prior to starting iterations, some input data has to be supplied, namely the following:

• coordinates of grid points, the numbering of grid points, and triangles including edge
adjacency list – described in section 6.1;

• the equilibrium magnetic field 𝑩0 from which the grid is generated;

• the vacuum perturbation field 𝛿𝑩v and

• optionally the equilibrium pressure 𝑝0.

Additionally, a configuration file exists to specify the behavior of the implemented algorithms
and data input/output.

The equilibrium field 𝑩0 is assumed to be available in GEQDSK format, shortly summarized
by Lao [11]. It consists of data points given on a rectangular grid which are fitted from
measurements to the Grad–Shafranov equation. Parts of already existing code import
such a file and generate a field-aligned grid as described in section 3.2 and specified in
section 6.1. It also supplies values of 𝑩0 and its partial derivatives on arbitrary 𝑅, 𝑍 coordinates
by interpolation with bicubic splines in 𝑅 and 𝑍 based on eqs. (3.28) and (3.29). In the
implementation of NEO-EQ, the necessary values on edge midpoints and shifted centroids are
cached once before calculations start as to avoid repeated function calls to spline interpolation
and possibly allow for other data sources. From 𝑩0, the safety factor 𝑞 is computed as described
in section 6.3.

While the equilibrium pressure 𝑝0 should be available from the GEQDSK file and the equilib-
rium current 𝑱0 can be computed from the equilibrium field via Ampère’s law as in eq. (2.2),
another approach is possible. Since we have never used Ampère’s law for equilibrium quan-
tities, it is possible to choose a pressure profile and calculate 𝐽𝜑

0 to be consistent with the
MHD equilibrium in eq. (2.1). The latter is the Pfirsch–Schlüter current and its calculation is
outlined in section 6.2. The simplest approach to the pressure profile assumes a linear profile
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6 Preprocessing of Input Data

for the particle density 𝑛 and temperature 𝑇,

𝑛(𝑘) = 𝑛min + 𝜓(𝑘) − 𝜓min
𝜓axis − 𝜓min

(𝑛axis − 𝑛min), (6.1)

𝑇(𝑘) = 𝑇min + 𝜓(𝑘) − 𝜓min
𝜓axis − 𝜓min

(𝑇axis − 𝑇min), (6.2)

where 𝑘 refers to the index of the flux surface. The subscripts “min” and “axis” indicate the
value at the plasma edge and the magnetic axis, respectively. The configurable values are
then 𝑛axis and 𝑇axis as well as 𝑛min and 𝑇min. From these, the pressure is calculated by the
ideal gas law:

𝑝0 = 𝑛𝑘B𝑇. (6.3)

Additionally, with the formulae given above, one can also derive an expression for the equi-
librium pressure gradient:

𝑝′
0(𝜓) = 𝑛′(𝜓)𝑘B𝑇 + 𝑛𝑘B𝑇′(𝜓) = (𝑛axis − 𝑛min)𝑘B𝑇 + 𝑛𝑘B(𝑇axis − 𝑇min)

𝜓axis − 𝜓min
. (6.4)

Thus all necessary equilibrium quantities are established.

The vacuum perturbation field 𝛿𝑩v is calculated beforehand from the external coil currents 𝐼c
by the Biot–Savart law (eq. (2.6)) on a regular grid in (𝑅, 𝜑, 𝑍) coordinates, from which the
fluxes through triangle edges are computed for representation as Raviart–Thomas elements.

6.1 Grid Implementation
Since the grid is field-aligned, there are a few conventions to be considered compared to more
arbitrary grids. The code has to “find its way”, so we make assumptions on numbering.

The number of flux surfaces realized on the grid is known and referred to as 𝑛flux. The
numbers increase going outward from the magnetic axis, which is not included and thus gets
the index 0. Flux variables like 𝜓, 𝑝0 and 𝑝′

0(𝜓) are calculated at these flux surfaces and use
the same indexing scheme. Others, like 𝑞, are calculated between flux surfaces and are called
half-grid quantities. In this case, the index refers to the outer or enclosing flux surface and
starts at 1. When we need half-grid quantities at full-grid positions or vice versa, we use linear
interpolated between neighboring values, with one exception: If an interpolation point lies
outside the separatrix, we use an appropriate interpolation point on the separatrix instead.

Node numbering starts from 1 at the magnetic axis, increasing towards the separatrix. Then,
the nodes on the enclosing flux surface (index 1) are enumerated counter-clockwise, starting
with the node lying on the line connecting the magnetic axis and the X point. Then the
next enclosing flux surface (index 2) is enumerated, and so on. This way, a simple bijection
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6.1 Grid Implementation

between “global” node numbering and the “local” numbering on a specific flux surface can
be implemented. The flux surface indexing is the same as for full-grid quantities, and the
number of nodes per flux surface needs to be known. Figure 6.1a illustrates global node
numbering.

Triangle numbering operates on similar assumptions, albeit with flux surface indexing akin
to half-grid quantities. The innermost triangle strip (index 1) is enumerated first, starting at
index 1 for the triangle formed by nodes 1, 2, and 3. It also goes counter-clockwise, and on
each flux surface it starts with the triangle whose edge i lies on the line between the magnetic
axis and the X point, i.e., it follows node numbering. Again, local numbering on a triangle strip
can be converted to global numbering when the number of triangles is known. Figure 6.1b
illustrates global triangle numbering.

1 2

3

4

24
25

26

27

28

48

49

50

51

52

72

73

𝜓(0)

𝜓(1)

𝜓(2)

𝜓(3)

(a) Global numbering scheme for nodes. Local in-
dices refer to the flux surfaces on which the nodes
reside. The mapping from local to global number-
ing would then produce, for example, (0, 1) → 1,
(1, 1) → 2, (1, 24) → 25, (2, 1) → 26, (2, 24) → 49,
(3, 1) → 50 and so on.

1
2

23
24

25
26

27
28

69
70
71
72

73

74

75

76

117

118

119

120

𝜓(0)

𝜓(1)

𝜓(2)

𝜓(3)

(b) Global numbering scheme for triangles. Lo-
cal indices refer to the enclosing flux surface of
the triangle. The mapping from local to global
numbering would then produce, for example,
(1, 1) → 1, (1, 24) → 24, (2, 1) → 25, (2, 48) → 72,
(3, 1) → 73 and so on.

Figure 6.1: Juxtaposition of numbering schemes for nodes and triangles. In both drawings,
the flux surfaces are indicated by 𝜓(𝑘) with 𝑘 being the index of the flux surface. There are
24 nodes on each flux surface and the horizontal line connects to the X point, which means
numbering on each flux surface starts there.

Associated with each triangle are local indices, i.e., 1 to 3, for nodes and edges. The global
node number is saved for each local node number. The edges do not have a global index, and
they are numbered in a fashion that edge 1 connects node 1 to 2, edge 2 connects node 2 to 3,
and edge 3 connects node 3 to 1. When the index of node F is known and the aforementioned
conventions are followed, we can map the symbolic designations f, i, o to the local edge index,
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6 Preprocessing of Input Data

F, I, O to the local (and global) node index and edge vectors 𝒍 can be given in counter-clockwise
direction. Furthermore, an adjacency list is constructed, giving any triangle’s neighbor on a
given edge and the local edge number in the neighboring triangle.

Scalar quantities like 𝑝𝑛 are indexed by global node number and vector quantities like 𝑩𝑛
and 𝑱𝑛 are indexed by global triangle number and local edge number. The latter convention
involves some redundancy as it takes twice the storage that would be necessary, but it also
allows for consistency checks and more straightforward implementation.

6.2 Toroidal Unperturbed Current
Since 𝑩0 and 𝑝0 are directly available as input data, but 𝑱0 is not, the latter will be derived
below from eq. (2.1), the condition of divergence-freeness and symmetry considerations.

