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Abstract

Cryptography is a key building block for today’s interconnected world. Standard
primitives like encryption schemes, signature schemes and key exchanges find
everyday use in major protocols building the backbone of secure communication.
Hence it is of great importance to thoroughly analyze cryptographic schemes and
protocols. Modern cryptography provides us with the necessary methods and
tools to model the desired security properties and to then also prove particular
constructions secure. Besides classical schemes and their security guarantees,
this toolbox also allows us to precisely define enhanced security properties to
cover adversaries gaining new attack possibilities or to define new features useful
for applications.

We study various of these enhanced security properties: First, we enhance
the security notions of proxy re-encryption with forward secrecy. This security
property is of particular importance since secret keys might be leaked due to
attacks on users or servers or inadvertently due to human error. In the setting
of proxy re-encryption, where the proxy is always online to perform its task,
reducing the damages of a breach on the proxy’s side improves the overall trust
in the system. Second, we extend classical signature schemes in the discrete
logarithm setting with double-signature extraction in a black-box way. Thereby
we obtain signature schemes which penalize dishonest behavior by leaking the
secret key in this case. Hence signers are incentivized to behave honestly and
to not sign contradicting statements. For all these schemes we provide efficient
instantiations and prove them secure.

Additionally, we are concerned with the security of our constructions against
adversaries with access to efficient quantum computers. For post-quantum se-
cure instantiations of our schemes we base the constructions on symmetric-key
primitives. Their security—even when considering quantum attacks—is rela-
tively well understood. On the way to constructing post-quantum secure ring
signatures and double-authentication-preventing signatures, we improve non-in-
teractive zero-knowledge proofs for arithmetic circuits. For this proof system, we
analyze and select compatible one-way functions with low multiplicative com-
plexity. By proving statements with respect to the one-way function, we also
obtain an efficient signature scheme solely relying on symmetric-key primitives.
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1
Introduction

Since the internet’s inception, its use has grown rapidly over the last years [Sta19;
Ste18]. With this increase, every day use of computers and computing in gen-
eral has observed a paradigm shift. Nowadays, documents are edited online in
services such as Google Docs or Microsoft Office 365 [Pol15], pictures and videos
are shared with all internet users using, e.g. Instagram or Youtube, or they are
shared more selectively using cloud storage solutions such as Dropbox, Google
Drive or Microsoft OneDrive. But also computing tasks are outsourced to cloud
providers that offer access to machines in data centres around the globe. These
tasks include general purpose computing or hosting of simple websites to online
stores, but also data analysis and machine learning tasks that profit from ded-
icated hardware [Sae18]. This new paradigm however implies a shift of trust.
As we move data to the cloud, we place a significant amount of trust in the ser-
vice providers. After all, they get access to potentially confidential documents,
pictures, or videos stored on their servers.

The recent push [Sch18] to encrypt all communication on the internet, driven
by the major web browser vendors and cloud service providers alike, ensures
end-to-end security between users and services by using, e.g., Transport Layer
Security (TLS) [Res18]. When considering the use-cases discussed above, the
picture gets more complicated. Simply encrypting data before uploading it to
a cloud service is enough if we only consider the cloud as storage solution, but
functionality that can otherwise be provided if the server gets to see plain data
quickly becomes impossible to provide. Furthermore, relying on TLS to secure
communication on the internet, also requires us to put significant trust in the
currently deployed public key infrastructure (PKI) and certificate authorities
(CAs). Attacks on CAs in recent years or misbehaving CAs, e.g., the incidents
involving Comodo [Phi11] and DigiNotar [Adk11], have shown that this system
is a potential weak point in our current security infrastructure. Therefore, new
systems are needed to detect misbehaving or compromised CAs.
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Chapter 1. Introduction

Altogether, those observations motivate the study of cryptographic schemes
that provide more functionality and enhanced security properties than conven-
tional digital signatures, public-key encryption or key encryption provide. Mod-
ern cryptography provides us with the language and tools to precisely define
and study these additional properties, leading to new powerful cryptograph-
ic schemes. Some of these schemes include extensions of public-key encryption
schemes such as proxy re-encryption [BBS98], attributed-based encryption, iden-
tity-based encryption [Sha84], puncturable encryption [GM15] and many more.
Similarly, for digital signatures these extensions include proxy signatures, ring
signatures [RST01], group signatures [CvH91], and blind signatures [Cha82] to
name a few.

As instantiations and implementations of these schemes mature, they find
more and more adoption in practice. Proxy re-encryption is useful as basis
for end-to-end encrypted data-sharing and collaboration platforms such as Be-
Safe [BeS17] or NuCypher [Nuñ18]. Identity-based and broadcast encryption is
used by Cloudflare’s Geo Key Manager [Sul17] for secret key management. Also,
cryptocurrencies employ schemes with sophisticated properties. For example,
CryptoNote [Cry; vSMJ+12], which puts a focus on privacy, uses traceable ring
signatures [FS07] to obtain spender anonymity. Monero, a cryptocurrency with
the same goals, also deployed similar techniques [Mon; Noe15; SAL+17] until
October 2018.

One has to keep in mind, that while these schemes are interesting for many
applications, many of the practically efficient ones are built from assumptions in
the factoring or discrete logarithm setting. However, ever since Shor published
a polynomial-time quantum algorithm for factoring and computing discrete log-
arithms [Sho94], we know that a sufficiently powerful quantum computer is able
to break all schemes and protocols used in practice today, as well as the schemes
with extended security properties. This fact motivates the study of cryptograph-
ic schemes with post-quantum (PQ) security, i.e., security against an adversary
having access to a quantum computer. While we currently do not know of the ex-
istence of a sufficiently powerful quantum computer, NIST announced the post-
quantum cryptography project (PQC)1 with the goal to evaluate and eventually
standardize post-quantum secure digital signature schemes, public-key encryp-
tion schemes as well as key encapsulation mechanisms.

Luckily however, we know of enough assumptions that are believed to be se-
cure also against an adversary having access to a quantum computer. In fact,
we have a large zoo of assumptions from a diverse set of hard problems avail-
able as basis for post-quantum secure schemes. These set of problems include
the learning from errors problem in lattices [Reg06], solving systems of multi-
variate polynomial equations over finite fields [MI88], decoding of syndromes
of linear codes over finite fields [McE78; Nie86], or the Diffie-Hellman prob-
lem from supersingular isogenies [JF11]. Some of these assumptions are older
than three decades, but compared to the performance achievable with elliptic
curves or RSA based cryptosystems, they were too inefficient to be serious con-

1 https://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html

4

https://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html


tenders. Alternatively, besides these problems based on mathematical structures,
building schemes from collision-resistant hash functions and one-way functions
becomes viable as well. Even though cryptosystems constructable from these
primitives are limited [IR89; Imp95; LM09], their well-understood resistance
against quantum attacks when built from symmetric-key primitives turns them
into an interesting choice for building for some post-quantum secure cryptosys-
tems. In particular for digital signatures, schemes based on Lamport’s one-
time signature scheme such as XMSS [BDH11] have been proposed and also
standardized [HBG+18].

We are now in a position to discuss the goals of our thesis. First, however
note, we follow the current practice in modern cryptography and underline the
security of our constructions with security proofs. For security properties we
introduce, this approach also requires us to precisely define them. This will then
enable us to argue about the security of our schemes using reductionist security
proofs.

Enhanced Security Properties of Cryptographic Schemes. The secu-
rity of cryptosystems completely relies on the secrecy of the respective secret
keys. For example, if for an encryption scheme a secret key is either acciden-
tally leaked, or obtained by an adversary via another channel, e.g. by breaking
into a server, the confidentiality of all the encrypted data under this key is im-
mediately lost. Similarly, for signature schemes in the context of PKI or app
stores and software updates, key leakage would enable others to sign valid cer-
tificates or software packages, respectively, and thus would break the trust in
the current infrastructure. Examples of such incidents include Adobe publicly
posting their secret keys [Mim17] or attackers being able to steal private keys
to decrypt credit card information as it may have happened during the Marriot
data breach [Fis18]. Hence, we want to investigate the security properties that
handle key leakage.

A naïve mitigation strategy for secret-key leakages is to frequently change all
involved keys of a system. For public-key cryptosystems that would however
imply that new public keys have to be distributed in a secure way or that public
keys are huge as the contain independent keys for all time periods. Hence, a
system that could avoid these issues would be desirable. Consequently, Gün-
ther [Gün89] introduced the notion of forward security, or in the context of
public-key encryption also forward secrecy. In a cryptosystem providing for-
ward security, key leakage at some point in time does not weaken the security
properties before the compromise. Additionally, they provide efficient non-inter-
active solutions that have fixed public keys, yet their size is (asymptotically) sub-
linear in the number of key switches. Forward security has been identified as an
important security property of various different cryptographic primitives such as
digital signatures [BM99], identification schemes [AAB+02], public-key encryp-
tion [CHK03], and private-key cryptography [BY03]. More recently, forward
security was also introduced in the context of asynchronous messaging [GM15]
and zero round-trip time key exchanges [GHJ+17; DJS+18].

In contrast to forward secrecy ensuring the security of a cryptosystems even
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Chapter 1. Introduction

after key leakage, controlled key leakage opens new possibilities to enforce honest
behavior. If for example in the case where a user misbehaves its keys are leaked
and all the security guarantees are void, users can be incentivized to behave hon-
estly. In particular, in the context of signatures such an enhanced scheme would
prevent signers from signing contradicting statements. Especially in scenarios
where trust in honestly behaving parties plays an important, e.g. the trust put
CAs building the trust anchor of today’s PKI, could profit from a cryptographic
incentive to behave honestly. For CAs leaking their secret key would completely
destroy their business model [BPS17]. This feature can be achieved by using a
signature scheme including a security notion to extract the secret key on misuse,
e.g. a signature scheme with double-signature extractability dubbed double-
authentication-preventing signatures [PS14; PS17]. Combined with a system
like Certificate Transparency [Lau14; LLK13] we could immediately detect and
penalize misbehavior.

Post-Quantum Instantiations. As discussed above, we have hardness as-
sumptions at our disposal, that are believed to be secure even in the case of
quantum adversary. With the NIST PQC project, we see the first serious stan-
dardization efforts to prepare for an transition to post-quantum secure standard
primitives. Throughout the last decade, various lines of work also investigated ef-
ficient constructions of schemes with enhanced security properties based on post-
quantum secure assumptions. Examples of such schemes include ring signatures
from linear codes [BM18], ring and group signatures from lattices [LLN+16], lat-
tice-based proxy re-encryption [CCL+14; PRS+17], hierarchical identity-based
encryption from lattices [ABB10; CHK+10].

