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Abstract

Technologies for spatial soundfield-capturing and -reproduction have been steadily im-
proved during the last couple of years. The rise of the virtual reality has accelerated
the development and has helped Ambisonics to become the dominant format choice. A
Higher Order Ambisonics (HOA) production contains detailed spatial information about
the sound-sources. Should only a First Order Ambisonics (FOA) or even stereo recording
be available, much more rudimentary spatial features are included. This work deals with
approaches of extracting individual sound sources in order to create HOA upmixes. To
achieve this, a practical ambience extraction approach based on the coherence function is
described, which can be used to separate the direct from the diffuse signal part. Further-
more, source separation is used to find and extract sound sources. The studied separation
approach relies on the non-negative matrix factorisation (NMF) with multi-dimensional
input (also referred to as non-negative tensor factorisation, NTF). Aspects of existing
NMF and NTF approaches are being discussed, where the focus lies on their statistical
interpretation. A possible algorithm based on such a statistical viewpoint is presented and
a multidimensional Gibbs sampler is derived and tested in the audio-application. Apart
from this, clustering strategies for the resulting components based on cepstral and spatial
features are presented.





Kurzfassung

Technologien zur räumlichen Schallfeldaufnahme, und -wiedergabe wurden in den letzten
Jahren stetig weiterentwickelt. Speziell das Aufkommen der virtuellen Realität hat diese
Entwicklung beschleunigt und dazu beigetragen, dass sich Ambisonics als dominieren-
des Format durchsetzen konnte. In einer Higher Order Ambisonics (HOA) Aufnahme
ist detaillierte räumliche Information über die Schallquellen enthalten. Liegt allerdings
nur ein Stereoformat oder eine First Order Ambisonics (FOA) Produktion vor, ist die
Richtungsauflösung deutlich begrenzt. Diese Arbeit beschäftigt sich mit Ansätzen um
aus derartigen Aufnahmen einzelne Signalkomponenten zu extrahieren, mit dem Ziel
räumlich besser aufgelöste Varianten zu erzeugen. Hierzu wird zunächst ein praktikabler
Ansatz zur Trennung von direkten und diffusen Schallanteilen basierend auf der Kohären-
zfunktion beschrieben. Darüber hinaus wird Quellseparation verwendet, um einzelne
Bestandteile des Signals zu ermitteln und zu extrahieren. Der untersuchte Quellsepara-
tionsansatz beruht auf der Nicht-negativen Matrix-Faktorisierung (NMF) mit mehrdimen-
sionalem Eingang (auch Nicht-negative Tensor-Faktorisierung, NTF). Unterschiedliche
Aspekte bestehender NMF und NTF Ansätze werden diskutiert, wobei vor allem auf die
statistische Interpretation eingegangen wird. Ein möglicher Algorithmus auf Basis eines
derartigen statistischen Ansatzes wird vorgestellt und ein Gibbs Sampler für das mehrdi-
mensionale Problem hergeleitet und in der Audioanwendung getestet. Zuletzt werden
Gruppierungsstrategien für die extrahierten Signalkomponenten auf Basis von cepstralen
und räumlichen Eigenschaften vorgestellt.
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Chapter 1

Introduction

In the field of spatial audio, research has advanced quickly during the recent years. Tech-
nologies for playing back spatially distributed sound on flexible loudspeaker setups now
are available for many practical situations. Also, binaural renderers, which aim at en-
abling similar experiences over headphones, are steadily being improved, boosted by the
development of the virtual reality. Apart from that, compact loudspeaker arrays for sound
projection are being studied. With all these spatial audio technologies at hand, there is one
important question left: How should one obtain suitable audio material to exploit them?

Usually, such material is explicitly produced for spatial audio. Techniques include mi-
crophone recordings of real sound scenes, for example with Ambisonics microphones, or
the creation of sound scenes through artificial spatialization of individual sources. And
although a lot of new material is being produced, the vast amount of existing mono and
especially stereo music recordings released over the last century is left mostly untouched,
due to the unavailability of individual instrument tracks. It is possible to create multi-
channel versions from mono or stereo recordings in a process referred to as upmixing.
Many systems have been proposed, often based on ambience extraction and matrixing. In
this work, source separation shall be examined, motivated by the stereo to multichannel
upmixing problem.

Furthermore, the virtual reality poses a new challenge for spatial audio rendering. Apart
from allowing the listener to turn the head and thereby rotate the sound scene, free move-
ment trough the virtual scene should be enabled. One way of creating such 6 degrees of
freedom systems involves interpolation between spatially distributed microphone record-
ings. Another alternative is to encode individual sources in the 3D space. If the scene
was recorded with one or several first-order Ambisonics (FOA) microphones for exam-
ple, the sources need to be extracted. Besides classical beamforming techniques, source-
separation that takes both the time-frequency and the spatial domain into consideration
could be a promising alternative.
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Blind Source Separation. Blind source separation deals with the problem of extract-
ing components from a mixed signal, when no or only little prior knowledge about the
sources is available. It is studied in many different disciplines including image processing,
medical diagnostics and finance. The objective of this work is to use blind acoustic source
separation algorithms for extracting individual instrument tracks of complete stereo or
FOA mixes. What should be noted is that the state of the art sound source separation
methods yielding the best separation results are almost exclusively informed approaches,
which involve extensive training [SLI18]. Nevertheless, blind approaches relying solely
on finding latent structure in the data are still a challenging and interesting topic to study.
Also, they were among the technologies used for successfully restoring live recordings
from the Beatles’ american tour in the 1960s [Cla17], which partly inspired this work.

Approaches for blind sound source separation include streaming methods, commonly
adopted in computational auditory scene analysis (CASA), independent component anal-
ysis (ICA), which aims at finding statistically independent components, and independent
subspace analysis (ISA), which is ICA on the magnitude spectrogram of the mixed sig-
nal [LL09]. Beginning with [LS99], non-negative matrix factorization (NMF) was pop-
ularized and studied by many researchers during the last 20 years, resulting in an ever
growing number of publications, in which many approaches are being presented, evalu-
ated and discussed.

The Present Approach. Many researchers have shown one or the other NMF ap-
proach or variant to perform better or worse in simple examples. In this thesis, NMF
should be understood as one building block of a complete separation system. Advances
in the direction of such multi-stage systems have been done mostly by Fitzgerald [Fit11].
The construction of the system used depends strongly on the specific separation task.

Spectrogram
Transformation

Ambience Extraction

Harmonic/Percussive
Separation

Ambience Component

NTF of Harmonic
Content

NTF of Percussive
Content

 Stereo Input

Wiener Filtering

Separated Tracks

2

2

2

4

K

Figure 1.1 – Possible multi-stage separation process.
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In such a system, the decomposition task is divided up into several steps. Apart from NMF,
two parametric-pre processing steps are described in chapter 3. First of all, ambience
extraction, based on [AJ02], could be used to separate stochastic from deterministic signal
components. The stochastic components constitute the ambient part of the signal, which
can be used in upmixing. The direct signal is then separated into harmonic and non-
harmonic components. A simple yet effective algorithm is available [Fit10].

After this, the harmonic and percussive components can be separated using NMF. In some
cases, NMF might only be applied to one of the signals, depending on the specific mate-
rial. In Figure 1.1 the block is called "NTF" instead of "NMF". It stands for "non-negative
tensor factorization", which is used for dealing with multichannel input signals. The spa-
tial information can aid the separation progress when taken into account effectively. The
main focus of this thesis lies on the statistical formulation of NMF and NTF along with
it’s solution through full Bayesian inference, which is presented in chapter 4, preceded
by a summary of the problem. Whenever NMF or NTF is applied, a number of compo-
nents, which is typically larger then the number of instruments, is found. Clustering of
the components to form instrument signals is mentioned in chapter 6.

With the multichannel algorithms at hand, FOA input data can be processed. Since also
the output is intended to be re-panned using Ambisonics, the important fundamentals of
this technology are briefly summarised in chapter 5.

All of the described algorithms are based on the spectrogram of the signal, so spectro-
gram analysis and resynthesis of a time signal are an important part of the system as
well. Usually, the short time Fourrier transform (STFT) is used. This work demonstrates
that the constant-Q transform can be a very good alternative, especially since perfectly
reconstructing inverse transforms are available by now [HDVG13]. The constant-Q trans-
form offers a logarithmic frequency resolution, which is closer to human perception than
the linear resolution of the STFT. The underlying concepts of the non-stationary Gabor
transform are summarised in chapter 2.

The evaluation of source separation in general and in the context of spatial audio is a chal-
lenging field in itself [Roh15]. To exemplary show the effectiveness of the presented algo-
rithms in chapter 7, simple and objective energy-based criteria and considered [VGF06].

3





Chapter 2

Constant-Q-Transform

For all algorithms presented in this thesis, a time-frequency representation of the input
signal is the most important foundation. In particular, the Constant-Q-Transform (CQT)
is used, as it can improve many audio specific algorithms due to it’s improved time-
frequency resolution. When it was first proposed [Bro91], it did not have a functional
inverse transformation, making it suitable for analysis, but not for re-synthesis. Later,
a more efficient way of processing and a near perfectly reconstructing algorithm was
developed in [SK10]. It was shown that this particular implementation can lead to im-
provements in the separation results of NMF [FJCR11]. Shortly after the publishing of
the improved CQT variant and it’s implementation, a completly perfectly reconstructing
version, based on the mathematical concept of non-stationary Gabor frames was intro-
duced [VHDG11]. The aim of this chapter is to summarise the most important theory and
to define the notations used later on in the thesis.

Short Time Fourier Transform. Many signal processing algorithms are based on
modifying a signal’s spectrogram, which is an important representation, because the fre-
quency content of a signal can be examined over time. This distinguishes it from the
classical Discrete Fourier Transform (DFT)

DFT(x[t]) = x[f ] =
T−1∑
t=0

x[t]e−
i2πft
T , (2.1)

where all the information about the temporal structure of the signal x[t] is hidden in the
phase of the Fourier coefficients x[f ]. Throughout the thesis, the frequency index shall be
called f and the underline will denote complex numbers.

4
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Gabor Transform. The theory behind spectrogram representations goes back to the
Gabor Transform [Gab47], which can be defined by

STFT(x[t]) = xfn =
T−1∑
t=0

x[t]w[t− nR]e−2πi ft
T , (2.2)

w[t] = e−α
2t2 . (2.3)

The values xfn are arranged in a (F ×N) spectrogram matrix X, where N is the number
of time instances analysed and F is the number of frequency points. Both are distributed
linearly along time and frequency. Every value xfn can be thought of as covering a small
box in the time-frequency plane.

Gabor in Practise. Inspired by quantum theory, Gabor showed that the area of this
time-frequency box is minimal when using a Gaussian function as window. In this case,
the Gabor uncertainty turns into an equality.

∆f∆t ≤
1

2
(2.4)

For practical application, a window function w[t] which has finite support L is desirable.
A DFT will then be calculated with respect to the the non-zero, windowed parts of the
signal. In this case, the frequency resolution of each time-slice is limited to νs

L
, where νs

is the sampling frequency. The transform with the finite time-support window is

xfn =
L−1∑
t=0

x[nR + t]w[t]e−2πi ft
T . (2.5)

The windowing function can be chosen according to the desired properties of the STFT,
since different shapes lead to different leakage of one frequency bin to it’s neighbours. A
typical choice is the Hann window, which is centred around zero and given by

w[t] =

{
cos2(πt

L
) |t| < L

2

0 else.
(2.6)

For a practical algorithm, which follows from 2.5, a causal definition is used

w[t] =

{
1
2
− 1

2
cos(2πt

L
) 0 < t < L

0 else.
(2.7)

5
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Inversion. In countless applications of the spectrogram within speech or music pro-
cessing, modified spectrograms are produced, which need to be inverted in order to obtain
a modified time signal. Typically, inversion is done by inverse Fourier transformation and
the overlap and add procedure.

