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Abstract

The aim of the present thesis is to provide a numerical method for the vibro-acoustic sim-
ulation of poroelastic shells. The proposed method can be used to investigate arbitrary
curved layered panels, as well as their interaction with the surrounding air.

One focus of the present work lies on the use of exact geometry representations. The ge-
ometry of the shell can be given either parametrically or implicitly. The parametric variant
can be used for arbitrarily given parametrizations where the parameter domain consists of
rectangles. This includes standard parametric modeling techniques, e.g. NURBS surfaces.
In the case of the implicit variant, the reference surface of the shell is given by the zero
level of a given level-set function. In this case the reference surface is approximated by a
triangulation in a first step. In a second step this triangulation is lifted to the exact refer-
ence surface. Thus, an element-wise exact parametrization is obtained. For the evaluation
of integrals over the shell volume, the derivatives of the parametrizations up to the second
order are required. These derivatives are computed by automatic differentiation making
use of a hyper-dual number concept.

Typically, an acoustic panel consists of a number of layers with different properties. In
the present work, porous layers are modeled by the Biot theory, whereas stiff layers can
be modeled by the theory of elasticity. Due to this heterogeneous material layup, the
though-the-thickness variation of the shell displacement and the filling fluid pressure are
described layer-wise. This semi-discretization reduces the problem to a two-dimensional
problem on the reference surface, which is discretized by a high order Finite Element
Method (FEM).

In order to take the surrounding air into account, a variational variant of the Method of
Fundamental Solutions (MFS) is developed. Thus, the meshing of the acoustic fluid do-
main can be avoided. The discretization of the fluid pressure field is given by fundamental
solutions with source points lying in the complement of the fluid domain. The unknown
coefficients are determined by a variational formulation. In the case of unbounded domains
the Sommerfeld radiation condition has to be considered. Due to the use of fundamental
solutions, this condition is exactly fulfilled and thus poses no difficulty. In order to simu-
late coupled fluid-structure interaction problems, the FEM and the MFS are combined to a
coupled method.

The implementation of the uncoupled FEM for the shell and the uncoupled MFS is verified
against numerical examples based on the Method of Manufactured Solutions. For the ver-
ification of the coupled method an example with a known exact solution is considered. In
order to show the potential of the method, further examples are simulated. First, the FEM
is applied to the Scordelis-Lo roof problem and to a gyroid structure. Second, the interior
acoustics of a complex cavity and the scattering at an assembly of spheres is investigated
by the uncoupled MFS. In the last two examples sound transmission from a cavity to a
half-space is simulated.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung von neuen Simulationsmetho-
den im Bereich von vibro-akustischen Anwendungen. Die entwickelten Techniken können
zur Berechnung von beliebig gekrümmter und geschichteten Schalen eingesetzt werden.
Ebenso ist eine Berücksichtigung der Interaktion mit der umgebenden Luft möglich.

Ein wesentlicher Fokus der Arbeit liegt auf der Verwendung von exakten Geometrie-
beschreibungen. Es wird zwischen zwei Fällen unterschieden, wie die Schalenreferenz-
fläche definiert wird. Im ersten Fall ist diese durch eine gegebene Parametrisierung be-
schrieben. Hierbei ist aus Implementierungsgründen die einzige Einschränkung, dass das
Parametergebiet rechteckig sein muss. Es können jedoch beliebige Funktionen in der Pa-
rametrisierung verwendet werden. Dies beinhaltet standardisierte parametrische Model-
lierungskonzepte, wie zum Beispiel NURBS-Flächen, als Spezialfall. Im zweiten Fall ist
die Schalenreferenzfläche implizit als Nullisofläche einer gegeben Funktion definiert. In
einem ersten Schritt wird diese Fläche durch eine Triangulierung approximiert. Diese Ver-
netzung wird in einem zweiten Schritt auf die exakte Fläche gehoben. Somit wird eine
elementweise exakte Parametrisierung erstellt. Für die Integration über das Schalen Vo-
lumen werden die Ableitungen bis zur zweiten Ordnung der Parametrisierungen benötigt.
Diese Ableitungen werden durch ein automatisches Differentiationsschema, welches auf
hyper-dualen Zahlen aufbaut, gewonnen.

Mit dem Ziel eines optimierten Bauteilverhaltens werden häufig Bauteile bestehend aus
mehren Schichten eingesetzt. Dabei werden auch gezielt poröse Materialien verwendet.
In der vorlegenden Arbeit werden diese Schichten mit der Theorie von Biot beschrieben.
Nicht poröse Schichten werden durch die klassische linearisierten Elastizitätstheorie mo-
delliert. Da das Materialverhalten der eingesetzten Materialien sehr unterschiedlich sein
kann, wird eine schichtweise Beschreibung des Schalenaufbaus vorgenommen. Diese teil-
weise Diskretisierung reduziert das Schalenproblem auf ein zweidimensional Problem auf
der Referenzfläche. Zur Lösung dessen wird eine FEM verwendet, welche auf Ansatz-
funktionen beliebig wählbarer Ordnung aufbaut.

Für die Diskretisierung von Luftvolumina wird eine auf einem Variationsprinzip beruhen-
de MFS entwickelt. Dies hat den Vorteil, dass keine aufwendige Vernetzung von Volumina
erforderlich ist. Darüber hinaus wird durch die Approximation mithilfe von Fundamental-
lösungen die Abstrahlbedingung, welche im Fall von unbeschränkten Gebieten relevant
ist, exakt erfüllt. Um die Interaktion der Schalenstruktur mit der umgebenden Luft zu
simulieren, wird ein neues Kopplungsschema der FEM und der MFS vorgeschlagen.

Die implementierten Methoden werden mit numerischen Beispielen verifiziert. Die kor-
rekte Implementierung der ungekoppelten Methoden wird anhand von konstruierten Bei-
spielen mit exakten Lösungen gezeigt. Die gekoppelte Methode wird mithilfe von radial-
symmetrischen Lösungen verifiziert. In einer Reihe von weiteren Beispielen wird das
Potential der entwickelten Methoden veranschaulicht.
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NOTATION

The index notation is used throughout this thesis except for Chapter 2, where the direct
notation predominates. Greek indices receive the values 1, 2, whereas Latin indices receive
the values 1, 2, 3. The Einstein summation convention is applied. Thus, whenever an index
occurs once as a superscript and once as a subscript we sum over this index. Commas (),i
denote derivatives with respect to the respective coordinates.

As long as no other meaning is explicitly given to a certain symbol within the text, its
meaning corresponds to the following notation list. Some symbols refer to more than one
meaning. However, their meaning becomes clear in a given context.

General symbols

i imaginary unit number
∇ · (·) divergence operator
∇(·) gradient operator
∆ Laplace operator
(·),i derivative with respect to θ i

〈·〉 determinant
adj(·) adjugate matrix

Special symbols

Ω domain
∂Ω,Γ boundary of the domain
x Cartesian coordinate
t time, shell thickness
u displacement vector
εεε linearized strain tensor
ρ mass density, fluctuating mass density
v velocity
b body-force density
σσσ stress tensor
t traction vector

iii



n normal vector
p fluid pressure
K bulk modulus
ω angular frequency
f frequency
k wave number
ΓD boundary with prescribed Dirichlet data
ΓN boundary with prescribed Neumann data
gD prescribed Dirichlet data
gN prescribed Neumann data
C Elasticity tensor
λ first Lamé parameter
µ second Lamé parameter
ū vector-valued test function
p̄ scalar-valued test function
Mu, Ku bilinear forms, mass and stiffness matrix
L, D bilinear forms, coupling matrices
H1 space of functions with weak square integrable first order derivative
φ Porosity of porous media, level-set function
U fluid displacement vector
εεεs,ε f Strain tensor of the solid skeleton and the fluid
σσσ s,σσσ f partial stress tensor of the solid skeleton and the fluid
b viscose drag
ρs,ρ f mass density of the solid and the fluid
ρa apparent mass density
α∞ tortuosity
q relative mass flux
σσσ tot total stress tensor
Γae interface between an acoustic fluid and an elastic body
Γap interface between an acoustic fluid and a poroelastic body
Γep interface between an elastic body and a poroelastic body
ei,ei i-th standard base vector
g,g parametrization, surface parametrization
U,Ū parameter domain, parameter plane
Ω̄ surface in real space
θ i curvilinear coordinates
θ 3 thickness coordinate
Gi covariant base vector
Gi contravariant base vector
Gi j covariant coefficient of the metric
Gi j contravariant coefficient of the metric

iv



δ
j

i Kronecker delta
J Jacobi matrix
Γi jl, Γ l

i j Christoffel symbols of first and second kind
Gi covariant surface base vectors
Gi contravariant surface base vectors
hαβ coefficient of the second fundamental form
H mean curvature
K Gaussian curvature
µα

β
components of the shifter

t shell thickness
(·)
u ,

(·)
p parameter in shell model

L number of layers
(·)
V thickness function
Ni finite element basis function
Φe mapping from reference element to the parameter or real space
ξ , η coordinates in the reference element
φi element shape function
p finite element ansatz order
Ω̄h discrete surface
a mapping from Ω̄h to Ω̄

s search directions
Ω+ upper half-space
Ωint interior fluid domain
Ωext exterior fluid domain
G fundamental solution
H gradient of the fundamental solution

v





1 INTRODUCTION

The so far underestimated effects of the high noise level humans are exposed to has be-
come an important focus in research. This can be seen on the web-page of the World Health
Organization Europe: “Excessive noise seriously harms human health and interferes with
people’s daily activities at school, at work, at home and during leisure time. It can dis-
turb sleep, cause cardiovascular and psychophysiological effects, reduce performance and
provoke annoyance responses and changes in social behaviour.

Traffic noise alone is harmful to the health of almost every third person in the WHO Eu-
ropean Region. One in five Europeans is regularly exposed to sound levels at night that
could significantly damage health.” 1

This increased awareness of noise lead to higher requirements on the vibro-acoustic per-
formance of products. In order to comply with the strict legal regulations, this has to be
taken into account as early as in the design phase. Nevertheless, the trend to reduce ma-
terial usage with the help of lightweight constructions complicates the goal to reach these
vibro-acoustic requirements. Typically, lightweight poroelastic materials are used in the
design to cope with this problem. In order to make the design process more efficient, it is of
interest to replace expensive and time consuming experiments by adequate computer sim-
ulations. This thesis aims to enlarge the predictive capabilities of simulations for complex
curved structures including poroelastic damping material.

1.1 State of the art

In this section, we introduce the main elements of our developments and provide a brief
state of research on them. A more comprehensive review of the state of research is given
in the respective sections.

Physical models in vibro-acoustic simulations. Due to the fact that in most applica-
tions only small vibration amplitudes occur, it is usual to use linear models in the field of
vibro-acoustics. Therefore, air volumes are modeled with the acoustic fluid, whereas solid
structures are modeled with the linearized theory of elasticity. Poroelastic materials are
described with the dynamic Biot theory. This theory was published in [23] and has been
adapted to acoustic applications. Present-day descriptions can be found in [5] and [60].

1http://www.euro.who.int/en/health-topics/environment-and-health/noise/noise, 18.2.2017
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2 1 Introduction

Shells. Many structural parts can be classified as of shell-type. Therefore, their thickness
is very small when compared to the other dimensions. In such a situation, it is reasonable to
describe the geometry by a curved two-dimensional surface in space. This includes plates
as a special case, if the surface is flat. The analysis of thin structures is a long-standing
research topic. The first accepted elastic plate theory was already published in 1850 by
Kirchhoff [100]. However, he deduced his theory from ad hoc assumptions. The work of
Kirchhoff was extended to shells by Love [113]. However, the most used thin shell model
is attributed to Koiter [102, 103]. This model has been mathematically justified in [48].
The Koiter model uses only three displacement parameters and is therefore a shear-rigid
model. The development of shear-flexible kinematics is attributed to Reissner [143, 144]
and Mindlin [121]. The corresponding shell model with five parameters is named after
Naghdi [123, 124]. The Koiter model as well as the Naghdi model require to use a reduce
deformation energy in order to yield acceptable results. This means that the material law
has to be modified. In order to avoid a modification of the material law, shell models based
on seven-parameters seem to be appropriate, cf. [56]. However, if one fixed shell model
is used the error introduced by the model is fixed. A series of hierarchical shell models
addresses this issue [3, 16]. However, there proper construction is challenging in the case
of laminated structures.

The latter are in turn important in many applications focusing on optimized material usage.
A recent review of laminated plate and shell models is given in [36]. In principle, two types
of theories can be distinguished. In the first type the number of parameters is independent
of the number of layers. Such theories are termed equivalent single layer theory. The
second type referred to as layer-wise theories, where the number of parameters depends
on the number of layers. Such a theory is formed by packages of single-layer shell models
coupled at the layer interfaces.

Most of the work in the field is devoted to elastic structures. Nevertheless, the present
work deals with poroelastic shells. Following the ideas of Kirchhoff, thin poroelastic plate
theories for the consolidation problem [165] and the dynamic problem [169] have been
derived. In [160] the displacement kinematics are extended to allow shear deformations.
Following the idea of a three-dimensional resolution, a series expansion in thickness direc-
tion by means of monomials has been utilized for single layer poroelastic plates in [126].
This approach has been extended to layered panels in [125], utilizing a layer-wise mod-
elling. In this approach possible air layers can also be considered. A rigorous derivation
of poroelastic plate and shell theories have been published only recently [117, 120].

Finite Element Method for shells with focus on exact geometry. The Finite Element
Method (FEM) is the most popular numerical discretization method for the analysis of
thin walled structures. Due to the shell-type geometry, various geometric locking phe-
nomena can occur. To overcome this issue, a huge number of different techniques have
been developed. In order to resolve the locking issues, many finite elements are based
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on mixed variational formulations. Common techniques are Reduced Integration, As-
sumed Natural Strains, Enhanced Assumed Strains, and the Discrete Strain Gap method
(cf. [40, 104, 184]). Another possibility is the use a high order ansatz functions to reduce
the locking effects [64, 140].

Since the creation of the Isogeometric Analysis (IGA) framework [90], the use of exact
geometry descriptions steaming from CAD systems within the analysis has become a focus
in research. The basic idea of IGA is to extend the standard isoparametric concept to
NURBS functions. Thus, the geometry is described parametrically. The parametrization
is inherited from CAD. However, [11] deals with general parametrizations. To our best
knowledge, this is the only publication which investigates shell problems by making use
of the exact geometry in the case of general parametrizations.

Beside parametric surface descriptions implicit descriptions are also possible. To our best
knowledge, there is no method dealing with shell problems which incorporates the exact
geometry in the case of implicitly given geometry. [61] and [52] are the only two publi-
cations proposing an exact geometry treatment using surface finite elements solving the
Laplace-Beltrami equation. This approach relies on the use of the signed distance func-
tion. Therefore, it is only exact for closed surfaces and for special cases of surfaces with
boundary.

Boundary related methods. In the present work, we want to discretize not only a shell
structure but also the surrounding fluid domain. We focus on the cases where these fluid
domains are described only by their boundary. When only the boundary of a complex
shaped domain is given, it can be a rather difficult task to generate a volume mesh. To
tackle this problem, one possibility is to use embedded/fictitious domain methods. These
methods are based on the idea of defining an auxiliary domain which can be meshed
easily. As recent contributions in this field, we would like to mention the Finite Cell
method [134, 156], the Cartesian grid method [118] and the CutFEM [35]. Recent devel-
opments in the context of Constructive Solid Geometry modeling can be found in [153]
and [178]. An interesting application of this concept to shell analysis is given in [141].
Instead of embedding the problem domain in real space the parametric problem domain
is embedded in an auxiliary parametric domain. However, in [141] no general mapping
between parametric space and real space is deployed (cf. [99]).

Another possibility for the analysis of domains described by their boundary is to resort
to boundary related methods, where no volume mesh is required. The most developed
method of this type is the Boundary Element Method (BEM). In the direct BEM, the un-
known boundary data are discretized, whereas in the indirect BEM, an auxiliary density
function defined on the boundary is sought. This density function is used to describe the
solution field. The indirect BEM can be seen as a Trefftz-type method. In such methods,
the solution is approximated by a linear combination of basis functions, which fulfill the
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underlying partial differential equation. Reviews on Trefftz-type methods along with their
classification can be found in [101] and [85]. A Trefftz-type which was developed with
the aim to solve vibro-acoustic problems is the Wave Based Method (WBM) developed
in [62]. Since its first publication, this method has been constantly developed further [59].
Within the WBM, the solution is determined by means of a variational formulation. An-
other Trefftz-method is the Method of Fundamental Solutions (see e.g. [71]). This method
uses fundamental solutions of the underlying partial differential equation for the solution
approximation. Typically, the solution is determined by collocation at the boundary. Due
to the use of fundamental solutions, the Sommerfeld radiation condition is fulfilled exactly.
Thus, unbounded domains are easily treatable.

Coupled methods. It is common practice to consider vibro-acoustic systems as a num-
ber of interacting subsystems. As fluid domains and structural parts are of different nature,
different discretization methods might be applied. Such methods have been reviewed in
the previous two paragraphs. In order to simulate the full system considering all inter-
actions, the different methods have to be coupled. The coupling of FEM-BEM is well
known in literature. We mention [152] and [76] among others for the analysis in time
domain. A FEM-BEM coupling schema for frequency domain sensitivity analysis was
presented in [79]. A considerable amount of research work was devoted to the coupling
of the WBM and the FEM for different situations as well. We mention the cases of struc-
tural (FEM) - acoustic fluid (WBM) coupling [171], acoustic fluid (WBM) - poroelastic
domain (FEM) coupling [93] and the coupling of two different poroelastic domains [105].
Furthermore, a coupled FEM-MFS schema for two two-dimensional elastic domains was
proposed in [81] and extended to a 2.5-dimensional model for the prediction of vibrations
due to underground railway traffic in [9].

1.2 Parametric and implicit geometry description

One main aspect of this thesis is the use of exact geometry description. We aim to avoid
the discretization of the geometry. In order to motivate the geometric settings treated in
this thesis, the simple example of a circle is considered.

What is a circle?

It is the set of all points in a plane that are at a given distance from a given center. Math-
ematically speaking, in the Cartesian plane, a circle C with radius r and the center at the
origin reads

C = {(x,y) ∈ R2 | x2 + y2− r2 = 0}. (1.1)



1.2 Parametric and implicit geometry description 5

x y weight
1 0 1
1 1

√
2

2
0 1 1
-1 1

√
2

2
-1 0 1
-1 -1

√
2

2
0 -1 1
1 -1

√
2

2
1 0 1

Table 1.1: Control points and weights for a NURBS curve of a circle

Another description of the same circle is given by

C = {c(t) = (r cos(t),r sin(t)) ∈ R2 | 0≤ t ≤ 2π}. (1.2)

A third possibility is to utilize the concept of NURBS curves. To this end, we introduce
the B-spline functions, which are given recursively by

Ni,n = fi,nNi,n−1 +gi+1,nNi+1,n−1, (1.3)

where
fi,n(t) =

t− ki

ki+n− ki
(1.4)

and
gi,n(t) =

ki+n− t
ki+n− ki

. (1.5)

Here, t is the parameter and ki is the ith knot. The lowest order basis functions Ni,0 are
piece-wise constant functions. Then a NURBS curve is given by

c(t) =
l

∑
i=1

Ni,nwi

∑
l
j=1 N j,nw j

Pi (1.6)

where l stands for the number of control points Pi and corresponding weights wi. With
these definitions, a third possibility to describe a circle is given by the list of control
points and corresponding weights given in Table 1.1 and the knot vector {0,0,0,π/2,
π/2,π,π,3π/2,3π/2,2π,2π,2π}.

All in all, there is an infinite number of possibilities to describe one and the same circle.
We refer to the description (1.1) as an implicit representation. A point p ∈ C fulfills the
equation φ(p) = 0, where φ(p) = x2 + y2− r2 in the case of the circle. The other two
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descriptions above are referred to as of parametric type. A point p ∈ C is given by an
equation depending on the single parameter t. Each of these three possibilities has its own
advantage. In the case of the implicit curve, it is rather easy to determine if a point p ∈ R2

lies on the circle, inside or outside of it. This can be easily judged by evaluating φ(p). In
the case of a parametric representation, this question is much more difficult to answer. On
the other hand, it is easy to place points on the parametric curve. In order to integrate on a
curve, we need a parametrization. For example, to compute the length L of the circle, we
have to solve the integral

L =

2π∫
t=0

∣∣∣∣dc(t)
dt

∣∣∣∣dt. (1.7)

In view of the integrand, the ’best’ parametrization is the arc-length parametrization, where∣∣∣dc(t)
dt

∣∣∣= 1. For the circle, this parametrization is stated in (1.2). The NURBS parametriza-
tion given above is not optimal regarding this aspect. However, it is not possible to ob-
tain an arc-length parametrization of a circle by means of NURBS. Nevertheless, NURBS
curves and surfaces constitute a standard technique in CAD, since they allow for an easy
manipulation of the geometric object.

In this section, we considered parametric and implicit descriptions of a circle in the Carte-
sian plane. As this thesis deals with the analysis of shells, we will generalize these con-
cepts in order to describe general surfaces in the three-dimensional Cartesian space. For
the parametric description, we allow for general equations, which includes e.g. NURBS
surfaces as special case.

1.3 Outline

In Chapter 2, the physical models studied in this thesis are introduced. These are the
acoustic fluid modeling the air, the theory of elasticity modeling solids and the Biot theory
of poroelasticity. We provide the governing equations, boundary conditions and coupling
conditions for each model and for all possible coupling situations.