We take a cross-product of eq. (2.1) by 𝑩0:

𝑩0 × (𝑱0 × 𝑩0) = 𝐵2
0𝑱0 − (𝑩0 ⋅ 𝑱0)𝑩0

= 𝐵2
0(𝑱0 − 𝐽∥

0𝒉0)
= 𝐵2

0𝑱⟂
0 . (6.5)

Therefore

𝑱⟂
0 = −𝑐∇𝑝0 × 𝑩0

𝐵2
0

, (6.6)

which is the diamagnetic current density. For the parallel current density we use

0 = ∇ ⋅ 𝑱0 = ∇ ⋅ 𝑱⟂
0 + ∇ ⋅ (𝐽∥

0𝒉0)

= −𝑐∇ ⋅ ∇𝑝0 × 𝑩0
𝐵2

0
+ 𝑩0 ⋅ ∇

𝐽∥
0

𝐵0
. (6.7)

In symmetry flux coordinates (𝜚, 𝜑, 𝜗) and Jacobian √𝑔 outlined in section 3.1, the divergence
of the diamagnetic current is

∇ ⋅ 𝑱⟂
0 = − 𝑐

√𝑔
𝜕

𝜕𝑢𝑘 [
√𝑔
𝐵2

0
(∇𝑝0 × 𝑩0)𝑘]

= − 𝑐
√𝑔

𝜕
𝜕𝑢𝑘

⎛⎜
⎝

√𝑔
𝐵2

0

𝜀𝑖𝑗𝑘

√𝑔
𝜕𝑝0
𝜕𝑢𝑖 𝐵0𝑗

⎞⎟
⎠

= −
𝑐𝑝′

0(𝜚)𝐵0𝜑

√𝑔
𝜕

𝜕𝜗
1

𝐵2
0

, (6.8)

since 𝑝0 and 𝐵0𝜑 are constant on a flux surface, 𝜕𝑝0
𝜕𝜗 = 0 and due to axisymmetry 𝜕

𝜕𝜑 = 0 for
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6.2 Toroidal Unperturbed Current

equilibrium quantities. The divergence of the parallel current is

∇ ⋅ (𝐽∥
0𝒉0) = 𝑩0 ⋅ ∇

𝐽∥
0

𝐵0
= 𝐵𝜗

0
𝜕

𝜕𝜗
𝐽∥
0

𝐵0
. (6.9)

With √𝑔𝐵𝜗
0 = 𝜓′(𝜚) = −1 as a flux surface quantity, there are no dependencies of 𝜗 in front of

the derivatives:

−𝑐𝑝′
0(𝜚)𝐵0𝜑

𝜕
𝜕𝜗

1
𝐵2

0
+ 𝜓′(𝜚) 𝜕

𝜕𝜗
𝐽∥
0

𝐵0
= 0. (6.10)

Direct integration and a change of variables and notation as in

𝑝′
0(𝜚)

𝜓′(𝜚) =
𝜕𝑝0
𝜕𝜚
𝜕𝜓
𝜕𝜚

= 𝜕𝑝0
𝜕𝜓 = 𝑝′

0(𝜓) (6.11)

yields

−𝑐𝑝′
0(𝜓)𝐵0𝜑

𝐵2
0

+
𝐽∥
0

𝐵0
= 𝐶(𝜓). (6.12)

With the extra condition of the flux surface average1 ⟨𝐽∥
0𝐵0⟩ = 0 for testing without bootstrap

and inductive current, we obtain

−𝑐𝑝′
0(𝜓)𝐵0𝜑 = 𝐶(𝜓) ⟨𝐵2

0⟩ . (6.13)

In general,

𝐶(𝜓) = −
𝑐𝑝′

0(𝜓)𝐵0𝜑

⟨𝐵2
0⟩

𝐷(𝜓), (6.14)

with 𝐷(𝜓) set to 1 for now and modified for the more general case ⟨𝐽∥
0𝐵0⟩ ≢ 0. Inserting this

back into eq. (6.12) yields

𝐽∥
0 =

𝑐𝑝′
0(𝜓)𝐵0𝜑

𝐵0

⎛⎜
⎝

1 −
𝐵2

0
⟨𝐵2

0⟩
𝐷(𝜓)⎞⎟

⎠
. (6.15)

For the unperturbed toroidal current density, we have

𝐽𝜑
0 = 𝐽∥

0ℎ𝜑
0 + 𝑱⟂

0 ⋅ ∇𝜑, (6.16)

1See eq. (3.38), but note that it is not actually evaluated here.

49



6 Preprocessing of Input Data

where

𝐽∥
0ℎ𝜑

0 =
𝑐𝑝′

0(𝜓)𝐵0𝜑
𝐵0

𝐵𝜑
0

𝐵0

⎛⎜
⎝

1 −
𝐵2

0
⟨𝐵2

0⟩
𝐷(𝜓)⎞⎟

⎠

= 𝑐𝑝′
0(𝜓)

(𝐵tor
0 )2

𝐵2
0

⎛⎜
⎝

1 −
𝐵2

0
⟨𝐵2

0⟩
𝐷(𝜓)⎞⎟

⎠

= 𝑐𝑝′
0(𝜓) (𝐵tor

0 )2 ⎛⎜
⎝

1
𝐵2

0
− 𝐷(𝜓)

⟨𝐵2
0⟩

⎞⎟
⎠

. (6.17)

and

𝑱⟂
0 ⋅ ∇𝜑 =

−𝑐𝑝′
0(𝜓)∇𝜑 ⋅ (∇𝜓 × 𝑩0)

𝐵2
0

=
−𝑐𝑝′

0(𝜓)𝑩0 ⋅ (∇𝜑 × ∇𝜓)
𝐵2

0
(6.18)

=
𝑐𝑝′

0(𝜓)
𝐵2

0
𝑩pol

0 ⋅ 𝑩0

= 𝑐𝑝′
0(𝜓)

(𝐵pol
0 )

2

𝐵2
0

. (6.19)

It follows that

𝐽𝜑
0 = 𝑐𝑝′

0(𝜓)
⎛⎜⎜⎜⎜
⎝

(𝐵pol
0 )

2
+ (𝐵tor

0 )2

𝐵2
0

−
(𝐵tor

0 )2

⟨𝐵2
0⟩

𝐷(𝜓)
⎞⎟⎟⎟⎟
⎠

= 𝑐𝑝′
0(𝜓) ⎛⎜⎜

⎝
1 −

(𝐵tor
0 )2

⟨𝐵2
0⟩

𝐷(𝜓)⎞⎟⎟
⎠

. (6.20)

6.3 Safety Factor
Computing the safety factor from eq. (3.30) would require the calculation of 𝜗 coordinate lines
from 𝑩0. An equivalent definition from D’haeseleer et al. [4] involves the toroidal flux 𝜓tor,
which in our choice of coordinates is given by

𝜓tor = 1
(2𝜋)2 ∫ d𝑉 𝑩0 ⋅ ∇𝜑 = 1

2𝜋 ∫ d𝑅 d𝑍 𝑅𝐵𝜑
0 = 1

2𝜋 ∫ d𝑅 d𝑍 𝐵0(𝜑). (6.21)

Note that 𝜓tor < 0 and 𝜓′
tor(𝜚) < 0. The safety factor is then given by

𝑞 = 𝜓′
tor(𝜚)

𝜓′
pol(𝜚) = −𝜓′

tor(𝜓)
−𝜓′

pol(𝜓) = d𝜓tor
d𝜓 = 1

2𝜋
d

d𝜓 ∫ d𝑅 d𝑍 𝐵0(𝜑). (6.22)
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6.3 Safety Factor

This flux quantity can be evaluated numerically at half-grid steps by adding up 𝐵0(𝜑) inside
the volume between two flux surfaces and dividing by the the difference in 𝜓:

𝑞 ≈ 1
2𝜋Δ𝜓 ∑

𝑘
𝐵0(𝜑)(𝛺(𝑘))𝑆𝛺(𝑘) , (6.23)

where the sum is taken over all triangles 𝛺 inside a triangle strip, and 𝑆𝛺 is the respective
triangle surface area. Note that both 𝐵0(𝜑) and Δ𝜓 are negative, so 𝑞 is positive overall.
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Chapter 7

Construction of Test Cases

Along with comparison to results from kinetic computations, we consider special test cases al-
tering different components of the calculation. In section 7.1, 𝛿𝑩v is not taken from Biot–Savart
calculations of currents in external coils as per eq. (2.6) and chapter 6, but constructed directly
to avoid resonances, at least in the first iteration step. Section 7.2 instead looks at the analytical
solution in the cylindrical limit on a circular cross-section obtained from KiLCA [8], effectively
changing the grid geometry.