When considering constructions that only rely on symmetric-key primitives,
the possibilities for constructing schemes with enhanced properties are more
limited [IR89; Imp95; LM09]. In this setting, i.e. in the world of “minicrypt” as
defined by Impagliazzo, one-way functions and non-interactive zero-knowledge
proofs are available, but public-key encryption cannot be obtained. Since group
signatures with the standard security model imply public-key encryption [AW04;
CG04], groups signatures are not obtainable. But we can ask if we can construct
other signature schemes with a focus on anonymity such as ring signatures or
group signatures in a weaker model.

In any case, symmetric-key primitives such as block ciphers enjoy relatively
well-understood security properties even in the presence of a quantum adversary.
Therefore, they are a natural choice to build one-way functions or collision-re-
sistant hash functions and to then extend those to more advanced schemes.
Although we have to account for Grover’s algorithm [Gro96] for one-way func-
tions and pre-image attacks, the concrete consequences on collision resistance
are still under debate. A detailed analysis of the costs of a quantum attack,
such as the one by Brassard et al. [BHT98], are worse than the best classical at-
tacks [Ber09]. So symmetric-key primitives amount to a very conservative choice
to build post-quantum secure scheme. Hence, signatures lifting the one-time sig-
nature schemes of Lamport [Lam79] or Winternitz [DSS05] have been optimized
over the years and concluded in efficient variants such as SPHINCS [BHH+15]
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1.1. Contributions

and XMSS [BDH11]. We are thus interested in building signature schemes with
enhanced functionality, while still basing the security of the schemes on sym-
metric-key primitives.

1.1. Contributions
Our results can be clustered based on our two goals: first, we consider enhanced
security properties of cryptographic schemes such as forward secrecy, double-au-
thentication prevention and anonymous authentication, and second, we consider
post-quantum secure signature schemes and variants obtained from symmetric-
key primitives. In the remainder of this section, we give a high-level overview of
our results. The context of our contributions is discussed in Chapter 2 and the
technical discussion is postponed to Part II.

For our first goal, we investigate proxy re-encryption, which allows a semi-
trusted proxy to re-encrypt ciphertexts encrypted for one public key to another
public key with specially crafted re-encryption keys. In [DKL+18a], we introduce
security notions for forward secrecy in the context of proxy re-encryption and
provide the first forward-secure proxy re-encryption scheme. On the way to this
construction, we also introduce forward-secure delegatable public-key encryp-
tion and combine it with linearly homomorphic encryption to obtain forward-
secure proxy re-encryption. We also provide an alternative construction based
on positively and negatively puncturable encryption.

Second, we consider controlled key-leakage as method to disincentivize dishon-
est behavior. In particular, we focus on double-authentication-preventing signa-
tures, which leak the secret key when signing two contradicting statements, with
the goal to extend conventional signature schemes to double-authentication-pre-
venting signatures. In [DRS18c] we introduce weaker extraction notions tailored
for the extraction of the secret key of the underlying signature scheme. We also
provide a generic construction from discrete logarithm-based signature schemes
equipped with a group homomorphism between the secret- and public-key space,
which naturally exists in this setting. Therefore our construction applies to, e.g.,
ECDSA and Schnorr signatures.

Besides investigating the enhanced properties in the classical setting, we con-
tinue our work in the post-quantum setting. To have an efficient non-interactive
zero-knowledge proof system available for more advanced schemes, we improve
non-interactive zero-knowledge proofs of knowledge for arithmetic circuits in
[CDG+17a]. The proof system combined with an one-way function optimized
for low multiplicative complexity then gives rise to an efficient post-quantum
secure digital signature scheme, where signature are proofs of knowledge of the
pre-image of the one-way function. This line of work also builds the basis for
the digital signature scheme Picnic [CDG+17b; CDG+19], which only relies on
the security of symmetric-key primitives. It was selected as candidate for the
second round of the NIST post-quantum cryptography project [AAA+19].

With an efficient proof system at hand, we investigate non-interactive zero-
knowledge membership proofs for Merkle tree accumulators in [DRS18b]. Based
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on this accumulator, we then construct logarithm-sized ring signature scheme,
which allows a signer to form an ad-hoc ring of signers identified by their public
keys, whereas the signer creates signatures on behalf of the rings while staying
anonymous. The underlying technique to construct ring signatures from accu-
mulators additionally requires one-way functions mapping into the domain of
the accumulator, hence Picnic combined with Merkle tree accumulators then
yield a ring signature scheme.

Finally, we use the power of the proof system to lift our double-authentica-
tion-preventing signature construction to the post-quantum setting [DRS18a].
We obtain a generic compiler that extends any signature scheme with a one-
way function mapping secret keys to public key combined with a compatible
pseudo-random function family into a double-authentication-preventing signa-
ture scheme. Thereby we can avoid the limitations observed for our discrete
logarithm-based construction and the construction is no longer limited by the
size of the address space. As with our ring signature scheme, we discuss concrete
instantiations by applying the compiler to Picnic.

1.2. Other Contributions
We now briefly discuss additional contributions not included in our thesis. Our
work on homomorphic proxy-re authenticators and privacy aspects in Certificate
Transparency fit to the goal of schemes with enhanced security properties. The
contributions to very efficient implementations of LowMC and the design of
suitable block ciphers are of particular importance for the performance of our
post-quantum secure schemes. We make the author’s contributions explicit for
papers where the author did not contribute as one of the main authors. We
partly borrow formulations from the abstracts/introductions of the referenced
papers.

Homomorphic Proxy Re-Authenticators [DRS17]. We investigate a sce-
nario where sensors submit their data to an aggregator potentially running in
the cloud, that evaluates a function on the data without revealing the actual
data to the aggregator. Additionally, after the aggregation the user can verify
that the computations has been performed correctly. To that effect, we intro-
duce homomorphic proxy re-authenticators. Our framework tackles multi-user
data aggregation in a dynamic setting. We thereby consider independent keys
of the single parties, the verifiability of the evaluation of general functions on
the authenticated inputs by the sources, as well as privacy with respect to the
aggregator.

As a means to achieve the strong privacy requirements imposed by our secu-
rity model, we formally define the notion of homomorphic proxy re-encryption.
Additionally, we present two modular constructions of proxy re-authenticator
schemes for the class of linear functions, which differ regarding the strength of
the provided privacy guarantees. On our way, we establish various novel build-
ing blocks: Firstly, we present a linearly homomorphic message authentication

8
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code which is suitable to be used in our construction. Secondly, to achieve the
stronger privacy guarantees, we construct a homomorphic proxy re-encryption
scheme for linear functions. All our proofs are modular in the sense that we sep-
arately prove the security of our building blocks. Our overall proofs then build
upon the results obtained for the building blocks. Thus, our building blocks may
as well easily be used in other constructions.

Privacy in Certificate Transparency [KOR19]. Public key infrastructure
(PKI) based on certificate authorities is one of the cornerstones of secure com-
munication over the internet. Certificates issued as part of this PKI provide au-
thentication of web servers among others. Yet, the PKI ecosystem is susceptible
to certificate misissuance and misuse attacks. To prevent those attacks, Certifi-
cate Transparency (CT) facilitates auditing of issued certificates and detecting
certificates issued without authorization. Users that want to verify inclusion of
certificates on CT log servers contact the CT server directly to retrieve inclusion
proofs. This direct contact with the log server creates a privacy problem since
the users’ browsing activities could be recorded by the log server owner.

We build on top of Lueks and Goldberg’s approach [LG15] for privacy-pre-
serving retrieval of inclusion proofs from CT log servers. To achieve privacy
there, clients fetch inclusion proofs using a multi-server private information re-
trieval (PIR) protocol. We, however, present a more scalable design for logging
a huge number of certificates, which allows us to include small static partial
inclusion proofs in a Signed Certificate Timestamp (SCT), a server’s certificate
or as a TLS extension. The client can then check the inclusion based on the
partial proof and by fetching the missing parts of the proof using a PIR-based
approach.

Specifically, our goal is to tackle the privacy issue without any changes to the
TLS server side to ease the possibility of a fast deployment. In our approach,
we split the Merkle tree containing all certificates into multiple tiers of smaller
Merkle trees where the trees at the bottom contain certificates. This split can,
for example, be based on a parameterizable time interval or a maximum number
of certificates. The sub-trees, respectively their roots, are then combined into
the larger tree containing all certificates. This separation of the certificates into
smaller sub-trees then allows us to embed membership proofs concerning the
sub-trees in an extension field of the SCT or as an X.509v3 extension [CSF+08]
into the certificate itself. As the height of the larger tree is now considerably
smaller than a single tree containing all certificates, the approach by Lueks et
al. [LG15] using PIR to fetch the membership proofs, becomes practical again.
Additionally, we use a different two-server PIR solution and make use of the
work on distributed point functions by Gilboa et al. [GI14] to build an efficient
two-party computationally secure PIR system and present a highly performant
implementation.

Optimization of the Linear Layer of LowMC [DKP+19]. Our con-
structions for post-quantum secure signatures as well as our ring signature and

9



Chapter 1. Introduction

double-authentication-preventing signature constructions use the block cipher
LowMC [ARS+15; ARS+16] as building block. The number of XOR oper-
ations involved in LowMC is one of the limiting factors with respect to the
performance of those schemes. As such, we revisit the open problem of the
LowMC designers to reduce the complexity of its linear operations, focusing on
instances with small partial non-linear layers.

The fact that the S-box only operates on parts of the state and all other
operations are matrix multiplications gives use some freedom to re-arrange com-
putations in the linear layer. In particular, it allows us to split and re-arrange
round-key computations, constant additions, and linear layer operations in a
way that the size of the involved matrices can be significantly reduced. We pro-
pose an alternative, yet equivalent description of LowMC with a new structure,
effectively reducing the size of the LowMC instances used in Picnic by a mul-
tiplicative factor of 2.38x and 4.84x. Runtime-wise we obtain an improvement
of a factor between 1.41x to 2.82x for LowMC encryption and by a factor be-
tween 1.34x to 2.01x for Picnic. We also evaluate the obtained improvements in
the context of private set-intersection [HL08] based on garbled circuits [Yao86].
There we obtain runtime improvements of factors 12x to 24x.

On the way to this result, we also address the question of whether the linear
layer description we provide is optimal. We can prove that no further opti-
mizations that reduce the linear layer size are possible without changing their
functionality. We also consider the complexity of generating LowMC instances,
assumings its linear layers are sampled at random. We devise a new, more
efficient sampling algorithm, that is useful in applications requiring frequent
instance generation, e.g. for the RASTA design strategy [DEG+18].

This work is a merge of [Din18] and [KPP+17]. The author is one of the main
authors of the latter. The author contributed to the optimization of the linear
layer operations, implementation in Picnic and the evaluation in [DKP+19].