Chapter 3 is devoted to shell structures. First, the differential geometry of shells is pre-
sented. Second, the classical models for elastic shells are reviewed. Finally, we develop a
model for laminated poroelastic shells.

In Chapter 4, the numerical methods to solve the arising boundary value problem are pre-
sented. We use the Finite Element Method to discretize the shell structure and the Method
of Fundamental Solutions to discretize the air. A coupling of both methods is developed.

The verification of the implementation of the numerical methods developed in Chapter 4
is conducted in Chapter 5. We investigate the convergence behavior as the mesh is refined.
For the shell FEM and the MFS exact solutions are used for the error evaluation. They are
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constructed by means of the Method of Manufactured Solutions. The coupled method is
verified against radial symmetric solutions.

Chapter 6 deals with further numerical results of the implemented methods. The presence
of locking for low order FEMs is assessed. The influence of integration and the distance
of the source points in the MFS is investigated. Furthermore, vibro-acoustic examples are
presented in order to demonstrate the capabilities of the methods.

The thesis will be concluded with a summary in Chapter 7. A brief outlook on possible
future work is provided.





2 PHYSICAL MODELS

In this chapter, the governing equations of the physical models are introduced, which will
be solved numerically in Chapter 4. The treated models are the acoustic fluid, the elastic
solid, and the poroelastic solid. All these models describe wave propagation phenomena
and are thus time dependent. In this thesis we consider the case of harmonic time de-
pendency only. In order to set up problems where are all three considered models are
interacting at the same time, boundary and coupling conditions are presented.

All physical models presented here have common assumptions. First, the theory of contin-
uum mechanics is adopted. It is assumed that matter completely fills the space it occupies.
Therefore, the material is modeled as a continuous mass, rather than as discrete particles,
ignoring the fact that matter is made of atoms. Consequently, only effects with length
scales much greater than the atomic level are studied. The second common assumption is
that only small changes in the state variables (e.g. pressure or displacements) are consid-
ered. Therefore, no distinction between the Euler description and the Lagrange description
is necessary. Furthermore, this allows to neglect higher order terms in the governing equa-
tions and thus the obtained models are linear.

2.1 Material independent equations

In this section, the material independent concepts will be presented, which build the basis
for all subsequent models. These are the kinematics of material bodies and the balance
laws. In the following, we consider a material body Ω⊂ R3 with boundary Γ.

2.1.1 Kinematics

We describe the deformation of the material body by the deformation of the individual
material points. Let X be the position vector of a material point at the time t0. Due to
movement and deformation, the material point will occupy x(t) at time t. In the following,
the motion of the body is described by x(X, t). Assuming that the differential

F(X, t) =
∂x
∂X

(2.1)

exists and is non-singular, a bijective relation between X and x exists. Typically, F is called
the deformation gradient. Since the deformation gradient F contains information about

9
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local rigid body motions, it is not suitable as a strain measure. The polar decomposition of
the deformation gradient can be expressed as

F = R ·U = V ·R, (2.2)

where R is a proper orthogonal tensor and U and V are symmetric positive definite tensors.
An appropriate strain measure is given by the Green-Lagrange strain tensor

E =
1
2

(
F> ·F− I

)
=

1
2

(
U> ·U− I

)
, (2.3)

which is also called the change in metric tensor [46]. Introducing the displacement field
u = x−X, the Green-Lagrange strain tensor can be written as

E =
1
2

(
(∇u)>+∇u+(∇u)> ·∇u

)
, (2.4)

where ∇u is the gradient of u. Linearization of (2.4) with respect to u yields the linearized
stain tensor

εεε=
1
2

(
(∇u)+(∇u)>

)
. (2.5)

2.1.2 Balance laws

Balance laws are material independent equations expressing the change of state of a con-
tinuum due to external influence. These equations are mostly formulated as integral equa-
tions. Assuming smoothness of the integrands, the equations can be localized. In the
present thesis, we focus on mechanical fields. Extensions to other fields (thermal, elec-
tric,...) are not considered.

Balance of mass. In order to formulate the balance of mass, we define the mass M of a
body Ω as

M =
∫
Ω

ρ dx, (2.6)

where ρ stands for the density. The balance of mass expresses how M changes with respect
to time. We assume that no mass enters Ω through its boundaries and no internal produc-
tion or loss of mass happens. Thus, the material time derivative of M equals zero, dM

dt = 0.
Due to this special structure of no change, the balance of mass is called conservation of
mass in this case. For further use, differentiation and integration are changed in order. This
is accomplished in the Reynolds transport theorem

dM
dt

=
∫
Ωt

(
∂ρ

∂ t
+∇ · (ρ v)

)
dx, (2.7)
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where v = ∂x
∂ t represents the velocity. ∇ ·v denotes the divergence of v. Since the domain

Ω is arbitrary, the localization theorem yields the local conservation of mass

∂ρ

∂ t
+∇ · (ρ v) = 0. (2.8)

For a smooth spatial field Φ holds [84]

d
dt

∫
Ω

Φ ρ dx =
∫
Ω

Φ̇ ρ dx, (2.9)

if conservation of mass is assumed.

Balance of momentum. In order to state the momentum balance laws, we define the
linear momentum of a body Ω as

l=
∫
Ω

v ρ dx, (2.10)

and the angular momentum about the origin

a=
∫
Ω

(x×v) ρ dx. (2.11)

In view of (2.9), as a consequence of the conservation of mass, the relations

d
dt
l=

∫
Ω

dv
dt

ρ dx,

d
dt
a=

∫
Ω

(
x× dv

dt

)
ρ dx

(2.12)

hold. The momentum balance laws are given by

d
dt
l=

∫
Γ

t dsx +
∫
Ωt

b dx,

d
dt
a=

∫
Γ

x× t dsx +
∫
Ω

x×b dx,
(2.13)

where t stands for the surface tractions and b is the body force density. A central result in
continuum mechanics is given by Cauchy’s Theorem [84]. It asserts that a necessary and
sufficient condition that the momentum balance laws be satisfied is that there exist a tensor
field σσσ (stress tensor) such that
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(a) for each unit vector n,
t(n) =σσσ ·n,

(b) σσσ is symmetric,

(c) σσσ satisfies the equation of motion

ρ

(
∂v
∂ t

+v ·∇v
)
= ∇ ·σσσ +b. (2.14)

Up to this point, we have summarized the material independent equations that will be used
in the rest of this thesis. In the following three sections, we will specialize these equations
and introduce material dependent constitutive laws, in order to obtain the equations for an
acoustic fluid, an elastic solid and a poroelastic solid.

2.2 Acoustic fluid

The acoustic fluid is a widely used model to describe the propagation of sound in fluids.
The starting point for the derivation is the conservation of mass

∂ρ

∂ t
+∇ · (ρv) = 0, (2.15)

and the equation of motion

ρ

(
∂v
∂ t

+v ·∇v
)
= ∇ ·σσσ +b. (2.16)

In the following, we will introduce several assumptions in order to derive the equations
for an acoustic fluid [145]. At first, we assume that the fluid is inviscid and no shear
stresses occur. Therefore, no energy is dissipated inside the fluid and the stress tensor can
be written in terms of the pressure as σσσ =−p I. Next, we assume only small disturbances
around a mean value. The physical quantities can be expressed as the sum of their time
mean parts and fluctuating parts,

ρ = ρ0 + ρ̃,

v = v0 + ṽ,
p = p0 + p̃.

(2.17)

Here, ρ0, v0, p0 represent the initial density, the mean flow velocity and the ambient pres-
sure. Additionally, we assume that the fluid is homogeneous and isotropic. Thus, the
time mean parts are constant with respect to space and time. The quantities ρ̃, ṽ, p̃ stand
for the spacial and time variable density variation, velocity variation, and pressure varia-
tion, respectively. Furthermore, it is assumed that the fluid is initially at rest. Hence, the
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mean flow velocity is zero, v0 = 0. Introducing all assumptions so far in (2.15) and (2.16)
yields

∂ ρ̃

∂ t
+∇ρ̃ · ṽ+(ρ0 + ρ̃)∇ · ṽ = 0,

(ρ0 + ρ̃)

(
∂ ṽ
∂ t

+ ṽ ·∇ṽ
)
+∇ p̃ = b,

(2.18)

where we used ∇ρ0 = 0 and ∇p0 = 0. Since acoustic disturbances have only a very small
amplitude, we can neglect products of small parameters, which leads to

∂ ρ̃

∂ t
+ρ0∇ · ṽ = 0,

ρ0
∂ ṽ
∂ t

+∇ p̃ = b.
(2.19)

In (2.19), two equations for three variables are given. In order to close the theory, an
additional equation has to be provided. It is assumed that the fluid is an ideal gas, and the
wave propagation happens adiabatic and reversible. Thus, the equation is

ρ̃ =
ρ0

γ p0
p̃, (2.20)

where γ =
cp
cV

is the ratio of specific heat at constant pressure and specific heat at constant
volume. For air, it has the value γ = 1.4. Introducing the bulk modulus Ka = γ p0, the
governing equations of an acoustic fluid in the time domain are

∂ p
∂ t

+Ka
∇ ·v = 0,

ρ0
∂v
∂ t

+∇p = b.
(2.21)

In (2.21), we have dropped the tilde for the sake of a simpler notation. In the following,
we will always refer to the fluctuating part, although not stated.

Frequency domain. In a next step, the corresponding frequency domain equations are
developed. To this end, a harmonic time dependency is assumed. Therefore, a time depen-
dent quantity can be written as the real part of a product of two functions, i.e.

χ(x, t) = ℜ[χ̄(x)eiωt ] (2.22)

for a generic real valued field χ , whereas χ̄ is a complex valued field. Furthermore, i and ω

stand for the imaginary unit and the angular respectively. The angular frequency is related
to the ordinary frequency f by ω = 2π f . Assuming a time dependency of type (2.22) for
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all variables, the frequency domain equations are obtained. The balance of mass and the
balance of momentum in the frequency domain are

iω p̄+K ∇ · v̄ = 0 (2.23)

and
iωρ0v̄+∇ p̄ = f̄ . (2.24)

Thus, the particle velocity can be expressed in terms of the pressure gradient,

v̄ =
f̄−∇p̄
iωρ0

. (2.25)

Inserting (2.25) in (2.23) yields the Helmholtz equation

k2 p+∆p = g, (2.26)

where g = ∇ · f̄, k = ω

√
ρ0
K is the wave number and ∆ = ∇ ·∇ the Laplace operator. In

(2.26) we have dropped the bar for the sake of simplicity.

Boundary value problem. Given the material parameter ρ, K and the domain Ω with
boundary Γ = ΓD∪ΓN , let g, gD, gN be given scalar functions. Find p(x,ω) such that

k2 p+∆p = g in Ω,

p(x,ω) = gD(x,ω) for x ∈ ΓD,

vn(x,ω) = gN(x,ω) for x ∈ ΓN .

(2.27)

On the Dirichlet boundary ΓD, the pressure has the prescribed value gD, whereas on the
Neumann boundary ΓN , the normal velocity vn = v · n has the prescribed value gN . In
the case of an unbounded domain, the solution has to fulfill the Sommerfeld radiation
condition

lim
|x|→∞

|x|
(

∂

∂ |x|
+ ik

)
p(x) = 0, (2.28)

first considered in [161].

2.3 Elastic solid

In this section, we summarize the governing equations for wave propagation in elastic
media. Among many others, we mention the books of Altenbach [6] and Holzapfel [86]
for nice presentations of the nonlinear theory. An in-depth mathematical foundation of the
theory of elasticity is given by Gurtin [84] and Marsden and Hughes [119], among others.
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A book with special focus on differential geometry is given by Ciarlet [46]. Books with
a focus on wave propagation in elastic solids are those by Achenbach [1], Eringen and
Suhubi [70] and Graff [83], among many others.

In contrast to the acoustic fluid, where the variable in (2.26) is the pressure p, in case of
an elastic solid, we choose the displacement field u as the primal variable. Assuming only
small oscillations around a balanced initial state, the equation of motion (2.14) simplifies
to

ρ0
∂ 2u
∂ t2 = ∇ ·σσσ +b. (2.29)

Here, u and σσσ refer to the oscilatory parts. Since only small oscillations are considered,
it is quite feasible to linearize the material law at the initial state. Furthermore, we are
assuming a homogeneous and isotropic material. Then the relation between stress tensor
and strain tensor can be written as

σσσ = C : εεε (2.30)

with the isotropic elasticity tensor

C= λ I⊗ I+2µ I (2.31)

where I is the second-rank identity tensor, and I is the symmetric part of the fourth-rank
identity tensor. λ , µ and are the first and the second Lamé parameters. They can be
expressed in terms of other important material parameters

λ =
Eν

(1+ν)(1−2ν)
, (2.32)

µ =
E

2(1+ν)
, (2.33)

λ = K− 2
3

G, (2.34)

µ = G, (2.35)

where E is the Young’s modulus, ν is the Poisson’s ratio, K is the bulk modulus, and G
the shear modulus. Nevertheless, only two parameters can be given independently for an
isotropic material.

Frequency domain. Assuming harmonic time dependency (2.22), the equation of mo-
tion gets

−ρ0 ω
2u = ∇ ·σσσ +b. (2.36)

In order to include dissipation in the elastic solid, we allow for complex valued material
parameters. In the present thesis we assume that the material parameters are frequency
independent. We remark that this is not consistent with any viscous dissipation model in
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time domain. For a detailed discussion on viscoelasticity, we refer to [44] among others.
Inserting (2.30) and (2.5) in (2.29) yield the elastodynamic wave equation in frequency
domain

−ρ0 ω
2u = (λ +µ)∇ ·∇u+µ∆u+b. (2.37)

Next, we state the strong form of the boundary value problem.

Boundary value problem. Given the material parameter ρ, λ , µ and the domain Ω with
boundary Γ = Γi

D ∪ Γi
N for each i = 1,2,3. Let b be a given vector-valued function and

uD
i , tN

i given scalar-valued functions. Find u(x,ω) such that

−ρ ω
2u = ∇ ·σσσ +b in Ω,

σσσ = C : εεε

εεε=
1
2

(
(∇u)+(∇u)>

)
ui(x,ω) = uD

i (x,ω) for x ∈ Γ
i
D,

ti(x,ω) = tN
i (x,ω) for x ∈ Γ

i
N .

(2.38)

On the Dirichlet boundary Γi
D the displacement in direction i has the prescribed value uD

i .
On the Neumann boundary Γi

N the surface traction in direction i has the prescribed value
tN
i .

The Finite Element Method, which will be used to discretize the elastic solid domains is
rather based on the weak form of the governing equations than on the strong form given
above. In the following, the derivation of the weak form is given.

Weak form. We follow the presentation in [94]. The space of test functions is defined as
V0 = {ū ∈ [H1(Ω)]3| ūi = 0 on Γi

D}. Multiplying (2.36) with a vector-valued test function
ū ∈V0 and integrating over the domain Ω we obtain∫

Ω

(−ρ0 ω
2u · ū− (∇ ·σσσ) · ū) dx =

∫
Ω

b · ū dx. (2.39)

Integration by parts of the second term on the left yields∫
Ω

(−ρ0 ω
2u · ū+σσσ : ∇ū) dx =

∫
Ω

b · ū dx+
∫
Γ

t · ūdsx. (2.40)

Due to the symmetry of σσσ ,

σσσ : ∇ū =σσσ : εεε(ū) = (C : εεε(u)) : εεε(ū) (2.41)
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holds. In a next step, the boundary conditions are taken into account. We have ti = tN
i on

Γi
N and by construction of the test space ūi = 0 on Γi

D. Considering this in the last integral
we obtain

−ρ ω
2Mu(u, ū)+Ku(u, ū) = fV (ū)+ fN(ū), (2.42)

where
Mu(u, ū) =

∫
Ω

u · ū dx,

Ku((u, ū) =
∫
Ω

(C : εεε(u)) : εεε(ū) dx,

fV (ū) =
∫
Ω

b · ū dx,

fN(ū) =
∫

Γi
N

tN
i ūi dsx.

(2.43)

Thus, the weak form of the problem reads: Find u ∈ {u ∈ [H1(Ω)]3| ui = uD
i on Γ

ui
D} such

that (2.42) is fulfilled for all ū ∈V0.

2.4 Poroelastic solid

In poroelasticity, the coupled mechanics of deformation of the solid matrix and the fluid
flow in the pore network are considered. The first poroelastic model was developed by von
Terzaghi in 1927 [177], who investigated consolidation using a one-dimensional model. In
1941, Biot published a three-dimensional consolidation theory [21], which was extended
to anisotropic material behavior in 1955 [22]. A theory for wave propagation in poroelastic
media was published in 1956 by Biot [23, 24].

A theory strictly based on thermodynamic principles is the Theory of Porous Media (TPM).
It is based on the Theory of Mixtures [28] and the concept of volume fractions. Following
this approach, Bowen [29, 30] described fluid-saturated porous media considering incom-
pressible as well as compressible constituents. Subsequent developments of the TPM were
mainly motivated by geomechanics. We refer to [58] and [69] for a presentation of these
developments.

Although the Biot theory is based on engineering intuition rather than on a consistent
thermodynamic derivation, it enjoys a wide acceptance among engineers. Nevertheless,
assuming linear models, the Biot theory and the TPM have almost the same governing
equations [155]. Since many developments motivated by the modeling of sound absorbing
materials are based on the Biot theory, we will use this theory in the present thesis.
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Biot Theory Following Biot [23], we consider a fully saturated porous medium. There-
fore, we define the bulk volume V , the solid volume V s, and the fluid volume V f such
that V = V s +V f . It is assumed that the fluid can move within the interconnected void
space V f , whereas the sealed void space is part of V s. Assuming a statistically isotropic
homogeneous material, we can define the effective porosity as

φ =
V f

V
, (2.44)

which we call simply porosity in the following. The strain tensor for the elastic skeleton
are computed analogously to the pure elastic case

εεεs =
1
2

(
(∇us)+(∇us)>

)
, (2.45)

where us denotes the solid displacement. The volumetric strain in the fluid is given by

ε f = ∇ ·U, (2.46)

where U denotes the fluid displacement. The constitutive law for the stress tensor in the
solid skeleton is

σσσ
s = 2µ εεεs +

(
λ +

Q2

R

)
tr(εεεs) I+Q ε f I, (2.47)

and for the fluid phase
σσσ

f =
(

Q tr(εs)+R ε f
)

I. (2.48)

The parameters λ and µ are the usual Lamé constants. The parameters Q and R consider
a volumetric coupling between the solid skeleton and the fluid phase. Considering the
micro-mechanical level [63], they can be expressed

Q =
φ(α−φ)(Ks)2K f

K f (Ks−K)+φKs(Ks−K f )
,

R =
φ 2(Ks)2K f

K f (Ks−K)+φKs(Ks−K f )
,

(2.49)

where Ks, K f and K are the bulk moduli of the solid and fluid constituents and the skeleton
respectively. Assuming an inviscid fluid at macroscopic scale, the relation of fluid stress
and the pore pressure is given by

σσσ
f =−φ pI. (2.50)

The partial momentum balances are given by

∇ ·σσσ s = ρ11ü+ρ12Ü+b
(
u̇− U̇

)
, (2.51)

and
∇ ·σσσ f = ρ12ü+ρ22Ü−b

(
u̇− U̇

)
. (2.52)
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Therein, b is the viscose drag, which occurs on a microscopic level due to a relative motion
of the solid skeleton and the fluid phase. The densities are defined as

ρ11 = (1−φ)ρs +ρa,

ρ22 = φρ f +ρa,

ρ12 =−ρa,

where ρs is the density of the solid, ρ f is the density of the fluid, and ρa is the apparent
mass density, which takes inertia coupling effects into account. We compute the apparent
mass density by

ρa = φρ f (α∞−1), (2.53)

where α∞ is the tortuosity. This structural parameter considers the flow pattern at micro-
scopic level due to the presence of the frame.

Frequency domain. In a next step, we assume harmonic time dependency in order to
obtain the equations to be solved later. The momentum balances get

∇ ·σσσ s =−ω
2 (ρ11u+ρ12U)+ iωb(u−U) (2.54)

and
∇ ·σσσ f =−ω

2 (ρ12u+ρ22U)− iωb(u−U) . (2.55)

The relative mass flux gets
q = iωφ (U−u). (2.56)

In the following, the governing equations are treated further in order to make them suitable
for a finite element formulation in the variables u and p. Using (2.50), we compute from
(2.55) the fluid displacement

U =
−φ∇p+(ω2ρ12 + iωb)u

−ω2ρ22 + iωb
, (2.57)

and the relative displacement

U−u =
−φ∇p+ω2φρ f u
−ω2ρ22 + iωb

=
β

ω2ρ f φ
(−∇p+ω

2
ρ f u), (2.58)

where we have introduced

β =
ω2ρ f φ 2

−ω2ρ22 + iωb
. (2.59)

Inserting (2.45), (2.46) and (2.50) in (2.48) and some rearrangement yields

φ ∇ · (U−u)+α ∇ ·u+
φ 2

R
p = 0. (2.60)
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Together with equation (2.58), we get

− β

ω2ρ f
∆p+(β +α) ∇ ·u+

φ 2

R
p = 0. (2.61)

In (2.47) and (2.48), the partial stress tensors for the solid and fluid phase were used.
Another possibility is to use the total stress tensor σσσ tot =σσσ s +σσσ f . Then,

σσσ
tot = 2µ εεεs +λ tr(εεεs) I−α p I, (2.62)

where α = φ(1+ Q
R ) = 1− K

Ks
is the so-called effective stress coefficient [63]. For typical

sound absorbing materials used in acoustic applications, the bulk modulus of the elastic
solid Ks is very large compared to the bulk modulus of the porous material K. Therefore,
it is reasonable to use the approximation α = 1. The effective stress is defined as

σσσ
eff =σσσ

tot + p I, (2.63)

and therefore
σσσ

eff = 2µ εεεs +λ tr(εεεs) I, (2.64)

is in analogy with the pure elastic case. Adding (2.51) and (2.52) and taking (2.57) into
account results in

∇ ·σσσ tot +ω
2u
(
ρ +ρ f β

)
−β ∇p = 0, (2.65)

where the bulk density ρ = (1−φ)ρs +φρ f is introduced.