7.1 Generating a Non-Resonant Vacuum Perturbation
The axisymmetric equilibrium field 𝑩0 lies on nested flux surfaces 𝜓 = const., meaning

𝑩0 ⋅ ∇𝜓 = 𝐵𝜓
0 = 0.

If the perturbed field shall still lie on distorted, but not broken, flux surfaces (non-resonant,
without magnetic islands), a new flux surface label 𝜓 + 𝛿𝜓 must exist fulfilling

(𝑩0 + 𝛿𝑩) ⋅ ∇(𝜓 + 𝛿𝜓) = 0

for the perturbed magnetic field 𝑩0 + 𝛿𝑩, where 𝛿𝜓 remains small and continuous within the
plasma. In that case we can use a linear order expansion

𝑩0 ⋅ ∇𝜓⏟
=0

+𝑩0 ⋅ ∇𝛿𝜓 + 𝛿𝑩 ⋅ ∇𝜓 + 𝒪(𝛿2) = 0, (7.1)

or in coordinate form with symmetry flux coordinates (𝜚, 𝜑, 𝜗) outlined in section 3.1,

𝐵𝜗
0

𝜕
𝜕𝜗𝛿𝜓 + 𝐵𝜑

0
𝜕

𝜕𝜑𝛿𝜓 + 𝛿𝐵𝜚𝜓′(𝜚) = 0. (7.2)
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Here we have used ∇𝜓 = 𝜓′(𝜚)∇𝜚. Further, 𝜓′(𝜚) = −1. With safety factor

𝑞 =
𝐵𝜑

0
𝐵𝜗

0

and dividing by 𝐵𝜗
0 , we obtain

( 𝜕
𝜕𝜗 + 𝑞 𝜕

𝜕𝜑) 𝛿𝜓 = 𝛿𝐵𝜚

𝐵𝜗
0

= −√𝑔𝛿𝐵𝜚 = √𝑔𝛿𝐵𝜓. (7.3)

Written in terms of toroidal Fourier harmonics 𝑚, 𝑛 in 𝜗, 𝜑 the equation becomes

𝜓𝑚𝑛 =
[√𝑔𝛿𝐵𝜓]

𝑚𝑛
i(𝑚 + 𝑛𝑞) =

[√𝑔𝐵𝜓
𝑛 ]

𝑚
i(𝑚 + 𝑛𝑞).

√𝑔 depends also on 𝜗, so poloidal harmonics 𝑚 have to be taken outside the bracket here. In
order to fulfill the original requirement not to break flux surfaces, 𝜓𝑚𝑛 must never diverge, so
𝑚 + 𝑛𝑞 must not become zero. We can avoid such resonant surfaces if

[√𝑔𝐵𝜓
𝑛 ]

𝑚
!= 0 (7.4)

for all possible 𝑚 that could lead to a resonance. The simplest way to do so is to make √𝑔𝐵𝜓
𝑛

a flux function, possessing only the poloidally symmetric harmonic 𝑚 = 0. More generally,
also −𝑚 < 𝑛𝑞min and −𝑚 > 𝑛𝑞max are possible, but for nonzero 𝑚 a transformation to the flux
angle 𝜗 has to be computed explicitly.

Using the Jacobian of symmetry flux coordinates from eq. (3.31), we obtain

𝜓𝑚𝑛 = 𝑞
i(𝑚 + 𝑛𝑞)

⎡⎢
⎣

𝑅2

𝐵0𝜑
𝐵𝜓

𝑛 ⎤⎥
⎦𝑚

(7.5)

and so, to generate a non-resonant field, we are allowed to use any value

𝐵𝜓
𝑛 = 𝐶(𝜓)

𝐵0𝜑

𝑅2 , (7.6)

where 𝐶(𝜓) is a flux function. The other components of 𝛿𝑩 are not relevant for the resonance
condition and just need to fulfill divergence-freeness. Thus we proceed as in section 5.2 and
find fluxes through triangle edges:

∫
𝛤i,𝛤o

𝑅𝑩pol
𝑛 ⋅ 𝒏 d𝑙 = − ∫

𝛤f
𝑅𝑩pol

𝑛 ⋅ 𝒏 d𝑙 − i𝑛 ∫
𝛺

𝑅𝐵𝜑
𝑛 d𝑅 d𝑍. (7.7)

As for currents we use the notation 𝛹𝑘 for weighted magnetic fluxes through edges as in
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7.1 Generating a Non-Resonant Vacuum Perturbation

eq. (3.44),

𝛹𝑘 = ∫
𝛤𝑘

𝑅𝑩pol
𝑛 ⋅ 𝒏 d𝑙 ≈ 𝑅(𝛤𝑘)𝑩pol

𝑛 (𝛤𝑘) ⋅ 𝒏𝑘, (7.8)

and, differing from the procedure in section 5.2, the same for the weighted toroidal magnetic
flux 𝛹𝜑 as per eq. (3.48),

𝛹𝜑 = ∫
𝛺

𝑅𝐵𝜑
𝑛 d𝑅 d𝑍 ≈ 𝑆𝛺 𝑅(𝛺)𝐵𝜑

𝑛 (𝛺), (7.9)

resulting in a shortened notation for eq. (7.7) where the system of equations to be assembled
is more apparent:

𝛹i + 𝛹o = −𝛹f − i𝑛𝛹𝜑. (7.10)

Again, the flux through edge f is fixed, so we rearrange eq. (3.54) and get

𝛹f ≈ 2𝑅(𝛤f)𝐵𝜓
𝑛 (𝛤f)

𝑆𝛺(+1) + 𝑆𝛺(−1)

𝜓(+1) − 𝜓(−1) , (7.11)

where 𝐵𝜓
𝑛 is given by eq. (7.6).

The system of linear equations to solve is

𝐾𝑗𝑘𝛹(𝑘) = 𝑠𝑗 ∀𝑗, 𝑘 = 1, 2, … , 𝑁, (7.12)

with

𝐾𝑗𝑘 = 𝛿𝑗−1,𝑘 − 𝛿𝑗𝑘 → �̂� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 … 0
0 −1 1 … 0
0 0 −1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
1 0 0 … −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(7.13)

and

𝑠𝑗 = −𝛹(𝑗)
f − i𝑛𝛹(𝑗)

𝜑 . (7.14)

Since any one column in �̂� is a linear combination of all other columns, �̂� is of rank 𝑁 − 1
and thus singular. To construct a solution, we first consider the homogenous case with 𝒔 = 𝟎,
which also determines the toroidal flux. The non-zero solution for the remaining degrees of
freedom then assumes the simple form

𝛹(𝑘) = 𝐶0 ∀𝑘 = 1, 2, … , 𝑁, (7.15)
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with an arbitrary constant 𝐶0. With local indices, the degrees of freedom are written as

𝛹(𝑘)
i = −𝐶0, 𝛹(𝑘)

o = 𝐶0 𝛹(𝑘)
𝜑 = i

𝑛𝛹(𝑘)
f ∀𝑘 = 1, 2, … , 𝑁. (7.16)

This means that flux conservation, i.e. divergence-freeness, is fulfilled by balancing 𝛹𝜑 with
𝛹f on each individual triangle and assigning a constant flux 𝐶0 in poloidal direction to 𝛹i
and 𝛹o over the entire triangle strip.

A consistent solution according to the Rouché-Capelli theorem can also be constructed for
the inhomogeneous case, i.e. non-zero 𝒔, as long as 𝒔 is a linear combination of columns of 𝐾.
Starting from the trivial (zero) solution to the homogeneous case and for a fixed 𝑘, we add to
𝒔 the (𝑘 + 1)-th column of �̂�, multiplied by another arbitrary constant 𝐶𝑘, resulting in

𝑠𝑘 = −𝛹(𝑘)
f − i𝑛𝛹(𝑘)

𝜑 = 𝐶𝑘, (7.17)

𝑠𝑘+1 = −𝛹(𝑘+1)
f − i𝑛𝛹(𝑘+1)

𝜑 = −𝐶𝑘. (7.18)

Considering the two equations affected compared to the homogeneous case,

−𝛹(𝑘−1) + 𝛹(𝑘) = 𝐶𝑘, (7.19)
−𝛹(𝑘) + 𝛹(𝑘+1) = −𝐶𝑘, (7.20)

we arrive at a particular solution

𝛹(𝑘) = 𝐶𝑘, 𝛹(𝑗) = 0 ∀𝑗 ≠ 𝑘. (7.21)

The degrees of freedom differing from the solution to the zero solution (eq. (7.16) with 𝐶0 = 0)
are, given with local indices:

𝛹(𝑘)
i = 0, 𝛹(𝑘)

o = 𝐶𝑘, 𝛹(𝑘)
𝜑 = i

𝑛𝛹(𝑘)
f − i

𝑛𝐶𝑘, (7.22)

𝛹(𝑘+1)
i = −𝐶𝑘, 𝛹(𝑘+1)

o = 0, 𝛹(𝑘+1)
𝜑 = i

𝑛𝛹(𝑘+1)
f + i

𝑛𝐶𝑘. (7.23)

This means that, compared to the zero solution, a change 𝐶𝑘 in the flux across the associated
edge of adjacent triangles in one triangle strip is accomodated by a change in the toroidal flux
of these triangles.