If we consider xn[t] to be the inverse DFT of the n-th time instance, obtained by

xn[t] =
1

L

F−1∑
f=0

xfne
2πi ft

T , (2.8)

reconstruction with the Overlap-and-Add Procedure can be achieved from

x[t] =

∑N−1
n=0 xn[t− nR]∑N−1
n=0 w[t− nR]

. (2.9)

This expression is simplified, if the window fulfils the constant overlap and add property

N−1∑
n=0

w[t− nR] = C. (2.10)

Using the Hann-Window the hopsize equal to R = L
2

, this condition is met with C = 1.

Non-Stationary Gabor Transform. In order to compare this transform to the frame-
based non-stationary case and in particular the CQT presented in [VHDG11], it can be
written down in terms of a collection of NF time-frequency atoms, which are windows,
modulated by the complex exponentials. Gabor calls these atoms "logons". Other than in
equation 2.5, where the windows are causal and small blocks of the signals are cut out, in
this notation, the window is centred around zero and shifted along the time-axis. For the
classical STFT denoted above, the corresponding atoms are

ϕ
fn

[t] = w[t− nR]e−2πi ft
T , (2.11)

and the transform can be written as

xfn =
T−1∑
t=0

x[t]ϕ
nf

[t]. (2.12)

For the stationary Gabor case, these atoms are spaced equidistantly along time at nR
and equidistantly along the frequency at νs

L
. For adaptive spacing in time, one would

manipulate the hop-size R. This can for example be used for more accurate resolution of
transient sounds [BDJ+11]. For the CQT, adaptivity in frequency is desired. To achieve
this, we will first of all, instead of choosing a window of finite support in the time domain,
choose a band-limited window in the frequency domain ψ

f
, which has the support Lf .

The index f indicates that it will have a different support for each frequency band.

6
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Since the atoms are designed to have finite support in the frequency domain, they have
infinite support in the time domain. Consequently, the designed atoms are best applied in
the frequency domain, namely to the DFT of the entire signal (with respect to frequency
variable f ′) or on the DFT of larger signal blocks, with their length depending on the atom
with the smallest frequency support (termed "sliced CQT", [HDVG13]).

xfn =
F ′−1∑
f ′=0

x[f ′]ψ
fn

[f ′] (2.13)

For the CQT, the windows will have their center frequencies νf logarithmically spaced
along the frequency axis, mirrored at the sampling frequency νs. The constant B deter-
mines how many bins will be placed within each octave

νf =


0 f = 0

νmin2
f−1
B f = 1, ..., F

νs
2

f = F + 1

νs − ν2F+2−f f = F + 2, ..., 2F + 1.

(2.14)

The Q-factor is defined as the ratio of center-frequency to bandwidth, or equivalently it’s
support in the frequency domain

Qf =
νk
Lf

= const. (2.15)

In order to keep the Q-factor constant at all frequencies, the support of the windows should
be chosen according to

Lf =


2νmin f = 0
νf
Q

f = 1, ..., F

νs − 2νF f = F + 1
ν2F+2−f

Q
f = F + 2, ..., 2F + 1.

(2.16)

This placement has some major advantages over the linear scale of the STFT, such as it’s
closer match to human perception. Particularly, in musical signals, a lot of information
is in the lower frequency range, where the fundamental frequencies of many instruments
and the voice are located. In [VHDG11], translated and dilated Hann windows (cf. eq.2.6)
are used as window functions for f = 1, ..., F, F + 1, ..., 2F + 2. They are given by

ψf [f
′] = w

[ f ′νs
F ′
− νf

νf+1 − νf−1

]
, (2.17)

where f ′ is the index of the large DFT.

7
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For f = 0 and f = F + 1, Tukey windows are used in order to cover the frequency
range between 0 and νmin, as well as νmin2

F−1
B and νs

2
, respectively. As alternative to the

constant Q-factor, it can also be desirable to increase the time-resolution at lower frequen-
cies, for example to represent the ERB scale, which becomes linear at low frequencies.
In [SK10], this is done by the parameter γ.

Figure 2.1 – Frequency atoms, which are applied to the DFT of the entire signal,
νmin = 6, B = 2.

One window function is available for every frequency band now. If they were applied to
the entire signal in the frequency domain, one coefficient for every frequency would be
obtained. In the present case of a time-frequency representation, a coefficient for every
frequency and every time slice should be obtained, this means that a variant of every
frequency window for every time instance has to be created.

The important fact is that to ensure that no information is lost, and ultimately to ensure
inverteability, the hop-sizes in the time domain must be adaptive as well. Depending on
the support of the frequency window, they should be chosen to fulfil the important support
condition

Rf ≤
1

Lf
. (2.18)

It can be shown that in this case the set of atoms is a frame [Doe01] and thereby an inverse
transformation must exist. This condition needs to be translated to the frequency domain,
were the windows are being designed. A time-shift of the window in the time domain
is equivalent to a phase-shift in the frequency domain, so the entire set of windows is
obtained by

ψ
fn

[f ′] = e−2πi
nRf
T ψf [f

′] n = 0, ..., N. (2.19)

If the support condition is fulfilled, a perfect inverse is found using the atoms γ
fn

, which
form the dual frame. They are given by

γ
fn

[f ′] =
ψ
fn

[f ′]∑
f

1
Rf
|ψf |2

. (2.20)

The inverse transform is obtained by

x[f ′] =
2F+1∑
f=0

N∑
n=0

xfnγfn[f ′], (2.21)

with only an inverse DFT left, to obtaining a signal in the time domain.

8





Chapter 3

Parametric Pre-Processing

Before engaging in more advanced source separation techniques, ambience separation
based on [AJ02] was implemented. Originally, it was intended as a stereo to discrete
multichannel upmixing tool. Here it may serve several purposes. Apart from being used
as a pre-processing step for later source separation, it is effective on it’s own for stereo
or FOA to HOA upmixing, where the separated ambience can be spatialized to improve
immersion. For this application, decorrelated copies of the ambience component can be
created using [CDA18]. A scheme for processing multiple pairs of input channels is
presented.

3.1 Signal Model

The ambience extraction method is based on a simple convolutive mixture model. The
signal for each of the M channels can be expressed as

xm[t] =
K∑
k=1

sk[t] ∗ hkm[t] + nm[t] (3.1)

=
K∑
k=1

sk[t] ∗ dkm[t] +
K∑
k=1

sk[t] ∗ rkm[t] + nm[t]. (3.2)

Imagine a mixture ofK sources sk[t], k = [1, ..., K], where each source has a propagation
path to each of a set of M receivers. The receivers could either be thought of as actual
microphones in a room or channels of an artificial mix. In the typical application presented
here, stereo mixes (M = 2) or FOA mixes (M = 4) are considered, in which either
monophonic sources have been panned, mixed and artificial reverberation has been added,
or in which microphones in a room have captured the sound sources. No matter if artificial
or real, reverberation should be decorrelated between the channels. The propagation paths
can be described by a set of impulse responses hkm[t], which consists of a direct and a
reverberant part hkm[t] = dkm[t] + rkm[t]. An additional portion of background noise
nm[t] is considered, e.g. stemming from an audience in a live recording or the recording
equipment itself, as seen in older material.

9
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3.2 Ambience Separation

Coherence Function. The fact that rkm[t] is a several hundred milliseconds long im-
pulse response, which is different between the channels, leads to the low correlation of
ambient signal components in relation to direct component. The algorithm aims at dis-
tinguishing time-frequency regions of high coherence between the channels, which are
enhanced to retrieve the direct component, from regions of low coherence, which consti-
tute the ambient part of the signal. The measure is based on the coherence function

c
(12)
fn =

φ(12)

fn√
φ

(11)
fn φ

(22)
fn

, (3.3)

where φ(11)
fn and φ

(22)
fn are elements of the power spectral densities (PSDs) of s1[t] and

s2[t] respectively and φ(12)

fn
are elements of the cross spectral density (CSD). For signals

with time-varying statistics such as speech or music, these quantities are approximated by
averaging the spectrogram, as done in an IIR fashion in [AJ02]

φ(i,j)

fn
= λφ(i,j)

f,n−1
+ (1− λ)x

(i)
fnx

∗(j)
fn , (3.4)

where λ ∈ [0, ..., 1] is the "remembrance" and controls the amount of averaging.

Regularisation. Regularisation is carried out by adding a small constant δ, which is
mutltiplied with the mean energy of each frequency band, to the denominator. In this way,
small coherences are assigned to low energy bins. If the first signal is omnidirectional as
suggested below, it is sufficient to take the mean energy of this signal for regularisation

c
(12)
fn =

φ(12)

fn

δ
∑

n φ
(11)
nf +

√
φ

(11)
fn φ

(22)
fn

. (3.5)

Mapping and masks. To create time frequency masks for the direct and ambient com-
ponent, a non-linear mapping is applied to the absolute value of the coherence estimation.
For this, the hyperbolic tangent is well suited. It has been found that the best results are
obtained with a value of c0 close to 1. This means that only bins with very high coherence
are assigned to the direct component. The result of the mapping is used as the mask for
the direct component, a mask for the ambience component is created by using (1 − c̃fn).
The masks are applied on left and right channel separately, so that the output again is
stereo.
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Figure 3.1 – Mapping function for different values of c0 and β.

Example. As a testfile, a short sample with a drumset and an organ, convolved with a
short room impulse response is used. Coherence estimation with the parameters indicated
below yields the following result
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Figure 3.2 – CQT spectrogram of the stereo input signal, consisting of drums and or-
gan convolved with a short room impulse response to add reverberation. The drums are
slightly panned to the right, the organ to the left.
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Figure 3.3 – (a) Coherence before mapping, (b) mapping to the direct component, and
(c) mapping to the ambient component. Regions with active instruments have a high
coherence. Decay processes, such as after the hi-hat beats, exhibit a lower coherence.
The parameters were set to λ = 0.8, δ = 10−4, c0 = 0.95 and β = 8.
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3.2.1 Panning Index

From the same coherence based processing it is possible to create a so called "panogram",
based on the panning index [AJ04]. If sources are panned away from the center, but not
all the way to one side, it can already be possible to achieve successful source separation,
when masks based on the panning regions are used.

Figure 3.4 – Panning index of the direct signal component. This is a classic jazz record-
ing, where the saxophone is panned to one side. The saxophone with it’s rich overtone
structure can be seen in the thin blue lines starting with the first sax note at approximately
0.5 seconds. Scaling is done according to the component panned furthest to one side.

3.2.2 Multichannel Scheme

In an environment with more than two channels, this approach can be extended to mea-
sure the pair-wise coherence. It has been found, that measuring the pairwise coherence
between the omnidirectional signal (i.e. the sum of all signals) and the directional chan-
nels is most effective. In Ambisonics, the directional channels are obtained by decoding
to a suitable layout, cf. chapter 5. If a source is panned to one of the directions, the di-
rectional signal will be strongly correlated with the omni channel and the time-frequency
bins will be assigned a high coherence. The T-F bins for which there is no source present
in the directional channel will have a lower correlation with the omnidirectional part. This
means that for the parts with no source present, mostly ambience signal is obtained, i.e.
the reverberation of the other far-panned instruments. Direct and ambient masks are cre-
ated for each directional channel as described above.
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3.3 Harmonic/Percussive Separation

As an additional step in the separation procedure, harmonic/percussive separation is im-
plemented. When comparing different approaches, also based on time-adaptive non-
stationary Gabor transform, it was found that a simple heuristics based on median fil-
tering [Fit10] gives very good results.