High frequency correction. In the above equations, fluid flow of Poiseuille type is as-
sumed. In the case of high frequencies, this assumption breaks down. Therefore, the
above theory is modified by considering frequency dependent material parameters. Fol-
lowing [92], the frequency dependent viscous drag is given as

b(ω) = σφ
2GJ(ω). (2.66)

Here, the relaxation function

GJ(ω) =

√
1+

4iα2
∞η f ρ0ω

σ2Λ2φ 2 (2.67)

is used with the viscous characteristic length Λ, the static flow resistivity σ , and the dy-
namic viscosity η f . In order to take thermal effects into account, Champoux and Al-
lard [39] introduced the thermal characteristic length Λ′. Following this approach, the
bulk modulus of the fluid becomes frequency dependent

K f (ω) =
γ p0

γ− γ−1
α ′(ω)

, (2.68)
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with the function

α
′(ω) = 1+

8η f

iωΛ′2Pr ρ f

√
1+ iρ f

PrΛ′2

16η f
. (2.69)

The Prandtl number Pr is given by

Pr =
cp

η f κ
, (2.70)

with the specific heat capacity at constant pressure cp and the thermal conductivity κ .

Boundary value problem. With the six equations (2.45) to (2.48), (2.51) and (2.52), the
Biot theory is complete. In order to state a boundary value problem, boundary conditions
are left to be specified. On the boundary of a poroelastic solid, two conditions have to be
given. The first condition is on the solid displacement or the total surface traction. Since
these quantities are vector-valued, one has to distinguish between different directions in
space. For each direction i, either the solid displacement ui (on Γ

ui
D) or the total surface

traction t tot
i (on Γ

ui
N ) has to be prescribed, such that Γ = Γ

ui
D∪Γ

ui
N . The second condition has

to be either a prescribed fluid pressure (on Γ
p
D), or a prescribed normal component of the

relative mass flux (on Γ
p
N) such that Γ = Γ

p
D∪Γ

p
N .

The strong form of the poroelastic boundary value problem reads: Given the material
parameter φ , ρs, ρ f , λ , µ, σ , α∞, η f , Λ, Λ′ and the domain Ω with boundary Γ =
Γ

ui
D ∪Γ

ui
N for i = 1,2,3 and Γ = Γ

p
D ∪Γ

p
N , let uD, tN , pD, qN be given functions. Find

u(x,ω) and p(x,ω) such that

∇ ·σσσ tot +ω
2u
(
ρ +ρ f β

)
−β ∇p = 0 in Ω,

− β

ω2ρ f
∆p+(β +α) ∇ ·u+

φ 2

R
p = 0 in Ω,

ui(x,ω) = uD
i (x,ω) for x ∈ Γ

ui
D,

t tot
i (x,ω) = tN

i (x,ω) for x ∈ Γ
ui
N ,

p(x,ω) = pD(x,ω) for x ∈ Γ
p
D,

qn(x,ω) = qN(x,ω) for x ∈ Γ
p
N .

(2.71)

Weak form. Multiplying (2.61) with a real and scalar-valued test function p̄ and integra-
tion over the domain gives∫

Ω

φ ∇ · (U−u) p̄ dx+
∫
Ω

(
α ∇ ·u+

φ 2

R
p
)

p̄ dx = 0. (2.72)
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Integration by parts of the first term yields

−
∫
Ω

φ (U−u) ·∇p̄ dx+
∫
Γ

φ (U−u) ·n p̄ dsx +
∫
Ω

(
α ∇ ·u+

φ 2

R
p
)

p̄ dx = 0. (2.73)

With the relative mass flux (2.56) and the relative displacement (2.58) we obtain

−
∫
Ω

β

ω2ρ f
(−∇p+ω

2
ρ f u) ·∇p̄ dx+

∫
Γ

q ·n
iω

p̄ dsx +
∫
Ω

(
α ∇ ·u+

φ 2

R
p
)

p̄ dx = 0.

(2.74)
Multiplying (2.65) with a vector valued test function and integration over the domain
gives, ∫

Ω

∇ ·σσσ tot · ū dx+
∫
Ω

(
ω

2 (
ρ +ρ f β

)
u−β∇p

)
· ū dx = 0. (2.75)

Integration by parts of the first term yields

−
∫
Ω

σσσ
tot : ∇ū dx+

∫
Γ

ttot · ū dsx +
∫
Ω

(
ω

2u
(
ρ +ρ f β

)
−β∇p

)
· ū dx = 0. (2.76)

Thus, we can formulate the weak form of the poroelastic boundary value problem: Find
u ∈ {u ∈ [H1(Ω)]3| ui = uD

i on Γ
ui
D} and p ∈ {p ∈ H1(Ω)| p = pD on Γ

p
D} such that

−Ku(u, ū)+ω
2
(

ρ +βρ
f
)

Mu(u, ū)+D(p, ū)−L(p, ū)+ fu(ū) = 0,

Kp(p, p̄)+Mp(p, p̄)+D(p̄,u)−L(p̄,u)+ fp(p̄) = 0,
(2.77)

are fulfilled for all test functions ū and p̄. The bilinear and linear forms are defined in
(2.43) and

Kp(p, p̄) =
β

ω2ρ f

∫
Ω

∇p ·∇ p̄ dx,

Mp(p, p̄) =
φ 2

R

∫
Ω

p p̄ dx,

D(p, ū) =
∫
Ω

p ∇ · ū dx,

L(p, ū) = β

∫
Ω

∇p · ū dx,

fu(ū) =
∫

Γ
ui
N

tN
i ūi dsx,

fp(p̄) =
∫

Γ
p
N

q ·n
iω

p̄ dsx.

(2.78)
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2.5 Coupling conditions

The goal of this section is to develop coupling conditions between the physical models
introduced. In Figure 2.1 the abstract setting of coupled continua is depicted. The do-
mains Ωa, Ωe, Ωp refer to an acoustic fluid, to an elastic solid and to a poroelastic solid
respectively. The boundary of Ωa is denoted by Γa = Γa

D∪Γa
N ∪Γae∪Γap and is the union

of four non-overlapping parts. In view of all three models, Γo
D and Γo

N are the Dirichlet
and the Neumann boundary of the domain Ωo, o ∈ {a,e, p}. Γae and Γap denote the cou-
pling boundary of the acoustic fluid domain Ωa with the elastic solid domain Ωe and the
poroelastic solid domain Ωp. The boundary of Ωe is denoted by Γe = Γe

D∪Γe
N ∪Γae∪Γep,

whereas the boundary of Ωp is Γp = Γ
p
D∪Γ

p
N ∪Γap∪Γep. The coupling boundary between

Ωe and Ωp is Γep. Before we consider the coupling of different models, we examine the

Ωa

Ωe

ΩpΓae

Γap

ΓepΓe
D

Γe
N

Γ
pu
D ∩Γ

pp
N

Γ
pu
D ∩Γ

pp
N

Γ
pu
N ∩Γ

pp
D

Γ
pu
N ∩Γ

pp
NΓa

N

Γa
D

Figure 2.1: Coupled continua: acoustic fluid continuum Ωa, elastic solid continuum Ωe,
poroelastic solid continuum Ωp

coupling of two elastic continua. The coupling of two elastic continua (Ω1,Ω2) over the
common interface Γ yields two conditions. The first condition which has to hold is the
continuity of the displacements

u(1) = u(2) on Γ. (2.79)

The second condition is the equilibrium of forces, which results in

t(1)+ t(2) = 0 on Γ. (2.80)

In the case of an acoustic f luid - elastic solid interface Γae also two coupling conditions
are necessary. According to the inviscid assumption for the acoustic fluid, no shear stresses
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occur in the fluid. Hence, particles of the fluid can move tangential to the interface without
resistance. Therefore, only the normal displacements are continuous

ua ·n = ue ·n. (2.81)

Due to (2.57), we can express the fluid displacement through the pressure ua = ρa

ω2 ∇p.
Thus, the coupling condition gets

ρa

ω2 ∇pa ·n = ue ·n on Γ
ae. (2.82)

The traction on the interface resulting from the scalar pressure field in the fluid is ta =
−pa n. Thus, the equilibrium of forces yields

te =−pa n on Γ
ae, (2.83)

where the normal vector is the outward normal vector of the elastic domain.

On an acoustic f luid - poroelastic solid interface Γap, three coupling conditions have to
be fulfilled. The continuity of normal displacements implies

ua ·n = up ·n on Γ
ap, (2.84)

where up =(1−φ)u+φU is the displacement of a ’poroelastic particle’. Using the relative
mass flux defined in (2.56) and (2.58), the coupling condition gets

∇pa ·n
ρaω2 = us ·n+

1
iω

q ·n on Γ
ap. (2.85)

The second condition is given by the equilibrium of forces. The surface traction induced
by the scalar pressure in the acoustic fluid has to be balanced with the total traction in the
poroelastic solid

−pa n = ttot on Γ
ap, (2.86)

where the normal vector is the outward normal vector of the poroelastic domain. The third
condition ensures the continuity of the pressure fields. Hence,

pa = pp on Γ
ap. (2.87)

The remaining combination is an elastic solid - poroelastic solid interface Γep. The elastic
solid and the poroelastic solid are able to resist shear forces. Therefore, no relative motion
between the two solid phases are allowed

us = ue on Γ
ep. (2.88)

The elastic domain represents an impervious interface for the fluid in the poroelastic solid.
Therefore, the relative mass flux normal to the interface has to be zero

q ·n = 0 on Γ
ep. (2.89)

As a third condition, the equilibrium of forces demands

te + ttot = 0 on Γ
ep. (2.90)



3 DIFFERENTIAL GEOMETRY AND SHELL MODELS

In this chapter, we specify the physical models in the context of shell analysis. Shells
are thin-walled structures with one dimension significantly smaller than the other two. In
this setting, solutions to the general three-dimensional problem are difficult to obtain, both
analytically and numerically. This motivates the simplification of the three-dimensional
equations to two-dimensional ones with the goal of solving a simpler problem. This can
be solved analytically or with reduced numerical effort. Due to the fact that no analytic
solutions are available for general shells, a huge amount of work has been devoted to the
development of special finite elements for shell structures. Therefore, many procedures
are related to the FEM. These will be discussed in section 4.1. In the present thesis, we
assume that the shell is given as a thin region related to a reference surface. We treat the
cases where this reference surface is given parametrically or implicitly as the zero level of
a given level-set function. In both cases, in order to apply the FEM, the parametrization
of the reference surface is needed. In the first case, it is given, whereas in the second
case, it is constructed numerically from the level-set function, which we explain in all
details in section 4.1.3. Nevertheless, the exact geometry is preserved in both cases. In
the following, we present the three-dimensional differential geometry and the differential
geometry of shells to the extent to which it is needed in our analysis. Furthermore, we
review classical shell models and present an extension thereof to poroelastic shells.

3.1 Differential geometry

In this section, we present the notations and definitions of differential geometry, which
will be used in the rest of the present thesis. First, the three-dimensional differential ge-
ometry is considered. As a second step, two-dimensional surfaces immersed in the three-
dimensional space are treated. This forms the basis for the differential geometry of shells,
where the three-dimensional geometry of shells is induced by the geometry of the two-
dimensional surface. The differential geometry in the context of thin-walled structures is
exhaustively discussed in [18] and [46], among others.

Let E3 be the three-dimensional Euclidean space equipped with the standard orthonormal
basis consisting of the three base vectors ei = ei and the standard Euclidean scalar product
a ·b. We identify a point x ∈ E3 with its Cartesian coordinates x ∈ R3.

An important concept in this work is the use of coordinate transformations. Let U denote
an open subset of Rn and g : U→ E3 an injective mapping. Then, for a point x in the open

25
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set M = g(U), we write
x = g(θ i), θ

i ∈U, (3.1)

and θ i are the curvilinear coordinates of x. Assuming g is differentiable, we can define the
three vectors

Gi = g,i =
∂

∂ θ ig. (3.2)

We call g a parametrization of M, if the vectors Gi are linearly independent. A parametriza-
tion g induces a metric on M, where

Gi j = Gi ·G j (3.3)

are the coefficients. We write [Gi j] for the coefficient matrix. Since Gi are linearly inde-
pendent, the matrix [Gi j] is invertable and we can define the contravariant components of
the metric Gi j as the entries of [Gi j]

−1. Based on the above relations, the contravariant
base vectors Gi are defined as

Gi = Gi jG j. (3.4)

Here, we made use of the Einstein summation convention. Whenever an index occurs once
as a superscript and once as a subscript we sum over this index. The base vectors satisfy

Gi ·G j = Gi j, Gi ·G j = δ
i
j. (3.5)

The Kronecker delta δ
j

i is defined as

δ
j

i =

{
1 for i = j,
0 for i 6= j.

(3.6)

Furthermore, the Jacobi matrix J is defined as the matrix with base vectors as columns,

J = [G1, . . . ,Gi]. (3.7)

The entry J[i, j] of the Jacobi matrix is given by

J[i, j] = J j
i = Gi · e j, (3.8)

and the relation
[Gi j] = J>J (3.9)

holds. The Christoffel symbols of first kind are defined as

Γi jl = Gi, j ·Gl =
1
2
(
G jl,i +Gil, j−Gi j,l

)
, (3.10)

whereas the Christoffel symbols of second kind are

Γ
k

i j = Γi jlGlk. (3.11)
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They satisfy the symmetry relation

Γ
l

i j = Γ
l

ji

Γi jl = Γ jil
(3.12)

and
Gp

,i =−Γ
p

i j G j (3.13)

holds.

Geometry of surfaces in E3. Let Ω̄ be a two-dimensional surface immersed in E3. As-
suming Ω̄ is parametrically given, we have

g : Ū ⊂ R2→ Ω̄⊂ R3

(θ 1,θ 2) 7→ g(θ 1,θ 2).
(3.14)

The two base vectors spanning the tangential plane to the surface are given by

Gα =
∂

∂θ α
g α = 1,2. (3.15)

This allows us to define the unit normal vector to Ω̄ as

n =
ñ
‖ñ‖

, ñ = G1×G2. (3.16)

Due to the definition of the normal vector as a unit vector, we have n · n = 1. Taking
the derivative with respect to θ α , it yields ∂

∂ θ α (n · n) = n,α · n+ n · n,α = 0. Thus, the
derivatives of the normal vector are in the tangent plane of the surface. Expressing the
derivatives of the normal vector trough a linear combination of the tangent vectors yields

n,α =−hβ

αGβ , (3.17)

where
hαβ =−Gα ·n,β , and hβ

α = Gβγhαγ . (3.18)

These relations are known as the Weingarten equations, first established in [179]. The
functions hαβ are the coefficients of the second fundamental form. Differentiation of Gα ·
n = 0 yields

hαβ =−Gα ·n,β = Gα,β ·n. (3.19)

Two important measures of curvature are the mean curvature H and the Gaussian curvature
K, which are computed by

H =
1
2

hγ

γ ,

K = h1
1h2

2−h2
1h1

2.
(3.20)
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Geometry of shells. In the present work, we consider a shell as a thee-dimensional body
Ω given by the parametrization

g : (Ū×T )⊂ R3→Ω⊂ R3

(θ 1,θ 2)×θ
3 7→ g(θ 1,θ 2,θ 3) = g(θ 1,θ 2)+θ

3 n,
(3.21)

where T ⊂R is the interval T = [tbot , ttop]. The situation is depicted in Figure 3.1. In view

θ1

θ2

θ3

g, g

e1

e2
e3

G1

G2

n

Figure 3.1: Parametrization of a shell

of (3.17), the covariant base vectors are

Gi = g,i =

{
g,α +n,αθ 3 = (δ

β

α −θ 3hβ

α)Gβ if i = α = 1,2
n if i = 3

. (3.22)

Typically, µ
β

α = δ
β

α −θ 3hβ

α is called the shifter. The components of the covariant metric
tensor are given by

Gαβ = Gα ·Gβ =
(
δ

γ

α −θ
3hγ

α

)
Gγ ·

(
δ

λ

β
−θ

3hλ

β

)
Gλ

= Gαβ −2 (θ 3) hαβ +(θ 3)2hαγhγ

β

Gα3 = G3α = 0
G33 = 1.

(3.23)

In order to compute the components of the covariant metric tensor, we compute the deter-
minant of the Jacobi matrix. We use the notation det([gi j]) = 〈gi j〉. Thus,

〈J〉=
〈
G1,G2,n

〉
−θ

3 (〈hα
1 Gα ,G2,n

〉
+
〈
G1,hα

2 Gα ,n
〉)

+(θ 3)2 〈hγ

1Gγ ,hα
2 Gα ,n

〉
=
√〈

Gαβ

〉(
1−2Hθ

3 +K(θ 3)2) ,
(3.24)

where we have used the following properties of the determinant:



3.1 Differential geometry 29

• Linearity in the columns: 〈A1 +A2,B,C〉= 〈A1,B,C〉+ 〈A2,B,C〉 and 〈αA,B,C〉=
α〈A,B,C〉.

• If two columns are equal, the determinant is zero: 〈A,A,B〉= 0.

• Multiplicativity:
〈
Gi j
〉
=
〈
J>J

〉
=
〈
J>
〉
〈J〉= 〈J〉2.

The components of the contravariant metric are given by

[Gαβ ] = [Gαβ ]
−1 =

adj([Gαβ ])

det([Gαβ ])
=

adj([Gαβ ])−2 θ 3 adj([hαβ ])+(θ 3)2adj([hαγhγ

β
])〈

Gαβ

〉
(1−2Hθ 3 +K(θ 3)2)

2

Gα3 = G3α = 0

G33 = 1,
(3.25)

where adj([Gαβ ]) is the adjugate matrix of [Gαβ ]. Since [Gαβ ] is a 2×2 matrix,

adj([Gαβ ]) =

[
G22 −G12
−G12 G11

]
. (3.26)

In the following, we study the gradient and the divergence operator. In local coordinates,
the gradient of a scalar-valued function is

∇ f = f,iGi = f,αGα + f,3n. (3.27)

Next, the gradient of vector-valued function v in local coordinates is stated. Assuming
v = viei, the gradient is

∇v = vi, j ei⊗G j = vi,α ei⊗Gα + vi,3 ei⊗n. (3.28)

In the case of v = v n, we have

∇v = v, j n⊗G j + v n, j⊗G j = v, j n⊗G j− v hβ

αGβ ⊗Gα . (3.29)

We define the divergence operator as the adjoint to the gradient operator. In local coordi-
nates, we have for ~X = XiGi [148],

< ~X ,∇ f >L2 =
∫
M

~X ·∇ f dV

=
∫
U

XiGi · f, jG j
√

detG dθ

=
∫
U

Xi f, jGi j
√

detG dθ

=−
∫
U

f
1√

detG

(
XiGi j

√
detG

)
, j

√
detG dθ

=<− 1√
detG

(
XiGi j

√
detG

)
, j
, f >L2 .

(3.30)
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Thus,

∇ ·~X =
1√

detG

(
XiGi j

√
detG

)
, j
. (3.31)

By combination of (3.27) and (3.31), the Laplacian of a scalar-valued function f is given
as

∆ f =
1√

detG

(
f,i Gi j

√
detG

)
, j
. (3.32)

Following the lines in (3.30), the divergence in case of ~X =Xn is given in local coordinates
as

∇ ·~X =
1√

detG

(
X
√

detG
)
,3
= X,3 +X

2(θ 3K−H)

1−2Hθ 3 +K(θ 3)2 = X,3 +Xι , (3.33)

with

ι =
2(θ 3K−H)

1−2Hθ 3 +K(θ 3)2 . (3.34)

In the same way, we find the divergence in case of ~X = Xiei as

∇ ·~X =
1√

detG

(
Xi(ei ·G j)

√
detG

)
, j
= Xi, jJi

kGk j +
Xi√
detG

(
(ei ·G j)

√
detG

)
, j
. (3.35)

This expression can be further simplified. In view of (3.13), direct calculation of the last
term gives(

(ei ·Gk)
√

detG
)
,k
= (ei

,k ·G
k)
√

detG+(ei ·Gk
,k)
√

detG+(ei ·Gk)(
√

detG),k

= (ei ·−Γ
k

kl Gl)
√

detG+(ei ·Gk)

(
(detG),k

2
√

detG

)
.