We can repeat the approach outlined above for different values of 𝑘. Linear superposition of
the solutions to the homogeneous and inhomogeneous cases then yields the most general
solution,

𝛹(𝑘)
i = −𝐶0 − 𝐶𝑘−1, 𝛹(𝑘)

o = 𝐶0 + 𝐶𝑘, 𝛹(𝑘)
𝜑 = i

𝑛𝛹(𝑘)
f + i

𝑛𝐶𝑘−1 − i
𝑛𝐶𝑘 ∀𝑘 = 1, 2, … , 𝑁.

(7.24)
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Now, to assign sensible values to the arbitrary constants, consider the solution to the homo-
geneous sytem of equations. Since edge f alternates between inner and outer flux surface
for all but the innermost triangle strip, 𝒏f will also alternate between pointing inwards and
outwards. Thus 𝛹f will alternate signs too, but it is consistent along one flux surface. Since
𝛹𝜑 depends linearly on 𝛹f, on any one triangle the sign of 𝐵𝑛(𝜑) will differ from all three
adjacent triangles, except for the innermost triangle strip. The resulting field is then clearly
dependent on the choice of the grid. The procedure described before can be used to alleviate
this problem. On every pair of triangles 𝛺(2𝑘) and 𝛺(2𝑘+1) – which originally result from
diagonally dividing a more regular quadrilateral – we average 𝛹𝜑 and set 𝐶2𝑘 to the deviation
to counterbalance the change:

𝐶2𝑘 = i
2𝑛 (𝛹(2𝑘)

f − 𝛹(2𝑘+1)
f ) ∀𝑘 = 0, 1, … , 𝑁

2 − 1. (7.25)

7.2 Analytical Solution for Very Large Aspect Ratios
To derive an analytical approximation, a very large major radius 𝑅0 – and thus aspect ratio –
is considered for a ring torus, i.e., with a circular cross-section. The torus is “unbent” and
the toroidal geometry is effectively transformed to cylindrical geometry with a very thin and
elongated cylinder and periodic boundary conditions. To distinguish this cylinder from the
cylindrical coordinates (𝑅, 𝜑, 𝑍) established in section 3.1, we use coordinates (𝑟, 𝜃, 𝑧) for the
former:

𝑅 = 𝑅0 + 𝑟 cos 𝜃, 𝑍 = 𝑟 sin 𝜃, 𝜑 = 𝑧
𝑅0

. (7.26)

Thus 𝑟 corresponds to the minor radius and the pseudoradial component 𝜚, 𝑧 points in the 𝜑
direction in the infinitesimal limit and 𝜃 corresponds to the poloidal angle 𝜗, albeit defined as
a geometrical angle and not field-aligned. As for toroidal geometry, a Fourier series expansion
is possible for periodic coordinates:

𝛿𝑩(𝑟, 𝜃, 𝑧) =
∞
∑

𝑛=−∞

∞
∑

𝑚=−∞
𝑩𝑚𝑛(𝑟)ei𝑚𝜃ei𝑘𝑧𝑧. (7.27)

Here, 𝑘𝑧 is a wavenumber given by

𝑘𝑧 = 𝑛
𝑅0

, (7.28)

ensuring the same same periodicity 2𝜋𝑅0 as for the toroidal geometry. In the same sense, the
wavenumber 𝑘𝜃 is defined as

𝑘𝜃 = 𝑚
𝑟 (7.29)
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7 Construction of Test Cases

and both are combined in the wavevector 𝒌 as

𝒌 = 𝑘𝑧 ̂𝒆𝑧 + 𝑘𝜃 ̂𝒆𝜃. (7.30)

Note that, due to the cylindrical geometry, there is no mode coupling among poloidal modes.
As before, we only consider a single toroidal mode number 𝑛.

The general solution for the radial component in this geometry, on which KiLCA code is
based, is given by eq. (5) in the paper by Heyn et al. [7]. For the vacuum perturbation 𝛿𝑩v it
reduces to

𝜕
𝜕𝑟

𝑟
𝑘2

𝜕𝐵𝑚𝑛𝑟
𝜕𝑟 − 𝑟𝐵𝑚𝑛𝑟 (1 − 𝜕

𝜕𝑟
1

𝑟𝑘2 ) = 0 (7.31)

Before attempting to solve eq. (7.31), we consider the constraints on the remaining components.
Applying Ampère’s law and taking into account the lack of associated current in the plasma
volume, we get

0 = 4𝜋
𝑐 √𝑔𝐽𝜃 = √𝑔 (∇ × 𝛿𝑩v)𝜃 = 𝜕

𝜕𝑧𝛿𝐵v𝑟 − 𝜕
𝜕𝑟𝛿𝐵v𝑧. (7.32)

Taking the Fourier transform as 𝜕
𝜕𝑧 → i𝑘𝑧 yields

0 = i𝑘𝑧𝐵𝑚𝑛𝑟 − 𝜕
𝜕𝑟𝐵𝑚𝑛𝑧. (7.33)

The condition of zero divergence then gives a relation for the third component 𝛿𝐵𝜃
v:

0 = √𝑔∇ ⋅ 𝛿𝑩v = 𝜕
𝜕𝑟(𝑟𝛿𝐵𝑟

v) + 𝑟 𝜕
𝜕𝜃𝛿𝐵𝜃

v + 𝑟 𝜕
𝜕𝑧𝛿𝐵𝑧

v. (7.34)

Applying the Fourier again with 𝜕
𝜕𝜃 → i𝑚 yields

0 = 𝜕
𝜕𝑟(𝑟𝐵𝑚𝑛𝑟) + i𝑚𝐵𝜃

𝑚𝑛 + i𝑘𝑧𝑟𝐵𝑚𝑛𝑧. (7.35)

For problems in cylindrical geometry, the radial solution typically involves Bessel functions.
We start with

𝐵𝑚𝑛𝑧 = i𝐶𝐼𝑚(𝑘𝑧𝑟), (7.36)

where 𝐼𝑚 is the modified Bessel function of the first kind of order 𝑚 and 𝐶 is an arbitrary
integration constant that scales the magnitude of the solution. Inserting this into eq. (7.33),
we get at

𝐵𝑚𝑛𝑟 = − i
𝑘𝑧

𝜕
𝜕𝑟𝐵𝑚𝑛𝑧 = 𝐶

𝑘𝑧

𝜕
𝜕𝑟𝐼𝑚(𝑘𝑧𝑟) = 𝐶𝐼′

𝑚(𝑘𝑧𝑟), (7.37)
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where the derivative of 𝐼𝑚 is taken with respect to the entire argument, not only 𝑟. By insertion1,
one can check that eq. (7.37) solves eq. (7.31), so we proceed to calculate 𝛿𝐵𝜃

v from eq. (7.35).
Using functional identities of the Bessel functions2, one arrives at

𝐵𝑚𝑛𝜃 = i 𝑚
𝑘𝑧

𝐶𝐼𝑚(𝑘𝑧𝑟). (7.38)

Since 𝐼−𝑚(𝑘𝑧𝑟) = 𝐼𝑚(𝑘𝑧𝑟), this is the only vector component that changes with a negative
mode number 𝑚. Even though there is no mode coupling in this geometry, our calculations
are done in toroidal geometry, hence mode coupling is expected; thus we restrict ourselves to
a single poloidal mode number 𝑚 and take the Fourier transform, i.e.