Feistel Structures for MPC and More [AGP+19]. In this work, we
explore construction strategies for constructions of symmetric-key primitives,
which benefit secure multiparty computation (MPC) applications. We continue
with an old design idea by Nyberg and Knudsen [NK95], in which the round func-
tion of a Feistel network is the mapping x 7→ x3. It has only been shown recently,
that this idea in form of the block cipher MiMC can lead to efficient instantia-
tions for succinct non-interactive arguments of knowledge (SNARKs) [AGR+16]
and MPC protocols [GRR+16].

We adopt an old approach of symmetric cryptography, namely so-called Gen-
eralized Feistel networks generalizing the approach taken by the designers of
DES. Thereby we obtain a generalized MiMC (GMiMC), which can cope with
prime or binary fields, and many field elements at once. For MPC applications,
previous works [GRR+16; RSS17] did not take into account how to optimize the
number of multiplications for a higher number of blocks and treated pseudo-
random functions (PRFs) as a black-box when extending to more inputs. This
is where our constructions shines the most in the context of MPC: if one chooses
to encrypt multiple shares at once we can amortize the number of multiplica-
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tions per share resulting in a more efficient preprocessing phase. We consider
our work to be beneficial when there is a large number of blocks to encrypt.

Besides MPC protocols, we also explore the applications of our design strategy
in the context of SNARKs and Picnic-style signatures. For the latter, LowMC
was considered so far to clearly be the best choice for small signatures and
efficient runtime. Using MiMC resulted in 10 times larger and hence unpractical
signatures. We show that the picture is more complex and GMiMC can be
much more efficient than the original MiMC. Due to the flexibility of the design,
GMiMC is also competitive with LowMC, slightly performing better in both
runtime and signature size.

The author contributed to the evaluation of the cipher design in the con-
text of Picnic and also as choice of symmetric-key primitive to construct ring
signatures.

1.3. About The Thesis
This thesis is a cumulative thesis consisting of two parts. The first part of
this thesis, Part I, serves as a high-level overview on the field of public-key
cryptography focusing on digital schemes and public-key encryption as well as
variants thereof. This overview puts the publications covered in our thesis in
Part II into context. In particular, it also discusses some techniques that we
have applied in our work. Consequently, this part does not contain any new
scientific contributions.

Part I is structured as follows: First, we recall some notions and concepts of
modern cryptography in Section 2.2. Second, we discuss public-key encryption
including proxy re-encryption in Section 2.4. Finally, Section 2.5 covers dig-
ital signatures including ring signatures and double-authentication-preventing
signatures.

Part II contains the scientific contributions of our thesis by appending the
papers and detailing the author’s contribution to each paper. Regarding the
contribution, we want to point out the following statement of the American
Mathematical Society:

In most areas of mathematics, joint research is a sharing of ideas
and skills that cannot be attributed to the individuals separately.
The roles of researchers are seldom differentiated (in the way they
are in laboratory sciences, for example). Determining which person
contributed which ideas is often meaningless because the ideas grow
from complex discussions among all partners. ([Ame04])

We think that this statement also applies to cryptography.
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2
Background

In this chapter we present definitions, notions and selected construction to put
the publications into context. Throughout this chapter we assume familiarity
with basic cryptographic concepts and computational complexity theory. For
excellent introductions we refer the reader to the books of Smart [Sma16], Katz
and Lindell [KL14], and Goldreich [Gol01; Gol04; Gol08; Gol10]. If not otherwise
cited differently, we base our definitions on standard literature such as [Kat10;
KL14], and in particular, we follow Katz and Lindell [KL14] in our discussion
of the aspects of modern cryptography. We keep the definitions close to those
used in our publications and partly borrow their formulations.

2.1. Notation
We introduce some notation we will use throughout this chapter. For m,n ∈
N,m ≤ n, we let [m,n] = {m, . . . , n}, i.e. all natural numbers in the interval
between m and n, and [n] = [1, n]. For a natural number n ∈ N, we denote the
ring of integers modulus n as Zn. We let κ ∈ N be the security parameter. To
sample from a set S uniformly at random, we write x←R S. For an algorithm A,
let y ← A(1κ, x) be the process of running A, on input 1κ and x, with access
to uniformly random coins and assigning the result to y. We assume that all
algorithms take 1κ as input and we will sometimes omit to make this explicit.
For an probabilistic algorithm A, we make the random coins r explicit by writing
A(1κ, x; r). An algorithm A is probabilistic polynomial time (PPT) if its running
time is polynomially bounded in κ. In this case we also say that A is efficient.
Additionally, to values polynomially bounded in κ, we write n ≤ poly(κ). We
use calligraphic letters, e.g., A, for the algorithms representing adversaries in
the security games. A function f : N→ R≥0 is negligible if

∀c∃κ0 ∀κ ≥ κ0 : f(κ) ≤
1

κc
.

2.2. Modern Cryptography
Modern cryptography follows a systematic approach to study, understand and
argue about the security of cryptographic schemes: First, formal definitions are
introduced to capture the desired security properties. These definitions cover the
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available algorithms and inputs of a scheme, state how a correctly functioning
system should behave in terms of functionality, as well as security goals a scheme
should achieve. For the latter, experiments with a challenger interacting with an
adversary are defined. In these experiments, simply put, the adversary is given
a problem instance set up by the challenger and the adversary than needs to
solve this problem.

Second, when schemes cannot be proven unconditionally secure, assumptions
provide a hook to analyse the security of a schemes. These assumptions cover the
hardness of solving precisely stated problems. Here we understand hardness in
the sense that no efficient adversary can solve the problem except with negligible
probability.

Third and finally, constructions are argued to be secure by providing proofs
of security. The goal of these proofs is, e.g., to reduce the security of a crypto-
graphic scheme to an assumption or the security properties of another scheme.
These reductionist proofs are performed by contradiction, i.e. we assume that
an efficient algorithm exists to win the security game and then build an efficient
reduction such that we obtain an efficient algorithm to solve a hard problem.
Thus, instead of studying the security of each and every scheme, the security
proofs enable us to turn our focus to studying whether the assumptions are jus-
tified. We want to note the similarity of the proof technique with reductions
in complexity theory, e.g. of NP-hard problems. They highlight the roots of
modern cryptography in complexity theory.

Throughout all our work we employ a technique called sequence of games
(cf. [Sho04] for an overview) to obtain clear and easy to comprehend security
proofs when direct direct reductions would otherwise be too complex. The basic
idea of this technique is to change the behavior of the challenger that interacts
with the adversary, i.e. one constructs a sequence of games starting from the
original attack experiment as Game 0, and continuously adapts it until one
reaches Game n, which allows us to easily argue about the winning probability
of Game n. To argue that the changes between successive games are sound, we
show that the probability of wining the individual games are negligibly close.
Typical transitions between games include:

Transitions based on indistinguishability. Here detection of the change by
the adversary would imply an efficient method to distinguish two indistin-
guishable distributions.

Transitions based on failure events. Here one argues that two games pro-
ceed identically unless a failure event occurs. With this type of argument
we can bound the differente of winning the original and modified game by
the probability of the failure event. Additionally, this allows us to handle
the probability of the failure event on its own.

Transitions based on bridging steps. Here one re-states the computation
of certain values in an equivalent way. The changes made to the game are
purely conceptual.

14
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After at most polynomially many transitions one obtains an upper bound on
the winning the probability of the initial game, e.g., if Si denotes the event
of winning game Gi, then we have a bound Pr[S0] ≤ Pr[S1] ≤ · · · ≤ Pr[Sn].
Consequently, if the probability of winning Gn is negligible, so is the probability
of wining G0.

Following this approach to argue about security, we obtain proofs of security
relative to the definition being considered and the used assumptions. However, if
the assumptions turn out to be false, the definitions do not match the abilities of
an adversary, or if the guarantees required by applications are not covered, the
proofs of security may be meaningless.1 Although this approach does not nec-
essarily imply security in real world applications, it helps to provide confidence
in the security of the cryptographic schemes.

2.2.1. Hardness Assumptions
Security arguments often rely on assumptions, that are widely believed to be
hard to solve, but unproven. In the modern paradigm, these assumptions have
to be defined very precisely, i.e. the problem statements are formalized unam-
biguously with a clearly defined goal an adversary has to achieve. On the one
hand, we can then analyze the hardness of the assumptions on their own. On
the other hand, they also provide a level of abstraction helping cryptographers
to focus on analyzing the security of schemes.

In the following we discuss some hardness assumptions that we require for
our constructions in [DKL+18a; DRS18c]. We will often call these assumptions
obtained from hard problems related to some mathematical structures structured
hardness assumptions.

2.2.1.1. Prime-Order Groups

First we look at assumptions related to the discrete logarithm problem in cyclic
groups. Note that we write all groups using multiplicative notation. We first
define a group generator G:

Definition 1. A group generation algorithm G is an algorithm that takes a
security parameter κ and outputs a cyclic group description (G, q, g) of a group
G of prime order q and generator g, i.e. G = 〈g〉.

Definition 2 (DLP). The discrete logarithm problem (DLP) assumption holds
relative to (G, q, g) ← G(1κ), if for all PPT adversaries A, there is a negligible
function ε such that

Pr

[
x←R Zq,
x∗ ← A (G, q, g, gx) : x = x∗

]
≤ ε(κ).

1 A recent example, where the security model does not match the abilities of the adversary,
is an attack on the 4-way handshake of WPA2 [VP17]. The attack does not violate the
formally proven security properties, yet it has catastrophic impact on Wi-Fi security.
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Definition 3 (DDH). The decisional Diffie-Hellman (DDH) assumptions holds
relative to (G, q, g) ← G(1κ), if for all PPT adversaries A, there is a negligible
function ε such that∣∣∣∣Pr [ b←R {0, 1}, (x, y, z)←R Z3

q,

b∗ ← A
(
G, q, g, gx, gy, gbxy+(1−b)z

) : b = b∗
]
− 1

2

∣∣∣∣ ≤ ε(κ).
Definition 4 (DLIN). The decision linear (DLIN) assumptions holds relative
to (G, q, g) ← G(1κ), if for all PPT adversaries A, there is a negligible function
ε such that∣∣∣∣Pr [ (u, v)←R G2, (x, y, z)←R Z3

q, b←
R {0, 1},

b∗ ← A
(
G, q, g, u, v, , ux, vy, gb·(x+y)+(1−b)z

) : b = b∗
]
− 1

2

∣∣∣∣ ≤ ε(κ).
Popular instantiations for groups where we assume that the hardness assump-

tions hold are elliptic curve groups or groups from other Abelian varities such
as Edwards curves. Before the advance of elliptic curve based cryptography
multiplicative subgroups of finite fields were a popular choice,2 but nowadays
they cannot compete with performance figures of elliptic curves. However, since
the discrete logarithm problem can be transformed into a factorization problem,
Shor’s factorization algorithm [Sho94] can also be used to efficiently compute
discrete logarithms on a powerful enough quantum computer. Therefore, the
DLP and related assumptions do not yield post-quantum secure constructions.