This approach is based on the non-adaptive STFT, as in this case a constant resolution over
time and frequency is important. Two spectrograms are created from every input channel
by applying median filters. For the percussively enhanced spectrogram, a median filter of
length Lp is along the rows xTn of the magnitude spectrogram and for the harmonically
enhanced spectrogram a median filter of length Lh is applied to the columns xf

pn = median(xTn , Lp), hf = median(xf , Lh). (3.6)

From these filtered spectrograms, masks are created and applied to the complex input
spectrogram in the sense of a Wiener filter

x
(p)
fn = xfn

pfn
pfn + hfn

, x
(h)
fn = xfn

hfn
pfn + hfn

. (3.7)
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Figure 3.5 – Result of a harmonic/percussive separation.
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Chapter 4

Non-Negative Matrix Factorization

4.1 Standard NMF

When NMF was first introduced and popularized it was understood as an approach for
low-rank model approximation by constrained optimization [LS99].

A data matrix X ∈ RF×N
+ can be decomposed into a product of matrices in many different

ways. In matrix factorization (MF) the aim is to factorize the X into a product of two
matrices W ∈ RF×K

+ and H ∈ RK×N
+ . Rank reduction is achieved by setting K �

max(F,N).
X ≈WH = Y (4.1)

In the context of audio source separation, the data matrix X is either the magnitude spec-
trogram |X| or the power spectrogram |X|2 of an audio signal. The complex spectrogram
X is often times computed by the STFT or, as in this work, by the CQT. The magnitude
or power spectrogram only has non-negative entries. In our model, separate uncorrelated
sound sources are mixed to form this spectrogram, only allowing for additive combina-
tions. Thus no negative entries of W and H are allowed either and the term non-negative
matrix factorization (NMF) is established.

NMF has the inherent property of finding K re-occurring components. In musical source
separation, these often represent different notes, possibly played by different instruments.
The columns of W correspond to spectral templates for these note events and H charac-
terizes their activation over time.

When viewing NMF as optimization problem, the factorization is carried out by itera-
tively minimizing a function D(X,WH) under the non-negativity constraint. As a cost
functions, different measures for the dissimilarity of two matrices are used.

min
W,H≥0

D(X,WH) (4.2)
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A simple example. As an example, the result of the NMF algorithm for the first two
bars of "Day Tripper" by the Beatles is presented. Figure 4.1 shows the input magnitude
spectrogram matrix and the two factor matrices W and H. In the "dictionary" matrix W
the columns are the spectra of the separated components. They exhibit a strong harmonic
structure, since the components correspond to single notes played on a guitar.
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Figure 4.1 – X ≈ WH. The components of the "dictionary" matrix W clearly have
harmonic spectra, as they correspond to single notes played on a guitar.

The rows of the "activation" matrix H, denoted as h1-h7, are shown below, along with the
musical notes of the short melody. It is easy to associate the occurrence of some notes
with the activation of components, but it is also visible that components are not necessarily
activated exclusively. The overtones of one guitar stroke also activate components other
then the one of the associated note, cf. h3. The algorithm has no knowledge about the
harmonic structure of the content or our desire of being able to match notes to single acti-
vated component. It surely is imaginable that improvements will be necessary, especially
in more complex acoustic scenarios.

Figure 4.2 – "Activation" matrix together with the score of the excerpt. For some notes it
is easy to recognize a matching component, e.g. component h6 and note D2

For this first example, a simple multiplicative update rule minimizing the Euclidean dis-
tance was used. The matrices were initialized with uniformly distributed random data. In
the following section an overview of cost function, constraints and the statistical view-
point will be given.
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4.1.1 Cost Functions

The cost function D(X,WH) is obtained by summing up a scalar cost function d(x, y)
for every matrix entry over time and frequency

D(X,WH) =
F−1∑
f=0

N−1∑
n=0

d(xfn, yfn). (4.3)

Over several years of NMF research, many cost functions comprising different properties
have been proposed. The pioneering paper about cost functions and update rules [LS01]
featured two measures: the squared Euclidean distance dEuc and the Kullback-Leibler
divergence dKL. Also the Itakura-Saito divergence dIS has been introduced for NMF.
In [FBD09] advantageous properties such as it’s scale-invariance are pointed out.

dEuc(x, y) =
1

2
(x− y)2 (4.4)

dKL(x, y) = xlog
x

y
− x+ y (4.5)

dIS(x, y) =
x

y
− log

x

y
− 1 (4.6)

Later, researchers have focussed on finding general divergences, which encompass the for-
mer mentioned, in order to understand their connection and for allowing to adapt derived
update rules parametrically. One of the most general descriptions is given by the class of
Bregman divergences.

Bregman Divergence. The Bregmann divergence is defined in terms of a strictly con-
vex function φ(x) that has a continuous derivative

dφ(x, y) = φ(x)− φ(y)− d

dy
φ(y)(x− y). (4.7)

For the choice of φ shown below, it is simple to show continuity in terms of β and differ-
entiability in terms of x, cf. [HDB11]. When defining φβ in the following way, the class
of β-divergence dβ is obtained

φβ(x) =


−log(x) + x− 1 β = 0

xlog(x)− x+ 1 β = 1
xβ

β(β−1)
− x

β−1
+ 1

β
otherwise

, (4.8)

dβ(x, y) =


x
y
− log(x

y
)− 1 β = 0

xlog(x
y
) + (y − x) β = 1

xβ+(β−1)yβ−βxyβ−1

β(β−1)
otherwise

. (4.9)

The β-divergence incorporates all the above mentioned measures. When choosing β = 0
we obtain dIS and for β = 1 we get dKL. For β = 2, the Euclidean distance is dEuc is
obtained.
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Figure 4.3 – dβ(x, y) for different values of β. The divergences differ in the way they
penalise too large or too small values of the approximation. Only for β > 1 the divergence
takes finite values for x = 0.

4.1.2 Algorithms

In the optimization perspective of NMF, typically multiplicative update rules are used.
These are based on the gradient descent algorithm, where during every iteration the coef-
ficients are updated according to the following rule

θθθi+1 = θθθi − ηi∇θθθD(θθθi). (4.10)

In [LS01] the well-known multiplicative update rules have been derived by a special
choice of the step-size parameter η. Whereas η is typically a scalar value, it is extended to
a matrix here. "◦" denotes the element-wise product. Left of the arrow sign is the updated
matrix θθθi+1. For a detailed derivation of the multiplicative update rule for the Euclidean
distance, see appendix A.

θθθ ← θθθ − ηηη ◦ ∇θθθD(θθθ) (4.11)

The main advantage of having formulated the divergences as a Bregman divergence is that
the update equations do not have to be derived for each cost function individually, but all
that is required to form a new multiplicative update rule is the second derivative of φ(x)
and the formula derived in [SD06], which states

H← H ◦ WT (∇2φ(WH) ◦X)

WT (∇2φ(WH) ◦WH)
, (4.12)

W←W ◦ (∇2φ(WH) ◦X)HT

(∇2φ(WH) ◦WH)HT
. (4.13)
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For the above choice φβ , the second derivative is

d2φβ(x)

dx2
= xβ−2, (4.14)

so the multiplicative update equations for the general β divergence are [FBD09]

H← H ◦WT ((WH).(β−2) ◦X)

WT (WH).(β−1)
, (4.15)

W←W ◦ ((WH).(β−2) ◦X)HT

(WH).(β−1)HT
. (4.16)

Thanks to these generalizations, the same implementation can easily be used for different
values β ∈ R+, but choosing a optimal value is not a trivial problem. To do so, several
approaches are imaginable. The tuning parameter β could either be found empirically as
in [Coy09], where the energy based criteria (cf. chapter 7) are used as a quality measures,
or it could be learned autonomously from a bigger data-set. An other approach is using
statistical models to justify the decision, which is of particular interest in this work, cf.
section 4.3.

4.1.3 Constraints

Within the optimization framework of NMF, additional properties of the two resulting
matrices can be induced when extending the cost function by additional terms to obtain a
constrained cost function DC . The choice of the parameters α controls the effect of the
constraints on the overall result.

DC(X|WH) = D(X|WH) + αWCW (W) + αHCH(H) (4.17)

Sparse NMF. One possible goal is to enforce sparsity of either the columns of W or
the rows of H. This becomes increasingly important when using large numbers of com-
ponents K, since the decomposition might yield a low divergence, but the interpretability
of the components is lost. A simple sparsity criterion is the L1-norm of H. Since the
elements of H are non-negative by constraint, it is simply the sum of the elements

CH(H) =
∑
k

∑
n

hkn. (4.18)

In one of the earlier papers about sparse NFM [Hoy02], the corresponding update rule
for the Euclidean distance is derived. When using the sparseness constraints on H it is
important to carry out a normalization on W, since otherwise the additional cost CH is
decreased easily with increasing values of W.
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One option is to normalize with the norm of the matrix W. In [Hoy02], it is noted that
the most meaningful way is normalizing the columns of W, such that ||wk|| = 1, but
that the multiplicative update rules are no longer guaranteed to be non-increasing. The
authors propose using additive gradient descent updates instead. In [Rou15], a pair of
multiplicative update rules incorporating sparsity, column-wise normalization and general
β-Divergences is derived, leading to an effective implementation of sparse NMF.
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Figure 4.4 – H from the NMF result of a short drum fill from "The End" by the Beatles. (a)
without sparseness constraint. (b) with sparness constraint according to [Rou15], αH =
0.5. By penalizing large values of H, the sparseness constraint produces less leakage
between the components. The six peaks at the end correspond to six tom beats.

4.1.4 Reconstruction

Although some effort has been made to extend NMF to complex spectrograms, estimating
both amplitude and phase at the same time, most algorithms are still based on the mag-
nitude or power spectrograms. After having obtained the two matrices, time frequency
representations of the separated components are calculated by multiplying each column
wk of W with each row hTk of H. Typically these spectrograms are used as masks in
the sense of Wiener filtering before the inverse frequency transformation. The complex
spectrograms of the separated sources Ŝk become

Ŝk =
wkh

T
k

WH
◦X =

Yk

Y
◦X, (4.19)

which means that effectively the phase of the original signal is used.

Gri�n and Lim. During the inverse transform, the Griffin and Lim algorithm provides
a way of recursively estimating a phase of the separated signals, which might provide
a better fit to their magnitude [GL84]. Just as in a study comparing quality ratios for
different phase recovery strategies [MBD16], no improvement in audio quality could be
observed in case of the present separation results.
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4.2 NTF

In non-negative tensor factorization, the information available in multichannel data is used
explicitly. The spectrogram matrix X ∈ RF×N

+ is extended to form the spectrogram tensor
XX ∈ RF×N×M

+ . When performing the separation, a gain is assigned to every component
for each channel. The gains are collected in the matrix G ∈ RM×K

+ , where columns gk
describe the gains of the component k in the M channels. This is equivalent to assuming
static sound sources, which is covered by the model from section 3.1. The reconstruction
YY can be written as

XX ≈ YY =
∑
k

gk ⊗wk ⊗ hTk , (4.20)

where ⊗ denotes outer matrix multiplication. In index notation the same model reads

xnfm ≈ ynfm =
∑
k

gkmwfkhkn. (4.21)

Figure 4.5 – Schematic representation of the matrices involved in NTF.