𝑩𝑛(𝑟, 𝜗) = 𝑩𝑚𝑛(𝑟)ei𝑚𝜃. (7.39)

To convert back to (𝑅, 𝜑, 𝑍) vector components, we use eq. (7.26) and arrive at

𝐵𝑅
𝑛 = 𝐵𝑟

𝑛
𝜕𝑅
𝜕𝑟 + 𝐵𝜃

𝑛
𝜕𝑅
𝜕𝜃 = 𝐵𝑟

𝑛 cos 𝜃 − 𝑟𝐵𝜃
𝑛 sin 𝜃, (7.40)

𝐵𝑍
𝑛 = 𝐵𝑟

𝑛
𝜕𝑍
𝜕𝑟 + 𝐵𝜃

𝑛
𝜕𝑍
𝜕𝜃 = 𝐵𝑟

𝑛 sin 𝜃 + 𝑟𝐵𝜃
𝑛 cos 𝜃, (7.41)

𝐵𝜑
𝑛 = 𝐵𝑧

𝑛
𝜕𝜑
𝜕𝑧 = 1

𝑅0
𝐵𝑧

𝑛. (7.42)

Note that the same conversions apply in the secondary cylindrical coordinate system analo-
gously, e.g. 𝑟𝐵𝜃

𝑛 = 𝐵𝑛(𝜃). Furthermore, since 𝑅0 is large and 𝑅 ≈ 𝑅0, the physical components
in eq. (7.42) are approximately equal:

𝐵𝑛(𝜑) = 𝑅𝐵𝜑
𝑛 = 𝑅

𝑅0
𝐵𝑧

𝑛 ≈ 𝐵𝑧
𝑛. (7.43)

Up to this point, calculations have been performed in the cylindrical geometry used by KiLCA
code where the torus is explicitly bent into a cylinder. To approximate this geometry in
NEO-EQ code, we multiply 𝑅0 by a scaling factor 𝛾 and implement the change by shifting the
computational domain in the EFIT file (see chapter 6) to that value. Equation (7.26) then reads

�̄� = 𝛾𝑅0 + 𝑟 cos 𝜃, �̄� = 𝑟 sin 𝜃, ̄𝜑 = 𝑧
𝛾𝑅0

. (7.44)

Effectively, the torus is stretched by “stitching together” 𝛾 cylinders with periodic boundary
conditions. Consequently, we use wavenumbers

𝑘𝑧 = ̄𝑛
𝛾𝑅0

, (7.45)

1into Mathematica
2again, Mathematica
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which must be identical to the value from eq. (7.28), so we have

̄𝑛 = 𝛾𝑛. (7.46)

Furthermore, the fluxes in the EFIT file have to be scaled,

̄𝜓 = 𝛾𝜓, (7.47)

which results in an unchanged magnetic field and an inversely scaled safety factor,

̄𝑞 = 𝑞
𝛾, (7.48)

which is in turn consistent with a scaled toroidal mode number 𝑛 and an unscaled poloidal
mode number 𝑚. The solution computed by NEO-EQ code then has to be transformed to the
cylindrical geometry of KiLCA code to allow for a comparison. Using trigonometric identities,
we can invert eqs. (7.40) to (7.42) to yield

𝐵𝑟
𝑛 = 𝐵𝑅

𝑛 cos 𝜃 + 𝐵𝑍
𝑛 sin 𝜃, (7.49)

𝑟𝐵𝜃
𝑛 = 𝐵𝑍

𝑛 cos 𝜃 − 𝐵𝑅
𝑛 sin 𝜃, (7.50)

𝐵𝑧
𝑛 = 𝑅0𝐵𝜑

𝑛 ≈ 𝑅𝐵𝜑
𝑛 = 𝐵𝑛(𝜑). (7.51)

The poloidal spectrum of this result is then approximated by a discrete Fourier transform:

𝑩𝑚𝑛(𝑟) = 1
𝑁

𝑁
∑
𝑘=1

𝑩𝑛(𝑟, 𝜃𝑘)e−i𝑚𝜃𝑘 , 𝜃𝑘 = 2𝜋𝑘
𝑁 . (7.52)

Here, 𝑁 is the number of sample points, which is taken to be one per triangle in the triangle
strip at given 𝑟.
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Chapter 8

Test Results

In this chapter, some selected results from test cases are presented. The convergence of the
iterative scheme from section 2.1 and the validity of the preconditioner from section 2.2 is
examined. Results for the initial pressure response and poloidal modes are compared to those
by Albert et al. [1, 2]. Finally, the large aspect ratio test case outlined in section 7.2 is explored
in comparison with KiLCA code [8].

For test cases in ASDEX geometry, shot number 17151 and the time slice at 3.800 s is used
for the equilibrium configuration. Figures 8.1 to 8.3 show 𝜓, 𝑝0, and 𝑞 from eqs. (3.27), (6.3)
and (6.23), respectively. Density and temperature are proportional to 𝜓 via eqs. (6.1) and (6.2).
The values displayed here are for the high-density configuration with

𝑛axis = 5 × 1013 cm−3, 𝑛min = 1011 cm−3, (8.1)
𝑇axis = 3 keV, 𝑇min = 2 × 101 eV, (8.2)

while for the low-density configuration used in some test cases, the central density is lowered
to

𝑛axis = 5 × 1011 cm−3. (8.3)

If not noted otherwise, these are are the values used when referring to high-density and low-
density test cases. Note that in all test cases, we use the toroidal mode number

𝑛 = 2. (8.4)

8.1 Initial pressure response
Albert et al. [2] investigate the pressure response 𝑝𝑛 to the vacuum perturbation 𝛿𝑩v, i.e.,
without performing any iterations. We try to reproduce these results as a way to confirm
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Figure 8.1: Disc poloidal flux of the equilibrium configuration. 𝑟 is the minor radius measured
from the magnetic axis to the X point.

the validity of our code. The first test case uses a non-resonant vacuum perturbation, as
considered in section 7.1. Figure 8.4 shows the result from the reference, while fig. 8.5 shows
our reproduction. For the real part, the relative error is on the order of machine precision
– we expect a value of zero, as no resonances should occur. The imaginary parts show a
gradient pattern and are visually indistinguishable. Hence, we consider the reconstruction of
the non-resonant test case valid. The second test case involves the usual resonant vacuum
perturbation, and in fig. 8.6 we compare the real parts, as only the real part is given in the
reference. The positions of the resonances appear to agree; visual differences may be explained
by the low picture resolution in the reference and possibly a different radial grid partitioning.

As a continuation of the work by Albert et al. [2], a self-consistent plasma response is obtained
when current perturbation as per section 5.2 is taken into account and the preconditioner from
section 2.2 is applied. The result after convergence of preconditioned iterations is depicted in
fig. 8.7. The magnitude is reduced to about three quarters of the initial response pressure
seen in fig. 8.6 and the imaginary part shows a similar resonant pattern as the real part. It
should be noted that the values for density and temperature at the center that Albert et al.
[2] report are actually the difference in density and temperature between the center and the
separatrix. The effective values at the center are

𝑛axis = 7.2 × 1013 cm−3, 𝑇axis = 4.3 keV. (8.5)

These values are used here for the sake of a meaningful comparison.
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Figure 8.2: Pressure of the equilibrium configuration. 𝑟 is the minor radius measured from
the magnetic axis to the X point.
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Figure 8.3: Safety factor of the equilibrium configuration. 𝑟 is the minor radius measured
from the magnetic axis to the X point.
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(a) Real part of response pressure 𝑝𝑛. (b) Imaginary part of response pressure 𝑝𝑛.

Figure 8.4: Response pressure 𝑝𝑛 for the non-resonant vacuum perturbation from fig. 1 in
[2], which we aim to reproduce (see fig. 8.5). The real part of 𝑝𝑛 is practically zero, while the
imaginary part shows a gradient without any resonant effects. Values are given in Gaussian
units.

(a) Real part of response pressure 𝑝𝑛. (b) Imaginary part of response pressure 𝑝𝑛.

Figure 8.5: Response pressure 𝑝𝑛 for the non-resonant vacuum perturbation, reproducing
fig. 8.4 – the imaginary part is visually indistinguishable. The real part has a relative magnitude
of about 10−14, showing that deviations from zero are on the order of machine precision, thus
we can regard them as numerical noise. Values are given in Gaussian units.
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8.1 Initial pressure response

(a) Real part of response pressure 𝑝𝑛, taken from
fig. 5 in [2].