(3.36)

Using Jacobi’s formula d
dt detA(t) = tr

(
adj(A(t)) d

dt A(t)
)

for a matrix A, and the represen-
tation of the adjugate adj A = A−1 detA, we have

(detG),k = detG Gi jGi j,k = detG Gi j(Γki j +Γk ji) = 2detG Γ
i

ki . (3.37)

Thus, (
(e j ·Gk)

√
detG

)
,k
= 0, (3.38)

and
∇ · (X je j) = Xi, jJi

kGk j. (3.39)

3.2 Elastic shells

In this section, we review shell models of elastic thin-walled structures. Shells are char-
acterized by having one extension which is considerably smaller than the extension in the
other two directions.
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Three-dimensional elastic shell problem. We consider the operators in the elastic solid
boundary value problem in local coordinates assuming a general parametrization. Assum-
ing σσσ = σ kl Gk⊗Gl , the divergence of the stress tensor can be computed by

∇ ·σσσ =−
(

σ
jl
, j +σ

kl
Γ

j
k j +σ

jk
Γ

l
k j

)
Gl. (3.40)

Representing the linearized strain tensor in the form εεε = εi j Gi⊗G j, the components are
given by

εi j =
1
2

(
Gi ·

∂u
∂θ j +G j ·

∂u
∂ θ i

)
. (3.41)

The components of the isotropic elasticity tensor C = Ci jkl Gi⊗G j⊗Gk⊗Gl are given
by

Ckli j = λGi jGkl +µ

(
GikG jl +GilGk j

)
. (3.42)

In the case of a shell-like parametrization (3.21), the components of the linearized strain
tensor are

εαβ =
1
2

(
µ

ς

αGς ·
∂u(θ j)

∂θ β
+µ

ς

β
Gς ·

∂u(θ j)

∂ θ α

)
,

εα3 =
1
2

(
µ

ς

αGς ·
∂u(θ j)

∂θ 3 +n · ∂u(θ j)

∂ θ α

)
,

ε33 =
∂u(θ j)

∂θ 3 ·n.

(3.43)

In view of (3.23), the relations (3.42) can be evaluated to

Cαβγϕ = λGαβ Gγϕ +µ

(
GαγGβϕ +GαϕGβγ

)
,

Cαβ33 = C33αβ = λGαβ ,

C3α3β = C3αβ3 = Cα33β = Cα3β3 = µGαβ ,

C3αβγ = Cα3βγ = Cαβ3γ = Cαβγ3 = 0,

C333α = C33α3 = C3α33 = Cα333 = 0,

C3333 = λ +2µ.

(3.44)

Up to this point, no approximation in the equations of linearized elasticity has been intro-
duced. In the following, we consider shell models which simplify the three-dimensional
equations introducing an approximation.

Shell models. There have been many different approaches in the analysis of shells, and
providing a complete view on the topic seems impossible. Bischoff and coworkers for-
mulate this in their review article [26] with the following words: “The series of names in
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connection with shell formulations could be continued forever; there are very few topics in
structural mechanics where so many investigations have been published. Even for experts,
it is hardly possible to have an overall view on the number of special finite element models
developed so far. This is a strong indication for the complexity of the involved mechanics
on the one hand and their practical relevance on the other hand.”

This citation and the titles of the review articles [26] and [37] indicate the tight coupling
of the FEM and shell models in shell analysis. The different approaches in shell analysis
can be classified in three groups with different starting points but similar results. The first
approach is based on the idea of the Cosserat continua [53], where additionally to classical
continuum mechanics, couple stresses and rotational degrees of freedom are considered.
In their monograph from 1909 [54], the Cosserats describe the mechanics of deformable
surfaces among the mechanics of rods and generalized continua. If the shell is modeled
with a deformable surface, it is assumed to be two-dimensional a priori. We refer to [7]
and references therein for a description of this approach. The second possibility is to per-
form a dimension reduction of the governing three-dimensional equations. The resulting
two-dimensional model is a simplified model in the sense that the full three-dimensional
model is approximated by means of simpler (easier to solve) equations. The third large
group of shell analysis approaches is constituted by the pure numerical ones. Here, the
three-dimensional equations are discretized directly by means of finite elements, taking
the characteristics of shells into account. We will review some of these approaches in
Section 4.1.

In the rest of this section, we focus on shell models obtained by dimension reduction.
These two-dimensional shell models approximate a three-dimensional master model. The
approximation yields an error, which we call modeling error [20] and is defined as the
difference of the exact solution of the three-dimensional equations u3d and the exact solu-
tion of the shell model uM. In order to be able to judge if a shell model is valid or not, the
asymptotic correctness plays a fundamental role. A shell model is said to be asymptotically
correct, if the modeling error decreases, when the thickness t of the shell decreases, i.e. the
solution of the shell model converges to the solution of the three-dimensional equations,

lim
t→0
||u3d−uM|| → 0. (3.45)

The first accepted theory was given by Kirchhoff [100] in 1850. Regarding the earlier
history of work devoted to shell analysis, we refer to [26]. Kirchhoff considered the special
case of plates, i.e. flat shells. He deduced his theory from ad hoc assumptions. A formal
proof of the asymptotic correctness of Kirchhoff’s theory was published by Morgenstern
[122] in 1959. In 1888, Love [113] extended Kirchhoff’s work to shells. Due to these
developments, the three-dimensional displacement field

uKL(w|θ 1,θ 2,θ 3) =
(

wα −θ
3(w3,α +hβ

αwβ )
)

Gα
+w3n (3.46)
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of a vector field w = wαGα
+w3n defined on the reference surface is called Kirchhoff-

Love displacement field. Probably the simplest, but asymptotically correct model in linear
thin shell analysis is Koiter’s linear shell theory [102, 103]: Let Ū ⊂ R2, g(Ū) be the
mid-surface and p the load. The shell thickness is 2t. Find uK ∈V K such that

BM(uK,ηηη) + BB(uK,ηηη) = `K(ηηη) for all ηηη ∈V K, (3.47)

where

V K = {ηηη ∈ H1(Ū)×H1(Ū)×H2(Ū) |ηηη = η3,n = 0 on γ0},

BM(uK,ηηη) = ε
∫
Ū

aαβγϕ
γγϕ(uK)γαβ (ηηη)

√〈
Gαβ

〉
dŪ ,

BB(uK,ηηη) =
ε3

3

∫
Ū

aαβγϕ
ργϕ(uK)ραβ (ηηη)

√〈
Gαβ

〉
dŪ ,

`K(ηηη) =
∫
Ū

p ·ηηη
√〈

Gαβ

〉
dŪ ,

(3.48)

and

aαβγϕ =
4λ µ

λ +2µ
Gαβ Gγϕ

+2µ

(
GαγGβϕ

+GαϕGβγ
)

γαβ (ηηη) =
1
2
(
ηα,β +ηβ ,α

)
−Γ

γ

αβ
ηγ −hαβ η3

ραβ (ηηη) = η3,αβ −Γ
γ

αβ
ηγη3,γ +hγ

β
(ηγ,α −Γ

ϕ

αγ ηϕ)

+hγ

α(ηγ,β −Γ
ϕ

βγ
ηϕ)+(hγ

β ,α +Γ
γ

αϕhϕ

β
−Γ

γ

βα
hϕ

γ )ηϕ −hγ

β
hγαη3.

(3.49)

In the problem given above, we restricted ourselves to the case of a clamped boundary on
γ0 ⊂ ∂Ū . Furthermore, η3,n denotes the normal derivative with respect to γ0. The Koiter
model has been justified in [48]. It is interesting to note that the Koiter model is no limit
model in the asymptotic sense. In an asymptotic analysis, the principal term is sought in
case of vanishing thickness. Depending on the geometry and on the boundary and loading
conditions, either a membrane shell [47] or a flexible shell or [50] a generalized membrane
shell [49] is the limit model.

Once the solution uK of the Koiter model has been obtained, the three-dimensional dis-
placement field can be reconstructed by means of (3.46). This procedure has been analyzed
and justified in [109] under distinct assumptions on the loading and boundary conditions.
A refined three-dimensional displacement reconstruction was already proposed in [103],
where the reconstructed displacement field is quadratic with respect to the thickness. This
is refined further, including a reconstruction of the boundary layer in [110].
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The solution of the Koiter model is the displacement field of the mid-surface, which can
be described by three parameters. Theories with tree unknown parameters are referred to
as models of Kirchhoff-Love type or as 3-parameter models [26]. A refined 3-parameter
model and reconstruction procedure is given in [107]. Models of the Kirchhoff-Love type
are shear rigid. Therefore, these models cannot approximate the full three-dimensional
displacement field (cf. [13]) in general loading situations.

In contrast to the thin shell analysis, the thick shell analysis is based on shear deformable
theories. The early achievements in this direction in the case of plates were made by
Reissner [143, 144] and Mindlin [121]. To honor this, the displacement field

uRM(w,θ 1,θ 2,θ 3) = w+θ
3vαGα (3.50)

of a field (w,vα) defined on the reference surface is called Reissner-Mindlin displacement
field. The first acceptable shear deformable theory to determine (w,vα) was proposed by
Naghdi [123, 124]. Since (w,vα) involves five parameters, shear deformable shell models
are called models of Reissner-Mindlin type or 5-parameter models [26].

The Koiter model, as well as the Naghdi model can be obtained by inserting the respective
kinematics in the three-dimensional equations, performing integration through the thick-
ness, assuming vanishing transverse normal stress and neglecting small terms. In a shell,
the transverse normal stress is given by

σσσ
33 = λGαβεεεαβ +(λ +2µ)εεε33. (3.51)

Assuming σσσ33 = 0, the transverse normal strain is given by

εεε33 =−
λ

λ +2µ
Gαβεεεαβ , (3.52)

which is used for static condensation. This results in a modified material law, where λ has
to be replaced by λ̄ ,

λ̄ =
2µλ

λ +2µ
. (3.53)

A shell model which uses the unmodified three-dimensional material law is classified as
a three-dimensional shell theory [26]. There is numerical evidence that the lowest order
theory which is asymptotically correct is based on the displacement field

u3D(θ 1,θ 2,θ 3) =
(0)
u +θ

3(1)u +(θ 3)2(n)u n, (3.54)

depending on (
(0)
u ,

(1)
u ,

(n)
u ), and involves seven parameters. In the case of plates, the asymp-

totic correctness was shown in [135, 149]. As an alternative to the parameter
(n)
u , one can

introduce a parameter accounting for a linear variation of the transverse normal strain (see
e.g. [25]).
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Up to now, we have discussed single plate and shell theories focusing on their asymptotic
correctness, i.e. it is required that the modelling error decreases as the thickness decreases.
However, in practice one wants to solve a shell problem with a fixed thickness. In this
case, the modelling error is fixed by the chosen model. Following the idea of Cauchy’s
power series method, one possibility to derive shell models is to introduce an expansion of
the displacement field in terms of the thickness coordinate

u(θ 2,θ 2,θ 3) = F0(θ
3)v0(θ

1,θ 2)+F1(θ
3)v1(θ

1,θ 2)+F2(θ
3)v2(θ

1,θ 2)+ . . . . (3.55)

The idea of using generalized Fourier expansions with Legendre polynomials as basis func-
tions was introduced by Vekua (see i.e. [173]). For a detailed overview, we refer to [183]
and references therein. Inserting the expansion (3.55) in the three-dimensional equations
and truncation at different orders yield a hierarchy of shell models. In [97], Kienzler de-
rives plate models using an infinite power series expansion. In order to get a finite system
of equations, he introduces the uniform approximation method, in which all terms smaller
than a given order are neglected. An extension to anisotropic material behavior and a
detailed discussion on second order plate theories were given in [98, 158].

The idea of a systematic procedure to decrease the modelling error resulted in hierarchical
shell models. According to [3, 16], a hierarchy of models (with solutions uMi for the i-th
model) should fulfill the following criteria:

• Approximability, for a fixed thickness:

||u3d−uMi|| → 0 as i→ ∞, (3.56)

• Asymptotic consistency, for a fixed model i:

||u3d−uMi||
||u3d||

→ 0 as t→ 0, (3.57)

• Optimal rate of convergence, in the absence of boundary layers and edge singulari-
ties:

||u3d−uMi||
||u3d||

≤C tαi as t→ 0, i→ ∞ (3.58)

with a convergence rate αi+1 > αi.

The first hierarchical models for shells are given by Vekua. In the case of monolithic plates
(the material parameters are constant through the thickness), simple polynomial director
functions Fi in (3.55) can be used to fulfill all three criteria. In the case of laminated shells
(the material parameters are piecewise constant through the thickness), continuous poly-
nomials cannot fulfill the criterion of optimal convergence rate. We refer to [142] for the
mechanics of laminated shells. The mathematical investigation in this field started with the
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work of Vogelius [174–176], who considered the scalar Laplace equation. Investigations
on elastic plates and shells are given in [16] and [3], see also [56].

A recent review of laminated plate and shell models is given in [36]. Using an expansion
like (3.55) for laminated shells, the resulting model is called an equivalent single layer
theory. The number of parameters is independent of the number of layers. In order to
account for the transverse continuity of the stress, a zig-zag function can be included,
see [38]. Another possibility is to use layer-wise theories, which are formed by packages
of single-layer shell models coupled at the layer interfaces. In this case, the number of
parameters in the model depends on the number of layers. In the next section, we develop
a layer-wise theory which accounts for elastic and poroelastic layers.

3.3 Layer-wise poroelastic shell model

In this section, we describe a layer-wise theory for laminated poroelastic shells. Beside
early contributions, the analysis of thin poroelastic plate structures starts with [165], where
the quasi-static behavior of poroelastic plates is studied. The solid displacement field is
restricted to be of Kirchhoff-Love type. In-plane diffusion is neglected, whereas the trans-
verse diffusion is solved with a three-dimensional approach. The dynamic behavior of
poroelastic plates by means of a plate model was analyzed in [168]. In [126], poroelas-
tic plate theories for homogeneous plates have been derived utilizing a series expansion
in thickness direction. This approach has been extended to layered panels including air
layers in [125]. In [160], the extension of the Mindlin plate model to poroelastic plates is
proposed. To this end, a quadratic expansion of the pressure through-the-thickness is cho-
sen. A rigorous justification of the poroelastic plate theory given in [165] was published
in [117]. The limit model in case of a flexual shell has been derived only recently [120].

In the present thesis, we employ a layer-wise theory. We consider a layup as depicted
in Figure 3.2. The total number of layers is L. Each layer has a thickness ti, i = 1 . . .L
and is classified as elastic or poroelastic. The distance from the reference surface to the
bottom of the shell is denoted by t0. Furthermore, we define Ti =

[
∑

i−1
j=0 t j , ∑

i
j=0 t j

]
.

The relations between the local thickness coordinate τi ∈ [0,1] of layer i and the global
thickness coordinate θ 3 ∈ Ti are

τi(θ
3) =

1
ti

(
θ

3−
i−1

∑
j=0

t j

)
, (3.59)

and

θ
3(τi) =

i−1

∑
j=0

t j + ti τi . (3.60)
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Figure 3.2: Layup of the shell

A layer-wise theory is a semi-discretization of the displacement field. The present layer-
wise theory is based on the displacement field given in (3.54). However, instead of mono-

mials, the functions
(·)
V (τ`(θ

3)) are used. The displacement field for layer ` is assumed to
be of the form

u`(θ 1,θ 2,θ 3) =
(1)
V (τ`(θ

3))
(1,`)
ui ei +

(2)
V (τ`(θ

3))
(2,`)
ui ei +

(n)
V (τ`(θ

3))
(n,`)
u n. (3.61)

The parameters
(1,`)
ui =

(1,`)
ui (θ

1,θ 2) and
(2,`)
ui =

(2,`)
ui (θ

1,θ 2) describe the displacement of
the bottom (τ = 0) and the top (τ = 1) of layer `. The displacement field inside the layer
is given by the linear functions

(1)
V (τ) = 1− τ,

(2)
V (τ) = τ.

(3.62)

This is enhanced with the parameter
(n,`)
ui =

(n,`)
ui (θ

1,θ 2), which accounts for a quadratic
variation of the displacement in thickness direction. Thus, we define

(n)
V (τ) = τ

2− τ, (3.63)

which vanishes at the bottom and the top surface of the layer. In all possible combinations
of elastic and poroelastic layers, the continuity of the displacement field is required. Thus,
for two subsequent layers, we set

(2,`)
ui =

(1,`+1)
ui . (3.64)

The total number of parameters is 3(L + 1) + L and is independent of the stacking se-
quence. Following [160], the fluid pressure field in poroelastic layers is approximated by
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a quadratic expansion. The pressure field for layer ` is assumed to be

p`(θ 1,θ 2,θ 3) =
(1)
V (τ`(θ

3))
(1,`)

p +
(2)
V (τ`(θ

3))
(2,`)

p +
(n)
V (τ`(θ

3))
(n,`)

p , (3.65)

where
(1,`)

p =
(1,`)

p (θ 1,θ 2),
(2,`)

p =
(2,`)

p (θ 1,θ 2), and
(n,`)

p =
(n,`)

p (θ 1,θ 2) are three parameters.
Between two poroelastic layers, we require the continuity of the pressure. If layer ` and
`+1 both are poroelastic, we set

(2,`)
p =

(1,`+1)
p . (3.66)

The total number of parameters is 3Lp−np, where Lp is the number of poroelastic layers
and np is the number of interfaces between two poroelastic layers. Since the considered
coupling of elastic and poroelastic layers is natural [5], it is sufficient to enforce the conti-
nuity of the displacement field and the pressure field, as it is done in (3.64) and (3.66).
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In this chapter, we will introduce the numerical methods to solve the problems posed in
Chapter 2 and 3. These are the Finite Element Method (FEM) and the Method of Funda-
mental Solutions (MFS). The FEM will be used for the discretization of the layered poroe-
lastic shell problem, whereas the MFS discretizes the acoustic fluid surrounding the shell.
We review the basic concepts of both methods. Then we propose a coupled method.

4.1 Finite Element Method

Nowadays, the FEM is one of the most popular numerical methods to find approximate
solutions to boundary value problems. A review of the early history of the FEM can be
found in [80] among others. In 1909, Walter Ritz proposed a method [146], which is now
called the Ritz method. To recall the basic concepts of the Ritz method, we consider the
problem

∆u = 0 in Ω, u = g on Γ. (4.1)

It is well known that the solution of (4.1) is a solution of the minimization problem

Find u ∈V : J(u) = inf
v∈V

J(v), (4.2)

where
J(v) =

1
2

∫
Ω

∇v ·∇v dx, (4.3)

and
V = {u ∈ H1(Ω)| u(x) = g(x) for x ∈ Γ} (4.4)

is the set of all admissible functions. The idea of the Ritz method is to choose a finite
dimensional subset Vh ⊂ V and seek the solution therein. Therefore, we introduce the
function uh ∈Vh,

uh(x) = g(x)+
n

∑
i=1

aiNi(x), (4.5)

where Ni(x) are linearly independent functions satisfying Ni(x) = 0 for x ∈ Γ. Plugging
this function in the functional (4.3), we have

J(a1,a2, . . . ,an) =
1
2

∫
Ω

∇uh ·∇uh dx. (4.6)

39
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A necessary condition for the minimizer is the stationary condition. Thus, we require

∂J
∂a1

= 0, . . .
∂J
∂ai

= 0, . . .
∂J
∂an

= 0. (4.7)

This yields the system of linear equations,

Ku = f , (4.8)

where
K[i, j] =

∫
Ω

∇Ni ·∇N j dx,

u[i] = ai,

f [i] =−
∫
Ω

g Ni dx.

(4.9)

The solution of (4.8) yields the unknown coefficients ai. Then the approximate solution is
given by (4.5).

Referring to [80], one drawback of the Ritz method is that it only applies to minimization
problems. This was resolved, when Bubnov introduced the procedure to obtain the weak
form starting form the differential equation, which leads to the same results as the Ritz
method. This has already been applied in this thesis in Sections 2.3 and 2.4. Beside many
applications, a main contribution of Galerkin is to realize that one does not even need a
minimization principle for the procedure of Bubnov.

A crucial point in the Ritz method is the choice of basis functions Ni(x). Ritz used poly-
nomials and the eigenfunctions of a clamped rod as basis functions. Bubnov and Galerkin
also used trigonometric functions. These choices are global functions in the sense that
they are non-vanishing almost in the whole problem domain. This yields fully populated
matrices K in (4.8). In 1943, Courant [55] used piece-wise polynomials, which are called
hat functions today. This choice has the distinctive advantage that the resulting matrix K
becomes sparse. As these piece-wise polynomials are defined with respect to elements,
the term Finite Element Method is used. The element concept gives also great flexibility
in handling complex domains. The first formal definition of a finite element was given by
Ciarlet [45]. To summarize, the classical version of the FEM is based on the following
principles:

• The domain Ω is covered by a mesh Th, which is a collection of elements.

• The space Vh consists of low order piece-wise polynomials.

• The basis {Ni} of Vh has local supports. Each basis function Ni is non-zero only on
a few neighboring elements.
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Due to its efficiency and flexibility, the literature on the FEM is vast. We mention the
books of Strang and Fix [163], Jung and Langer [94], Braess [31], Brenner and Scott [32],
Steinbach [162], and Zienkiewicz et al. [185] among many others.

FEM for surface problems. The poroelastic shell problem treated in this thesis is gov-
erned by a two-dimensional problem posed on the reference surface, which is embedded in
the three-dimensional ambient space. Beside shell problems, it is of interest to solve other
partial differential equations on surfaces. A review of finite elements for surface problems
is given in [66].