Tensor Products. It should be noted that in this context, the term "tensor" is sim-
ply meant to describe a multidimensional matrix. Apart from the outer product, which
constructs the reconstructed spectrogram tensor, inner products are important for the al-
gorithms. For 2D matrices, taking the inner product means multiplying and summing
over the inner dimension of the two factors. The elements of the matrix C = AB are
computed by

cj1j3 =
∑
j2

aj1j2bj2j3 . (4.22)

For tensors, the same inner product can be defined, executed over the inner-most dimen-
sion. Let AA be a J1 × ...× Jk tensor and BB be a Jk × ...× JK tensor, their inner product
could be defined as

cj1,jk−1,jk+1,jK =
∑
jk

aj1,...,jkbjk,...,jK . (4.23)
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It is even possible to choose several matching dimensions over which the product should
be computed, no matter if they are the inner ones or not. This more general constracted
tensor multiplication, will be denoted as in [FCC05]. For example, let AA be a tensor with
dimensions I1× ...×IN×J1× ...×JA and BB a tensor with dimensions I1× ...×IN , L1×
...×LB. The product can be executed over all matching dimensions, which are indicated
in curly brackets. In the following, the left set of dimensions corresponds to the left tensor
and the right set to the right tensor. The product

CC = 〈AABB〉{1,...,N,1,...,N}, (4.24)

is equivalent to

cj1,...,jA,l1,...,lB =
∑
i1

...
∑
iN

ai1,...,iN ,j1,...,jAbi1,...,iN ,l1,...lB . (4.25)

Algorithm. Multiplicative update rules for the tensor factorization with Kullback-Leibler
divergence have been introduced in [FCC05]

G = G ◦
〈PPDD〉{1,2;2,3}

〈PPOO〉{1,2;2,3}
, (4.26)

W = W ◦
〈QQDD〉{1,2;2,3}

〈QQOO〉{1,2;2,3}
, (4.27)

H = H ◦
〈RRDD〉{1,2;1,2}

〈RROO〉{1,2;1,2}
, (4.28)

where the following auxiliary tensors have to be defined. DD ∈ RF×N×M
+ is the ratio of

data and reconstruction

DD =
XX

YY
. (4.29)

The second one, PP ∈ RF×N×K
+ is the outer product of the component without considering

the gains

Pk = wkh
T
k . (4.30)

The other two auxiliary tensors QQ ∈ RM×N×K
+ and RR ∈ RM×F×K

+ are filled with

Qk = gkh
T
k , (4.31)

Rk = gkw
T
k . (4.32)

These update rules where successfully tested on stereo and FOA data using an decod-
ing/encoding step, cf. chapter 5. The NTF problem has also been brought to the statistical
world, which will be explained in the next section.
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4.3 Statistical Interpretation

Apart from the described optimization perspective of NMF, an alternative viewpoint has
developed, embedding the NMF problem in a statistical framework, which is based on
Bayes’ law, maximum likelihood estimation, etc. Apart from a wider understanding of the
problem, this approach bears several advantages, such as the simple incorporation of prior
distributions, which motivate the constraints used in the previously described viewpoint.
Also, this formulation inspires new NMF algorithms, stemming from the discipline of
statistical signal processing.

4.3.1 Bayes' Law

This theorem, named after the English reverent Thomas Bayes (1701-1761), is one of the
most important foundations of statistical signal processing. It links probability density
functions (pdfs) incorporating observation and prior knowledge in the following way

p(θ|X) =
p(X|θ)p(θ)

p(X)

p(θ|X) ... posterior
p(X|θ) ... likelihood
p(θ) ... prior
p(X) ... evidence

In case of the NMF problem Bayes’ law gives an answer to the the following question for
each time-frequency-bin (T-F bin): "What is the probability of each entry in W and H to
have a certain value, when having observed X?". Different initial beliefs about how W
and H are distributed can be incorporated by the prior densities, which is one of the major
advantages of this approach. In a static model, the evidence p(X) acts as a normalization
and needn’t be considered in the estimation of W,H.

p(W,H|X) ∝ p(X|W,H)p(W)p(H) (4.33)

4.3.2 Maximum Likelihood Estimation

Maximum likelihood (ML) estimation doesn’t exploit the full message of Bayes’ law, but
focusses on the likelihood function. For an ML estimator, we are looking to maximize the
likelihood, or in practise minimize it’s negative logarithm

(W,H) = arg min
W,H
−logp(X|W,H). (4.34)
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The likelihood tries to answer the question: "How probable is a certain value of xfn when
having obtained yfn?". What becomes explicit thereby is the fact that the factorization
is only an approximation of X, so the value xfn doesn’t correspond to yfn exactly, but is
somehow distributed in dependence of it. There are many different options for guessing
how this distribution might be, but some are more popular then others, mainly for one
reason: The resulting ML estimator corresponds exactly to one of the well known cost
functions described above.

Gaussian Likelihood model I. In [FBD09] the IS divergence is derived from a
Gaussian likelihood using the following model. The complex samples of the individual
sources’ spectrograms are assumed to be distributed according to a complex Gaussian
distribution, which is centered around zero, and is scaled by the samples of the estimated
sources

p(sfnk) = Nc(0, wfkhkn). (4.35)

In case of a zero mean and a uniformly distributed phase, the complex normal distribution
is called circularly-symmetric and it’s pdf is given by

Nc(x|0, σ2) =
1

πσ2
e−
|x|2

σ2 . (4.36)

The samples of the mixed signal’s spectrogram are the sum of the source spectrograms’
samples

xfn =
∑
k

sfnk. (4.37)

The pdf of the sum of two random variables is determined by the convolution of the
variables’ pdfs. Despite the fact that complex distributions actually describe two values,
real and imaginary part, the circularly-symmetric complex Gaussian distribution depends
on the norm only. This means that it is actually 1-dimensional and the property of the
normal distribution, which states that the sum of normally distributed variables is normally
distributed [ES08], can be translated to this case as well. The pdf of the summed circularly
symmetric Gaussian is a circularly symmetric Gaussian itself, where the variance is the
sum of the variances and the likelihood is described by

p(xfn|wf :h:n) =
1

π
∑

k wfkhkn
e
−

|xfn|
2∑

k wfkhkn =
1

πyfn
e
−
|xfn|

2

yfn . (4.38)

Summed over all T-F bins, the negative log likelihood can be written as

DNML = −
∑
n

∑
f

log
1

πyfn
e
−
|xfn|

2

yfn (4.39)

=
∑
n

∑
f

(logπ + logyfn + loge
−
|xfn|

2

yfn ), (4.40)

= NF logπ +
∑
n

∑
f

(logyfn +
|xfn|2

yfn
). (4.41)
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The resulting expression is equivalent to the IS divergence DIS up to a constant, when
the power spectrogram is used as an input. This means that they have the same maximal
point.

Poisson Likelihood Model. In the same way, other distributions can be associated
with the different divergences. In [Cem09] the Poisson distribution is chosen to formulate
the source model. According to this model, the magnitudes of the source samples sfn =
|sfkn| are distributed with

sfnk ∼ PO(wfkhkn), (4.42)

where PO is the Poisson distribution, defined by

PO(x;λ) =
e−λλx

Γ(x+ 1)
, (4.43)

and Γ(x) is the gamma function. Note that the Poisson distribution is formally defined for
integers only. This does not seem to correspond to reality, but the model can still be used,
since the spectrogram can be arbitrarily scaled. Furthermore, the Poisson model doesn’t
represent a sum of complex samples or leads to the power spectrogram, but is defined for
the magnitude of the samples. The modelling assumption states that the magnitude spec-
trogram is the sum of the source magnitudes, which is not physical. The full derivation
can be found in [VCG08].

xfn =
∑
k

sfnk (4.44)

To derive the ML estimator, we can use the rule which states that the sum of independent
Poisson distributed random variables is also Poisson, where the new intensity parameter
is the sum of the old ones. This leads to the likelihood

p(xfn|wf ,hn) = PO(xfn|
∑
k

wfkhkn). (4.45)

The negative log-likelihood is

DPOML = −log
∏
f

∏
n

e−yfny
xfn
fn

Γ(xfn + 1)
(4.46)

=
∑
f

∑
n

−yfn + xfnlog(yfn)− log(Γ(xfn + 1)). (4.47)

This is equivalent to the Kullback-Leibler divergence DKL, used by many researchers in
NMF.

Tweedie Likelihood Model. It was even noticed, that there is a family of distributions,
based on the Tweedie distribution that, when used a likelihood, would result in the family
of β-divergences defined above [TF13].
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4.3.3 Maximum A Posteriori Estimation

One step further into the statistical framework lies the maximum a posteriori (MAP) esti-
mator. Instead of focusing on the likelihood alone, the MAP takes prior densities of W
and H into account and maximises the posterior

(W,H) = arg min
W,H
−logp(W,H|X). (4.48)

Prior densities take the place of the constraints in the optimization framework.

Markov Chain Priors. A common choice is to use a prior on H, which enforces
smoothness. This can be done by the following prior structure

p(hkn) =
N−1∏
n=1

p(hkn|hk(n−1)p(hk,0), (4.49)

where p(hkn|hk(n−1)) is a pdf with it’s mode at hk(n−1).

This definition is given in [FBD09], where a Gamma chain is used and the update is car-
ried out using space-alternating generalized expectation-maximization (SAGE). In [VTG08],
a Gamma chain is applied as well, introducing an auxiliary variable zkn. Increasing values
of αH result in the a stronger coupling of the H entries over time

p(zk,0) = G(zk,0;αH + 1, αHβH), (4.50)
p(hkn|zkn) = G(hkn|αH , αHzkn), (4.51)

p(zk(n+1)|hkn) = G(zk(n+1)|αH + 1, αHhkn). (4.52)

To solve this, multiplicative update rules are used. Similar to the additive constants which
follow from the simple constraints shown above, additive terms appear in the numerator
and denominator of the update rule for H. In this framework, this update can not be done
matrix-wise any more

wfk ← wfk

∑
n hkn

xfn
yfn∑

n hkn
, (4.53)

hkn ← hkn

2αH
hkn

+
∑

n hkn
xfn
yfn

αH(zkn + zk(n+1)) +
∑

n hkn
, (4.54)

(4.55)

zkn ←


1

hk,0+βH
n = 0

2
hkn+hk(n−1)

n = 1, ..., N − 1
1
hkn

n = N

. (4.56)

Note that apart from the introduced additive terms, the updates are equivalent to the
Kullback-Leibler (or β-Divergence with β = 1). This is because a Poisson likelihood
is used as shown above.
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4.4 Full Bayesian Inference

The derivation of the ML and MAP estimator lead to a new understanding of the cost func-
tions, but they are still point estimators, whose solution is typically found by numerical
optimization. Furthermore, it has been shown, that the two statistical models presented
above yield an ML estimator which is equivalent to the known divergences. This means
that even exactly the same algorithms can be used as before. This is different when apply-
ing a full Bayesian treatment, where not only a maximal point of the posterior distribution
will be found, but the entire distribution will be approximated by actually generating sam-
ples from it.

4.4.1 Gaussian Likelihood Model II

In [SWH09] and [BFL17], this process is described, based on a Gaussian model, which
differs from the one described above. Here, the true values of the magnitude spectrogram
X are assumed to be distributed around the reconstructed values Y with unknown variance
σ2. This model might seem more intuitive than the model used in the IS divergence
derivation in [FBD09], which has zero mean and the variance scaled by the value of the
approximation. Figure 4.6 shows a schematical comparison, where an arbitrary value of
xfn is kept constant, while the reconstruction value is scaled with a constant.

xfn ∼ N (yfn, σ
2). (4.57)

Gauss Model I

Gauss Model II

Figure 4.6 – Schematical comparison of Gaussian Likelihood Model I and Model II for a
certain value ynf and a multiple of it (6ynf ).