(b) Real part of response pressure 𝑝𝑛 (reproduc-
tion).

Figure 8.6: Response pressure 𝑝𝑛 for the resonant vacuum perturbation, comparing the result
from [2] (left) to our reproduction (right). The positions of the resonances appear to agree;
the visual difference in the width and color of the resonance may be due to different radial
grid resolution. Values are given in Gaussian units.

(a) Real part of response pressure 𝑝𝑛. (b) Imaginary part of response pressure 𝑝𝑛.

Figure 8.7: Response pressure 𝑝𝑛 after convergence of preconditioned iterations. Comparing
the real part (left) to the real part of the initial pressure response (fig. 8.6), we see that the
magnitude decreases after iterations. Comparing the imaginary part (right) to the imaginary
part of the initial pressure response for the non-resonant test case (figs. 8.4b and 8.5b), we
see that the gradient pattern is overshadowed by the much larger values at the resonant flux
surfaces. Values are given in Gaussian units.
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8 Test Results

8.2 Convergence and Preconditioning
To estimate the convergence of the iterative scheme from section 2.1 and confirm the validity
of the preconditioner from section 2.2, two low-density test cases shall be compared. For the
low-density configuration, all eigenvalues 𝜆 of the iteration operator have absolute values
less than one, so that convergence can be achieved without preconditioning – this is the first
test case. For the second test case, the threshold 𝜆max of the preconditioner is set to a low
value of 5 × 10−3, so that a preconditioning matrix is constructed from eigenvalues above
this threshold. This results in 4 eigenvalues, with the largest being 𝜆1 ≈ −0.09384 − 0.02109i.
These two test cases are juxtaposed as en explicit test of the preconditioning algrorithm.

The quantity used for a comparison is the magnetic field perturbation 𝛿𝑩. To show conver-
gence, the 𝐿2 norm over the poloidal cross section is applied to this quantity for every iteration
step 𝑘 summarized in table 2.1:

‖𝛿𝑩(𝑘)‖2 = √∫
𝛺

|𝛿𝑩(𝑘)|2 d𝛺. (8.6)

This allows us to assign a magnitude to the entire magnetic field, and indeed this quantity
is proportional to the energy contained in the magnetic field. The 𝐿2 norm after 𝑘 iterations
is expected to follow a geometric series of the largest eigenvalue, starting from the vacuum
perturbation 𝛿𝑩v for the “zeroth” iteration:

‖𝛿𝑩(𝑘)‖2 ≈ |𝜆max|𝑘‖𝛿𝑩(0)‖2. (8.7)

When 𝛿𝑩(𝑘) approaches machine precision, ‖𝛿𝑩(𝑘)‖2 remains approximately constant and
convergence is achieved. The results of these considerations can be seen in fig. 8.8. The
preconditioned iterations converge faster, since the largest 4 eigenvalues are “removed” from
the iterations.

To estimate any difference in the converged result depending on whether the preconditioner
was used or not, the real part of the 𝑍 component of the magnetic field perturbation shall
be compared as an example. As a reference for the orders of magnitude involved, fig. 8.9a
shows the vacuum perturbation field 𝛿𝑩v, and fig. 8.9b shows the magnetic field 𝛿𝑩p of the
plasma response current for the high-density configuration. Both add up to the full magnetic
perturbation field 𝛿𝑩, i.e., 𝛿𝑩 = 𝛿𝑩v + 𝛿𝑩p. It can also be seen that 𝛿𝑩p reaches the order of
magnitude of 𝛿𝑩v in some regions. In contrast, fig. 8.10a shows the magnetic field 𝛿𝑩p of
the plasma response current for the low-density test case with preconditioning. It is small
compared to the plots in fig. 8.9, so a comparison between full perturbation fields is not
feasible. Instead, fig. 8.10b depicts the difference between the result with preconditioner and
the result without preconditioner. This suggests a relative error on the order of 10−6 and its
magnitude is lower than the vacuum perturbation field by an order of 10−9.
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8.2 Convergence and Preconditioning
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(a) Convergence estimation without precondi-
tioner. |𝜆max| refers to the largest eigenvalue
|𝜆1| ≈ 0.0962.
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(b) Convergence estimation with preconditioner.
|𝜆max| refers to the upper threshold of 5 × 10−3 the
preconditioner considers.

Figure 8.8: Convergence estimation of low-density test cases. The quantity of interest is the
𝐿2 norm of the magnetic field perturbation 𝛿𝑩 (see eq. (8.6)), which is proportional to the
energy of the magnetic ffield and is plotted as black crosses. Its value after 𝑘 iteration steps
is expected to follow a geometric series of the largest eigenvalue 𝜆max (see eq. (8.7)), starting
from the vacuum perturbation 𝛿𝑩v, which is plotted as a red line for comparison. While
both test cases converge, the preconditioned test case needs fewer iteration steps 𝑘. Further
iteration steps only change due to numerical noise and the norm stays approximately constant.
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8 Test Results

(a) Real part of the 𝑍 component of the vacuum
perturbation 𝛿𝑩v.

(b) Real part of the 𝑍 component of the mag-
netic field 𝛿𝑩p of the plasma response current
for the high-density test case.

Figure 8.9: Reference for the low-density test case in fig. 8.10, where the magnitude of the
magnetic field 𝛿𝑩p of the plasma response current is much smaller than for the high-density
test case and the vacuum perturbation 𝛿𝑩v. The index 𝑛 refers to the toroidal Fourier coefficient
of the associated perturbation quantity, which is prefixed by 𝛿. The colormap is chosen from
[10].
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8.2 Convergence and Preconditioning

(a) Real part of the 𝑍 component of the mag-
netic field 𝛿𝑩p of the plasma response current
for the low-density test case with precondition-
ing.

(b) Deviation Δ𝛿𝑩p from fig. 8.10a when the
preconditioner is not used. The relative error
is on the order of 10−6.

Figure 8.10: Effect of the preconditioner on the low-density test case. The magnetic field 𝛿𝑩p
of the plasma response current with preconditioning is compared to the difference to the result
without preconditioner. This allows an estimation of the relative error. The index 𝑛 refers to
the toroidal Fourier coefficient of the associated perturbation quantity, which is prefixed by 𝛿.
The colormap is chosen from [10].
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8 Test Results

8.3 Resonances and Sheet Currents
After the validity of the initial pressure response and preconditioner have been established,
these preconditioned iterations are now used on the high-density configuration to study the
behaviour of the magnetic field at resonances, and the effects of sheet currents. For comparison
with fig. 5 in [1], we utilize field line tracing for Fourier decomposition of poloidal modes in 𝜗
as per eq. (3.37). Note that the metric √𝑔 is included in this quantity because it depends on 𝜗.
The quantity to be analyzed then is the weighted radial component √𝑔𝐵𝜓

𝑚𝑛(𝜓) of the magnetic
field perturbation 𝛿𝑩, which has the dimension of magnetic flux because of the units of the
basis vector 𝒆𝜓 and the metric √𝑔. We expect damping in the full perturbation 𝛿𝑩, which
otherwise follows the vacuum perturbation 𝛿𝑩v. The radial flux variable 𝜓 of the resonances
are given by 𝑚 + 𝑛𝑞(𝜓) = 0, where 𝑛 = 2. We shall compare the results of the poloidal modes
𝑚 = ±3, so the resonance is expected to occur where 𝑞 = 3

2 , i.e., for negative 𝑚.

The effects of the sheet currents described in section 5.3 are also investigated in this context.
One configuration omits sheet currents, and one configuration uses finite sheet currents. The
constants 𝐶𝑚𝑛 from eq. (5.52) are arbitrarily set to

𝐶32 = −1000, (8.8)
𝐶42 = 300 − 300i, (8.9)
𝐶52 = −100 + 100i, (8.10)
𝐶62 = −100 + 100i, (8.11)
𝐶72 = −100 + 100i (8.12)

for the latter case, with all other coefficients set to zero. Due to mode coupling, changing one
of these constants tends to affect more than one resonant flux surface. There is no constraint
on the choice of the values in the given model apart from numerical stability.