2.2.1.2. Bilinear Groups

The second category of assumptions are based on bilinear groups. Before dis-
cussing assumptions related to bilinear groups, we shortly recall pairings. We
refer to [EJ17] for an overview on all aspects of pairing-based cryptography.

Definition 5 (Bilinear pairing). Let G1, G2 and GT be groups and e : G1×G2 →
GT . The map e is called a bilinear pairing if

• e is bilinear, that is, for all x, y ∈ G1 and u, v ∈ G2 it holds that

e(x · y, u) = e(x, u) · e(y, u) and e(x, u · v) = e(x, u) · e(x, v).

• e is non-degenerate, that is there exist non-trivial g ∈ G1 and ĝ ∈ G2 such
that e(g, ĝ) 6= 1.

• e is efficiently computable, i.e there exists a polynomial time algorithm to
compute e.

Bilinear pairings can be classified into different types which is based on the
choice of G1 and G2:

Definition 6. Let e : G1 ×G2 → GT be a bilinear pairing.
2 The group operation on elliptic curves is usually described as addition. Due to the origin of

the DLP in multiplicative groups, we stick to multiplicative notation.
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1. The pairing e is said to be of Type 1 if G1 = G2.

2. The pairing e is said to be of Type 2 if G1 6= G2 and there exists an
efficiently computable group isomorphism ψ : G2 → G1.

3. The pairing e is said to be of Type 3 if G1 6= G2 and no efficiently com-
putable group isomorphism ψ : G2 → G1 is known to exist.

Definition 7. A bilinear-group generation algorithm BG is a PPT algorithm
that takes a security parameter κ and the type t ∈ [3] and outputs a bilinear
group description (t, e,G1,G2,GT , g, ĝ,g) with G1 = 〈g〉, G2 = 〈ĝ〉 and GT =
〈g〉, all three of prime order q and an asymmetric pairing e : G1 ×G2 → GT .

We note that the DLIN assumption can be defined as in Definition 4 also for
the case of a bilinear group generator. Since we require the bilinear decisional
Diffie-Hellman assumption for Type 1 pairings in [DKL+18a], we recall it here.
For an extensive framework for bilinear groups based hardness assumptions, we
refer the reader to the “uber” assumption framework of Boyen [Boy08].

Definition 8 (BDDH). The bilinear decisional Diffie-Hellman assumptions holds
relative to bg ← BG(1κ, 1), if for all PPT adversaries A, there is a negligible
function ε such that

Pr

[
(r, s, t, u)←R Z4

q, b←
R {0, 1}

y ← A
(
bg, gr, gs, gt,gbrst+(1−b)u

) : b = b∗
]
≤ ε(κ)

The first theoretical constructions of bilinear pairings date back to 1940 when
Weil introduced a pairing on Abelian varieties [Wei40], later followed by Tate’s
and Lichtenbaum’s constructions [Tat57; Tat63; Lic69]. Only since the seminal
work of Miller [Mil86; Mil04], we know of efficient algorithms to compute pair-
ings. Pairings were first introduced into cryptography for breaking the DLP in
elliptic curve groups [MVO91; FR94], and only later found applications in pro-
tocols such as Joux’s three-party key-exchange protocol [Jou00], for providing
the first construction of an efficient identity-based encryption scheme [BF01],
and short signatures [BLS01].

Currently the most prominent choice for instantiating bilinear pairings are
Type 3 pairings over Barreto-Naehrig (BN) curves [BN05] or Barreto-Lynn-Scott
(BLS) curves [BLS02]. For both of these curves, G1 is an elliptic curve group over
Fp with prime order q, G2 is again a group of the same order coming from a twist,
and GT is a subgroup of the multiplicative group of Fp12 . Considering recent
progress on solving the discrete logarithm problems in such fields, conservative
estimations [BD17] recommend bit lengths for p where BLS curves and KSS
curves [KSS08] are better choices than BN curves, as they provide more efficient
arithmetic at these bit lengths.

We however note that, while Type 3 pairing implementations are the most
efficient to date, designing schemes in the Type 1 setting might be easier. For-
tunately, generic compilers [AHO16] exist to convert a Type 1 construction into
one using Type 3 pairings.
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2.2.2. Computational Models

Ideally, the hardness of breaking cryptographic schemes or protocols can be
directly related to hardness of breaking a particular hardness assumption. If
such reduction is possible we talk about a security reduction in the standard
model. Proofs in the standard model are the most desirable ones, since than we
do not have to fall back on idealized computational models for proving schemes
secure. Sometimes, however, it is necessary to make further assumptions on
the computation model, such as the common reference string model, the generic
group model [Sho97; KM07], or the random oracle model (ROM). Besides the
schemes in [DKL+18a] with security proofs in the standard model, all our other
publications require the random oracle or the quantum-accessible variant. Hence
we discuss the ROM in more detail.

In the ROM [BR93], hash functions are idealized by modeling them as oracles
with return uniformly random responses. Upon receiving a query, the random
oracle chooses a new uniform random value, stores it and answers. On receiving
a query for a previously queried value, the RO answers with the stored value.
In cases where where this behaviour of the random oracle is not enough for
the security proof, programmability of the oracle [FLR+10], i.e. programming
the oracle to return particular values upon particular queries, might be useful.
While these values still need to be distributed in the same way, this technique
for examples allows one to embed a challenge into the responses.

We want to note that there exist artificial schemes [CGH04] which can be
proven secure in the ROM, but which are insecure when with any concrete hash
function. Yet, as Koblitz and Menezes argue [KM15], a proof in the ROM does
not indicate the presence of a real-world security weakness. Furthermore, the
ROM has turned out to be a useful assumption for analysing efficient construc-
tions. Alternatively, put in the words of Bellare and Rogaway: “Goals which are
possible but impractical in the standard setting become practical in the random
oracle setting.” [BR93]

The quantum-accessible random oracle model (QROM) [BDF+11] is a variant
of the ROM, where an adversary can issue quantum queries to the RO. This
approach allows to model an adversary that interacts with a classical challenger,
or in other words, it handles the case where we are concerned with powerful
adversaries attacking cryptosystems that are used on classical computers. Giv-
ing the adversary the possibility to perform quantum queries, however, means
that the adversary may query the oracle in superposition, so the challenger also
needs to return answers in superposition. Hence, some proof techniques, such
as programmability of the RO or rewinding of the adversary [PS00], that work
in the classical setting, do not carry over to the QROM or only work in certain
scenarios. New techniques have been developed to prove security in the QROM,
such as history-free reductions [BDF+11] and many others, e.g see [Zha12; BZ13;
TU16; Unr17; KLS18; Zha18].
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2.3. Cryptographic Building Blocks
Before we start discussing encryption and signature schemes, we first recall some
of the basic building blocks that are used throughout our work. We often require
one-way functions, pseudorandom functions, accumulators, Σ-protocols and non-
interactive zero-knowledge proof systems.

2.3.1. One-Way Functions and Pseudorandom Function
Families

We recall the definitions of one-way functions and pseudorandom function (fam-
ilies).

Definition 9 (OWF). Let f : S → P be a function. For a PPT adversary A we
define the advantage function as

AdvOWF
A,f (κ) = Pr

[
x←R S, x∗ ← A(1κ, f(x)) : f(x) = f(x∗)

]
.

The function f is one-way function (OWF) if it is efficiently computable and for
all PPT adversaries A there exists a negligible function ε(·) such that

AdvOWF
A,f (κ) ≤ ε(κ).

Definition 10 (PRF). Let F : S × D → R be a family of functions and let Γ
be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function as

AdvPRFD,F (κ) =
∣∣∣Pr [s←R S : DF(s,·)(1κ) = 1

]
− Pr

[
f ←R Γ : Df(·)(1κ) = 1

]∣∣∣ .

F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRFD,F (κ) ≤ ε(κ).

Our constructions in [CDG+17a; DRS18b; DRS18a] rely on one-way functions
built from symmetric-key primitives. In particular, given a block cipher with en-
cryption algorithm E(s, x), where s denotes the secret key and x the plaintext
block, then we obtain a one-way function by fixing a random plaintext p and
setting f(x) = E(x, p). Similarly, a pseudorandom function family can be con-
structed by using the folklore feed-forward construction F(s, x) = E(s, x) ⊕ x
due to Davies and Meyer. For a recent discussion of PRF constructions from
block ciphers we refer to [MN17].

More concretely, we rely on LowMC [ARS+15; ARS+16] as block cipher,
which is a very parameterizable symmetric encryption scheme design enabling
instantiation with low multiplicative depth and complexity. Given any block
size, a choice for the number of S-boxes per round, and security expectations
in terms of time and data complexity, instantiations can be found minimizing
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the multiplicative depth, the number of multiplications, or the number of mul-
tiplications per encrypted bit. A selection of parameters for LowMC is given
in Table 1. All round numbers were generated using the parameter generation
script3 based on the round formulas by Rechberger et al. [RST18].

Block/key size (n = k) S-boxes (m) Data complexity (d) Rounds (r)
128 10 1 20
192 10 1 30
256 10 1 38

128 10 128 32
192 10 192 45
256 10 256 58

128 1 1 182
192 1 1 284
256 1 1 363

128 1 128 287
192 1 192 413
256 1 256 537

Table 1: A selection of parameters for LowMC version 3 for 10 and 1 S-boxes, re-
spectively. The parameter sets with d = 1 are of particular interest for
Picnic.

Given the block size n, the number of S-boxes m per round, the key size k,
and the number of rounds r, we first select uniformly at random round constants
Ci←R Fn

2 and regular matrices Li←R Fn×n
2 for i ∈ [r], as well as full rank matrices

Ki←R Fn×k
2 for i ∈ [0, r]. Round keys are derived from the secret key using the

respective key matrices Ki. The first key matrix K0 is used for key whitening
before the first round. Then LowMC applies multiple rounds composed of an
S-box layer, a linear layer that multiplies the state with Li, and finally adding
the round constants and the round keys. Algorithm 1 gives a full description of
the encryption algorithm, where SBOX is an m-fold parallel application of the
same 3-bit S-box S on the first 3 ·m bits of the state. The 3-bit S-box is defined
as

S : F3
2 → F3

2

(a, b, c) 7→ (a+ b · c, a+ b+ a · c, a+ b+ c+ a · b).

For in-depth security analysis of this block cipher design we refer to [DLM+15;
DEM15; RST18]. The latter also contains the latest formulas to derive round
numbers for concrete instances of LowMC.