The unknown variance is distributed according to the inverse gamma distribution

σ2 ∼ G−1(α, β). (4.58)

The inverse gamma distribution is the conjugate prior for a random variance of the normal
distribution. The posterior of a variable with a conjugate prior belongs to the same family
of distributions as the posterior again. In this case it is even exactly the inverse gamma
distribution again (cf. A.44), which is defined as

G−1(x;α, β) =
βα

Γ(α)
(x)−α−1e−

β
x . (4.59)
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Furthermore, exponential priors are introduced for the elements of W and H. The rate
parameter of these exponentials has a direct influence on the separation’s sparsity.

wfk ∼ E(λWfk) hkn ∼ E(λHkn) (4.60)

At the same time as the exponential priors resemble the sparse distribution of samples
in the dictionary and the activation matrices, it causes non-negativity of the entries. No
explicit non-negativity constraint is required. The exponential distributions’ density is
defined as

E(x;λ) = λe−λxu(x), (4.61)

where u(x) is the Heaviside step function.

4.4.2 Gibbs Sampling

With the model at hand, a Gibbs sampler for drawing samples from the conditional pos-
terior densities can be derived. The Gibbs sampler belongs to the class of Markov Chain
Monte Carlo (MCMC) methods.

The important idea behind the Gibbs Sampler is that when sequentially sampling from
the conditional posteriors of all parameters, the draws will converge to draws of the joint
posterior. Thereby, sequential sampling from a very high-dimensional model becomes
possible. For this, the posterior of every variable, depending on all other variables needs to
be derived. In each iteration of the sampler, samples will be drawn from these distributions

p(θ
(i+1)
j |θ(i+1)

1 , θ
(i+1)
2 , ..., θ

(i+1)
j−1 , θ

(i)
j+1, ..., θ

(i)
J ). (4.62)

After a few iterations, the sampler is said to have "burned-in". Then, samples from the
joint posterior are produced. Due to the concept of MCMC, the samples following each
other are not fully uncorrelated. To cope with this, thinning can be applied by only taking
samples from every e.g. third iteration.

Conditonal Mean. To use the result of the sampling procedure, ultimately one value
has to be determined for every variable, on which the separation is based. One way
of doing this is to apply the conditional mean estimator. For this, the mean over all
realisations after burn-in Iburn and possible thinning is computed

θCMj =
1

I

I∑
i=1

θ
(i)
j . (4.63)
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Gibbs Sampler for Gaussian Model II. Using Bayes’ law, the conditional posterior
for one single samplewfn of the first factor matrix W can be derived. Every draw depends
on all other parameters, except the specific wfn. The derivation required to obtain the
posterior distributions is executed in A.3.1 in much detail. The resulting posterior is a
truncated Gaussian

p(wfk|X,W\(wfk),H, σ2) = p(X|W,H, σ2)p(wfk;λ
W
fk) (4.64)

=
∏
n

N (X|WH, σ2)E(wfk;λ
W
fk)u(wfk) (4.65)

= T N (wfk|µW , σ2
W )[0,∞), (4.66)

with mean and variance

σ2
W =

σ2∑
n h

2
kn

(4.67)

µW = σ2
W

( 1

σ2

∑
n

(xfnhkn − hkn
∑
k′ 6=k

wfk′hk′n)− λWfk
)
. (4.68)

When looking at the rate λWfk of the exponential factor prior, it becomes clear how the
prior affects the result. It pulls the mean further towards the negative direction, thereby
making smaller values more probable if the rate of the exponential prior is chosen to be
high. λWfk can be chosen to be the same for every entry, or it could be low in a harmonic
grid and high elsewhere, encouraging certain notes.

The posterior for the elements of factor H is found, completely analogous, in a truncated
Gaussian with the parameters

σ2
H =

σ2∑
f w

2
fk

(4.69)

µH = σ2
H

( 1

σ2

∑
f

(xfnwfk − wfk
∑
k′ 6=k

wfk′hk′n)− λHkn
)
. (4.70)

As mentioned before, since the inverse gamma distribution is a conjugate prior for the
Gaussian Likelihood with unknown variance, the posterior density of the variance is in-
verse gamma as well. The derivation yields the following parameters

α′ =
NF

2
+ α (4.71)

β′ =
1

2

∑
f

∑
n

(xfn −
∑
k

wfkhkn)2 + β. (4.72)

Also this result is easily interpretable. β′ decreases with the fit of data and reconstruction,
making the variance of the drawn samples smaller. Since the inverse gamma distribution
is only non-zero away from σ2 = 0, the sampler will never completely freeze, which
would force it to create the same values over and over again.
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Computation. The samples from W can be drawn column-wise and the samples of
H row-wise, component for component. As described in [SWH09] already, the computa-
tional effort can be reduced by pre-computing some matrix products before drawing the
component samples. Taking for example the posterior draw of W, the product

∑
n xfnhkn

can be computed as one matrix product XHT before sampling. The same holds for the
product

∑
f xfnwfk, which is computed as WTX before sampling from H. The complete

algorithm can be written in the following way. Note that the values λWfk, λ
H
kn are collected

in the matrices ΛW ,ΛH .

Data: X, σ2, ΛW , ΛH , α0, β0

Result: {W(i), H(i)}Ii=1

W← U(0, 1);
H← U(0, 1);
α← α0 + FN

2
;

for i to I do
A← XHT ;
VH ← HHT ;
for k < K do

σ2
W ← σ2

vHkk
;

µ2
W ← σ2

W ( 1
σ2 (A:,k −W:,\kV

H
\k,k)−ΛW

:,k) ;

W
(i)
:,k ← T N (µW , σ

2
W );

end
β ← β0 +

∑
fn(X−WH)2 ;

σ2 ← G−1(α, β) ;
B←WTX ;
VW ←WTW ;
for k < K do

σ2
H ← σ2

vWkk
;

µ2
H ← σ2

H( 1
σ2 (Bk,: −VW

k,\kH\k,k −ΛH
k,:) ;

H
(i)
k,: ← T N (µH , σ

2
H)

end
end

Algorithm 1: NMF Gibbs sampler.
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4.4.3 Sampling from the Truncated Gaussian

Naive Accept/Reject Method. Given an algorithm which samples from the Gaus-
sian, the simplest sampling method is rejection sampling. Drawing samples from a Gaus-
sian is implemented in numerous software packages. In Matlab, the Ziggurat algorithm
is used [Mol08]. To obtain samples from the Gaussian truncated on [a, b], one could have
the idea to draw samples from N , until a value within the truncation interval appears. If
N non-negative samples on the interval [0,∞) should be drawn with µ = 0, the rejec-
tion sampler will on average need to sample 2N times, but the exact number of required
runs can not be determined beforehand. A problem occurs, if the mean lies far out of the
truncation interval (eg. µ � 0 for [0,∞)) this rejection method will need extremly large
numbers of runs, which is highly impractical [Rob95].

Inverse Transform Method. First of all, it should be noticed that it is sufficient to
implement a sampler, which is capable of drawing samples from a normal distribution
with zero mean and unit variance truncated on [a, b]. For other parameters, one may scale
the limits and the result accordingly

x ∼ N (µ, σ2)[a,b] (4.73)
x = µ+ σz z ∼ N (0, 1)[(a−µ

σ
),( b−µ

σ
)]. (4.74)

The inverse transform method is a straight forward algorithm for sampling from a dis-
tribution with the inverse cdf Φ−1(x) using a sampler that creates uniformly distributed
data u ∼ U [0, 1]. The procedure is based on computing Φ−1(u). To match the truncation
interval, the argument needs to be scaled such that only values between Φ(a) and Φ(b) are
fed to the inverse cdf. For a standard truncated normal, the sampler is given by

x ∼ Φ−1(Φ(a) + u(Φ(b)− Φ(a))), (4.75)

where Φ(x) = 1√
2π

∫ x
−∞ e

− 1
2
t2dt is the Gaussian cdf. Although no multiple draws are

required with this method, it is likely to fail if the mean is to far outside the truncation
interval, due to the numerical accuracy of the cdf. A small simulation demonstrates this.
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0
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Inf values

-0.1 0 0.1 0.2 0.3 0.4 0.5
0

20

40

60
Probability Density Function

 = -0.5,  = 0.1

 = -8,  = 1

Figure 4.7 – (Left) Proportion of Inf samples when using the inverse transform method
for the normal distribution truncated on [0,∞) and σ2 = [0.1, 1]. (Right) the pdfs with
the variances used and the means at which sampling fails. Carried out in Matlab 2017b.
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Sampling the tail. Sampling from the far end of the distributions’ tail occurs in cases
where the mean is far away from the boundary and the variance is small. Apparently a
different sampler has to be used in this scenario.

One option is to apply an accept/reject algorithm, based on the Rayleigh distribution. A
proper reject/accept algorithm works by approximating the target pdf p(x) by a propo-
sitional pdf q(x), which fulfils Mq(x) < p(x) for all non-zero values of q(x) and some
constantM . The proposal densities’ support must include the support of p(x). For the tail
of the normal distribution, the Rayleigh distribution with unit scale fulfils these condition.
Sampling from the Rayleigh distribution is done again by the inverse transform method
using u ∼ U(0, 1)

Φ(x) = 1− e
x2

2 (4.76)

Φ−1(u) =
√
−2log(1− u). (4.77)

Just as above, the inverse transform needs to be bound to the truncation interval. The
resulting cdf can be expressed analytically by

x ∼ Φ−1(Φ(a) + u(Φ(b)− Φ(a))) (4.78)

=

√
−2log(e

−a2
2 − u(e

−a2
2 − e−b

2

2 )) (4.79)

=

√
−2log(e

−a2
2 (1 + u(e

a2−b2
2 − 1))) (4.80)

=

√
a2 − 2log(1 + u(e

a2−b2
2 − 1)). (4.81)

For convenience, sampling can be done from the random variable x2

2
instead, leaving

square-root and multiplying by 2 for final result, Algorithm 4 from [BL17] is obtained.

The constant M is determined from the truncated Rayleigh density and the truncated
normal density. The acceptance condition of the algorithm follows from this result.

Data: a, b
Result: x ∼ T N (a, b)
c← a2

2
;

q ← 1− ec− b
2

2 ;
do

u ∼ U(0, 1);
v ∼ U(0, 1);
x← c− ln(1− qu)

while v2x ≤ a;
x←

√
2x;

Algorithm 2: Sampler for
the tail of T N [a,b] [BL17].
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4.4.4 Automatic Relevance Determination

In classical NMF, the selection of the model order (the number of components K) can
be a very difficult problem. One option for model order selection is to run the separation
with different orders and then select the result with the smallest divergence. Trying dif-
ferent orders is obviously very expensive in terms of calculation time and also the lowest
divergence alone might not yield the most meaningful separation. Here, the statistical
framework proves to be useful, as it makes it easy to incorporate an automatic relevance
determination (ARD) scheme [TF13].

Modi�ed Prior Structure. For automatic relevance determination (ARD), the exist-
ing model is slightly modified. Instead of an individual rate parameter of the exponential
priors on each element of W and H, only one rate λk is determined for each component,
which is applied in both priors. This means that the prior structure is changed to

wk ∼ E(λWk ), hTk ∼ E(λHk ), (4.82)

where λWk and λHk are vector of dimensions (F × 1) and (1×N) with λk at all entries. λ
is no longer a user defined parameter, but a random variable. On this random variable, a
gamma prior is placed.