Figure 8.11 shows the behavior at the resonance for the poloidal modes 𝑚 = ±3 with and
without sheet currents, respectively. Without additional sheet currents, the full magnetic field
perturbation is increased at the resonance position instead of decreased. Thus, the addition
of sheet currents is necessary to reproduce the expected behavior. Radial mesh refinement
around resonant flux surfaces turns out to be crucial to capture the effects of these sheet
currents.
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8.3 Resonances and Sheet Currents
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Figure 8.11: Poloidal modes 𝑚 = ±3 of the pseudoradial magnetic field perturbation
√𝑔𝐵𝜓

𝑚𝑛(𝜓). ̂𝜓 is the normalized flux 𝜓, used as a pseudoradial coordinate, so that ̂𝜓 = 0
at the magnetic axis and ̂𝜓 = 1 at the separatrix. The vertical line indicates the position where
𝑞 = 3

2 , i.e., where the resonance is expected. In the test case without sheet currents (above), a
slight increase of the full magnetic field perturbation can be seen at the resonance position
for 𝑚 = −3, compared to the vacuum perturbation. The test case with sheet currents (below)
shows the expected damping of the full magnetic field perturbation by the sheet current at
the resonance position for 𝑚 = −3. The “ripples” in the graphs are a result of the field line
tracing used to interpolate the angle 𝜗: Many radial interpolation points are used per flux
surface, but 𝑞 is essentially a step function and stays constant between flux surfaces.
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8 Test Results

8.4 Large Aspect Ratio
The last test case is a comparison with KiLCA [8] results. The underlying geometry of
the circular cross-section and the large aspect ratio is discussed in section 7.2. The grid is
partitioned into 𝑛flux = 128 flux surfaces. The scaling factor is set to 𝛾 = 1000, setting the major
radius to 𝑅0 ≈ 1.72 km. While superposition of poloidal modes is possible in both KiLCA
and NEO-EQ code, only a single mode number 𝑚 = −4 is used to construct the vacuum
perturbation 𝛿𝑩v in order to avoid the effects of mode coupling in the toroidal geometry of
NEO-EQ. In contrast to the case discussed in section 8.3, symmetry flux coordinates coincide
with “common” cylindrical coordinates in this setup. Therefore, no field line tracing is
necessary, and the discrete Fourier transform from eq. (7.52) is directly applied. Furthermore,
the metric √𝑔 does not depend on 𝜃 in this geometry, so it can be omitted as a constant factor.
One low-density and one high-density configuration are simulated, and a single sheet current
factor 𝐶42 for the given resonance is used, which is set to scale inversely with the ratio of the
density of the two configurations.

The results of the NEO-EQ calculations are depicted in fig. 8.12 and are to be compared to the
results from KiLCA in fig. 8.13. Damping occurs at the expected position, i.e., where 𝑞 = 4

2 .
While the low-density case in fig. 8.12a agrees well with the KiLCA result, the high-density
case in fig. 8.12b displays a different shape around the resonance position, even though
damping occurs at the resonance. This may be due to the neglect of bootstrap and inductive
current in section 6.2 and will be studied in the near future.
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8.4 Large Aspect Ratio
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(a) Density at axis 𝑛axis = 5 × 1011 cm−3, sheet current coefficient 𝐶42 = −105 − 105i.
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(b) Density at axis 𝑛axis = 5 × 1013 cm−3, sheet current coefficient 𝐶42 = −103 − 103i.

Figure 8.12: Poloidal modes 𝑚 = ±4 of the radial magnetic field 𝐵𝑟
𝑚𝑛(𝑟) for different central

densities and sheet current factors, which is to be compared to the output of KiLCA [8] in
fig. 8.13. The vertical line indicates the position where 𝑞 = 4

2 , i.e., where the resonance is
expected. While the low-density case (above) compares well to the KiLCA output, the high-
density case (below) shows a markedly different shape around the resonance, even though
shielding occurs at the expected position. 𝑟 is the minor radius. Note that in contrast to
fig. 8.11, the metric √𝑔 is omitted, as it does not depend on 𝜃 due to the cylindrical geometry
and is thus a constant factor.
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Figure 8.13: Poloidal mode 𝑚 = ±4 of the radial magnetic field 𝐵𝑟
𝑚𝑛(𝑟), from KiLCA [8]. 𝑟 is

the minor radius. Note that in contrast to fig. 8.11, the metric √𝑔 is omitted, as it does not
depend on 𝜃 due to the cylindrical geometry and is thus a constant factor.
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Chapter 9

Conclusion and Outlook

Over the course of this thesis, developed an iterative scheme (chapter 2) was developed to
solve the linearized MHD force balance (chapter 5) and Ampère’s equation (chapter 4) in a
self-consistent manner. This is used to model the effects of a non-axisymmetric perturbation
to an axisymmetric ideal MHD equilibrium (chapter 1). The symmetry in the toroidal angle of
the tokamak device is taken into account (chapter 3) to simplify calculations. Two special con-
figurations (chapter 7) were discussed for a comparison with previous publications. Selected
results (chapter 8) demonstrate that the expected behavior of shielding by sheet currents can
be reproduced at least qualitatively.

In the future, we intend to supplement kinetic code with results from these calculations, where
the latter is used for accurate modeling of the effects that occur at resonant flux surfaces,
while the former is used as a drop-in replacement for kinetic code away from resonant flux
surfaces, as it is computationally less expensive. Furthermore, it may be used in conjunction
with KiLCA code [8] to calculate the form factors discussed by Heyn et al. [7], in order to treat
the effects of toroidal geometry more accurately. A combined model will be used for studies
of the field penetration threshold in experimental conditions of ASDEX Upgrade.
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Appendix A

Notational Conventions

In general, variables are printed in italic shape and constants in roman (upright) shape. Scalars
are printed in normal weight, vectors are indicated by bold weight, matrices and operators
by a hat, and tensors by sans-serif font. We only list symbols that appear in more than one
chapter, or when they are used differently in different chapters. Symbols from appendix A.1
may appear decorated as listed in appendix A.2.

A.1 Base symbols

Notation Description
̂𝐴 matrix applied to precondition iterations

𝑨 magnetic vector potential
𝑩 magnetic field strength, measured in Gauss
𝛿𝑩p perturbation field from plasma current
𝛿𝑩v perturbation field in vacuum (from external coils)
𝐶 arbitrary constant (of integration)
𝑐 speed of light in centimetres per second
e Euler’s constant, base of natural logarithm
𝒆 basis vector
𝑔 metric determinant
𝒉0 unit vector of 𝑩0
i imaginary unit, i2 = −1
̂𝐼 unit matrix

𝐼 electric current
𝐼c electric current produced by RMP coils
𝑱 electric current density, measured in statampere
𝑘B Boltzmann constant
�̂� combined linear operator �̂��̂�
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Base symbols

Notation Description

�̂� stiffness matrix
𝑙 length of edge
𝒍 edge vector in counter-clockwise direction
�̂� linear operator representing computation of the magnetic field from the

currents via Ampère’s equation
𝑚 poloidal mode number
𝑁 dimension of system of linear equations
𝑛 toroidal mode number
𝑛 density of particles
𝒏 outward pointing normal vector
�̂� linear operator representing computation of the currents from the

magnetic field
𝑝 pressure, measured in dyne per square centimetre
𝑞 safety factor
𝑅 radial coordinate in cylindrical coordinates
𝑟 arbitrary point in a domain 𝛺
𝑅0 major radius of the tokamak
𝑆 area in poloidal cross-section
𝒔 source term in systems of linear equations
𝑇 temperature
𝑍 axial coordinate in cylindrical coordinates
𝛤 border of a domain 𝛺, e.g. edge of a triangle
𝛾 scaling factor to approximate cylindrical geometry in toroidal geometry
𝛿𝑖𝑗 Kronecker delta
𝜗 poloidal angle
𝜆 eigenvalue
𝜚 flux surface label
𝜑 toroidal angle
𝛹 magnetic flux
𝜓 disc poloidal flux, used as flux surface label
𝛺 domain of computation, e.g. a triangle
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A.2 Symbol Decorations

A.2 Symbol Decorations

Notation Description

𝑝0 equilibrium 𝑝
𝛿𝑝 perturbation of 𝑝
𝑝𝑛 Fourier coefficient of perturbation of 𝑝 with toroidal mode number 𝑛
𝑝𝑚𝑛 Fourier coefficient of perturbation of 𝑝 with poloidal mode number 𝑚 and

toroidal mode number 𝑛
𝑝(𝑘) 𝑘-th summand in series expansion of perturbed 𝑝 / 𝑘-th degree of free-

dom of 𝑝 in a particular loop
𝑝[𝑘] 𝑘-th partial sum in series expansion of perturbed 𝑝