3 https://github.com/lowmc/lowmc
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Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k
2 for i ∈ [0, r],

linear layer matrices Li ∈ Fn×n
2 and round constants Ci ∈ Fn

2 for i ∈ [r].
Input: plaintext p ∈ Fn

2 and key y ∈ Fk
2

Output: ciphertext s ∈ Fn
2

s← K0 · y + p
for i ∈ [r] do

s← SBOX(s)
s← Li · s
s← s+ Ci +Ki · y

end for
return s

2.3.2. Accumulators
An accumulator [BdM93] allows one to accumulate a finite set X into a succinct
value called the accumulator. For every element in the accumulated set, one can
efficiently compute a witness certifying its membership. We recall the definition
of static accumulators by Derler et al. [DHS15].

Definition 11 (Accumulator). A static accumulator Λ is a tuple of PPT algo-
rithms (Gen,Eval,WitCreate,Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6= ∞, then t is an upper bound on the number of elements to be accu-
mulated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor
exists. We assume that the accumulator public key pkΛ implicitly defines
the accumulation domain DΛ.

Eval((skΛ, pkΛ),X ) : This deterministic algorithm takes a key pair (skΛ, pkΛ) and
a set X to be accumulated and returns an accumulator ΛX together with
some auxiliary information aux.

WitCreate((skΛ, pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (skΛ, pkΛ), an
accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ,ΛX ,witxi
, xi) : This algorithm takes a public key pkΛ, an accumulator

ΛX , a witness witxi
and a value xi. It returns 1 if witxi

is a witness for
xi ∈ X and 0 otherwise.

We require accumulators to be correct and collision free. For correctness, we
require that for all κ ∈ N, (skΛ, pkΛ) ← Gen(1κ, t), for a set X with ‖X‖ ≤ t,
ΛX , aux← Eval((skΛ, pkΛ),X ), and for all x ∈ X we have that

Verify (pkΛ,ΛX ,WitCreate ((skΛ, pkΛ) ,ΛX , aux, x) , x) = 1.

For collision-freeness we require that finding a witness for a non-accumulated
value is hard.
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Definition 12 (Collision-Freeness). For an efficient adversary A, we define the
advantage function in the sense of collision-freeness as

AdvCFA,Λ(κ, t) = Pr
[
ExpCFA,Λ (1

κ, t) = 1
]

,

where the corresponding experiment is depicted in Experiment 1. If for any
efficient adversary A there exists a negligible function ε(·) such that

AdvCFA,Λ(κ, t) ≤ ε(κ),

then Λ is collision-free.

ExpCFA,Λ (1
κ, t):

(skΛ, pkΛ)← Gen(1κ, t)

(wit∗xi
, x∗

i ,X ∗, r∗)← A{E,W}(pkΛ)

where oracle E(X , r):
return Eval((skΛ, pkΛ),X ; r)

and oracle W(ΛX , aux, xi):
return WitCreate((skΛ, pkΛ),ΛX , aux, xi)

Λ∗ ← Evalr∗((skΛ, pkΛ),X ∗)

return 1, if Verify(pkΛ,Λ∗,wit∗xi
, x∗

i ) = 1 ∧ x∗
i /∈ X ∗

return 0

Experiment 1: Collision-freeness experiment.

The definition of collision-freeness covers both randomized and determinis-
tic accumulators. When considering deterministic accumulators, e.g. Merkle
trees [Mer89], then r∗ and the additional input r to the Eval oracle E can simply
be omitted.

2.3.3. Σ-protocols
Let L ⊆ X be an NP-language with associated witness relation R so that

L = {x ∈ X | ∃w : R(x,w) = 1} .

A Σ-protocol for language L is an interactive three move protocol between a
prover and a verifier, where the prover proves knowledge of a witness w to the
statement x ∈ L. For a language L, they are defined as follows:

Definition 13. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(a, c, s) ∈ A× C× S. Additionally they satisfy the following properties:
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Completeness: A Σ-protocol for language L is complete, if for all security
parameters κ, and for all (x,w) ∈ R, it holds that

Pr [〈P (1κ, x, w) ,V (1κ, x)〉 = 1] = 1.

s-Special Soundness: A Σ-protocol for language L is special sound, if there
exists a PPT extractor E so that for all x, and for all sets of accepting
transcripts {(a, ci, si)}i∈[s] with respect to x where c1 6= c2, generated by
any algorithm with polynomial runtime in κ, it holds that

Pr
[
w ← E

(
1κ, x, {(a, ci, si)}i∈[s]

)
: (x,w) ∈ R

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge: A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for every
x ∈ L and every challenge c ∈ C, it holds that a transcript (a, c, s), where
(a, s)← S(1κ, x, c) is indistinguishable from a transcript resulting from an
honest execution of the protocol.

The s-special soundness property gives an immediate bound for soundness: if
no witness exists and ignoring a negligible error, then the prover can successfully
answer at most to s−1/|C| challenges. In case this value is too large, it is possible
to reduce the soundness error using `-fold parallel repetition of the Σ-protocol.
We recall some well known facts of Σ-protocols (cf. [Dam10; Sch19]):

Lemma 1. The properties of Σ-protocols are invariant under parallel repetition.
In particular, the `-fold parallel repetition of a Σ-protocol for relation R with
challenge length t yields a new Σ-protocol with challenge length ` · t.

Lemma 2. Let L1 and L2 be two languages with associated witness relations R1

and R2, respectively. Further, let Σ1 and Σ2 be two Σ-protocols with identical
challenge space so that Σ1 is for L1 and Σ2 is for L2. Then a Σ-protocol for the
conjunction of L1 and L2, i.e.,

L1 ∧ L2 = {(x1, x2) | ∃ w1, w2 : (x1, w1) ∈ L1 ∧ (x2, w2) ∈ L2}

is obtained by running Σ1 and Σ2 in parallel using a single common challenge e.

Σ-protocols can be a useful tool for different applications. Most notably,
Schnorr’s Σ-protocol [Sch89] allows the prover to proof knowledge of a discrete
logarithm on one hand and also leads to a signature scheme on the other. The
conjunction of two versions of that Σ-protocol with respect to different generators
immediately yields one of for DDH-tuples, or in other words, allows us to proof
statements related to ElGamal ciphertexts (cf. Scheme 3).

2.3.4. Non-Interactive Zero-Knowledge Proofs
We recall a standard definition of non-interactive zero-knowledge proof systems.
As before, L ⊆ X be an NP-language with associated witness relation R.
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Definition 14 (Non-Interactive Zero-Knowledge Proof System). A non-inter-
active proof system Π is a tuple of algorithms (Setup,Proof,Verify), which are
defined as follows:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness, adaptive zero-knowledge and simulation-sound extractability.

Definition 15 (Perfect Completeness). A non-interactive proof system for lan-
guage L is complete, if for all κ ∈ N, for all crs ← Setup(1κ), for all x ∈ L,
for all w such that R(x,w) = 1, and for all π ← Proof(crs, x, w), we have that
Verify(crs, x, π) = 1.

Definition 16 (Soundness). For an efficient adversary A, we define the advan-
tage function in the sense of soundness as

AdvSoundA,Π (κ) = Pr

[
crs← Setup(1κ),
(x, π)← A(crs) :

Verify(crs, x, π) = 1
∧ x 6∈ L

]
.

If for any efficient adversary A there exists a negligible function ε(·) such that

AdvSoundA,Π (κ) ≤ ε(κ),

then Π is sound.

Definition 17 (Adaptive Zero-Knowledge). For an efficient simulator S =
(S1,S2) and an efficient adversary A, we define the advantage functions in the
sense of zero-knowledge as

AdvSimA,S,Π(κ) =

∣∣∣∣ Pr [crs← Setup(1κ) : A(crs) = 1]−
Pr [(crs, τ)← S1(1κ) : A(crs) = 1]

∣∣∣∣
and

AdvZKA,S,Π(κ) =

∣∣∣∣Pr [ExpZKA,S,Π(1
κ) = 1

]
− 1

2

∣∣∣∣
where the corresponding experiment is depicted in Experiment 2. If there exists
an efficient simulator S = (S1,S2) such that for any efficient adversary A there
exist negligible functions ε1(·) and ε2(·) such that

AdvSimA,S,Π(κ) ≤ ε1(κ) and AdvZKA,S,Π(κ) ≤ ε2(κ)

then Π provides adaptive zero-knowledge.
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ExpZKA,S,Π(1
κ):

b← {0, 1}
(crs, τ)← S1(1κ)
b∗ ← APb(·,·)(crs)

where oracle P0(x,w):
return π ← Proof(crs, x, w), if (x,w) ∈ R

return ⊥
and oracle P1(x,w):

return π ← S2(crs, τ, x), if (x,w) ∈ R

return ⊥
return 1, if b = b∗

return 0

Experiment 2: Adaptive zero-knowledge experiment.

Definition 18 (Simulation-Sound Extractability). For an adaptively zero-knowl-
edge non-interactive proof system Π, for an efficient extractor extractor E =
(E1, E2) and an efficient adversary A, we define the advantage functions in the
sense of simulation-sound extractability as

AdvExt1A,E,Π(κ) =

∣∣∣∣ Pr [(crs, τ)← S1 (1κ) : A(crs) = 1]−
Pr [(crs, τ, ξ)← E1 (1κ) : A(crs) = 1]

∣∣∣∣
and

AdvExt2A,E,Π(κ) =
∣∣∣Pr [ExpExt2A,E,Π(1

κ) = 1
]∣∣∣ ,

where the corresponding experiment is depicted in Experiment 3. If there exists
an efficient extractor E = (E1, E2) such that for any efficient adversary A there
exist negligible functions ε1(·) and ε2(·) such that

AdvExt1A,E,Π(κ) ≤ ε1(κ) and AdvExt2A,E,Π(κ) ≤ ε2(κ)

then Π provides simulation-sound extractactability.

NIZK proof systems can be constructed for any NP language, e.g. from (uni-
form) one-way functions [GMW86; IY87; LFK+90; Sha90], but also from various
assumptions. Most recently, Peikert et al. [PS19] presented a construction from
the learning with errors assumption. Our focus is on NIZK proof systems that
can be obtained from Σ-protocols. We discuss two transformations below.

NIZK from Σ-protocols. Given Σ-protocol for language L, one can obtain
a non-interactive proof system with the above properties by applying the Fiat-
Shamir transform [FS86] to any Σ-protocol. For that transform we require the
min-entropy µ of the commitment a sent in the first message of the Σ-protocol
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ExpExt2A,E,Π(1
κ):

(crs, τ, ξ)← E1(1κ)
QS ← ∅
(x∗, w∗)← AS(·,·)(crs)

where oracle S(x,w):
QS ← QS ∪ {(x,w)}
return π ← S2(crs, τ, x), if (x,w) ∈ R

return ⊥
w ← E2(crs, ξ, x∗, π∗)

return 1, if Verify(crs, x∗, π∗) = 1 ∧ (x∗, π∗) 6∈ QS ∧ (x∗, w) 6∈ R

return 0

Experiment 3: Simulation-sound extractability experiment.

to be such that 2−µ is negligible in the security parameter κ. Furthermore,
its challenge space C needs to exponentially large in the security parameter.
Essentially, the transform removes the interaction between the prover and the
verifier by using a hash function H (modelled as a random oracle) to obtain
the challenge. That is, the algorithm Challenge obtains the challenge as H(a, x).
We formally recall this stronger variant of the Fiat-Shamir transform [FKM+12;
BPW12] in Scheme 1. The original variant of the transform does not include
the statement x in the challenge generation.