λk ∼ G(α
(λ)
k , β

(λ)
k ) (4.83)

The posterior for this gamma prior is a gamma distribution itself [BFL17]

p(λk|X,W,H, σ2) = G(λk|α(λ)
k , β

(λ)
k ), (4.84)

which is parametrised by

α
(λ)
k = α

(λ)
0 + F +N (4.85)

β
(λ)
k = β

(λ)
0 +

∑
f

wfk +
∑
n

hkn. (4.86)

In Figure 4.9 a separation with a slightly overdetermined K = 15 on a short excerpt with
bass and violin shows the functionality.
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Figure 4.8 – λk during 1000 iterations of the algorithm. Three components exhibit rising
λ values, the means of the samplers are thereby drawn toward the negative direction.
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Figure 4.9 – Result of NMF separation with automatic relevance determination. The com-
ponents, which exhibit high values for λ are "switched off" by the algorithm (highlighted
in gray). K = 15, N = 3580, F = 361, I = 1000, prior parameters set to 0. Normal-
ization only carried out with respect to the largest value in W and H, 30 dB dynamics
shown for W.
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4.4.5 Bayesian NTF

The same Gibbs sampling approach can be applied to the NTF Problem. The statistical
model is extended by the gain factor matrix G, for which a meaningful prior density needs
to be found.

Uniform Gain Prior. After first experiments with exponential priors, for which all
posterior densities can be derived analogously, the most successful results were found
using a uniform prior over the gains

gkm ∼ U(0, 1). (4.87)

The posterior is a Gaussian again, but this time truncated on the interval [0, 1]

p(gkm|X,W,H,G\gkm , σ
2) = p(X|W,H,G, σ2)p(gkm) (4.88)

∝
∏
f

∏
n

N (xfnm|
∑
k

wfkhkngkm, σ
2)U(gkm) (4.89)

= T N (gkm|µG, σ2
G)[0,1], (4.90)

with mean and variance equal to

σ2
G =

σ2∑
f

∑
nw

2
fkh

2
kn

(4.91)

µG =
σ2
G

σ2

∑
f

∑
n

(xfnmwfkhkn − wfkhkn
∑
k′ 6=k

wfk′hk′ngk′m). (4.92)

The modified parameters for the other factor posteriors are again derived in the appendix.
With this sampler at hand, non-negative tensor factorisations can be computed where the
the entries of the gain matrix G are non-negative. This could either be a stereo file, or a
decoded Ambisonics signal, cf. chapter 5.
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Chapter 5

A Brief Summary of Ambisonics

Ambisonics is a technique for recording, editing, storing and reproducing a surrounding
soundfield. Since comprehensive literature is available [ZF19], the topic is not covered
in detail, but the most important concepts are summarized, especially for understanding
why the decoding/encoding step in NTF with ambisonic input is necessary and how one
may apply a beamformer when processing the NTF results.

Spherical Harmonic Representation. The important concept behind Ambisonics is
the description of the soundfield in terms of spherical harmonics. Opposed to transmitting
a signal for a fixed amount of loudspeakers (discrete format) or a signal for every source
along with metadata (object-based format), one signal is transmitted for every spherical
harmonic channel. This could be referred to a scene-based format. Like this, the number
of transmitted channels does not depend on the number of speakers used for playback, nor
the number of sources encoded, but on the desired spatial resolution of the scene, which
is determined by the Ambisonics order Nsh. In case of a 3D representation, the number
of required channels is (Nsh + 1)2.

Ymn (θ)=
√

(2n+1)(n−m)!
4π(n+m)!

Pmn (cosϑ)


sin(|m|ϕ) m<0

1 m=0

cos(mϕ) m>0
(5.1)

Encoding. To encode a sound source to the Ambisonics scene, each sample of the
signal is simply multiplied by the spherical harmonics, evaluated at the desired panning
direction. Using Ambisonics channel numbering (ACN, [NZDS11]) to determine the in-
dex, they can be stacked into a vector y. A scene withK encoded sources at the directions
θk is described by

χ[t] =
∑
k

y(θk)sk[t]. (5.2)
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First-Order Ambisonics. When only considering the zeroth and the first order har-
monics (Nsh = 1), the description is rather simple. Most microphone technology is based
on the first order, where the signals of four capsules in a tetrahedral arrangement are
multiplied by an encoder matrix to form the Ambisonics signal.

χ[t] = s[t]
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (5.3)

Figure 5.1 – Soundfield ST450 FOA microphone and corresponding encoding matrix.

Decoding. To obtain signals for L loudspeakers from an Ambisonics signal, a decod-
ing matrix needs to be applied

x[t] = χ[t]D. (5.4)

The design of the decoding matrix has been an important problem in the development
of Ambisonics. A successful way to solve this problem for almost arbitrary loudspeaker
layouts is available with the AllRAD approach [ZF12]. For the special case of regularly
spaced layouts on the sphere, which is usually not seen in practise, decoder design is
simplified immensely. Such regularly spaced grids are called t-design. Perfect t-design
layouts on the sphere only exist for L ≤ 20. Above this limit, they can only be approx-
imated. A tetrahedron is a t-design with L = 4, for which the properly scaled decoding
matrix is

D =
√
πY (ΘL)T =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (5.5)

Since the layout is perfectly regular, the matrix is orthogonal and the conditionDTD = I
holds, which makes it possible to decode and re-encode a first order Ambisonics signal
without loosing any information. For the tetrahedron, the matrix even is symmetric and
thereby equal for encoding and decoding.

Weighting and "Non-Negative Ambisonics". Weighting influences the way the
segment of the scene assigned to each loudspeaker is shaped. If no weighting is used, there
is a relatively large amount of opposite side signal present in each speaker. If in-phase
weights are used, there is no opposite information at all, but the width of the considered
area around the speaker is large.
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Max-rE weighting offers a good compromise, where the opposite side is reduced at a
lesser increase of the width. Before decoding, a weight is multiplied with every SH chan-
nel

x[t] = χ[t]diag(a)D. (5.6)

For higher orders, max-rE weights can be approximated by [ZF12]

an = Pn
(

cos
137.9◦

N + 1.51

)
, (5.7)

and in-phase weights are computed by [Dan00]

an =
N !

(N − n)!

(N +D + 2)!

(N + n+D − 2)!
. (5.8)

For the first order, the in-phase weights are [1 1
3

1
3

1
3
]T the max-rE weights are [1 1√

3
1√
3

1√
3
]T .

For the present application, in-phase weighting has a very useful property. In case of
an encoded source at an arbitrary direction, the speaker weights after decoding with in-
phase weighting are all positive (hence the name of the approach). This transformation
is important for the NTF algorithm with ambisonic input, since no negative gains can be
allowed for during separation.

x[t] = χ[t]


1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3

D (5.9)

After the NTF algorithm, the re-encoding operation is applied to the gain matrix, after
which we obtain spherical harmonic weights for each component

G̃ =
√
πG


1 0 0 0
0 1

3
0 0

0 0 1
3

0
0 0 0 1

3


−1

Y (ΘL). (5.10)

Pseudo-Intensity Vector. Using the Pseudo-Intensity vector, the panning direction
corresponding to these weights can be obtained

Ik = g̃1,k ·

g̃4,k

g̃2,k

g̃3,k

 . (5.11)

The azimuth and elevation angles θk = [ϕk, ϑk] are given by trigonometry

ϕ[t] = atan
(y[t]

x[t]

)
, (5.12)

ϑ[t] = arcsin
( z[t]√

x[t]2 + y[t]2 + z[t]2

)
. (5.13)

37



Meyer-Kahlen, Nils Source Separation for Spatial Reproduction

5.1 Reconstruction for NTF results

Now that there is a source reconstruction and a direction estimate available for every
component, there are different ways of separating the sources. If the direction estimate is
not used explicitly, the masks can be applied to the omnidirectional channel. In this case,
the directional information was just used to inform the spectral separation. The advantage
of this approach is that the sum of the sources resemble the omnidirectional channel when
summed together and artefacts are easily masked when creating remixes

Sk =
wkh

T
k

WH
◦X1. (5.14)

The other option is to use the directional estimate to direct a beamformer to the component
directions. In this way, the estimated source also benefits from the spatial separation of the
sources. The downside is that the sum of all components does not resemble the complete
signal any more. So even with all extracted sources mixed together in mono, artefacts
might be audible. The max-rE weights described above can be applied here as well.

Sk =
wkh

T
k

WH
◦ (XX diag(a)Y (θk)) (5.15)

Nevertheless, the spatial information can be used for clustering the components together,
assuming that an instrument has no spatial extend. Note that the expression in brackets
makes use of the inner product for tensors defined in 4.23.
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Chapter 6

Component Clustering

After having completed a high dimensional separation with NMF or NTF, it is important
to assign the K components to smaller number of groups, which represent the involved
instruments. One option for component clustering, which is effective for both NMF and
NTF, is based on the spectral properties of the dictionary entries, i.e. the columns of W.
In the NTF case, the spatial location can be utilized for clustering as well.

6.1 Clustering Algorithms

Clustering algorithms have the task of finding groups of similar data points in a d-dimensional
feature space. Two different clustering algorithms are considered in this work.

Single Linkage. The single linkage algorithm is an hierarchical clustering scheme.
It was used to create the dendrogram representations used for comparing MFCC with
CQCCs, cf. Figure 6.3. It is a so called "agglomerative" clustering algorithm, where
every data point starts out as it’s own cluster. During convergence of the algorithm, these
clusters are joined together to form a hierarchical structure where the distances between
the clusters can be indicated. From these distances, a dendrogram representation can be
created.

k-Means. The k-means algorithm is a partitioning clustering algorithm, which is based
on dividing the feature space into cells, in which the data points are assigned to a cluster.
The number of desired clusters has to be defined in advance, which is reasonable in the
present application, since the number of desired instrument groups can be defined a-priori.
In k-means, one random mean value for each cluster is chosen upon initialization. Then,
the data points are assigned to the cluster with the closest mean, based on the Euclidean
distance. After this, the means are re-computed for each cluster. These steps are repeated
until convergence. k-means is well suited for clustering the spatial information, best done
in the transformed, world-map representation, cf. Figure 7.8.
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6.2 Cepstral Features

In speech processing, mel-frequency-cepstral coefficients (MFCCs) are commonly used
features for discrimination tasks. Typically they are based on the STFT and computed as
follows:

1. Compute STFT

2. Take the logarithm of the magnitude spectra

3. Apply mel-filters

4. Sum energies in each band over time

5. Apply the Discrete Cosine Transform (DCT)

6. Take the first (e.g. 13) coefficients

The logarithm accounts for the logarithmic human loudness perception and the mel-frequency
filters for the pitch perception, which is assumed to be approximately linear at low frequen-
cies and logarithmic at high frequencies. The discrete cosine transform (DCT) results in a
decorrelation of the energy coefficients, after which a subset of the coefficients is enough
for describing most of the information. It can be demonstrated that the DCT approximates
the Karhunen-Loeve (KL) transform adequately, both for speech and music [Log00]. The
DCT is a frequency transformation and the result to the inverse frequency transform of
a logarithmic frequency representation is called cepstrum, hence the term cepstral coeffi-
cients.

Figure 6.1 – Typical Mel Filterbank
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Figure 6.2 – First 5 DCT kernels
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6.3 CQCCs

In the present case, when the CQT has been used as a transformation at the start, the
existing mel-filterbank implementations can not be used. Although one can easily create a
mel-filterbank, which takes the different frequency scale of the transform into account, the
question arises, whether the logarithmic frequency resolution of the CQT itself might be
suited to directly compute the cepstral coefficients without the effort of additional filtering.
In particular, the used CQT implementation also features the regularisation parameter γ,
which can be used to make the transform’s frequency scale approximately linear at low
frequencies, just as the mel scale does. Despite the criticism on the fit of the typically
used mel-scale with experimental data [UCN88], MFCCs perform well in a technical
environment. This might suggest that similar scales could also be suitable. In Figure 6.3,
the Q-factor (Qf =

νf
∆νf

) is compared for different scales.
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Figure 6.3 – Different frequency scales compared by Qf =
νf

∆νf
. The CQT has a constant

Q-factor by design. The CQT with regularisation γ = 20 is close to the mel scale. For
best comparison, the frequency steps where chosen to approximately match the scale’s
maximal Q value (if it exists).