𝑱pol poloidal component of 𝑱
𝑱tor toroidal component of 𝑱
𝑱∥ component of 𝑱 parallel to 𝑩0
𝑱⟂ component of 𝑱 perpendicular to 𝑩0
𝐽𝑢 contravariant component of 𝑱 w.r.t. coordinate 𝑢
𝐽𝑢 covariant component of 𝑱 w.r.t. coordinate 𝑢
𝐽(𝑢) physical component of 𝑱 w.r.t. coordinate 𝑢

̂𝒏 unit vector in direction of 𝒏

𝑩(𝒓(𝑘)) 𝑩 evaluated at node with index 𝑘
𝑩(𝛤 (𝑘)

𝑒 ) 𝑩 evaluated at midpoint of edge 𝑒 of triangle 𝑘
𝑩(𝛺(𝑘)) 𝑩 evaluated at weighted centroid of triangle 𝑘

⟨⋅⟩ flux surface average
[⋅]𝑚𝑛 Fourier transform with poloidal and toroidal mode numbers
⋅∗ complex conjugate
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Appendix B

Arnoldi Iterations

For an 𝑁 × 𝑁 matrix �̂�, the Arnoldi algorithm gives the largest 𝑛𝑟 Ritz eigenvalues 𝜆𝑘 and
the associated eigenvectors 𝒗𝑘 which span the Krylov subspace of �̂�. To accomplish this, �̂� is
repeatedly applied to an arbitrary initial vector 𝒒1. In each iteration step, the next Arnoldi
vector 𝒒𝑘 is generated and orthonormalized with respect to the previously generated vectors
by Gram-Schmidt orthogonalization. Also, entries of an upper Hessenberg matrix �̂� are
constructed, as outlined in algorithm 1. Grouping together the 𝒒𝑘 vectors in an 𝑁 × 𝑛𝑟 matrix

Algorithm 1 Arnoldi iterations
1: 𝒒1 ← 𝒒1

‖𝒒1‖
2: for 𝑘 = 2, 3, … , 𝑛𝑟 do
3: 𝒒𝑘 ← �̂�𝒒𝑘−1
4: for 𝑗 = 1, 2, … , 𝑘 − 1 do
5: 𝐻𝑗,𝑘−1 ← 𝒒†

𝑗 𝒒𝑘
6: 𝒒𝑘 ← 𝒒𝑘 − 𝐻𝑗,𝑘−1𝒒𝑗
7: end for
8: 𝐻𝑘,𝑘−1 ← ‖𝒒𝑘‖
9: 𝒒𝑘 ← 𝒒𝑘

𝐻𝑘,𝑘−1
10: end for

�̂�, an approximation of �̂� can be written out as

�̂� ≈ �̂��̂��̂�†. (B.1)

Diagonalization of �̂� via the LAPACK routine zhseqr yields the Ritz eigenvalues 𝜆𝑘 and
application of �̂� on the eigenvectors of �̂� obtained via zhsein gives the eigenvectors 𝒗𝑘
associated with �̂�.

81





Bibliography

[1] C G Albert, M F Heyn, S V Kasilov, W Kernbichler, A F Martitsch, A M Runov. “Kinetic
modeling of 3D equilibria in a tokamak”. In: Journal of Physics: Conference Series 775
(Nov. 2016), p. 012001. doi: 10.1088/1742-6596/775/1/012001.

[2] C. G. Albert, M. F. Heyn, S. V. Kasilov, W. Kernbichler. “Kinetic modeling of plasma
response to RMPs for a tokamak in full toroidal geometry”. English. In: 45th EPS
Conference on Plasma Physics, EPS 2018. Vol. 2018-July. European Physical Society (EPS),
Jan. 2018, pp. 709–712.

[3] Oszkár Bíró. “Variations- und Residuenmethoden in der Elektrotechnik”. Lecture Notes
at the Graz University of Technology. 2015.

[4] W.D. D’haeseleer, W.N.G. Hitchon, J.D. Callen, J.L. Shohet. Flux Coordinates and Mag-
netic Field Structure. A Guide to a Fundamental Tool of Plasma Theory. Springer Series in
Computational Physics. Springer-Verlag, 1991.

[5] J.P. Freidberg. Ideal MHD. Cambridge University Press, 2014. isbn: 9781107006256.
[6] F. Hecht. “New development in FreeFem++”. In: J. Numer. Math. 20.3-4 (2012), pp. 251–

265. issn: 1570-2820.
[7] Martin F. Heyn, Ivan B. Ivanov, Sergei V. Kasilov, Winfried Kernbichler, Ilon Joseph,

Richard A. Moyer, Alexey M. Runov. “Kinetic estimate of the shielding of resonant
magnetic field perturbations by the plasma in DIII-D”. In: Nuclear Fusion 48.2 (Jan. 2008),
p. 024005. doi: 10.1088/0029-5515/48/2/024005.

[8] Martin F Heyn, Ivan B Ivanov, Sergei V Kasilov, Winfried Kernbichler. “Kinetic mod-
elling of the interaction of rotating magnetic fields with a radially inhomogeneous
plasma”. In: Nuclear Fusion 46.4 (Mar. 2006), S159–S169. doi: 10.1088/0029-5515/46/
4/s07.

[9] Jianming Jin. The Finite Element Method in Electromagnetics. Second Edition. John Wiley
& Sons, Inc., 2002.

[10] Peter Kovesi. Good Colour Maps: How to Design Them. 2015. arXiv: 1509.03700 [cs.GR].
[11] Lao. G EQDSK FORMAT. Feb. 1997. url: https://w3.pppl.gov/ntcc/TORAY/G_

EQDSK.pdf.
[12] O. Sauter, S.Yu. Medvedev. “Tokamak coordinate conventions: COCOS”. In: Computer

Physics Communications 184.2 (2013), pp. 293–302. doi: 10.1016/j.cpc.2012.09.010.

83

https://doi.org/10.1088/1742-6596/775/1/012001
https://doi.org/10.1088/0029-5515/48/2/024005
https://doi.org/10.1088/0029-5515/46/4/s07
https://doi.org/10.1088/0029-5515/46/4/s07
https://arxiv.org/abs/1509.03700
https://w3.pppl.gov/ntcc/TORAY/G_EQDSK.pdf
https://w3.pppl.gov/ntcc/TORAY/G_EQDSK.pdf
https://doi.org/10.1016/j.cpc.2012.09.010


BIBLIOGRAPHY

[13] Florian Seeber. “Finite Element Method Applied to Magnetostatics in a Toroidal Do-
main with Open Boundary Conditions”. Master’s thesis. Institute of Theoretical and
Computational Physics, Graz University of Technology, July 2018.

[14] F.L. Waelbroeck. “Theory and observations of magnetic islands”. In: Nuclear Fusion
49.10 (Sept. 2009), p. 104025. doi: 10.1088/0029-5515/49/10/104025.

84

https://doi.org/10.1088/0029-5515/49/10/104025

	Contents
	Introduction
	Acknowledgement
	Basic Plasma Physics
	Ideal Magnetohydrodynamics
	Flux Surfaces

	Stationary Linear Perturbation of Ideal MHD Equilibrium
	Iteration Scheme
	Enhanced Convergence with Preconditioned Iterations

	Geometrical Considerations
	Coordinate Conventions
	Discretization and Local Coordinate System
	Representation of Fields on the Grid

	Numerical Treatment of the Magnetic Field Perturbation
	Outline of the Ritz and Galerkin Methods
	Reduction to two dimensions

	Linearized MHD Force Balance
	Pressure Perturbation
	Current Perturbation
	Current Sheets

	Preprocessing of Input Data
	Grid Implementation
	Toroidal Unperturbed Current
	Safety Factor

	Construction of Test Cases
	Generating a Non-Resonant Vacuum Perturbation
	Analytical Solution for Very Large Aspect Ratios

	Test Results
	Initial pressure response
	Convergence and Preconditioning
	Resonances and Sheet Currents
	Large Aspect Ratio

	Conclusion and Outlook
	Notational Conventions
	Base symbols
	Symbol Decorations

	Arnoldi Iterations
	Bibliography