Following the classical FEM approach, the first step is to construct a surface mesh. To this
end, different algorithms have been developed, depending on the description of the surface
(e.g. parametric description [14], implicit description [57], description by data from mea-
surements [108]). This step turns the original surface description into a discrete piecewise
parametric description. With the focus on implicitly represented geometry, the work of
Dziuk [65] plays an important role. Therein, the convergence of a FEM based on linear
triangles is proved. To this end, the so-called lift operator was introduced. It establishes a
relation between functions on the discrete surface Ω̄h and the continuous smooth surface
Ω̄. To this end, a point x in a strip U

Ω̄
around Ω̄ is mapped onto Ω̄ by means of

a : U
Ω̄
→ Ω̄

x 7→ a(x) = x−d(x)ν(x).
(4.10)

Here, d(x) is the oriented distance function and ν(x) = ∇d(x) is the normal vector to Ω̄

at a(x). The method in [65] has been extended to an arbitrary high order in [61]. To
achieve a high order method, both the geometry and the field approximation have to be
of higher order. To achieve a high order geometry description, typically Lagrange shape
functions are used. Their geometric nodes are arranged such that the surface is represented
accurately. Nevertheless, the mapping (4.10) is difficult to realize in situations where the
signed distance function is not given explicitly. Therefore, one resorts to a mapping of the
type

a : U
Ω̄
→ Ω̄

x 7→ a(x) = x+ r(x) s(x),
(4.11)

where r(x) is the distance to the surface with respect to the predefined search direction s(x).
The mesh transformation can be obtained by nodal interpolation [77, 78] or by projection
[106]. We remark that in [77] and [106], an interface problem is treated. Nevertheless, a
method for surface problems based on the exact geometry, thus eliminating the geometric
error, is described in [61]. This method builds the basis of our method proposed in Section
4.1.3. We remark that in practical examples, the surface is not necessarily smooth. In [77],
multiple level-set functions for the domain description are considered, introducing corners
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in the surface. It remains an open question to what extent our method described in Section
4.1.3 is applicable in such situations.

Another type of method for solving surface problems are the Eularian methods [34], where
the need of a triangulation of the surface is bypassed. To this end, the problem is extended
to the ambient space. Then, this three-dimensional problem can be solved using the stan-
dard FEM. We refer to [66] for an overview of such bulk FEMs.

FEM for shell problems. In this paragraph, a literature review of finite element ap-
proaches for elastic shells is given. Due to the vast amount of literature available on the
topic, an overall review cannot be provided. We broadly classify the finite elements for
shells into four categories [136]:

• facet-shell elements,

• 3-D elements,

• continuum element,

• shell elements based on a shell theory.

The facet-shell elements were the first finite elements for the numerical analysis of shells.
The shell geometry is approximated by flat elements with plate-like membrane and bend-
ing behavior. Due to the missing coupling between bending and stretching, these elements
cannot provide reliable performance in general.

The most general approach is the use of standard 3D elements. Therein, the three-dimensional
shell volume is represented by three-dimensional elements. However, using only linear
shape functions, the aspect ratio of the elements is limited. This leads to prohibitively
high computational costs. Even worse, using only one linear element through the thick-
ness leads to wrong results, even in the thin limit. Good results can be obtained, if we
use quadratic shape functions in thickness direction, which is in agreement with the kine-
matics in (3.54). Using a high order ansatz in the in-plane directions, the requirements
on the aspect ratio of the elements can be reduced [64, 140]. An automatic hp FEM for
thin-walled structures is given in [167]. Motivated by the observation that in most CAD
software, the geometry is described by NURBS, Hughes introduced the concept of Iso-
geometric Analysis [90]. The main idea therein is to use the NURBS functions from the
geometry model also for the approximation of the field variables. This high order isopara-
metric method using exact geometry was used in [90] for the solution of shell problems
given by a three-dimensional description.

The continuum elements or degenerated elements are motivated by the finite element anal-
ysis. The first degenerated element was proposed by Ahmad, Irons and Zienkiewicz [4].
The mid-surface of the shell is approximated by elements. Then, the three-dimensional
shell volume is approximated by the interpolation of the normal vector using the standard
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basis functions. Finally, appropriate assumptions are imposed on the displacement field.
This typically leads to a Reissner-Mindlin type kinematic. Although having different start-
ing points, continuum elements and elements based on a shell theory coincide, in case the
same assumptions are posed [33].

A shell theory is formulated on the exact geometry of the shell, which is given by means
of a parametrization of the reference surface. The kinematic assumptions are formulated
with reference to the exact geometry, leading to a formulation of the problem where the
unknown fields live on the reference surface only. In particular, the sought field variables
depend on the parametric coordinates and are determined by a problem with non-constant
coefficients. In fact, the quantities from differential geometry become coefficients. The
two most common shell models are the Koiter model (shear rigid) and the Naghdi model
(shear deformable). Both encounter their difficulties when it comes to the finite element
discretization. In the case of the Koiter model, the solution lies in H2. Thus, a conforming
discretization requires advanced concepts. In the special case of rectangular elements, the
Bogner-Fox-Schmit element [27] is applicable, which is based on Hermite basis functions.
A famous triangular element, which can be used in an arbitrary planar triangulation, is
the Argyris element [12]. We refer to [132] for a discussion of further plate elements.
An interesting approach extending the concept of subdivision surfaces to the discretization
was given in [51]. Recently, the conforming discretization on unstructured quadrilateral
meshes has been presented in [115]. Furthermore, in the case of curved structures, an
insufficient approximation of the space of inextensional displacements leads to membrane
locking. In the case of the Naghdi model, a discretization of H1 functions is required. One
of the main problems here is shear locking. In order to resolve the locking issues, many
finite elements based on mixed approaches have been proposed. Common techniques are
reduced integration, assumed natural strain, enhanced assumed strain, and discrete strain
gap [40, 104, 184]. A locking-free method based on an advanced mathematical variational
formulation is the TD-NNS method [139]. At the price of H2 conforming elements, a
shear-locking free method based on a pure displacement formulation is possible [68, 111,
131]. Another problem arises in case of large rotations. Then, the discretization of the
non-linear configuration space is required, see [154] for this issue.

To our best knowledge, the first FEM for shells based on the exact geometry given by
NURBS is due to Cho and Roh in [43]. They discretize the field variables arising from a
shear deformable shell theory in the parameter domain with linear and quadratic elements.
To tackle the locking issue, the assumed strain technique is deployed. The work of Arcin-
iega and Reddy [10,11] generalizes the exact geometry to arbitrary parametrizations. They
apply their high order FEM based on Lagrange elements to a seven-parameter shell the-
ory considering geometrical nonlinearities and functionally graded shells. However, the
actual computation of the arising integrals is carried out by symbolic algebra subroutines
written in MAPLE. Following the concept of Isogemetric Analysis, shell finite elements
based on different shell models were proposed in [19, 88, 89, 96] among others. Therein,
the reference surface is described by NURBS, just as the field approximation.
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4.1.1 Basic concepts

The first step to obtain a finite element discretization is a geometric partitioning of the
problem domain Ω with a mesh Th. In many situations, the mesh is only an approxima-
tion

Ω≈ Th =
N⋃

e=1

τe, (4.12)

which is the union of geometric elements τe. For the later construction of shape functions,
the concept of the reference element is crucial. Typically, reference elements of simple
shape are used. In the case of three-dimensional problems, tetrahedra and hexahedra are
common, whereas in that of two-dimensional problems triangles and quadrilaterals domi-
nate. In the rest of the present thesis, we treat triangles and quadrilaterals only. We assume
that the geometric element is given as the image of a map Φe : τR 7→ τe with the reference
element τR as domain. Usually, this mapping is written in the form

x ∈ τe : x(ξ ,η) =
N

∑
i=1

ϕi(ξ ,η) xe
i . (4.13)

Here, the functions ϕi are the bi-variant Lagrange polynomials defined with respect to the
N nodes on the reference element. xe

i are the coordinates of the nodes in the real space. We
restrict our presentation to the lowest order case only. Extensions to higher order mapping
functions and the blending function technique can be found in [164]. In the case of the
reference triangle illustrated in Figure 4.1, we have N = 3 and the functions

ϕ1 = 1−ξ −η ,

ϕ2 = ξ ,

ϕ3 = η ,

(4.14)

are related to the nodes (0,0), (1,0), and (0,1). In the case of the reference quadrilateral

ξ

η

(0,0) (1,0)

(0,1)

Figure 4.1: Reference triangle
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depicted in Figure 4.2, we have N = 4 and the functions

ϕ1 = 1−ξ −η +ξ η ,

ϕ2 = ξ (1−η),

ϕ3 = η (1−ξ ),

ϕ4 = ξ η ,

(4.15)

are related to the nodes (0,0), (1,0), (0,1), and (1,1).

ξ

η

(0,0) (1,0)

(0,1)
(1,1)

Figure 4.2: Reference quadrilateral

Shape functions. In a next step, we define the element shape functions, which will later
form the basis of Vh. In contrast to the classical version of the FEM, where only low order
polynomials are used, we construct high order hierarchical shape functions. Following
[164], hierarchical shape functions have been first introduced by Peano [137, 138]. We
follow the presentation of Zaglmayr [182], where a general approach for the construction
of shape functions with special continuity requirements is given. In view of the problems
introduced in Chapter 2, we consider H1-conforming shape functions. In order to construct
the shape functions, we introduce the Legendre polynomials, which are defined by the
three-term recurrence relation

(n+1)`n+1(x) = (2n+1)`n(x)−n `n−1(x) for n≥ 1, (4.16)

and
`0(x) = 1,
`1(x) = x.

(4.17)

The set (`i)0≤i≤p spans the full space of polynomials up to order p on the interval (−1,1).
Furthermore, they satisfy the orthogonality relation

1∫
−1

`i(x)` j(x)dx =
2

2i+1
δi j (4.18)
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Furthermore, we introduce the integrated Legendre polynomials

Ln(x) =
x∫
−1

`n−1(y) dy, n≥ 2. (4.19)

For the construction of the shape functions on the triangle, we introduce the scaled inte-
grated Legendre polynomials

LS
n(x, t) = tnLn

(x
t

)
. (4.20)

With the polynomials defined above, we construct a Vertex-Edge-Cell-based space on the
reference quadrilateral and the reference triangle. We use a uniform polynomial order p.
The vertex-based shape functions are

φ
V
i (ξ ,η) = ϕi(ξ ,η), for i = 1, . . . ,N. (4.21)

The functions ϕi are given in (4.14) for the triangle and in (4.15) for the quadrilateral. The
4(p−1) edge-based shape functions on the quadrilateral are

φ
E1
i = Li+1(1−2ξ )(1−η),

φ
E2
i = Li+1(1−2η)ξ ,

φ
E3
i = Li+1(1−2ξ )η ,

φ
E4
i = Li+1(1−2η)(1−ξ ), for i = 1, . . . , p−1.

(4.22)

The (p−1)2 cell based shape functions on the quadrilateral are

φ
C
i j = Li+1(1−2ξ )L j+1(1−2η), for i, j = 1, . . . , p−1. (4.23)

In the case of the triangle, for p≥ 2, the 3(p−1) edge based shape functions are

φ
E1
i = LS

i+1(2ξ +η−1,1−η),

φ
E2
i = LS

i+1(η−ξ ,η +ξ ),

φ
E3
i = LS

i+1(1−ξ −2η ,1−ξ ), for i = 1, . . . , p−1.

(4.24)

Given p≥ 3, the (p−2)(p−1)
2 cell-based shape functions on the triangle are

φ
C
i j = LS

i+2(2ξ +η−1,1−η) η ` j(2η−1), for 1≤ i+ j ≤ p−3. (4.25)

Up to this point, we have constructed element shape functions on the reference element.
By means of (4.13), we can map the element functions to the real space. The goal is
now to construct a global basis {Ni(x)} for Vh. Therefore, we have to piece together the
shape functions defined on the elements. This is achieved by establishing a connection
between the local degrees of freedom and the global ones. Details on the basic assembling
process can be found e.g. in the textbook [94]. Solutions for the orientation problem in the
high-order case are described in [182].



4.1 Finite Element Method 47

Dirichlet boundary conditions. In the Ritz method, the basis functions are chosen such
that they fulfill the Dirichlet boundary conditions exactly. Given the element concept of the
FEM, the Dirichlet boundary conditions are only fulfilled approximately. In view of (4.5),
we decompose the set of basis functions according to {φi}= {φi,I}∪{φi,D}, where {φi,D}
is the set of basis functions with support on the Dirichlet boundary ΓD and {φi,I}= {φi}∩
{φi,D}. Considering a scalar problem with Dirichlet boundary ΓD ⊆ Γ, the approximation
reads

uh(x) = ∑
i∈ϒD

giNi(x)+ ∑
i∈ϒI

aiNi(x), (4.26)

where ϒD is the index set of basis functions with support on the Dirichlet boundary ΓD
and ϒI = ϒ\ϒD. The coefficients gi are computed by means of projection. To this end, we
minimize the error in the Dirichlet datum

||g−uh||2L2(ΓD)
=
∫

ΓD

(g−uh)
2 ds. (4.27)

This leads to the linear system of equations

MΓ uΓ = fΓ (4.28)

where
MΓ[i, j] =

∫
ΓD

φi(x)φ j(x) ds,

uΓ[i] = gi,

fΓ[i] =
∫

ΓD

φi(x)g(x) ds.

(4.29)

4.1.2 A FEM for parametric shells

The goal of this section is to present the FEM based on the layer-wise theory given in
Section 3.3, if the reference surface is given parametrically. The case of an implicitly
given reference surface is treated in Section 4.1.3. In the present thesis, the shell analysis
is based on the following principles:

• The three-dimensional shell is given through a reference surface and thickness in-
formation. The reference surface is given either parametrically or implicitly. In both
cases, the exact geometry is used in the simulation.

• The dependency of the field variables on the thickness coordinate is resolved with a
semi-discretization using a layer-wise model based on a 7-parameter model extended
to poroelasticity, introduced in Section 3.3.
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• The field variables are sought with respect to the curvilinear coordinates induced
by the parametrization. The coefficients in the governing equations depend on the
material parameters and on quantities from differential geometry. This requires the
derivatives of the parametrization up to the second order. Although these derivatives
are evaluated numerically, they are computed with double precision using the hyper-
dual number concept introduced in [72]. Thus, the derivatives do not alter the overall
accuracy.

• The discretization of the field variables is done using high order hierarchical shape
functions.

• The solution is obtained by solving the respective three-dimensional equations of
elasticity and poroelasticity. We use a tensor product quadrature rule based on one-
dimensional Gauss-Legendre rules. No approximation of the integrands is intro-
duced. Apart from using high order shape functions, no method to avoid locking has
been considered.

• All possible coupling combinations between elastic and poroelastic layers are natural
[5]. Thus, only the continuity of the displacement field and the fluid pressure field
have to be considered. This is accomplished in the standard assembling process.

ξ

η Φe

θ1

θ2

g

e1

e2
e3

Figure 4.3: Geometry mappings for parametrically given shells

We distinguish between two variants of the way how the reference surface is given. In this
section, we treat the case where the reference surface is given by a global parametrization
g. The situation is depicted in Figure 4.3. Instead of mapping the reference element to the
real space, it is mapped to the parameter space. For this we adopt the standard geometry
mapping (4.13). From the parameter space it is mapped to the real space by means of
g. The computation of the system matrix requires the knowledge of the quantities from
differential geometry given in Section 3.1. The main difficulty here is the evaluation of
the derivatives of the parametrization g up to the second order. To accomplish this task,
different strategies are possible. One possibility is to use symbolic differentiation. This
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has the drawback of leading to inefficient codes. A second possibility is to use numerical
differentiation based on finite differences. However, it is well known that this approach
leads to inaccurate results due to round off and subtractive cancellation errors. In the
present work we use an automatic differentiation schema based on an augmented algebra.
In particular, we use the hyper-dual number concept developed in [72]. To this end, a
hyper-dual number class has been implemented providing operator overloading.

The sought field variables are in H1. Therefore, the two-dimensional high order basis func-
tions introduced in Section 4.1.1 are applicable. We discretize each parameter introduced
in the shell model by means of (4.26). Within this setting, the remaining difficulty lies
in the evaluation of the integrals given in (2.43) and (2.78) . Here, we only work out the
detailed expression for the elastic stiffness matrix Ku. In view of (3.44), we have

Ku(uh, ūh) =
NL

∑
l=1

∫
Ū×T l

(
Cαβγϕ ε̃αβ ε̂γϕ +λGαβ

(
ε̃αβ ε̂33 + ε̃33ε̂αβ

)
+

4µGαβ ε̃α3ε̂β3 +(λ +2µ)ε̃33ε̂33

)√〈
Gαβ

〉
dθ ,

(4.30)

where ε̃i j = εi j(uh) and ε̂i j = εi j(ūh). In view of the layer kinematics given in (3.61), the
components of the strain tensor for every layer are

εαβ =
1
2

(
µ

ς

αJi
ς

(
(1)
V

(1)
ui,β +

(2)
V

(2)
ui,β

)
+µ

ς

β
Ji

ς

(
(1)
V

(1)
ui,α +

(2)
V

(2)
ui,α

))
−µ

ς

αhςβ

(n)
V

(n)
u ,

εα3 =
1
2

(
µ

ς

αJi
ς

(
(1)
V ,3

(1)
ui +

(2)
V ,3

(2)
ui

)
+ Ji

3

(
(1)
V

(1)
ui,α +

(2)
V

(2)
ui,α

)
+

(n)
V

(n)
u,α

)
,

ε33 = Ji
3

(
(1)
V ,3

(1)
ui +

(2)
V ,3

(2)
ui

)
+

(3)
V ,3

(3)
u3.

(4.31)

The superscript l has been dropped for the sake of easier readability. The contravariant
components of the metric tensor are computed by (3.25), without simplifications. We use
the tensor product of one-dimensional Gauss-Legendre rules, where we distinguish be-
tween the in-plane directions and the thickness direction. For the in-plane direction we
take at least p+1 quadrature points, whereas for the thickness direction three quadrature
points are taken. All other arising integrals are computed in a similar fashion. All nec-
essary ingredients can be found in Section 3.1. Special care has to be taken of singular
parametrizations, where the determinant of the metric vanishes on some part.

Singular parametrizations. We propose a strategy to deal with singular parametriza-
tions of smooth surfaces. In particular, we focus on the case, where one side of the bound-
ary is mapped to a single point in the real space. In this case, the stiffness matrix does
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not need to exist. We modify the ansatz space by combining and skipping basis functions.
In the framework of Isogeometric Analysis, a similar strategy was considered in [166].
Related studies on the interpolation properties in the case of the standard FEM, when
quadrilaterals degenerate to triangles are [2, 91].

For presentational purposes, we assume that the boundary at the line θ 1 = 0 in the param-
eter space is mapped to a single point P0 in the real space. Therefore, we can write

g(0,θ 2) = P0. (4.32)

Obviously,
G2 = 0 for θ

1 = 0, (4.33)

and the determinant of the metric is zero at the whole line θ 1 = 0. We assume that apart
from the line θ 1 = 0 the parametrization is regular. Furthermore, it is assumed that G11 > 0

and that the Laurent expansion of G22
√〈

Gαβ

〉
about θ 1 = 0 is of the form

G22
√〈

Gαβ

〉
=

a−1(θ
2)

θ 1 +
∞

∑
i=0

(θ 1)iai(θ
2). (4.34)

Investigation of the existence of∫
Ω̄

∇uh ·∇vh dx =
∫
Ū

(uh,1vh,1G11 +(uh,1vh,2 +uh,2vh,1)G12 +uh,2vh,2G22)
√〈

Gαβ

〉
dθ

(4.35)
leads to the following modifications of the shape functions:

1. All vertex-based shape functions on θ 1 = 0 are added up to one single shape func-
tion.

2. All edge-based shape functions on θ 1 = 0 are removed, i.e. the respective degrees of
freedom are constrained to zero in the implementation.

3. No modification of the cell-based shape functions is made.

The problematic term is

uh,2vh,2 G22
√〈

Gαβ

〉
= uh,2vh,2

a−1(θ
2)

θ 1 +higher order terms. (4.36)

We remark that uh and vh are polynomials. The integral exists in the case of uh,2 = 0, i.e. uh
is constant with respect to θ 2 or uh = 0 on θ 1 = 0. Writing

uh,2 =
p

∑
i=0

p

∑
j=0

ai j (θ
1)i (θ 2) j, (4.37)
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the integral does not exist if any a0 j 6= 0. The non-vanishing functions on θ 1 = 0 are related
to the nodes and edges there. All cell-based shape functions vanish on the boundary. A
function uh which is constant with respect to θ 2 can be constructed summing all node-
based functions up. This gives one new shape function. The edge-based shape functions
are of higher order with respect to θ 2 on θ 1 = 0. Thus, they are eliminated.

As indicated by the numerical results given in Chapter 5, this approach seems to be feasible
for all integrals arising in this thesis in the case of the considered singularities.

4.1.3 A FEM for implicitly given shells

In the previous section, we assumed that the reference surface of the shell is given by a
global parametrization g, which is given as an input. In this section, we want to treat the
case where the reference surface is given implicitly as the zero level of a given level set
function. In order to utilize the finite element concept, we turn this implicit description
into a parametric one.

In this section, the reference surface is given as follows. Let B⊆R3 be a given rectangular
cuboid and φ : B→R a given level-set function. Then the implicit reference surface Ω̄⊂ B
is given as the zero level-set,

Ω̄ = {x ∈ B| φ(x) = 0}. (4.38)

In order to apply the FEM, we parametrize the reference surface using triangles. To this
end, we first use the Marching Cubes Algorithm [112] to obtain a triangulation Ω̄h of the
reference surface. This triangulation represents a linear approximation of the surface. We
require that the approximation is sufficiently accurate such that the following steps are well
defined. However, it is not necessary that any vertex lies on Ω̄.