Setup(1κ) : Choose a hash function H : A×X→ C, set crs← (κ,H), and return
crs.

Proof(crs, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
c← H(a, x). Finally obtain s and return π ← (a, s).

Verify(crs, x, π) : Parse π as (a, s). Start V on (1κ, x) and send a as first message
to the verifier. When V outputs c, reply with s and output 1 if V accepts
and 0 otherwise.

Scheme 1: NIZK obtained by applying the Fiat-Shamir transform to a Σ-protocol.

Faust et al. [FKM+12] showed that a so-obtained proof system is complete,
sound, adaptively zero-knowledge in the ROM, if the underlying Σ-protocol is
special sound and the commitments sent in the first move are uncondition-
ally binding. Security of the Fiat-Shamir transform in the QROM is harder
to achieve. Ambainis et al. [ARU14] showed that classical results relying on
rewinding do not hold in the QROM. Especially, special soundness of the Σ-pro-
tocol is no longer sufficient. We however note, that the Fiat-Shamir transform
still yields secure NIZKs in the QROM if the underlying Σ-protocol satisfies
stronger properties [Unr17; KLS18; DFM+19; LZ19].
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To obtain a secure NIZK in the QROM we can apply less efficient transforms
such as Unruh’s transform [Unr15] instead. At a high level, Unruh’s transform
works as follows: Given a s-special-sound Σ-protocol, integers t and M , a state-
ment x and a random permutation G, the prover will repeat the first phase of
the Σ-protocol t times. Then, for each of the t runs, it produces proofs to M
different randomly selected challenges. The prover applies G to each of the so-
obtained responses. The prover then selects the responses to publish for each
round of the Σ-protocol by querying the random oracle on the message to be
signed, all first rounds of the Σ-protocol and the outputs of G on all responses.

We present NIZK obtained from Unruh’s transform in Scheme 2. While the
so-obtained proof system is secure in the QROM, it comes at significant overhead
in runtime and in proof size by a factor of t ·M .

Setup(1κ) : Choose t ∈ N, M ∈ [s, |C|], a hash function H : At × CtM × StM →
[M ]t, and a random permutation G : S→ S. Set crs← (κ, t,M,H,G) and
return crs.

Proof(crs, x, w) : 1. For i ∈ [t]:
a) Start P on (1κ, x, w) and obtain first message ai.
b) For j ∈ [M ], set ci,j ←R C \ {ci,1, . . . , ci,j−1} and obtain response

zi,j for challenge ci,j .
2. For i, j ∈ [t]× [M ], set gi,j ← G(zi,j).

3. Let (J1, . . . , Jt)← H
(
(ai)i∈[t] , (ci,j)(i,j)∈[t]×[M ] , (gi,j)(i,j)∈[t]×[M ]

)
.

4. Return π ←
(
(ai)i∈[t] , (ci,j)(i,j)∈[t]×[M ] , (gi,j)(i,j)∈[t]×[M ] , (zi,Ji)i∈[t]

)
.

Verify(crs, x, π) : Parse π as(
(ai)i∈[t] , (ci,j)(i,j)∈[t]×[M ] , (gi,j)(i,j)∈[t]×[M ] , (zi,Ji

)i∈[t]

)
.

1. Let (J1, . . . , Jt)← H
(
(ai)i∈[t] , (ci,j)(i,j)∈[t]×[M ] , (gi,j)(i,j)∈[t]×[M ]

)
.

2. For i ∈ [t] check that all ci,1, . . . , ci,M are pairwise distinct.
3. For i ∈ [t] check whether V accepts the proof with respect to x, first

message ai, challenge ci,Ji and response zi.
4. For i ∈ [t] check gi,Ji

= G(zi).
5. Output 1 if all checks succeeded and 0 otherwise.

Scheme 2: NIZK obtained by applying Unruh’s transform to a Σ-protocol.
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2.4. Public-Key Encryption and Variants
We briefly recall syntax and IND-CPA security of public-key encryption.

Definition 19 (Public-Key Encryption). A public-key encryption scheme Ω is
a triple (KGen,Enc,Dec) of PPT algorithms such that:

KGen(1κ) : This algorithm on input security parameter κ outputs the secret and
public key (sk, pk), where the public key pk implicitly defines the message
space M.

Enc(pk,m) : This algorithm input the public key pk, and the message m ∈ M
and outputs a ciphertext c.

Dec(sk, C) : This algorithm on input a secret key sk and a ciphertext c outputs
a message m ∈M∪ {⊥}.

We say that an encryption scheme Ω is perfectly correct if for all κ ∈ N, for
all (sk, pk)← KGen(1κ) and for all m ∈M it holds that

Pr [Dec (sk,Enc(pk,m)) = m] = 1.

Indistinguishability under chosen message attacks (IND-CPA security) requires
that an adversary A cannot decide which message is actually contained in a
ciphertext c even when allowed to choose two challenge messages m0 and m1.

Definition 20 (IND-CPA). For a PPT adversary A, we define the advantage
function in the sense of indistinguishability under chosen message attacks (IND-
CPA) as

Advind-cpa
A,Ω (1κ) =

∣∣∣∣Pr [Expind-cpa
A,Ω (1κ) = 1

]
− 1

2

∣∣∣∣ ,

where the corresponding experiment is depicted in Experiment 4. If for all PPT
adversaries A there is a is a negligible function ε(·) such that

Advind-cpa
A,Ω (1κ) ≤ ε(κ),

then Ω is IND-CPA secure.

For many applications indistinguishability under chosen ciphertext attacks is
a more interesting property. There, an adversary also has access to a decryption
oracle which can be used to decrypt all ciphertext except the challenge cipher-
text. For the following discussion of forward secrecy and proxy re-encryption,
we will discuss the concepts also with respect to IND-CPA-style security experi-
ments, which will be enough to give an overview of the security properties.

We shortly recall ElGamal encryption [Gam84] in Scheme 3, because we build
on it in both [DKL+18a; DRS18c]. This scheme is IND-CPA-secure under the
decisional Diffie-Hellman assumption. Notably, this encryption scheme is mul-
tiplicatively homomorphic. Alternatively, to obtain an additively homomorphic
scheme, it is also possible to build ElGamal-style encryption from the DLIN
assumption [BBS04]. The latter is also interesting when considering encryption
schemes when DDH is easy, e.g. in bilinear groups.
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Expind-cpa
A,Ω (1κ):

(sk, pk)← KGen(1κ)

b←R {0, 1}
(m0,m1, state)← A(pk)
c∗ ← Enc (pk,mb)

b∗ ← A (c∗, state)

return 1, if b∗ = b

return 0

Experiment 4: IND-CPA security experiment for public-key encryption.

Gen(1κ) : Choose a group (G, q, g) ← G(1κ). Choose x←R Zq and set y ← gx.
Return public key pk← (pp, y) and secret key sk← (pp, x).

Enc(pk,m) : Parse the public key pk as (pp, y), and message m ∈ G, choose
r←R Zq and output c← (gr,M · yr).

Dec(sk, c) : Parse the secret key sk as (pp, x), the ciphertext c as (c1, c2), and
output m← c2 · c−x

1 .

Scheme 3: ElGamal public-key encryption.

2.4.1. Forward-Secret Public-Key Encryption
Forward-secret public-key encryption is an extension of classical public-key en-
cryption which attaches a time period to secret keys and ciphertexts. It also
adds an additional algorithm to evolve secret keys from one period to the next.
Yet, the public key stays constant throughout its lifetime, and additionally its
size is sublinear in the number of periods. The goal is that even if an adversary
is in possession of a secret for an period, it is impossible to learn anything about
ciphertexts of previous periods.

Definition 21 (Forward-Secret Public-Key Encryption). A forward-secret pub-
lic-key encryption scheme fs-Ω is a tuple (KGen,Enc,Dec,Update) of PPT algo-
rithms such that:

KGen(1κ, n) : This algorithm on input security parameter κ, and a maximal num-
ber of periods n, and outputs the secret and public key (sk, pk).

Enc(pk,m, j) : This algorithm input the public key pk, the message m ∈M, and
an period j ∈ [n] and outputs a ciphertext c.

Dec(sk, C) : This algorithm on input a secret key sk and a ciphertext c, both for
the same period j ∈ [n], outputs a message m ∈M∪ {⊥}.

Update(sk) : This algorithm in input a secret key sk for period j ∈ [n−1], outputs
a secret key sk′ for period j + 1.
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For correctness, we require that for all κ ∈ N, for all n ≤ poly(κ), for all
(sk(0), pk)← KGen(1κ, n), for all j ∈ [n], and for all m ∈M it holds that

Pr
[
Dec

(
sk(j),Enc(pk,m, j)

)
= m

]
= 1,

where sk(j) is obtained by computing sk(i+1) ← Update(sk(i)) for i ∈ [j − 1].
To adapt the IND-CPA notion, first of all the adversary has to select a target

period. The challenge ciphertext is then encrypted for the penultimate period
and the adversary gets access to the secret key of the target period.

Definition 22 (fs-IND-CPA). For a PPT adversary A, we define the advantage
function in the sense of forward-secret indistinguishability under chosen message
attacks (fs-IND-CPA) as

Advfs-ind-cpa
A,fs−Ω (1κ, n) =

∣∣∣∣Pr [Expfs-ind-cpa
A,fs−Ω (1κ, n) = 1

]
− 1

2

∣∣∣∣ ,

where the corresponding experiment is depicted in Experiment 5. If for all PPT
adversaries A and n ∈ [poly(κ)], there is a is a negligible function ε(·) such that

Advfs-ind-cpa
A,fs−Ω (1κ) ≤ ε(κ),

then Ω is fs-IND-CPA secure.

Expfs-ind-cpa
A,fs−Ω(1

κ, n):

(sk, pk)← KGen(1κ, n)

b←R {0, 1}
(m0,m1, j

∗, state)← A(pk)

sk(i+1) ← Update
(
sk(i)

)
for i ∈ [j − 1]

c∗ ← Enc (pk,mb, j
∗ − 1)

b∗ ← A
(
c∗, sk(j

∗), state
)

return 1, if b∗ = b

return 0

Experiment 5: fs-IND-CPA security experiment for forward-secret public-key encryp-
tion.

We shortly discuss a generic tree-based approach.