Discriminative Power. An application relevant criterion for choosing one of the scales,
is how well the features that are based on it perform in a discrimination task. In figures
6.4 and 6.5, we see the result of cluster analysis of musical note events. The first example
uses three piano chords and three bass notes. Both for CQCC and MFCC features, the
two instrument groups can be distinguished, but the CQCC seems to perform better, as it
exhibits larger distances between the clusters. The linear frequency scale fails to find two
distinct clusters.

Also in a larger example with 4 instruments and 11 musical events, the CQCCs perform
best. They manage to assign the notes to all 4 instruments correctly. From this small ex-
periment, it can be concluded that CQCCs are a meaningful feature for finding instrument
clusters.
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Figure 6.4 – Dendrogram representation of distances between found clusters for three bass
notes and three piano chords, where cepstral features are based on different frequency
scales. The constant Q scale seems to perform best in terms of separability.
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Figure 6.5 – Dendrogram representation of distances between found clusters for 4 differ-
ent instruments comprised of 11 musical events in total. Again, the CQCCs perform best.
Note that even though the distances between the clusters vary, the correct samples are
next to each other in case of all three scales.
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Chapter 7

Evaluation and Case Studies

7.1 Criteria: BSS Eval

To find useful criteria for the evaluation of source separation algorithms is a difficult
task. The standard framework is based on the objective, energy-based criteria included
in BSS Eval [VGF06]. These measures are for example used in the signal separation
evaluation campaigns (SiSEC), which are carried out regularly. For the results from 2018,
see [SLI18]. In the stereo separation tasks of these campaigns, the original criteria are
extended by the Spatial Image Distortion Measure (SID), which describes how sources in
a separated stereo signal are distorted spatially. In this work we are interested in extracting
mono sources from stereo or Ambisonics mixes, so the original BSS Eval version is the
best choice. The BSS Eval Matlab toolbox version 3 was used. The approach is based on
splitting the estimated source signal ŝk[t] into the following parts

ŝk[t] = sk,target[t] + ek,interf [t] + ek,noise[t] + ek,artif [t]. (7.1)

Obviously, all true sources sk and the noise component (if it exists) must be known in ad-
vance. The decomposition is done by projecting the signal vector onto different subspaces.
The projection onto the subspace spanned by the true source is particularly straight for-
ward, since the projection onto a single vector only involves the scalar product

starget[t] =
1

||sk[t]||2
[∑

t

ŝk[t]sk[t]
]
sk[t]. (7.2)

For projection to the interference subspace, more effort has to be taken, since the space
spanned by all sources is not necessarily orthogonal. For projection onto a non-orthogonal
space, the Gram-matrixR of the sources is required

rk,k′ =
∑
t

sk[t]sk′ [t]. (7.3)
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Let s[t] = [s1[t], ..., sK [t]]T be a vector containing all true sources and p be a vector with
the scalar products of the estimated source and all true sources

pk′ =
∑
t

ŝk[t]sk′ [t]. (7.4)

To obtain the interference signal the following projection is done

einterf [t] = sT [t]R−1p− starget[t]. (7.5)

The noise subspace only is relevant if a noise signal is given, which is typically not the
case in the present separation scenarios, so that only the artifact signal constitutes the
remaining part

eartif [t] = ŝ[t]− starget[t]− einterf [t]. (7.6)

(a) (b)

Figure 7.1 – Projection onto a vector, which resembles the corresponding true source
signal and projection onto non-orthogonal subspace spanned by all true source signals.

Now that these signals are available, energy measures can be defined, which represent the
separation’s quality

SDR = 10log

∑
t s

2
target[t]∑

t e
2
interf [t] + e2

artif [t]
, (7.7)

SIR = 10log

∑
t s

2
target[t]∑

t e
2
interf [t]

, (7.8)

SAR = 10log

∑
t s

2
target[t]∑

t e
2
artif [t]

. (7.9)

These criteria are a common first choice for comparing separation results, albeit it was
noted that they can be modified to better correlate with the perceived quality [EVHH11].
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7.2 Example 1: Bass/Guitar - Monaural

The files for the two examples presented in more detail here were taken from the "Mixing
Secrets" free multitrack download library [cam], where perfectly separated instrument
tracks could be obtained as ground truths. The first example shows the standard NMF
Gibbs sampler on a simple bass/guitar separation. All prior parameters were set to zero
in this first case. It can be seen that the algorithm converges after only a few iterations.
Nevertheless, many iterations were performed for testing purposes.
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Figure 7.2 – Resulting dictionary matrix W and activation matrix H. Both are normalized
within the components and the W plot shows 30 dB dynamics.

For this task, no spatial information was available, so the clustering was solely based
on the spectral information of the dictionary entries. The dendrogram representation of
the proposed CQCC clustering is shown in Figure 7.3. Two clusters can easily be distin-
guished. The first one, featuring components 3, 6, 4 and 5, resembles the bass and the
second one, comprised of components 2 and 7, corresponds to the guitar part. When look-
ing at the dictionary itself, it becomes apparent that component 1 carries non-harmonic
low-frequency content. It was assigned to the bass, which produced slightly better results
than the assignment to the guitar or leaving out the component.
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Figure 7.3 – Dendogram of the CQCC features from the dictionary matrix.

The quantitative separation results of this simple task are shown below. The interference
measure (SID) is very high for both bass and guitar, which shows that the separation
was successful. The separated guitar signal has a relatively low artefact measure (SAD),
which also reduces the overall signal-to-distortion (SDR). When listening to the guitar
separations, artefacts are audible, but made less obvious by the effects used on the guitar
recording itself.

SDR SID SAR
Bass Guit. Bass Guit. Bass Guit.
17.3 2.6 25.7 14.0 18.0 3.1

Table 7.1 – BSS Eval Results for the first single channel separation task.
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Figure 7.4 – Wavesforms of the separated sources (black) and the true sources (gray).
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Handling Drums in the Multistage Approach. Now, a drum track was mixed in.
To separate this, harmonic/percussive separation was used as a pre-processing step.
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Figure 7.5 – Wavesforms of the separated sources (black) and the true sources (gray).
Now, also a drum track was mixed in and extracted using the harmonic/percussive pre-
processing described in chapter 3.

.
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7.3 Example 2: Bass/Guitar/Piano - FOA

This example features an artificially created first order Ambisonics mix with 3 instru-
ments: An electric guitar, a bass guitar and a piano. The guitar is panned to ϕ = 90◦, ϑ =
0◦, the piano to ϕ = −60◦, ϑ = 30◦ and the bass to ϕ = 0◦, ϑ = −90◦. Bayesian
NTF with Ambisonics processing has been applied to the first 3.6 seconds of the mix. 20
Iterations where performed using the following parameters.
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Figure 7.6 – Convergence behaviour.
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Figure 7.7 – Resulting dictionary matrix W and activation matrix H, normalized in each
column and row. 40 dB Dynamics plotted for W.
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This example demonstrates how the component direction estimation can make cluster-
ing very simple. Re-encoding the gain matrix and estimating the direction θk yields the
following component map.
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Figure 7.8 – Component directions determined from the gain matrix on a "world map"
representation using mollweide-projection. The three apparent clusters correspond to the
source directions, they can easily be found using k-means clustering.

BSS Eval Results. The table below shows the results of the quantitative evaluation,
which reveals some interesting results. The first row represents the results obtained when
clustering the components due to their spatial location and applying a the NTF mask to
the output of a max-rE beamformer directed towards the found directions. This complete
process is called "NTF-Ambi" here. The second line shows the output of a max-rE beam-
former, assuming that the directions of the instruments are perfectly known, which is not
the case in practical applications. The results show that for bass and guitar, the SDR for
NTF-Ambi is improved over the beamforming solution by more then 10dB. Although
the interference measure (SID) is strongly improved by applying the NTF result for all
instruments, for the piano, the SDR is worse in case of applying both the beamformer
and the mask. This is explained by a slight increase of artefacts, seen in the SAR value
of NTF-Ambi. The last row shows the results of applying the beamformer to the found
component directions, which consequently NTF could be used for as well (at a very high
effort for the task). This shows that the found direction indeed correspond to the real
ones. For the piano, the best result is obtained in this case, which might be caused by a
beneficial position of the beamformer’s zeros.

Distortion SDR SID SAR
Method Bass Piano Guit. Bass Piano Guit. Bass Piano Guit.

NTF-Ambi 22.4 18.3 15.0 26.6 28.3 25.1 24.6 18.8 15.4
BF 10.8 22.7 5.7 10.8 22.8 5.7 42.8 38.4 38.0

BF-DE 10.9 28.5 6.6 10.9 28.9 6.6 43.0 38.7 38.4

Table 7.2 – BSS Eval measures for the full Ambisonics NTF approach, compared to using
only a max-rE beamformer in the exact source directions (assuming they are known) and
a beamformer using the determined directions.
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Chapter 8

Conclusion and Outlook

The fundamentals of NMF have been summarised and it’s statistical viewpoint has been
explained. It was shown that a Bayesian approach can yield successful source separation
results in test examples, both with single and multichannel input. Particularly, separation
based on a first-order Ambisonics input has been presented. The advantages of the sta-
tistical approach can be seen in the simple exchange of priors, for which the automatic
relevance determination scheme serves as an example. Nevertheless, the separation results
shown are still based on small toy examples and it is apparent that the task of improving
spatial reproduction in practical situation is generally a difficult one.

For a practical algorithm, the separation would have to be done block-wise. In this case,
the dictionary entries from the prior block could inform the prior densities of the next
block. Future research might lead in the direction of doing Ambisonics source separation
using combined NMF/CNN approaches or approaches fully based on Neural Networks.

Apart from the NMF aspects, the CQT has been revised and it could be shown to be
effective in the source separation problem. The CQCC features, which are easily derived
from it, are promising features for discrimination tasks, which might encourage using
non-stationary spectrogram transformations even more. What has not been explicitly used
here is the benefit that arises from the shift invariance of harmonics spectra when using
the CQT, which is another clear advantage.

Also, the presented ambience extraction algorithm might be further explored for multi-
channel scenarios. Even a real-time implementation based on filter-banks could be inter-
esting for the Ambisonics practise.
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Nomenclature

x Complex numbers

X Spectrogram matrix

X Magnitude spectrogram matrix

XX Magnitude spectrogram tensor

W First NMF factor matrix ("Dictionary")

H Second NMF factor matrix ("Activation")

G Gain matrix

wk k-th column of the dictionary matrix

hTk k-th row of the activation matrix

θ,θθθ Estimated variable, matrix

p(x|y) Probability density function (pdf) of the random variable (RV) x,

depending on the RV y

p(x; y) pdf of the RV x with the parameter y

x ∼ p(y) RV x is distributed according to the density p

Φ(x) Cumulative density function (cdf)

N (µ, σ2) Normal pdf with parameters mean µ and variance σ2

T N , E ,P ,G Different pdfs, see below

θ Direction vector, with azimuth ϕ and elevation ϑ

y(θ) Spherical harmonics evaluated at θ, using ACN

Y (ΘL) Matrix of spherical harmonics evaluated at [θ1, ...,θL]
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Appendix A

De�nitions and Derivations

A.1 Involved pdfs

A.1.1 Gaussian

The multivariate Gaussian Distribution is defined as

N (x;µ,Σ) =
1√

(2π)Ndet(Σ)
e−

1
2

(x−µ)TΣ−1(x−µ), (A.1)

if the N random variables in the vector x are identically, independently distributed, all
elements of the mean vector µ are equal and the covariance matrix Σ becomes diagonal
Σ = σ2I . Then every element is distributed according to

N (xn;µ, σ2) =
1√

(2πσ2)
e−

(xn−µ)2

2σ2 . (A.2)

A.1.2 Exponential
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E(x;λ) = λe−λxu(x) (A.3)
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A.1.3 Truncated Gaussian

The particular model described in [SWH09] and in this thesis results in the product of
a Gaussian and an exponential distribution as the factor matrix posteriors. As shown in
equation A.26, this distribution can be described in terms of a truncated Gaussian, which
is defined by
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p(x;µ, σ) = N (x;µ, σ)u(x) (A.4)
= T N (x;µ, σ2)[0,∞) (A.5)

A.1.4 Gamma
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p(x;α, β) =
βα

Γ(α)
x(α−1)e−βx (A.6)

A.1.5 Inverse Gamma
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p(x;α, β) =
βα

Γ(α)
x(−α−1)e

−β
x (A.7)

A.1.6 Poisson

The Poisson distribution is defined for integers only. It’s probability mass function is
equal to

P (x;λ) = e−λ
λx

x!
. (A.8)

53



Meyer-Kahlen, Nils Source Separation for Spatial Reproduction

A.2 Update Rule for the Euclidean Distance

One of the most compact derivation is found in [Bur14] and uses matrix calculus. We can
formulate the squared Euclidean distance in terms of the Frobenius norm.