Now, the goal is to lift Ω̄h onto Ω̄ such that a(Ω̄h) = Ω̄. Using the mapping based on the
closest point projection defined in (4.10) is not suitable in the considered setting. This is
illustrated in Figure 4.4. The level-set function defines a sphere in R3. However, only a
part of the sphere lies in the considered B. The black triangle is mapped to the blue surface
a(Ω̄h). The red surface is the difference between Ω̄ and a(Ω̄h). Thus, a(Ω̄h) 6= Ω̄. In order
to overcome this issue, we use (4.11)

g : U
Ω̄
→ Ω̄

x 7→ a(x) = x+ r(x) s(x).
(4.39)

For the unique definition, we need to specify the search directions s(x). Let V denote the
set of all vertices of Ω̄h. We set

s̃v(x) =
∇φ(x)
||∇φ(x)||

for x ∈V. (4.40)
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Figure 4.4: Limitations of the closest point projection lift

To preserve the exact geometry, we apply a modification at the vertices on the boundary of
B. Thus, we set

sv(x) =

{
s̃v(x)− (s̃v(x) ·n∂B(x))n∂B(x) for x ∈V ∩∂B
s̃v(x) else

. (4.41)

Then the search direction field s(x) defined on Ω̄h is obtained by linear interpolation of
sv(x). The mapping is numerically realized by means of the Newton iteration

xk+1 = xk− s(xk)
φ(xk)

∇φ(xi) · s(xk)
. (4.42)

Thus, every point in the reference element can be mapped onto the exact geometry, which
reassembles the situation of Section 4.1.2 where g was given as input directly. However,
the evaluation of the parametrization requires the solution of a non-linear root finding
problem. Thus, the use of symbolic differentiation becomes difficult. Nevertheless, the
hyper-dual number concept is not affected by this issue.

Although the exact geometry is available, it is of interest to refine the mesh in order to
achieve a better approximation of the sought field variables. In the case of an approximated
geometry, the mesh has to be perturbed after each refinement. In the simplest approach,
the newly created nodes have to be projected onto the continuous surface Ω̄. However, in
an exact geometry setting, no perturbation of the mesh is necessary. We end this section
with a study where we compare the lifted mesh and the non-lifted mesh. To this end, we
compute the error in the area for a part of a hyperboloid given as φ = z2−1− x2− y2 and
B = [0,2]× [0,2]× [0.5,1.5]. We distinguish between four refinement procedures.

(a) Fixed mesh: h-type refinement without perturbation, the search directions are inter-
polated.

(b) Lifted mesh: h-type refinement with perturbation, the search directions are interpo-
lated.
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(c) Updated search directions: h-type refinement with perturbation, the search directions
are recomputed after each refinement.

(d) One element: p-type refinement, the number of quadrature points on the single ele-
ment is increased successively.

Figure 4.5: Refinement without (upper row) and with (lower row) lifting the vertices, the
red arrows indicate the search directions

In all h-type refinements we use four quadrature points per element. The first four levels are
depicted in Figure 4.5 for these refinement procedures. The results are illustrated in Figure
4.6. The refinement schemes (a) and (b) yield the same optimal asymptotic convergence
rate. Interestingly, scheme (a) has a better constant in this example. However, scheme (c)
gives a sub-optimal quadratic rate, whereas (d) yields an exponential convergence rate, as
it is expected for a p-type refinement.

4.2 Method of Fundamental Solutions

In this section, we will introduce a variant of the Method of Fundamental Solutions (MFS),
which is a Trefftz-type method. This method is used to discretize the acoustic fluid sur-



54 4 Numerical solution methods

10
0

10
1

10
2

10
3

10
4

10
5

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Figure 4.6: Convergence results for the error in area

rounding the shell structure. In general, a Trefftz method consists of a discrete Trefftz
space and a Trefftz variational formulation. Apart from exceptions, any discrete space can
be used with any variational formulation.

In 1926, an alternative numerical method to the Ritz method was proposed by Trefftz [170].
The main difference between these methods is the way how the solution space is approx-
imated. Instead of choosing an ansatz which fulfills the Dirichlet boundary conditions
exactly, an ansatz fulfilling the partial differential equations was suggested. Therefore, we
search for an approximate solution in the form of

vh(x) =
Ns

∑
i=1

ci pi(x), (4.43)

where ci are the coefficients which have to be determined and pi are functions fulfilling the
governing partial differential equation in the domain. Considering the problem given in
(4.1), the pi are potential functions. The ansatz (4.43) can be used with respect to elements
in a mesh or to the whole problem domain. Here, we adopt the latter use leading to a single-
element Trefftz method [85]. For the particular functions, different choices are possible.
In the recent survey [85], generalized harmonic polynomials, plane waves, evanescent
waves, fundamental solutions and multipol expansions are mentioned as the most used
ansatz functions among others. In the present work we use fundamental solutions of the
Helmholtz equation.

Once the set of approximating functions is chosen, the task is to determine the coefficients
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ci in (4.43). In [170], the unknown coefficients are determined by the minimization of

F(vh) =
∫
Ω

∇(p− vh) ·∇(p− vh) dx, (4.44)

where p is the exact solution. This yields the system of linear equations,

Ku = f , (4.45)

where
K[i, j] =

∫
Γ

pi ∇p j ·n dsx,

u[i] = ci,

f [i] =−
∫
Γ

g ∇pi ·n dsx.

(4.46)

In [101], a classification of different formulations for the single-element Trefftz method
can be found. We refer to [85] for a number of Trefftz variational formulations for Trefftz
element methods where also inter-element residuals are considered.

Usually, the MFS refers to a particular combination of discrete space and variational for-
mulation. The ansatz functions are fundamental solutions with source points placed along
a curve (in 2D) or on a surface (in 3D) surrounding the computational domain Ω. It is nec-
essary that the source points lie in the complement of Ω, since the fundamental solutions
are singular at the source points. The coefficients are determined by collocation. We want
to solve the boundary value problem of acoustics (2.27). To this end, the residuals

RD(x) = p(x)−gD(x) for x ∈ ΓD,

RN(x) =
∇p(x) ·n(x)

iωρ
−gN(x) for x ∈ ΓN ,

(4.47)

are forced to vanish at M collocation points on the boundary. Unlike other Trefftz meth-
ods, the MFS can be readily used for scattering and radiation problems in unbounded
domains, since fundamental solutions satisfy the Sommerfeld radiation condition. We re-
fer to [71] for numerous references. We mention three applications of the MFS in the field
of poroelasticity. Nennig et al. [127] applied the MFS to scattering problems from poroe-
lastic bodies in two dimensions. Wen and Liu [180] derived the fundamental solution for a
poroelastic plate in Laplace domain and applied the MFS for solving boundary value prob-
lems. Augustin [15] presented density results and a MFS for quasi-static poroelasticity.

Another Trefftz method is the Wave Based Method (WBM) introduced by Desmet [62] in
1998. It is based on propagating and evanescent plane waves for the approximation and a
variational formulation. In this setting, it is applicable to convex domains. Thus, for non-
convex domains a sub-structuring into smaller convex domains is performed. The WBM



56 4 Numerical solution methods

was originally developed for interior acoustic problems and has been constantly developed.
A review of the capabilities of the WBM is given in [59].

In the present work, we use fundamental solutions placed on a surface embracing the fluid
domain to approximate the pressure field in the acoustic fluid, as it is done in the MFS.
The unknown coefficients are determined by a variational formulation like in the WBM. In
section 4.3, we will couple this method with the developed FEM for the poroelastic shell
using similar formulations as in [93,171]. The MFS approximates the solution in the fluid
domain by a linear combination of fundamental solutions G weighted with coefficients
ci

pa(x) =
Np

∑
i=1

ci G(x,yi). (4.48)

The fundamental solution of the Helmholtz operator in the full 3D space is given by

G3D(x,y) =
e−ikr

4πr
, r = ||y−x||. (4.49)

The point x is called field point, whereas y is called source point. We restrict our further
considerations to half-space problems. This means that we assume that the upper half-
space Ω+= {(x,y,z)∈R3|z> 0} is divided by the shell structure Ωs into two fluid domains
Ωint and Ωext , such that Ω+ = Ωint ∪Ωext ∪Ωs. We assume a sound hard surface ∂Ω+ at
z = 0. Thus, the normal fluid velocity vanishes,

va(x) · e3 = 0, for x ∈ ∂Ω+. (4.50)

The setting is illustrated with schematic two-dimensional representation in Figure 4.7. By

Ωint

Ωext

∂Ω+

Ωs

sound hard ground

Figure 4.7: The half-space setting: Sound hard ground surface ∂Ω+, interior fluid domain
Ωint , exterior fluid domain Ωext , shell structure Ωs

making use of the half-space fundamental solution, the condition at sound hard surface
∂Ω+ is fulfilled exactly. The half-space fundamental solution is given by

G(x,y) = e−ikr

4πr
+

e−ikr̃

4π r̃
, r̃ = ||ỹ−x||, ỹ = (y1,y2,−y3). (4.51)
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In order to treat non-homogeneous problems, i.e. where sources are located inside the
acoustic fluid domain, we extend (4.48) to

pa =
Ns

∑
i=1

ci G(x,yi)+Fp, (4.52)

where Fp are particular solutions of the in-homogeneous problem. In the present work, we
consider point sources only. Thus, Fp is a linear combination of fundamental solutions

Fp =
Np

∑
s=1

ds G(x,ys), (4.53)

where dl is the strength of an acoustic source at yl . In view of (2.25), the discrete fluid
displacement is given by

ua(x) =
1

ρaω2

Np

∑
i=1

ciH(x,yi). (4.54)

where
H(x,y) = ∇xG(x,y). (4.55)

Thus,

H(x,y) · e j = (1+ ikr)
y j− x j

4πr3 e−ikr+(1+ ikr̃)
ỹ j− x j

4π r̃3 e−ikr̃ . (4.56)

In the uncoupled MFS considered in this section, either the interior acoustic problem in
Ωint , or the exterior acoustic problem Ωext can be tackled. In both cases, we assume that the
boundary Γ of the respective domain can be decomposed into Γ = ΓD∪ΓN ∪ΓR∪ ∂Ω+.
Due to the ansatz (4.52), the Helmholtz equation in Ω+ and the hard wall condition at
∂Ω+ are fulfilled exactly. Nevertheless, the other boundary conditions cannot be fulfilled
exactly, yielding the residua (4.47). Therefore, the unknown coefficients ci in (4.52) are
determined in a weighted residual sense. To this end, the boundary residua are weighted
with the complex conjugate of the test functions η and their normal derivative,∫

ΓD

∇η̄(x) ·n(x)
iωρ

RD(x) dsx +
∫

ΓN

η̄(x)RN(x) dsx = 0. (4.57)

Applying a Galerkin approach, the test functions η̄ are chosen to be fundamental solutions
with the same source points as in (4.48). This leads to the linear system of equations

KMFSuMFS = f MFS, (4.58)
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where

KMFS[i, j] =
∫

ΓD

H(x,yi) ·n(x) G(x,y j) dsx +
∫

ΓN

G(x,yi)H(x,y j) ·n(x) dsx

uMFS[i] = ci,

f MFS[i] =
∫

ΓD

H(x,yi) ·n(x)

(
gD−

Np

∑
l=1

dlG(x,yl)

)
dsx

+
∫

ΓN

G(x,yi)

(
gN−

Np

∑
l=1

dlH(x,yl) ·n(x)

)
dsx.

(4.59)

In the classical MFS three insufficiently resolved issues arise. These are the placement of
the source points [8, 42] and of the collocation points [82], as well as the ill-conditioning
of the sytem matrix [41]. For the two-dimensional problem, a mathematical analysis is
given in [17]. Due to the use of a variational MFS developed in the present work, no
collocation points are necessary. In return, integration over the boundary is necessary.
This is done by a numerical quadrature, introducing an error. This integration error has
to be controlled in order to achieve reasonable results. In the present work, we simply
place the source points using a constant offset in normal direction. Therefore, points have
to be placed on the boundary. To this end, we use Poisson disk sampling in the case of a
parametric description, whereas for an implicitly given surface we take the vertices of a
triangulation.

4.3 Coupling of FEM and MFS

The goal of this section is to develop a coupling approach for the FEM and the MFS. The
coupling of different numerical methods is a well known approach for acoustic-structure
interaction problems. The FEM is perfectly suited for models with complex geometries
while boundary related methods enable to account for the radiation of waves in domains
of infinite extent. The coupling of FEM-BEM is well-known in literature. We mention
[152] and [76] among others for the analysis in time domain. A FEM-BEM coupling
schema for frequency domain sensitivity analysis was presented in [79]. The coupling of
the FEM and the WBM has been proposed for different configurations in order to benefit
from both worlds. We mention the cases of structural (FEM) - acoustic fluid (WBM)
coupling [171], acoustic fluid (WBM) - poroelastic domain (FEM) coupling [93] and the
coupling of two different poroelastic domains [105]. For two-dimensional soil-structure
interaction problems a coupled FEM-MFS schema has been developed in [81]. Thus,
two elastic sub-domains are coupled. This was extended to a 2.5-dimensional model for
the prediction of vibrations due to underground railway traffic in [9]. Furthermore, we
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mention [127], where an acoustic fluid domain is coupled with a poroelastic domain. Both
are discretized using the MFS.

Acoustic-elastic FEM-MFS coupling. In this paragraph, we consider the case of an
elastic solid which is in contact with an acoustic fluid at the interface Γae. The individual
uncoupled problems have been discretized by means of the FEM in Section 4.1 and the
MFS in Section 4.2. Now, we consider the coupling of both methods. To this end, the
variational formulation of the governing equations for an elastic solid is rewritten to

−ρ ω
2Mu(ue, ū)+Ku(ue, ū)−

∫
Γae

te · ū dsx = fV (ū)+ fN(ū). (4.60)

Here, we have assumed the case Γ = ΓN ∪ΓD ∪Γae. The case of an additional interface
between an elastic solid and a poroelastic solid was commented in Section 3.3. The two
coupling conditions for the interface Γae stated in (2.82) and (2.83) are rewritten to

te =−pa n, on Γ
ae, (4.61)

and
1

ρaω2 ∇p ·n−ue ·n = 0, on Γ
ae. (4.62)

The incorporation of the first coupling condition in (4.60) yields

−ρ ω
2Mu(ue, ū)+Ku(ue, ū)+

∫
Γae

pa n · ū dsx = fV (ū)+ fN(ū). (4.63)

Following the variational MFS approach in Section 4.2, the second coupling condition
is weighted with the complex conjugate of the test function η and integrated over the
coupling interface ∫

Γae

η̄(x)
(

1
ρaω2 ∇p ·n−ue ·n

)
dsx. (4.64)

The discretization of (4.62) and (4.64) leads into a system of equations in the form of[
−ω2Mu +Ku G1
−(Ḡ1)

> H

][
ui
ck

]
=

[
fV + fN− fae
− fp

]
. (4.65)

The matrices Mu and Ku are the mass and the stiffness matrix and fV + fN is the load
vector, which arise from the FEM discretization. In order to state the entries of the other
matrices, we use the global index i = i(i1, i2, i3, l), which refers to the respective finite
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element function Ni1(x)
(i3)
V (τ̃ l(x))

(i3,l)
ui2 ei2 . Thus,

G1[i,k] =
∫

Γae

Ni1(x)
(i3)
V (τ̃ l(x)) G(x,yk)ei2 ·n

e(x) dsx,

H[k, l] =
1

ρaω2

∫
Γae

H(x,yl) ·n(x) Ḡ(x,yk) dsx,

fae[i] =
Ns

∑
s=1

ds

∫
Γae

Ni1(x) G(x,ys)ei2 ·n
e(x) dsx,

fp[k] =
Ns

∑
s=1

ds

ρaω2

∫
Γae

H(x,ys) ·n(x) Ḡ(x,yk) dsx.

(4.66)

We remark that the integrals are transformed to the reference element for their numerical
evaluation by means of a quadrature rule.

Acoustic-poroelastic FEM-MFS coupling. We proceed with the coupling in the case
of an acoustic fluid where the pressure field is approximated by an MFS ansatz and a
poroelastic solid, which is discretized by the FEM. To this end, we rewrite the variational
formulation of the governing equations for a poroelastic solid stated in (2.77) to

−Ku(u, ū)+ M̃u(u, ū)+D(p, ū)−L(p, ū)+ fu(ū)−
∫

Γap

ttot · ū dsx = 0,

Kp(p, p̄)+Mp(p, p̄)+D(p̄,u)−L(p̄,u)+ fp(p̄)+
∫

Γap

q ·np

iω
p̄ dsx = 0,

(4.67)

with M̃u(u, ū) = ω2 (ρ +βρ f )Mu(u, ū). Here, we have assumed that Γ = ΓN ∪ΓD∪Γap.
The coupling conditions on Γap stated in (2.85) to (2.87) are rewritten to

ttot =−pa np, (4.68)

1
iω

q ·n =
∇pa ·n
ρaω2 −us ·n, (4.69)

pa− p = 0 . (4.70)

We incorporate the coupling conditions (4.68) and (4.69) in the first equation of (4.67).
This yields for the integral over Γap,

−
∫

Γap

ttot · ū dsx =
∫

Γap

pn · ū dsx. (4.71)
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Furthermore, coupling conditions (4.69) are incorporated in the second equation of (4.67).
For the integral over Γap, we obtain∫

Γap

q ·np

iω
p̄ dsx =

∫
Γap

(
∇pa ·n
ρaω2 −us ·n

)
p̄ dsx. (4.72)

Following the variational MFS approach in Section 4.2, the coupling condition (4.70) is
weighted with the gradient of the complex conjugate of the test function η and integrated
over the coupling interface ∫

Γae

∇η̄(x) ·n(pa− p) dsx = 0. (4.73)

In order state the entries of the newly introduced matrices, we use the global index j =

j( j1, j2, l), which refers to the respective finite element function Ni1(x)
( j2)
V (τ̃ l(x))

( j2,l)
pi2 . Ku− M̃u L−D−MΓ 0

(D)>− (L)>− (M̄Γ)
> Kp +Mp G2

0 (−Ḡ2)
> H

ui
p j
ck

=

 f u
N− f u

ap
− fNp− f p

ap
− fp2

 (4.74)

where the newly introduced matrices and vectors are

G2[ j,k] =
∫

Γap

N j1(x)
( j2)
V (τ̃ l(x))H(x,yk) ·n(x) dsx,

MΓ[i, j] =
∫

Γap

N j1(x)
( j2)
V (τ̃ l(x))Ni1(x)

(i3)
V (τ̃ l(x))ei2 ·n(x) dsx,

f u
ap[i] =

Ns

∑
s=1

ds

∫
Γap

Ni1(x)
(i3)
V (τ̃ l(x)) G(x,ys)ei2 ·n

e(x) dsx,

f p
ap[ j] =

Ns

∑
s=1

ds

∫
Γap

N j1(x)
( j2)
V (τ̃ l(x))H(x,ys) ·ne(x) dsx,

fp2[k] =
Ns

∑
s=1

ds

ρaω2

∫
Γap

G(x,ys) H̄(x,yk) ·n(x) dsx.

(4.75)





5 VERIFICATION

The aim of this chapter is to verify the implementation of the methods developed in Chap-
ter 4. In order to ensure the reliability of a numerical simulation software, verification
and validation (V &V ) are unavoidable tasks [128, 130]. Figure 5.1 illustrates the relation
between these activities. An observed real world phenomenon can be modeled by mathe-

Reality

Mathematical
model

Computational
model

Modeling

Computer implementation

Experimental data

Solution of the
mathematical model

Numerical solution

Measurements

MMSComputation

Validation

Verification

Validation

Figure 5.1: The role of V &V in numerical simulation, based on [157]

matical means, leading to an explicit mathematical model. Since the availability of explicit
solutions to mathematical models describing real world problems is limited, the use of nu-
merical solutions is inevitable. The computer implementation of the mathematical model
leads to the computational model. Each of these steps introduces errors, which have to be
assessed by V &V . The process of validation determines how accurately the mathematical
model represents the real (physical) problem. The aim of verification is to show that the
numerical method is able to produce a solution which approximates the exact solution of
the mathematical model. Thus, one is interested in the numerical error, which is defined as
the difference between the numerical solution and the exact solution. The comparison of
numerical results with measurement data is only feasible if the results are not significantly
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influenced by the numerical error. Therefore, the process of verification has to precede the
validation process. Verification activities can be split into code verification and solution
verification. Code verification represents the process of demonstrating that the governing
equations, as implemented in the code, are solved consistently. Solution verification is
the assessment (estimation) of the numerical error in situations where no exact solution
is known [129]. According to [151], the most rigorous tests for code verification are the
order-of-accuracy tests. For any discretization method, we expect that the discretization
error decreases as the discretization is refined. Within an order-of-accuracy test, the ob-
served rate of decrease in the discretization error is compared with the theoretical rate. In
order to evaluate the discretization error, exact solutions are needed. These exact solutions
can be constructed by the Method of Manufactured Solutions (MMS) [128,147,151,159].
This method has been applied to a Reynolds-Averaged Navier Stokes solver in [67], to
nonlinear membrane elements in [74] within fluid structure interaction in [73, 75], to a
conjugate heat transfer solver in [172], and to a Cahn–Hilliard equation solver in [95],
among many others.