The Canetti-Halevi-Katz compiler. To build a forward-secret scheme with
n periods, Canetti et al. [CHK03] attach periods to the nodes of a depth ` binary
tree with n < 2`. The periods are arranged in depth-first manner in the tree
and the key update algorithm. Now, the public key is simply the public key of
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a binary-tree or hierarchical identity-based encryption scheme. Both schemes
allow one to derive secret keys arranged in a tree such that keys can only be
derived from the root downwards, but not in the other direction. The secret key
for a period then consists of the secret key of the associated node and the secret
keys for all nodes to be able to traverse the tree in a depth-first manner.

The more abstract concept of puncturable encryption [GM15; GHJ+17] al-
lows secret keys to be evolved in a way, that those keys can no longer be used
to decrypt certain ciphertexts, e.g. ciphertexts that have been encrypted with
respect to a tag. When mapping time periods to tags, puncturable encryp-
tion schemes trivially imply forward-secret public-key encryption. However, the
currently known constructions either explicitly or implicitly use the techniques
inspired by Canetti, Halevi, and Katz.

2.4.2. Proxy Re-Encryption
Proxy re-encryption, envisioned by Blaze et al. [BBS98] and formalized by Ate-
niese, Fu, Green, and Hohenberger [AFG+05; AFG+06], can be seen as an ex-
tension of public-key encryption. A central feature of proxy re-encryption is
that senders can craft so-called re-encryption keys, which are usually created
using only public information of the designated delegatee and the delegators’
key material. Those re-encryption keys have the power to transform ciphertexts
under a delegator’s public key to ciphertexts under the delegatees’ public keys.
Within proxy re-encryption, this transformation is done by a semi-trusted proxy.
The widely accepted model for secure proxy re-encryptions [AFG+05] requires
that the proxy does not learn anything about the plaintexts which are encrypted
in the ciphertexts intended to be transformed. Proxy re-encryption is consid-
ered very useful in applications such as encrypted e-mail forwarding or access
control in secure file systems, which was already discussed in earlier work, e.g.,
in [AFG+05].

We recall the standard definition of proxy re-encryption [AFG+05; AFG+06;
LV08b] focusing on the uni-directional, single-hop variant.

Definition 23 (Proxy Re-Encryption). A proxy re-encryption (PRE) scheme
with message space M consists of the PPT algorithms (Setup,Gen, ~Enc, ~Dec,

ReGen,ReEnc) where ~Enc = (Enc(j))j∈[2] and ~Dec = (Dec(j))j∈[2]. For j ∈ [2],
they are defined as follows.

Setup(1κ) : On input security parameter κ, outputs public parameters pp.

Gen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).

Enc(j)(pk,m) : On input a public key pk, and a message m ∈M outputs a level
j ciphertext c.

Dec(j)(sk, c) : On input a secret key sk, and level j ciphertext c, outputs m ∈
M∪ {⊥}.

ReGen(skA, pkB) : On input a secret key skA and a public key pkB for B, outputs
a re-encryption rkA→B .
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ReEnc(rkA→B , cA) : On input a re-encryption key rkA→B , and a ciphertext cA
for user A, outputs a ciphertext cB for user B.

For correctness we require that for all security parameters κ ∈ N, all pub-
lic parameters pp ← Setup(1κ), any number of users U ∈ N, all key tuples
(pku, sku)u∈[U ] generated by Gen(1κ), for any u, u′ ∈ [U ], u 6= u′, any re-encryp-
tion keys rku→u′ using ReGen, and all messages m ∈M, it holds that

∀j ∈ [2]∃j′ ∈ [2] : Pr
[
Dec(j

′)
(
sku,Enc

(j) (pku,m)
)
= m

]
= 1, and

Pr
[
Dec(1)

(
sku′ ,ReEnc

(
rku→u′ ,Enc(2) (pku,m)

))
= m

]
= 1.

We stress that level-2 ciphertexts are re-encryptable ciphertexts, whereas level-
1 ciphertexts are not re-encryptable and we only consider single-hop proxy re-
encryption.

Subsequently we discuss IND-CPA style security experiments for level 1 and
level 2 ciphertexts. Both experiments share oracles, so we discuss them here.
For all experiments defined in this section, the environment keeps initially empty
lists of dishonest (DU) and honest users (HU).

Gen(h)(pp) : Run (pk, sk)← Gen(pp), set HU← HU ∪ {(pk, sk)}, and return pk.

Gen(d)(pp) : Run (pk, sk)← Gen(pp), set DU← DU∪{(pk, sk)}, and return (pk, sk).

ReGen(h)(pku, pk) : On input a public key pku and a public key pk, abort if
(pku, ·) 6∈ HU. Otherwise, look up sku corresponding to pku from HU. Return
ReGen(sku, pk).

ReGen(h
′)(sk, pku) : On input a secret key sk and a public key pku, abort if

(pku, ·) 6∈ HU. Otherwise, return ReGen(sk, pku).

ReGen(d)(sk, pkd) : On input a secret key sk and a public key pkd, abort if
(pkd, ·) 6∈ DU. Otherwise, return ReGen(sk, pkd).

We now recall the definition of IND-CPA security for level 1 ciphertexts. Since
level 1 ciphertexts are not re-encryptable, re-encryption keys should be of no use
to break indistinguishability. Hence, the adversary can request all possible re-
encryption keys in this case.

Definition 24 (IND-CPA-1). For a PPT adversary A, we define the advantage
function in the sense of IND-CPA for level 1 ciphertexts as

Advind-cpa-1
A,PRE (1κ) =

∣∣∣∣Pr [Expind-cpa-1
A,PRE (1κ) = 1

]
− 1

2

∣∣∣∣ ,

where the corresponding experiment is depicted in Experiment 6. If for all PPT
adversary A, there exists a negligible function ε such that

Advind-cpa-1
A,PRE (1κ) ≤ ε(κ),

then a PRE scheme is IND-CPA-1 secure.
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Expind-cpa-1
A,PRE (1κ):

pp← Setup(1κ)

(pk, sk)← Gen(pp)

b←R {0, 1}

O ← {Genh,ReGenh(·, pk),ReGenh
′
(sk, ·),Gend,ReGend(sk, ·)}

(m0,m1, st)← AO(pk)

c∗ ← Enc(1) (pk,mb)

b∗ ← A (st, c∗)

return 1 if b = b∗

return 0

Experiment 6: IND-CPA security experiment for level 1 ciphertexts for PRE.

We also recall the definition of IND-CPA security of level 2 ciphertexts. Note
that here queries to the ReGen oracles are more restricted to avoid queries of re-
encryption keys that would trivially break indistinguishability.

Definition 25 (IND-CPA-2). For a PPT adversary A, we define the advantage
function in the sense of IND-CPA for level 2 ciphertexts as

Advind-cpa-2
A,PRE (1κ) =

∣∣∣∣Pr [Expind-cpa-2
A,PRE (1κ) = 1

]
− 1

2

∣∣∣∣ ,

where the corresponding experiment is depicted in Experiment 7. If for all PPT
adversary A, there exists a negligible function ε such that

Advind-cpa-2
A,PRE (1κ) ≤ ε(κ),

then a PRE scheme is IND-CPA-2 secure.

Besides proxy re-encryption in the classical setting, it has been object of sig-
nificant research for almost two decades, including proxy re-encryption with
temporary delegation [AFG+05; AFG+06; LV11], identity-based proxy re-en-
cryption [GA07; RGW+10], extensions to the chosen-ciphertext setting [CH07;
LV11], type-based/conditional proxy re-encryption [Tan08; WYT+09], anony-
mous (or key-private) proxy re-encryption [ABH09], traceable proxy re-encryp-
tion [LV08a], or proxy re-encryption from lattice-based assumptions [CCL+14;
PRS+17].

We will discuss the basic ideas of the constructions of Ateniese et al. [AFG+05].

Shifting keys. Note that in the bilinear group settings one can produce El-
Gamal-style ciphertexts both in the source groups and in the target group.
Additionally, by applying the pairing, ciphertexts in the source group can be
transformed into ciphertexts in the target group. So we immediately have ob-
vious choices for re-encryptable ciphertexts in the source groups and non-re-
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Expind-cpa-2
A,PRE (1κ):

pp← Setup(1κ)

(pk, sk)← Gen(pp)

b←R {0, 1}

O ← {Genh,ReGenh(·, pk),ReGenh
′
(sk, ·)}

(m0,m1, st)← AO(pk)

c∗ ← Enc(2) (pk,mb)

b∗ ← A (st, c∗)

return 1 if b = b∗

return 0

Experiment 7: IND-CPA security experiment for level 2 ciphertexts for PRE.

encryptable ciphertexts in the target group, respectively. Moreover, given that
the pairings enables us to perform one multiplication in the exponent. There-
fore, the construction of Ateniese et al. [AFG+05] computes re-encryption keys
as public key of the receiver raised to the power of the inverse of the secret
key of the sender. When then pairing the re-encryption key with the ciphertext
components, the public key of the sender gets canceled out.

A weak form of forward-secret proxy re-encryption can be achieved using
temporary delegations as proposed by Ateniese et al. [AFG+05; AFG+06] and
later improved by Libert et al. [LV11]. Alternatively, it can also be achieved by
using type-based/conditional proxy re-encryption [Tan08; WYT+09]. However,
both approaches at least require to update the re-encryption keys for each time
period with the help of the delegator. To get a stronger form of forward-secret
proxy re-encryption, we first adapt the notion of forward-secrecy to the setting
of proxy re-encryption. In

• David Derler, Stephan Krenn, Thomas Lorünser, Sebastian Ramacher,
Daniel Slamanig, and Christoph Striecks. Revisiting Proxy Re-encryp-
tion: Forward Secrecy, Improved Security, and Applications. In Michel
Abdalla and Ricardo Dahab, editors, Public-Key Cryptography - PKC 2018
- 21st IACR International Conference on Practice and Theory of Public-
Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings,
Part I, volume 10769 of Lecture Notes in Computer Science, pages 219–
250. Springer, 2018. url: https://doi.org/10.1007/978-3-319-76578-5_8,

we model forward-secrecy both on the sender’s and the proxy’s side. We then
continue by proposing a construction of forward-secret proxy re-encryption. For
this scheme we employ the CHK compiler [CHK03] combined with homomor-
phic encryption in a way that allows us to evolve encrypted secret keys in the
encrypted domain.

As an intermediate step, we introduce the notion of a forward-secret dele-
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gatable public-key encryption scheme. Such a scheme allows the delegatee to
delegate the decryption functionality to some other user by computing a dele-
gation key. This key essentially contains an encrypted version of the delegatee’s
secret key encrypted for the receiver. To obtain forward secrecy, we combine
the results of CHK with a suitable homomorphic public-key encryption scheme,
so that we can perform the key derivation in the encrypted domain. We then
observe that forward-secret delegatable public-key encryption built from binary-
tree encryption provides key-homomorphisms and the ability to adopt cipher-
texts to a shifted key. Thus, we adapt the key-shifting technique of Ateniese
et al., but instead of shifting ciphertexts from one user to another, we shift
the ciphertext to a newly sampled public key. Additionally, we also shift the
delegation key, which serves as re-encryption key, to match the newly created
ciphertext. By shifting to the newly sampled key, the connection of the en-
crypted key and the original secret key is gets broken up, thus ensuring that the
encrypted keys leak no information on the original keys.