D(X|WWWH) =
F−1∑
f=0

N−1∑
n=0

(xfn − yfn)2 = ||X−WH||2F (A.9)

Now we can use the property which states that the trace of a product of matrices of the
same dimension is equal to their element-wise product and write

DEuc = tr((X−WH)T (X−WH)) (A.10)

= tr(XTX−XTWH−HTWTX + HTWTWH) (A.11)

= tr(XTX)− tr(XTWH)− tr(HTWTX) + tr(HTWTWH). (A.12)

Using gradient rules for the trace of a matrix, he quickly arrives at the gradient and con-
sequently the update rules

W←W − ηηηW ◦ (WHHT −XHT ) (A.13)

H← H− ηηηH ◦ (WTHH−WTX). (A.14)

The additive update equation turns into a multiplicative one when choosing

ηηηW =
W

WHHT
ηηηH =

H

WTWH
, (A.15)

because when expanding the expression, the left summand vanishes,

W←W +
W

WHHT
◦ (XHT −WHHT ) = W +W ◦ XHT

WHHT
−W ◦WHHT

WHHT
(A.16)

H← H+
H

WTWH
◦ (WTX−WTHHT ) = H+H ◦ WTX

WTWH
−H ◦W

TWH

WTWH
, (A.17)

and the well known update eqations are obtained

W←W ◦ XHT

WHHT
(A.18)

H← H ◦ WTX

WTWH
. (A.19)

When taking a look at the gradients again, we see that in the final update equation, all
negative terms∇−θθθ D(θθθ) are in the numerator and all the positive terms∇+

θθθ D(θθθ) are in the
denominator. This rule holds for the derivation of other multiplicative update equations
as well

θθθ ← θθθ ◦
∇−θθθ D(θθθ)

∇+
θθθ D(θθθ)

(A.20)
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A.3 Derivation of the Gibbs Sampler

A.3.1 NMF case

Factor Posteriors. The most important step for the derivation of the Gibbs sampler
is to separate the specific wfk, from which we wish to sample, from the sum over all
components. Also, all terms that do not include wfk are proportional constants and can be
neglected. Normalization can be carried out separately for a correct analytical expression
of the pdf, which is not important for sampling from it

p(wfk|X,W\(wfk),H, σ
2) = p(X|W,H, σ2)p(wfk;λ

W
fk) (A.21)

∝
∏
n

N (X|WH, σ2)E(wfk;λWfk)u(wfk) (A.22)

∝ exp
(
− 1

2σ2

∑
n

(xfn −
∑
k

wfkhkn)
2
)

exp(−λWfkwfk)u(wfk) (A.23)

∝ exp
(
− 1

2σ2

∑
n

(xfn − wfkhkn −
∑
k′ 6=k

wfk′hk′n)
2
)

exp(−λWfkwfk)u(wfk) (A.24)

∝ exp
(
− 1

2σ2

∑
n

(−2xfnwfkhkn + w2
fkh

2
kn + 2wfkhkn

∑
k′ 6=k

wfk′hk′n)− λWfkwfk
)
u(wfk) (A.25)

∝ exp
(
− w2

fk

1

2σ2

∑
n

h2kn + wfk
( 1

σ2

∑
n

(xfnhkn − hkn
∑
k′ 6=k

wfk′hk′n)− λWfk
))
u(wfk). (A.26)

The resulting distribution can be expressed in terms of a Gaussian with mean µW and
variance σ2

W , truncated on [0,∞)

N (wfk|µW , σ2
W ) ∝ exp

(
− 1

2σ2
W

(wfk − µW )2
)
u(wfk) (A.27)

∝ exp
(
− 1

2σ2
W

w2
fk +

1

σ2
W

wfkµW

)
u(wfk). (A.28)

Comparing coefficients of the exponent-polynomial in wfk between eq. A.26 and eq.
A.28, mean µW and variance σ2

W are found to be

σ2
W =

σ2∑
n h

2
kn

(A.29)

µW = σ2
W

( 1

σ2

∑
n

(xfnhkn − hkn
∑
k′ 6=k

wfk′hk′n)− λWfk
)
. (A.30)
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The derivation of the sampler for hkn is very similar

p(hkn|X,W,H\hkn
, σ2) = p(X|W,H, σ2)p(hkn;λ

H
kn) (A.31)

∝
∏
f

N (X|WH, σ2)E(hfkn;λHkn)u(hkn) (A.32)

∝ exp
(
− 1

2σ2

∑
f

(xfn −
∑
k

wfkhkn)
2
)

exp(−λHknhkn)u(hkn) (A.33)

∝ exp
(
− 1

2σ2

∑
f

(xfn − wfkhkn −
∑
k′ 6=k

wfk′hk′n)
2
)

exp(−λHknhkn)u(hkn) (A.34)

∝ exp
(
− 1

2σ2

∑
f

(−2xfnwfkhkn + w2
fkh

2
kn + 2wfkhkn

∑
k′ 6=k

wfk′hk′n)− λHknhkn
)
u(hkn) (A.35)

∝ exp
(
− h2kn

1

2σ2

∑
f

w2
fk + hkn

( 1

σ2

∑
f

(xfnhkn − wfk
∑
k′ 6=k

wfk′hk′n)− λHkn
))
u(hkn) (A.36)

∝ exp
(
− 1

2σ2
H

(hkn − µH)2
)
u(hkn). (A.37)

The posterior of hkn can be described in terms of a Gaussian, truncated on the interval
[0,∞) with mean and variance equal to

σ2
H =

σ2∑
f w

2
fk

(A.38)

µH = σ2
H

( 1

σ2

∑
f

(xfnwfk − wfk
∑
k′ 6=k

wfk′hk′n)− λHkn
)
. (A.39)

Variance Posterior. The inverse gamma distribution is the conjugate prior for a Gaus-
sian likelihood with unknown variance. This means that the posterior belongs to the same
family of distributions, i.e. the posterior is distributed according to the inverse gamma
distribution as well. The posterior for σ2 is given by

p(σ2|X,W,H) = p(X|W,H, σ2)p(σ2) (A.40)

∝
∏
f

∏
n

N (X|WH, σ2)G−1(σ2;α, β) (A.41)

∝ 1

(2πσ2)
NF
2

exp
(∑

f

∑
n

− 1

2σ2
(xfn −

∑
k

wfkhkn)
2
)
(σ2)−α−1exp

(
− β

σ2

)
(A.42)

∝ (σ2)−α−1−
NF
2 exp

(
− 1

σ2

(1
2

∑
f

∑
n

(xfn −
∑
k

wfkhkn)
2 − β

))
(A.43)

∝ (σ2)−α
′−1exp

(
− β′

σ2

)
, (A.44)

with the parameters

α′ = α +
NF

2
(A.45)

β′ =
1

2

∑
f

∑
n

(xfn −
∑
k

wfkhkn)2 + β. (A.46)
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A.3.2 NTF case

Derivation for G with exponential prior analogous to the NMF factors.

p(gkm|X,W,H,G\gkm
), σ2) = p(X|W,H,G, σ2)p(gkm;λGkm) (A.47)

∝
∏
f

∏
n

N (xfnm|
∑
k

wfkhkngkm, σ
2)E(gkm;λGkm)u(gkm) (A.48)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(xfnm −
∑
k

wfkhkngkm)2
)

exp(−λGkmgkm)u(gkm) (A.49)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(xfnm − wfkhkngkm −
∑
k′ 6=k

wfk′hk′ngk′m)2
)

exp(−λGkmgkm)u(gkm) (A.50)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(−2xfnwfkhkngkm + w2
fkh

2
kng

2
km (A.51)

+ 2wfkhkngkm
∑
k′ 6=k

wfk′hk′ngk′m)− λGkmgkm
)
u(gkm) (A.52)

∝ exp
(
− g2km

1

2σ2

∑
f

∑
n

w2
fkh

2
kn (A.53)

+ gkm
( 1

σ2

∑
f

∑
n

(xfnwwfhkn − wfkhkn
∑
k′ 6=k

wfk′hk′ngk′m)− λGkm
))
u(gkm) (A.54)

Comparing coefficients to a truncated Gaussian again, the mean and the variance take the
form

σ2
G =

σ2∑
f

∑
nw

2
fkh

2
kn

(A.55)

µG = σ2
G

( 1

σ2

∑
f

∑
n

(xfnmwfkhkn − wfkhkn
∑
k′ 6=k

wfk′hk′ngk′m)− λGkm
)
. (A.56)

The derivation of the W and H update rules are again very similar, with the sums gain-
ing one new dimension. The resulting means and variances of the truncated Gaussian
posteriors are

σ2
W =

σ2∑
m

∑
n h

2
kng

2
km

(A.57)

µW = σ2
W

( 1

σ2

∑
m

∑
n

(xfnmhkngkm − hkngkm
∑
k′ 6=k

wfk′hk′ngk′m)− λWfk
)
, (A.58)

σ2
H =

σ2∑
m

∑
f w

2
fkg

2
km

(A.59)

µH = σ2
H

( 1

σ2

∑
m

∑
f

(xfnmwfkgkm − wfkgkm
∑
k′ 6=k

wfk′hk′ngk′m)− λHkn
)
. (A.60)
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The derivation for G with uniform prior is equivalent to setting λG = 0 and imposing an
additional limit at gkm = 1

p(gkm|X,W,H,G\gkm
), σ2) = p(X|W,H,G, σ2)p(gkm) (A.61)

∝
∏
f

∏
n

N (xfnm|
∑
k

wfkhkngkm, σ
2)U(gkm;0,1) (A.62)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(xfnm −
∑
k

wfkhkngkm)2
)
u(gkm)(1− u(gkm − 1)) (A.63)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(xfnm − wfkhkngkm −
∑
k′ 6=k

wfk′hk′ngk′m)2
)
u(gkm)(1− u(gkm − 1)) (A.64)

∝ exp
(
− 1

2σ2

∑
f

∑
n

(−2xfnwfkhkngkm + w2
fkh

2
kng

2
km (A.65)

+ 2wfkhkngkm
∑
k′ 6=k

wfk′hk′ngk′m)
)
u(gkm)(1− u(gkm − 1)) (A.66)

∝ exp
(
− g2km

1

2σ2

∑
f

∑
n

w2
fkh

2
kn (A.67)

+ gkm
( 1

σ2

∑
f

∑
n

(xfnwwfhkn − wfkhkn
∑
k′ 6=k

wfk′hk′ngk′m)
))
u(gkm)(1− u(gkm − 1)).

(A.68)
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