In the present work, we are concerned with shell problems. Thus, the problem domain
may be curved. However, explicit solutions are only known for special geometries (mostly
flat, cylindrical, spherical problems) and special loading conditions. Using these solutions
for code verification might not be rigorous. Some terms might be zero for these special
problems and will not be tested. The MMS aims to construct general problems such that all
parts of the code are tested. In order to explain the central idea of the MMS, we consider
the following model problem: Let L be a differential operator. For given functions f and
g, find the function u, such that

L u = f in Ω, u = g on ∂Ω. (5.1)

In order to obtain a solution for a general problem, we fix a chosen manufactured solution
uM instead of the functions f and g. These functions are determined form the governing
equations, i.e. f = L uM and g is the restriction of u on ∂Ω. This procedure hinges on
the fact that the application of L is manageable systematically. Nevertheless, the result-
ing source term f can easily become complicated [116]. Therefore, the use of computer
algebra software is standard. In the present work, we use [181] for the computation of
the source terms. To summarize, we follow the following outline in the code verification
examples [150]:

1. Choose the form of the problem domain

2. Choose the form of the manufactured solution

3. Derive the modified governing equations

4. Solve the discrete form of the modified governing equations on multiple meshes

5. Evaluate the numerical error (5.4) and the eoc (5.3)
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6. Apply the order-of-accuracy test

In view of shell problems it is important to verify the code at general geometries. There-
fore, we added the first point in comparison to [150]. In the case of the MFS, we are
not aware of an algebraic convergence rate. Thus, an order-of-accuracy test cannot be
performed. Nevertheless, the convergence can be observed.

5.1 Verification of the poroelastic shell FEM

In this section, we apply code verification to the poroelastic shell FEM developed in Sec-
tion 4.1 based on order-of-accuracy tests and on the MMS. The necessary prerequisite to
apply an order-of-accuracy test to a numerical schema is the knowledge of a formal order
of convergence and exact solutions. Thus, one has to know an estimate of the type

||uexact−unumerical|| ≤C hq ||uexact ||, (5.2)

where C is a constant and h is a characteristic discretization parameter. Here, we refer
to a characteristic element size. Then q is called the formal order of convergence with
respect to the norm || · ||. For two meshes with characteristic element sizes h1 and h2, the
experimental order of convergence (eoc) is defined as

eoc =
log(e1)− log(e2)

log(h1)− log(h2)
, (5.3)

where
ei = ||uexact−unumerical

hi
|| (5.4)

is the numerical error corresponding to the discretization hi. The code is verified, if the eoc
matches the formal order of convergence within the asymptotic range. For the FEM with
arbitrary ansatz order p applied here, we expect q = p+1 for the error in the L2 norm for
smooth solutions.

In the case of the elastic solid problem (2.38), the procedure above is straightforwardly
applicable. The implemented finite element code needs the components bi of the source
term b = biei with respect to the global Cartesian frame. In view of (3.40), they are given
by

bi =−
(

σ
jl
, j +σ

kl
Γ

j
k j +σ

jk
Γ

l
k j

)
Ji

l ,

σ
kl = Ckli jεi j.

(5.5)

The components εi j and Ckli j are given in (3.41) and (3.42) respectively. In the case of the
poroelastic solid problem (2.71), we include artificial source terms in the formulation, in
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order to apply the MMS. We modify the respective equations (2.71) to

bu = ∇ ·σσσ tot +ω
2u
(
ρ +ρ f β

)
−β ∇p,

bp =− β

ω2ρ f
∆p+(β +α) ∇ ·u+

φ 2

R
p.

(5.6)

We remark that these source terms have no physical meaning. They are incorporated in
the variational formulation and in the FEM easily, leading to additional entries in the load
vectors. All necessary differential operators are stated in local coordinates in (3.27), (3.32),
(3.33), (3.39) and (3.40).

Verification examples. We have checked the order of convergence for a number of ex-
amples, considering different material parameters, frequencies, geometries, displacement
fields, and pressure fields. In all examples, the optimal asymptotic order of convergence
could be observed.

In this section, we show the results of four verification examples in total. In the first three
examples, we use a parametric description of the reference surface, whereas in the fourth
example, an implicit description is used. In the first example, we prescribe the trivial
displacement solution and a non-trivial pressure solution. In the second example, we make
it the other way round. In both examples, we use the reference surface given by

x = θ
1,

y = θ
2,

z = θ
1

θ
2

(5.7)

and θ 1 ∈ [0,0.56] and θ 2 ∈ [0,0.73]. In the third example, we consider a part of a sphere
singularly parametrized by

x = cos(θ 2)sin(θ 1),

y = sin(θ 2)sin(θ 1),

z = cos(θ 1),

(5.8)

and θ 1 ∈ [0,1] and θ 2 ∈ [0,2π]. We remark that this parametrization fulfills the condition
in (4.34). In all three examples we choose for the thickness coordinate θ 3 ∈ [−0.05,0]. We
use the material parameters of polyurethane given in Table A.3 and an angular frequency
ω = 20s−1. For the construction of the manufactured solution, we take the structure of the
shell model into account. Therefore, the solution is defined by specifying the parameters
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Example 1 Example 2 Example 3
(1)

uM
i [0 0 0] [cos(20θ 1) 0 0] [xy 0 0]

(2)

uM
i [0 0 0] [cos(20θ 1) 0 0] [x 0 0]

(n)

uM 0 exp(θ 2) z
(1)

pM exp(θ 1)sin(20θ 2) 0 z
(2)

pM exp(θ 2)sin(θ 1) 0 0
(n)

pM cos(θ 1)sin(θ 2) 0 0

Table 5.1: Parameters for the manufactured solutions
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Figure 5.2: Example 1: pressure error ep
Ω

(left), displacement error eu
Ω

(right)

in (3.61) and (3.65). For the presented examples, these parameters are given in Table 5.1.
The errors at multiple meshes with ne elements each are illustrated in the Figures 5.2 - 5.4.
In all graphs, the respective absolute error defined by

eu
Ω =

√∫
Ω

(u−uM) · (u−uM) dx,

ep
Ω
=

√∫
Ω

(p− pM)2 dx

(5.9)

is plotted. Therein, u and p denote the numerical solution, whereas uM and pM denote
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Figure 5.3: Example 2: pressure error ep
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Figure 5.4: Example 3: pressure error ep
Ω

(left), displacement error eu
Ω

(right)
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Figure 5.5: Example 4: pressure error ep
Ω

(left), displacement error eu
Ω

(right)

the manufactured solutions. We observe the optimal convergence rate in all examples.
Furthermore, we see from Figure 5.3 that a small discretization error in the displacement
field leads to large error in the pressure field. This is due to the conditioning of the physical
problem and depends on the material parameters. Therefore, we conclude that a accurate
discretization of the displacement field is necessary in order to obtain an accurate pressure
approximation.

Next, we discuss the results of the fourth verification example for the poroelastic shell FEM
in the case of an implicitly given reference surface. The considered spherical reference
surface is given by φ = x2+y2+z2−1 and B = [0,2]3. The shell volume has the extension
t in the thickness direction and is symmetric around the reference surface. We prescribe
the solution as

uM =


xyz

xyz

xyz

 , (5.10)

and
pM = xyz. (5.11)

It is important to note that this solution cannot be exactly represented by the shell model.
Therefore, a modeling error and a discretization error occurs. We use quintic shape func-
tions for the discretization of a series of problems with decreasing thickness t. The results
are depicted in Figure 5.5. We observe that the modeling error dominates in the case of
thick shells. Therefore, a mesh refinement cannot reduce the overall error in this case.
However, with decreasing thickness, the modeling error decreases and the discretization
error dominates for the coarse meshes. In this regime, we observe the expected order of
convergence of the FEM.
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5.2 Verification of the MFS implementation

This section deals with the verification of the MFS for uncoupled acoustic fluid problems.
To this end, we present the results of two examples. In both cases, the considered fluid is
air with the material parameters given in Table A.1.

In the first example, an interior problem is considered. The domain Ωint is bounded by the
plane ∂Ω+ and a parametrically given surface Γ,

x = cos(θ 1)sin(θ 2),

y = 2sin(θ 1)sin(θ 2),

z =
1
2

cos(θ 2),

(5.12)

where θ 1 ∈ [0,2π] and θ 2 ∈ [0, π

2 ], see Figure 5.6. The constructed solution is obtained by

Figure 5.6: Configuration of the parametric MFS verification example: Sound hard plane
at z = 0 (gray), sound hard surface Γ (red), MMS source point (black), MFS
source points (blue)

means of the fundamental solution. Therefore, we specify the point y0 = [1m, 0m, 1m],
which lies outside the problem domain. This defines the sought solution according to

pM(x) = G(x,y0) for x ∈Ω
int. (5.13)
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Figure 5.7: Error convergence for the parametric MFS verification example

The boundary data is derived from this solution as

gM
N (x) =H(x,y0) ·n(x) for x ∈ Γ. (5.14)

This boundary data is the input for the numerical method. The source points for the ap-
proximation are obtained by placing points on Γ and moving each 0.3m in the direction
normal to Γ. The problem setting and a source point configuration are depicted in Figure
5.6. We investigate the acoustic problem at a frequency f = 200Hz. In order to study the
convergence behavior we introduce the relative error

eΓ =

√∫
Γ
(pM− p)2 dsx∫
Γ
(pM)2 dsx

. (5.15)

We evaluate this error for a number of solutions obtained with different number of source
points. Furthermore, we study the influence of the numerical integration. The computed
errors are plotted in Figure 5.7 for different number of quadrature points ng used. It is
evident that the integration has to be sufficiently accurate in order to obtain an accurate
result. Nevertheless, very accurate solutions are possible with only a few source points for
the solution approximation.

In the second verification example, we consider an exterior problem. The unbounded
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Figure 5.8: Configuration of the implicit MFS verification example: Sound hard plane at
z = 0 (gray), sound hard surface Γ (red), MMS source point (black), MFS
source points (blue)

problem domain is given as {(x,y,z)|φ(x,y,z)> 0}∩Ω+, where

φ(x,y,z) =

((
x2 + y2−1

)2
+

(
1
2
+ z
)2
)
×

×

x2 +

(
25
16

y2−1+
(

1
5
+ z
)2
)2
− 4

5
.

(5.16)

The geometry of the problem and a source point configuration is depicted in Figure 5.8.
We use y0 = [0.7m, 0.7m, 0.25m] for the construction of the solution and the boundary
data by means of (5.13) and (5.14). Again, we solve the acoustic problem at f = 200Hz.
The convergence behavior of the error (5.15) is plotted in Figure 5.9. We observe that the
MFS is able to reproduce the solution accurately in the case of this geometrically complex
problem as well. As in the previous example, we see that a sufficient number of quadrature
points is necessary in order to obtain stable results.
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Figure 5.9: Error convergence for the implicit MFS verification example
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5.3 Verification of the coupled method

In this section, we are concerned with the verification of the coupled MFS-FEM devel-
oped in Section 4.3. To this end, we consider radial symmetric problems, which allow
for a closed form solution. Thus, we consider a spherical shell structure separating the
upper half space into an interior and an exterior domain. The exact solutions of the three-
dimensional problems are derived in Appendix B. However, the radial symmetric solutions
are not the exact solutions to the shell problem. Due to the use of the shell model, a mod-
eling error is introduced.

The reference surface for the shell structure is a hemisphere with unit radius. First, we
consider the case of an elastic aluminum (see for the material parameters) structure with
a thickness of t = 0.025m. The used material parameters are given in Table A.2. In this
example, an implicit geometry description of the hemisphere is used. The displacement
of the shell is discretized with quartic finite element shape functions. The interior and
exterior fluid pressure is discretized by means of the MFS. The error according to (5.15) is
evaluated for the exterior acoustic fluid and plotted in Figure 5.10. The error is evaluated
for varying finite element meshes and for varying number of MFS source points. The
finite element meshes are identified by their number of elements ne. Depending on the
used discretization, the error is dominated either by the FEM or the MFS. This verifies the
coupled method for the case of the acoustic fluid - elastic solid coupling.
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Figure 5.10: Error eΓ for the exterior fluid in case of the coupled MFS-FEM: elastic struc-
ture and implicitly given reference surface

Next, we consider a poroelastic polyurethane shell structure separating the interior domain
from the exterior domain. The material parameters are given in Table A.3. The spherical
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Figure 5.11: Error eΓ for the exterior fluid in case of the coupled MFS-FEM: poroelastic
structure and parametrically given reference surface

shell is described parametrically and has a thickness of t = 0.002m. Quartic finite element
shape functions are used for the discretization of the displacement and pressure field of
the shell structure. The error according to (5.15) is evaluated for the exterior acoustic fluid
and plotted in Figure 5.11. The numerical integration for all matrix entries is done on the
finite elements. In the case of ne = 4, we can see the instability, which arises due to the
insufficient numerical integration. However, we do not observe such instability in the case
of the other meshes. In the present example, we see that due to the modeling error the
minimal achievable error is around 10−9. Up to this error, we observe the convergence
of the coupled method. Hence, this examples verifies the coupled method for the case of
acoustic fluid - poroelastic solid coupling.





6 NUMERICAL RESULTS

In the previous chapter, the implemented numerical methods were verified. In this chapter,
the capabilities of the developed methods are shown on the basis of more examples. To
this end, we consider three categories of problems. In the first category, the uncoupled
FEM is used to solve the Scordelis-Lo roof problem and to investigate the deformation
of a gyroid surface. The second category deals with acoustic problems, which are solved
with the uncoupled MFS. Here, an interior as well as an unbounded exterior problem are
considered. The domain of the interior problem is bounded by a complex surface, which
is defined implicitly. In the exterior problem, the scattering at an assembly of spheres
is studied. In the third category, coupled problems are given. We investigate the sound
transmission from the inside of two cavities bounded by a poroelastic shell structure to the
outside. In one example the reference surface of the shell is given parametrically, whereas
in the other it is given implicitly.

6.1 Finite Element Method

6.1.1 Scordelis-Lo roof

We consider the Scordelis-Lo roof problem, described in [114]. It is a popular benchmark
test to assess the performance of finite elements for thin-walled structures. The static
deformation of an elastic shell is investigated. The cylindrical roof (radius r = 25m) is
supported by rigid diaphragms at the ends (x = 0m and x = 50m), i.e. uy = uz = 0m. All
other surfaces are free. The geometry and the material parameters are depicted in Figure
6.1. The structure is subjected to gravity loading with b =−ez 360 N/m3.

For the parametrization of the reference surface, we use

x = 50 f (θ 2),

y = 25sin
(

40π f (θ 1)

180

)
,

z = 25cos
(

40π f (θ 1)

180

)
,

(6.1)

where the mapping

κ(τ) = τ((3−2τ)τ +b(1−3τ +2τ
2)) with b =

1
100

, (6.2)
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E = 4.32 ·108 N/m2

ν = 0

t = 0.25m

Figure 6.1: Problem description of the Scordelis-Lo-Roof

is deployed. We use κ in order to capture the boundary layer. The parameter space is given
by θ 1 ∈ [0,1] and θ 2 ∈ [0,1] . In Figure 6.1 a 16× 16 element mesh mapped to the real
space is illustrated.

We study the vertical displacement of point A, which is located in the middle of one free
edge and on the mid-surface. We remark that the vertical displacement varies considerably
trough-the-thickness. The results for different ansatz orders and meshes are given in Table
6.1. It is evident that the low order methods are effected by locking. The results obtained

Number of elements 4 16 64 256

Linear -0.0026073 -0.0016144 -0.0044508 -0.0126987
Quadratic -0.0019732 -0.0305159 -0.1354229 -0.2741197

Cubic -0.0301026 -0.2470338 -0.2968267 -0.3012622
Quartic -0.1675085 -0.2967069 -0.3012862 -0.3014015
Quintic -0.2888778 -0.3012049 -0.3013835 -0.3014021
Sextic -0.2979929 -0.3013161 -0.3014014 -0.3014026
Septic -0.3014056 -0.3013603 -0.3014014 -0.3014026
Octic -0.3012498 -0.3013926 -0.3014021 -0.3014026

Table 6.1: Vertical displacement at point A
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with linear ansatz functions are far from the converged solution uz =−0.3014m. Raising
the ansatz order reduces the locking phenomena. Without resorting to other techniques to
reduce the locking, we advise to use at least quartic ansatz functions. In [114] a reference
value uz =−0.3024m for the vertical displacement at point A is reported. For a shell model
based on equivalent seven-parameter kinematics, uz = −0.3008m is computed in [68].
Therefore, our results are in accordance with the values found in literature.

6.1.2 Gyroid

In this example, we consider the deformation of a shell structure, where the reference
surface is a part of a gyroid, see Figure 6.2. An approximation of a gyroid is given by the

Figure 6.2: Geometry of the gyroid problem

level-set function

φ(x,y,z) = sin(x)cos(y)+ sin(y)cos(z)+ sin(z)cos(x). (6.3)

The considered shell lies in B = [0m,2m]× [−0.5m,0.5m]× [−0.5m,0.5m]. The shell
structure is fixed at the plane x = 0m. We assume a thickness t = 0.03m.

We investigate the static and dynamic responses. For the static analysis, we study the
static deformation due to a volume load b = ez 107 N/m3. To this end, we use three dif-
ferent surface meshes, which are depicted in Figure 6.3. The coarsest mesh is obtained
by the Marching Cubes Algorithm [112] and mesh smoothing. The other two meshes are
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136 elements 544 elements 2176 elements

Figure 6.3: Three triangulations of the considered gyroid surface

obtained by uniform refinement of the coarsest mesh. We remark that in the analysis, each
mesh is mapped to the exact surface by means of (4.39). In Table 6.2 and Figure 6.4, the
convergence of the vertical displacement uz at the point [2m,0.5m,−0.25m] is studied.
Obviously, the results obtained by linear ansatz functions underestimate the deformation
tremendously for the considered meshes. The use of quadratic ansatz functions reduces
the locking considerably. In view of the results obtained by the octic ansatz functions, we
can accept a converged value of uz = 1.8812m. For the convergence plot in Figure 6.4, we
have used the reference solution ure f = 1.8812370m. Again, the locking is clearly visi-
ble for the low order methods. However, for the methods p ≥ 4 the expected exponential
convergence is indicated.

Number of elements 136 544 2176

Linear 0.0118106 0.0332828 0.1055900
Quadratic 0.1694172 0.9005433 1.7152640

Cubic 1.2274694 1.8430397 1.8793713
Quartic 1.7745119 1.8788403 1.8808718
Quintic 1.8726206 1.8804255 1.8811317
Sextic 1.8784737 1.8809134 1.8812070
Septic 1.8802114 1.8811026 1.8812299
Octic 1.8807253 1.8811810 1.8812370

Table 6.2: Vertical displacement uz at the point [2m,0.5m,−0.25m]

To characterize the dynamic behavior, we compute the eigenfrequencies of the structure.
In Table 6.3, the convergence of the first ten eigenfrequencies of the considered gyroid are
investigated. Here, octic shape functions were used. The results for all ten eigenfrequen-
cies are very accurate already for the coarsest mesh. We remark that the eigenfrequencies
are complex-valued due to the use of complex-valued material parameters modelling struc-
tural dissipation.



6.1 Finite Element Method 81

Figure 6.4: Error in the vertical displacement uz at the point [2m,0.5m,−0.25m]

Number of elements 134 544 2176

1 5.8098+0.0290i 5.8094+0.0290i 5.8094+0.0290i
2 9.8908+0.0495i 9.8899+0.0494i 9.8898+0.0494i
3 23.7535+0.1188i 23.7514+0.1188i 23.7512+0.1188i
4 31.0186+0.1551i 31.0162+0.1551i 31.0160+0.1551i
5 56.3179+0.2816i 56.3132+0.2816i 56.3127+0.2816i
6 70.3201+0.3516i 70.3143+0.3516i 70.3137+0.3516i
7 86.3201+0.4316i 86.3127+0.4316i 86.3119+0.4315i
8 121.5068+0.6075i 121.4959+0.6075i 121.4948+0.6075i
9 133.4942+0.6675i 133.4781+0.6674i 133.4765+0.6674i

10 147.3079+0.7365i 147.2675+0.7363i 147.2631+0.7363i

Table 6.3: First ten eigenfrequencies of the gyroid, octic shape functions used
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6.2 Method of Fundamental Solutions

6.2.1 Interior acoustics

We study the acoustic field inside a bounded domain, which is defined by the so-called
orthocircle surface. This surface is given as the zero-level of the function

φ(x,y,z) = ((x2 + y2−1)2 + z2)((y2 + z2−1)2 + x2)((z2 + x2−1)2 + y2)

−0.0752(1+3(x2 + y2 + z2)).
(6.4)

The cavity of interest is given as {(x,y,z)|φ(x,y,z)< 0}∩Ω+ and filled with air (material
parameters shown in Table A.1). We assume that the whole boundary of the problem
domain is sound hard. The problem setting is depicted in Figure 6.5. We place an acoustic

(a) View from above (b) View from below, bottom surface
not shown

Figure 6.5: Geometry of the orthocircle problem

source with unit strength at the point [−0.85m, 0m, 0.5m]. The excitation has a frequency
f = 1000Hz. Due to the fact that no dissipation occurs, the solution has to be real-valued.
However, the approximation by means of the MFS yields a complex-valued solution. We
use the imaginary part of the solution for the sake of solution verification. The imaginary
part of the solution for different number of MFS sources ns is depicted in Figure 6.6. For
ns = 313 and ns = 1202, the imaginary part of the solution has the same order of magnitude
as the real part of the solution. Thus, these results are not reliable. However, we observe the
decreasing imaginary part of the solution, as more source points are used for the solution
approximation. For ns = 9579, the imaginary part of the solution is five order of magnitude
lower than the real part of the solution. This indicates a practically accurate solution.
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ns = 313 ns = 1202

ns = 4373 ns = 9579

Figure 6.6: Imaginary part of the solution at the boundary for different number of source
points ns

The real part of the solution on the boundary is displayed in Figure 6.7 from different
perspectives. Visually, no lack of symmetry in the solution is recognizable. The highest
pressure on the boundary occurs near the excitation source point. For further reference, we
state the results at three points in the interior in Table 6.4. Again, the convergence behavior
of the results show the accuracy of the results obtained with ns = 9579.
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Figure 6.7: Real part of the pressure [N/m2] at the boundary from different perspectives,
ns = 9579

Number of source points 313 1202 4373 9579

[1m,0m,0.1m] 0.6350 0.3153 0.2523 0.2525
[0m,0m,1m] -0.3553 -0.0245 0.0191 0.0191
[0m,1m,0.1m] -0.1212 0.1567 0.2056 0.2056

Table 6.4: Real part of the pressure [N/m2] at three points inside the orthocircle surface
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6.2.2 Scattering at an assembly of spheres

In this example, the scattering at an assembly of sound hard spheres is studied. To this end,
we assume a sound hard surface at z = 0m. We place 18 spheres with unit radius regularly
above this plane. The distance between the centers of the spheres is 3m. The centers of
the lower nine spheres are on the plane at z = 1.5m. We investigate the acoustic field due
to a point source excitation with a frequency f = 200Hz. The source is placed under the
lower middle sphere at a z = 0.25m. The situation is depicted in Figure 6.8.

Figure 6.8: Assembly of spheres: Sound hard plane at z = 0m (gray), sound hard spheres
(red), excitation source point (black), MFS source points (blue), evaluation
plane (green)

We describe the spheres by the level-set function

f (τ) = mod(τ,3)− 3
2
,

φ(x,y,z) = f (x)2 + f (y)2 + f (z)2−1.
(6.5)

For the problem at hand, we consider the zero level-set in B = [0m,9m]× [0m,9m]×
[0m,6m]. We remark that analogously to the description in [72] for the norm and com-
parison operators, the modulo-function has to evaluate on the real part of a hyper-dual
number. The real part of the pressure distribution on the evaluation plane is plotted in Fig-
ure 6.9. Therein, we also considered the case in which no spheres are present. Due to the
problem setup, the solution has to be symmetric. For the solutions obtained with 154 and
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508 source points, the solutions are obviously not symmetric. However, for the solution
with 1924 source points, virtually no lack of symmetry in the solution is visible.

no spheres ns = 154

ns = 508 ns = 1924

Figure 6.9: Real part of the pressure at the evaluation surface
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6.3 Coupled Method

In this section, we apply the coupled MFS-FEM to two sound transmission problems
through complex structures.

6.3.1 Deformed Sweep

In this example, we analyze a geometry which is given parametrically. We consider an
ellipse which is moved along a circular path. Furthermore, the initial shape is deformed
when moved. The initial ellipse lies in the x−y plane with the center at [0m,1m,0m]. The
semi-major axis is 0.5m in y direction, whereas the semi-major axis is 0.25m in x direction.
Finally, taking the deformation into account, the reference surface is parametrically given
by

x =
cos(2π θ 2)

4
(
cos
(
π

2 f (θ 1)
)
−2
)
,

y =
cos(π f (θ 1))

4
(4+2sin(2π θ

2)− sin(π f (θ 1))sin(2π θ
2)),

z =
sin(π f (θ 1))

4
(4+2sin(2π θ

2)− sin(π f (θ 1))sin(2π θ
2)).

(6.6)

The parameter domain is (θ 1,θ 2) ∈ [0,1]× [0,1]. We use the function κ defined in (6.2)
with b = 1/50. In Figure 6.10, the geometry of the problem is visualized.

Figure 6.10: Geometry of the deformed sweep problem
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The shell structure is composed of two layers. We assign the material parameters of alu-
minum (Table A.2) to the first layer, which has a thickness of 0.01m. The second layer is
a poroelastic polyurethane (Table A.3) layer with a thickness of 0.03m. This poroelastic
layer is in contact with the interior fluid.

For the sake of solution verification, we consider the uncoupled dynamic response of the
shell structure as a result of a surface load t = −ez103 N/m2 applied on the free surface of
the aluminum layer. For the analysis at 250 frequencies in the range [0Hz, 500Hz] we use
sextic ansatz functions. The vertical displacements uz at the point (θ 1,θ 2) = (0.5, 0.25)
are plotted over the frequency in Figure 6.11 for three meshes (each mesh has nE ele-
ments). Due to these results, we will further use the 64-element mesh. In Figure 6.11, the
displacement was plotted over the frequency range. For the better visualization, we have
used the logarithmic measure

Lp(u) = 10 log10

(
u2

4 ·10−10

)
dB. (6.7)

Next, the performance of the uncoupled MFS is studied. To this end, we calculate the
interior pressure field due to a source with unit strength at the point [0m,−1m, 0.5m].
The structure is assumed to be rigid in this case. The exact solution to this problem has to
be real-valued. In Figure 6.12, the imaginary part of the solutions at the evaluation point
[0m, 1m, 0.5m] obtained for a varying number of approximation source points are plotted.
Based on this result, we proceed with 372 source points for the interior, as well as for the
exterior fluid.

0 100 200 300 400 500
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Figure 6.11: Deformed sweep problem: Vertical displacement uz at point (θ 1,θ 2) =
(0.5, 0.25) of the uncoupled shell problem
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Figure 6.12: Deformed sweep problem: Imaginary part of the uncoupled MFS solution

With the discretization described above, we study the sound transmission from the inte-
rior to the exterior. Again, we consider a source at the point [0m,−1m,0.5m] with unit
strength for the excitation of the system. In Figure 6.13, the sound pressure level deter-
mined at the interior evaluation point [0m,1m,0.5m] is plotted. We compare the cases
uncoupled MFS (rigid structure), aluminum shell (only the aluminum layer) and poroe-
lastic shell (the aluminum layer with the polyurethane layer). The results for the cases
uncoupled MFS and aluminum shell virtually agree. In the case of the uncoupled MFS, no
dissipation occurs in the system and the solution is infinite at the eigenfrequencies. In the
case of aluminum shell a small structural dissipation effect is present. This can be seen in
Figure 6.13, where the eigenfrequencies are damped. However, we conclude that the com-
pliance of the aluminum structure has only little influence on the interior sound pressure
field. Nevertheless, the effects of the dissipation introduced by virtue of the poroelastic
polyurethane layer are clearly visible. In particular, the calculated sound pressure levels
are significantly reduced for frequencies above f = 200Hz. The same conclusion is valid
for the results at the exterior evaluation point [0m,0m,1.5m]. The sound pressure level
determined at the exterior evaluation point [0m,0m,1.5m] is plotted over the frequency
in Figure 6.14. In the case of an rigid structure no transmission can occur. Therefore,
this case is not considered in Figure 6.14. Again, the sound pressure level is significantly
reduced in the case poroelastic shell compared to the case aluminum shell.
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Figure 6.13: Deformed sweep problem: Comparison of the sound pressure level at the
interior evaluation point for elastic and poroelastic shell
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Figure 6.14: Deformed sweep problem: Comparison of the sound pressure level at the
exterior evaluation point for elastic and poroelastic shell
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6.3.2 Sound transmission through an implicitly given shell

In this section, we consider the sound transmission through a shell structure described by
an implicitly given reference surface. The corresponding level-set function is

φ(x,y,z) = (2x)4 +(2y)2 +(2z)2−0.25. (6.8)

The geometry of the problem is depicted in Figure 6.15. The shell structure is composed of

Figure 6.15: Geometry of the implicitly given shell

an aluminum (Table A.2) and a poroelastic polyurethane layer (Table A.3). The aluminum
layer has a the thickness t = 0.002m, whereas the polyurethane layer has a thickness t =
0.01m. The poroelastic layer is in contact with the interior fluid.

We use octic shape functions constructed on a 64-element mesh for the discretization of
the parameters in the shell model. For the discretization of the interior and exterior fluid
pressure fields, we use 145 MFS source points each. The sound pressure level at the interior
evaluation point [0m, 0m, 0.1m] due to a source at the point [−0.25m,−0.05m, 0.1m]
with unit strength is plotted in Figure 6.16. Therein, the case of a rigid structure (uncoupled
MFS), an aluminum shell and the full poroelastic structure is considered. We conclude
that the compliance of the aluminum structure has only little influence on the interior
sound pressure field. However, the effects of the dissipation introduced by virtue of the
poroelastic layer are visible. The same conclusion is valid for the results at the exterior
evaluation point [0m, 0m, 0.3m].
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Figure 6.16: Comparison of the sound pressure level at the interior evaluation point for the
aluminium and the poroelastic shell
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Figure 6.17: Comparison of the sound pressure level at the exterior evaluation point for the
aluminium and the poroelastic shell



7 CONCLUSION

This work is concerned with the development of new simulation methods for vibro-acoustic
analysis. In particular, we have treated the simulation of poroelastic shell structures and
their interaction with the surrounding fluid.

The use of exact geometry descriptions for surfaces play a central role in this thesis. We
developed a Finite Element Method (FEM) which is based on the exact geometry given
by either a parametric or an implicit representation of the reference surface. In the case
of a given parametrization, the evaluation of the quantities from differential geometry are
done with respect to this parametrization and not with respect to a superfluous geometry
discretization. In the case of an implicitly defined surface, the exact parametrization is
constructed by means of the level-set function. Within the presented FEM, the derivatives
of the parametrization up to the second order are required. We make use of a hyper-dual
number concept. This technique allows to compute the derivatives up to the second order
without loss in accuracy. In the present work, we treated the cases of surfaces given by
a single parametrization or a single level-set function only. This limits the applicability
of the developed methods when it comes to real life problems. Thus, an extension to
complex, trimmed multi-patch parametrizations, as well as the ability to handle multiple
level set functions is of interest in future research work.

The present work focuses on the vibro-acoustic analysis. Thus, the phenomena of interest
are oscillations with small amplitude around an equilibrium state. Therefore, it is reason-
able to linearize the nonlinear governing equations with respect to the equilibrium state.
Hence, we model fluid domains with an acoustic fluid, elastic materials with the linearized
theory of elasticity, and poroelastic materials with the Biot theory. Furthermore, we as-
sumed harmonic time dependency of the field variables leading to an analysis in frequency
domain. In future work, it might be of interest to conduct the analysis in time domain or
to consider non-linear system response.

We consider inhomogeneous shell structures which may consist of elastic and poroelas-
tic layers. Thus, not only the material parameters can vary from layer to layer, but also
the underlying physical model. In order to face this complicated situation, a layer-wise
shell model has been developed. The through-the-thickness variation of the displacement
field is described by a seven-parameter model, which is assumed in each layer. Previous
results in the literature suggest that this model has the least number of parameters and is
asymptotically correct without resorting to a reduced energy functional. The pressure field
occurring only in the poroelastic layers is described with a quadratic expansion through-
the-thickness. The coupling conditions between elastic and poroelastic layers require the

93
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continuity of the displacement field. This is accounted for in the developed model. How-
ever, this description yields only a constant transverse shear distribution in each layer.
Thus, only a global discontinuous distribution is taken into account. In future work, it
might be of interest to formulate a displacement field such that a continuous transverse
shear distribution is obtained in situations where an accurate description is necessary. In
contrast with this situation, the layup may contain very thin but stiff layers, where the ef-
fects of transverse shear may be neglected. Then the displacement field in these layers may
be described by a shear-rigid model using less parameters.

The unknown parameters arising in the shell model are discretized by high order hierarchi-
cal finite element functions. Due to the chosen shell model, standard finite element ansatz
functions are applicable. The chosen geometry treatment extends the standard FEM natu-
rally. We also made a suggestion how to deal with singular parametrizations. This is based
on simple observations of the bilinear form arising from the Laplacian. For the support of
this suggestion, an in-depth mathematical analysis will be necessary.

The fluid surrounding the shell structure is discretized by means of the Method of Fun-
damental Solutions (MFS). Thus, the fluid pressure field is approximated by fundamen-
tal solutions of the underlying Helmholtz equation. The source points are placed in the
complement of the respective fluid domain. The strength of the sources for the field ap-
proximation are determined by a variational formulation. This has the advantage over a
collocation schema that the need of collocation points is circumvented. Due to the use of
fundamental solutions, the Sommerfeld radiation condition is exactly fulfilled when con-
sidering unbounded domains. In the present work we placed the source points by simply
shifting a constant distance normal to the boundary. In future work a more sophisticated
placement may be considered in order to improve the efficiency of the MFS.

In order to solve problems where strong interaction between the shell structure and the sur-
rounding fluid occurs, a coupled method is developed. Therefore, the coupling at acoustic
fluid - elastic solid interfaces, as well as the coupling at acoustic fluid - poroelastic solid
interfaces is considered.

The implemented numerical methods are verified against solutions obtained from the Meth-
od of Manufactured Solutions. In this method, a distinct solution is chosen and the cor-
responding source terms and boundary conditions are derived from the chosen solution.
For the developed shell FEM, this approach has been implemented in the curvilinear co-
ordinates induced by the shell geometry. For the verification of the MFS, the prescribed
solution is constructed by a fundamental solution. Thus, the FEM and the MFS could be
verified with high rigor. The coupled method has been verified against radial symmetric
problems. The reference solutions were obtained by solving these problems analytically.

The capabilities of the developed methods have been shown in geometrically complex ex-
amples. The uncoupled FEM was used to solve the Scordelis-Lo roof problem and to study
a shell structure where the reference surface is a part of the gyroid surface. The uncoupled
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MFS was used to simulate the interior acoustics of a cavity bounded by the orthocircle
surface. Furthermore, it was utilized to solve an exterior problem. The acoustic scattering
at an assembly of spheres was investigated. Finally, the coupled method was applied to
solve two sound transmission problems through poroelastic shells. In the present work, we
considered only few selected materials. In particular, we used the material parameters of
air (acoustic fluid), aluminum (elastic solid) and a polyurethane foam (poroelastic solid).
In future work the developed methods can be used to investigate the performance of more
materials applied in geometrically complex vibro-acoustic applications.





A MATERIAL PARAMETER

The material parameters used in the numerical examples are summarized in the following
tables.

bulk modulus K[kN/m2] 1.01 ·105

density ρ[kg/m3] 1.205

Table A.1: Material parameter of air

Young’s modulus E[N/m2] 70 ·109

Poisson’s ratio ν [-] 0.3
density ρ[kg/m3] 2700
loss factor η [-] 0.01

Table A.2: Material parameter of aluminum

Young’s modulus E[N/m2] 70 ·103

Poisson’s ratio ν [-] 0.39
density ρ[kg/m3] 22.1
loss factor η [-] 0.265
porosity φ [-] 0.98
static flow resistivity σ [kg/m3s] 3750
tortuosity α∞[-] 1.17
viscous length Λ[µm] 110
thermal length Λ′[µm] 742

Table A.3: Material parameter of a polyurethane foam [87]
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B RADIAL SYMMETRIC SOLUTIONS

We derive radial symmetric solutions of two coupled problems. In both cases a spherical
shell structure separates a bounded interior fluid domain from an unbounded exterior fluid
domain. In particular, we consider the cases acoustic f luid - elastic layer - acoustic f luid
and acoustic f luid - poroelastic layer - acoustic f luid. We employ the spherical coordi-
nates (r,ϕ,γ). Thus,

x = r cos(ϕ)cos(γ)

y = r sin(ϕ)cos(γ)

z = r sin(γ).

(B.1)

Acoustic fluid. The Helmholtz equation in spherical coordinates assuming radial sym-
metry (p(r,ϕ,γ) = p(r)) reads

k2 p+
∂ 2 p
∂ r2 +

2
r

∂ p
∂ r

= 0. (B.2)

By setting r = x
k , we obtain

x2 d2y
dx2 +2x

dy
dx

+[x2−n(n+1)]y = 0 (B.3)

with n = 0. The solutions for n ∈N are the Spherical Bessel functions jn(x) and yn(x). For
the case n = 0, they are

j0(x) =
sin(x)

x
and y0(x) =

−cos(x)
x

. (B.4)

Thus, solutions of (B.2) are of the form

p(r) = a1 j0(kr)+a2 y0(kr), (B.5)

where a1, a2 are constants, which have to be adapted to the respective problem. The radial
displacement of the acoustic fluid is given by

ua(r) =
p,r

ω2ρa . (B.6)
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Elastodynamic. The equations of motion for a elastic solid in spherical coordinates as-
suming radial symmetry (u(r,ϕ,γ) = eru(r)) reduce to [1]

∂σrr

∂ r
+

1
r
(2σrr−σθθ −σφφ ) =−ω

2
ρ ur. (B.7)

The stress components are given by

σrr = (λ +2µ)
∂u
∂ r

+2λ
u
r
,

σθθ = σφφ = λ
∂u
∂ r

+2λ
u
r
+2µ

u
r
.

(B.8)

Inserting (B.8) in (B.7) yields

∂ 2u
∂ r2 +

2
r

∂u
∂ r

+

(
ω2

c2 −
2
r2

)
u = 0 (B.9)

with c =
√

λ+2µ

ρ
. Multiplying with r2 and Λ2 = ω2

c2 gives

r2 ∂ 2u
∂ r2 +2r

∂u
∂ r

+
(
Λ

2r2−2
)

u = 0. (B.10)

By setting r = x
Λ

, we obtain

x2 ∂ 2u
∂x2 +2x

∂u
∂x

+
(
x2−2

)
u = 0, (B.11)

which is in accordance with (B.3) for n = 1. Therefore, the solutions are

j1(x) =
sin(x)

x2 − cos(x)
x

, y1(x) =−
cos(x)

x2 − sin(x)
x

. (B.12)

Thus, the radial symmetric displacement field is of the form

ue(r) = b1 j1(kr)+b2 y1(kr), (B.13)

with the two constants b1 and b2.

Poroelasticity. For the derivation of the poroelastic spherical radial symmetric solution,
we follow [133]. The governing equations are

M
∂

∂ r

(
1
r2

∂

∂ r

(
r2u
))
− (α +β )

∂ p
∂ r

+ω
2(ρ +βρ f ) u = 0 (B.14)
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and

− β

ω2ρ f
∆p+(β +α) ∇ ·u+ φ 2

R
p = 0. (B.15)

Defining the displacement potential u = ∂Φ

∂ r leads to

∂

∂ r

[
M
(

1
r2

∂

∂ r

(
r2 ∂Φ

∂ r

))
− (α +β ) p+ω

2(ρ +βρ f ) Φ

]
= 0 (B.16)

Furthermore, we set Φ = ξ

r and p = χ

r to obtain

ξ,rr−
α +β

M
χ +

ω2(ρ +βρ f )

M
ξ = 0,

β

ω2ρ f
χ,rr +(α +β ) ξ,rr +

φ 2

R
χ = 0.

(B.17)

The ansatz
ξ = ξi eωΛir,

χ = χi eωΛir
(B.18)

leads to the system of equations[
ω2(Λ2 +

ρ+βρ f
M ) (α+β )

M

ω2Λ2(α +β ) βΛ2

ρ f
+ φ 2

R

][
ξi
χi

]
=

[
0
0

]
. (B.19)

The four roots of the characteristic equation are found to be

Λ1 =−Λ2 =

√
−A+

√
A2−4B√

2
,

Λ3 =−Λ4 =

√
−A−

√
A2−4B√

2
,

(B.20)

where

A =−
ρ f φ 2

βR
−

ρ f (α +β )2

βM
+

ρ +βρ f

M
,

B =−
ρ f φ 2(ρ +βρ f )

βMR
.

(B.21)
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Furthermore, χi = − ω2

α+β
(λ 2

i M + ρ + βρ f )ξi. Thus, the homogeneous solution has the
form

u(r) =
4

∑
i=1

ξi

(
ωλi−

1
r

)
eωλir

r
,

p(r) =
4

∑
i=1
− ω2

α +β
(λ 2

i M+ρ +βρ f )ξi
eωλir

r
.

(B.22)

Here, we have four constants ξi, which have to be determined. We remark that the total
radial stress is given by

σ
tot
rr (r) = (λ +2µ)

∂u(r)
∂ r

+2λ
u(r)

r
−α p(r). (B.23)

Coupled Solutions. The unknown coefficients introduced above can be determined, if
the boundary and coupling conditions are taken into account. We state them for the two
cases used in Chapter 5. These cases are the acoustic f luid - elastic layer - acoustic f luid
and acoustic f luid - poroelastic layer - acoustic f luid problems. Thus, we have two
acoustic fluid domains and two material interfaces in both domains. The pressure solutions
of the interior domain and the exterior domain are denoted by pint and pext , respectively.
The material interfaces are located at the fixed radii rint and rext . The excitation is given
by an acoustic point source placed at the origin. Thus, we make the ansatz

pint =
cos(kr)

r
aint +

e−ikr

4πr
, (B.24)

where we considered the non-singular part in (B.5). In order to fulfill the Sommerfeld
radiation condition, we set a2 =−a1 = aext in (B.5) and write

pext =
cos(kr)− i sin(kr)

r
aext . (B.25)

The interface conditions for the acoustic fluid - elastic solid interfaces are given by

pint(rint) = σrr(rint),

uint(rint) = ue(rint),

pext(rext) = σrr(rext),

uext(rext) = ue(rext).

(B.26)
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Therefore, the unknown constants aint , aext and b1, b2 in (B.13) can be determined. The
respective conditions for the acoustic fluid - poroelastic solid interfaces are

pint(rint) = σ
tot
rr (r

int),

pint(rint) = p(rint),

uint(rint) = up(rint),

pext(rext) = σ
tot
rr (r

ext),

pext(rext) = p(rext),

uext(rext) = up(rext).

(B.27)

These conditions allow to uniquely determine the six coefficients aint , aext and ξi in this
case. We use the computer algebra system Mathematica [181] for this task.
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