2.5. Digital Signatures and Variants
We recall the notion of digital signature schemes and the standard unforgeability
notions below.
Definition 26 (Signature Scheme). A signature scheme Σ is a triple (KGen,
Sign,Verify) of PPT algorithms, which are defined as follows:
KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a

secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈M as input
and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential un-
forgeability under adaptively chosen message attacks (EUF-CMA security). For
correctness we require that for all κ ∈ N, for all (sk, pk)← KGen(1κ) and for all
m ∈M it holds that

Pr [Verify(pk,m, Sign(sk,m)) = 1] = 1.

Definition 27 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of existential unforgeability under chosen message attacks
(EUF-CMA) as

Adveuf-cma
A,Σ (1κ) = Pr

[
Expeuf-cma

A,Σ (1κ) = 1
]

,

where the corresponding experiment is depicted in Experiment 8. If for all PPT
adversaries A there is a negligible function ε(·) such that

Adveuf-cma
A,Σ (1κ) ≤ ε(κ),
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we say that Σ is EUF-CMA secure.

Expeuf-cma
A,Σ (1κ):

(sk, pk)← KGen(1κ)

Q ← ∅

(m∗, σ∗)← ASign′(sk,·)(pk)

where oracle Sign′(m):
σ ← Sign(sk,m)

Q ← Q∪ {m}
return σ

return 1, if Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Experiment 8: EUF-CMA security experiment for Σ.

In the following we will focus on two common construction techniques popular
in the ROM: signatures from identification schemes and the full-domain-hash
(FDH) paradigm. Both approaches have been used both in the classical and the
post-quantum setting and are also used as part of the currently standardized
signature schemes.

Identification schemes. Identification schemes are interactive protocols that
allows a party to prove its identity to another party. These schemes can have
multiple rounds whereas the three round identification schemes share a similarity
with Σ-protocols. Indeed, using a suitable hard relation, three-move identifica-
tion schemes can be obtained from Σ-protocols. Especially three-move identifi-
cation schemes can be transformed into an EUF-CMA secure signature scheme by
applying the Fiat-Shamir transform and including the message in the challenge
generation. This technique has been thoroughly studied in the last decades, e.g.
in [OO98; PS96; AAB+02; AFL+12; KMP16; BPS16; DGV+16].

Constructions based on this paradigm are numerous, and we only mention
some notable instances for further reading here. The first constructions follow-
ing this technique dates back to the seminal work of Schnorr [Sch89].4 For code-
based signatures, the most prominent examples are the identification schemes
due to Stern [Ste93] and Véron [Vér96]. Chen et al. [CHR+16] proposed a post-
quantum signature scheme whose security is based on the problem of solving a
multivariate system of quadratic equations. Their scheme is obtained by build-
ing upon the 5-pass (or 3-pass) identification scheme in [SSH11] and applying the
4 (EC)DSA [KSD13] and EdDSA [BDL+12] essentially follow a similar design strategy. How-

ever, to avoid conflicts with patents granted for Schnorr’s protocol, the constructions are
slightly modified. In particular for (EC)DSA, this fact makes the provable security analysis
more complicated. Only recently Fersch et al. [FKP16] proved ECDSA secure in the bijective
ROM. Previous proofs of security covered modified variants [MS02] or proofs in the generic
group model [Bro05].
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Fiat-Shamir transform. From an identification scheme based on the supersingu-
lar isogeny problem [FJP14], Yoo et al. [YAJ+17] and Galbraith et al. [GPS17]
proposed post-quantum signature schemes. Finally, we mention two recent ex-
amples of lattice-based post-quantum signature schemes submitted to the NIST
PQC project, qTESLA [ABB+19] and Dilithium [DKL+18b], that follow a vari-
ant of this approach using Fiat-Shamir with aborts [Lyu09].

Full domain hash. Signature schemes from trapdoor one-way functions can
be constructed elegantly from the full-domain-hash paradigm [BR93]. There, the
public key consists of the trapdoor whereas the secret key consists of the inverse,
i.e. the trapdoor. For signing, the message is first hashed and the inverse of the
hash image with respect to the one way function is computed using the trapdoor.
The result of this operation is then published. For verification, the one-way func-
tion is evaluated on the signature and checked against the hash of the message.
The most prominent example of FDH-style signatures include those built from
the RSA trapdoor permutation, i.e. RSA-FDH and RSA-PSS [BR96], whereas
the latter uses a slightly tweaked approach and is standardized as part of PKCS
#1 v2.1 [JK03]. Also, the BLS signature scheme [BLS01] can be viewed as ap-
plication of this paradigm. For BLS signatures, bilinear pairings are required to
perform the verification, i.e. to check the image of the signature under the one-
way function against the hash of the message. We note that the FDH paradigm
is also secure in the QROM [Zha12], so given a suitable trapdoor permutation
secure against a quantum adversary implies a secure signature scheme in the
QROM.

When considering signatures solely from symmetric-key primitives, the FDH
paradigm does not apply due to the lack of a suitable trapdoor permutation.
Example of signature schemes solely relying on the security from symmetric-
key primitives, i.e. without relying on structured hardness assumptions, include
hash-based schemes such as Lamport’s [Lam79] or Winternitz’ [DSS05] one-time
signature schemes. They can then be lifted to signature schemes using Merkle
trees [Mer89]. Highly efficient schemes like XMSS [BDH11] are stateful, which
seems to be problematic for practical applications [MKF+16]. Stateless schemes
like SPHINCS [BHH+15] avoid this issue at the cost of reduced efficient and
increased signature sizes. None of these signature schemes follows one of the
outlined approaches above, yet given a one-way function built from symmetric-
key primitives and a suitable Σ-protocol instantiating one would directly obtain a
signature scheme. However, such signature would not be efficient. Starting with
ZKBoo [GMO16], Σ-protocols emerged enabling efficient proofs of arithmetic
circuits. In

• Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Za-
verucha. Post-Quantum Zero-Knowledge and Signatures from Symmetric-
Key Primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Confer-
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ence on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, pages 1825–1842. ACM, 2017.
url: https://doi.org/10.1145/3133956.3133997

we improve ZKBoo and introduce ZKB++, with proof sizes reduced to roughly
a half. One of the major factor contributing to the size of so-obtained signatures
is the choice of the one-way function. Thus we study multiple choices and settle
on LowMC [ARS+15; ARS+16] to minimize the multiplicative complexity of
the circuits, and thus the signature size. We also provide an implementation to
show the practical efficiency of our signature scheme. To obtain a scheme also
secure in the QROM, we investigate and optimize the Unruh transform when
applied to ZKB++.5 Our optimizations heavily rely on the fact that responses
share parts of the views with the other possible responses, hence the responses
can be interleaved.

2.5.1. Ring Signatures
Ring signatures [RST01] are a variant a digital signatures, which allow a member
of an ad-hoc group R defined by the member’s public keys, to anonymously
sign a message on behalf of R. Such a signature attests that a member of R
produced the signature, but the actual signer remains anonymous with respect
to R. This anonymity feature turn ring signatures into an interesting tool for
various applications, such as whistleblowing as envisioned by Rivest et al.

We formally define ring signature schemes following Bender et al. [BKM09].

Definition 28 (Ring Signature). A ring signature scheme RS is a tuple (Setup,
KGen,Sign,Verify) of PPT algorithms, which are defined as follows:

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters pp.

KGen(pp) : This algorithm takes as input parameters pp and outputs a keypair
(sk, pk).

Sign(ski,m,R) : This algorithm takes as input a secret key ski, a messagem ∈M
and a ring R = (pkj)j∈[n] of n public keys such that pki ∈ R. It outputs
a signature σ.

Verify(m,σ,R) : This algorithm takes as input a message m ∈M, a signature σ
and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anony-
mous. While we omit the obvious correctness definition, we provide formal
definitions for the remaining properties. We note that Bender et al. [BKM09]
have formalized multiple variants of these properties, where we always use the
strongest one.
5 Recent work by Don et al. [DFM+19] suggests that at least for ZKBoo the Fiat-Shamir

transform is sufficient to obtain security in the QROM.
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For unforgeability we require that without knowing any secret key ski cor-
responding to one of the public key pki ∈ R, it is infeasible to produce valid
signatures with respect to arbitrary rings R. Below we recall unforgeability
with respect to insider corruption, which is the strongest unforgeability notion
defined in [BKM09].

Definition 29 (Unforgeability). For a PPT adversary A, we define the advan-
tage function in the sense of unforgeability as

AdvunfA,RS(1
κ, n) = Pr

[
ExpunfA,RS(1

κ, n) = 1
]

,

where the corresponding experiment is depicted in Experiment 9. If for all PPT
adversaries A and all n ≤ poly(κ), there is a negligible function ε(·) such that

Adveuf-cma
A,RS (1κ, n) ≤ ε(κ),

we say that RS is unforgeable.

ExpunfA,RS(1
κ, n):

pp← Setup(1κ)

(ski, pki)← KGen(pp) for i ∈ [n]

QS ← ∅
QK ← ∅

(m∗, σ∗,R∗)← ASign′(·,·,·),KGen′(·)((pki)i∈[n])

where oracle Sign′(i,m,R):
return ⊥ if i 6∈ [n] ∨ pki 6∈ R
QS ← QS ∪ {m}
return Sign(ski,m,R)

and where oracle KGen′(i):
QK ← QK ∪ {i}
return ski

return 1, if Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ QS ∧ R∗ ⊂ {pki}i∈[n]\QK

return 0

Experiment 9: Unforgeability for RS.

Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.
We recall the strongest notion defined in [BKM09]: anonymity against full key
exposure.

Definition 30 (Anonymity). For a PPT adversary A, we define the advantage
function in the sense of anonymity as

AdvanonA,RS(1
κ, n) =

∣∣∣∣Pr [ExpanonA,RS(1
κ, n) = 1

]
− 1

2

∣∣∣∣ ,
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where the corresponding experiment is depicted in Experiment 10. If for all PPT
adversaries A and all n ≤ poly(κ), there is a negligible function ε(·) such that

Adveuf-cma
A,RS (1κ, n) ≤ ε(κ),

we say that RS provides anonymity.

ExpanonA,RS(1
κ, n):

pp← Setup(1κ)

(ski, pki)← KGen(pp) for i ∈ [n]

b←R {0, 1}

(m, j0, j1,R, st)← ASign′(·,·,·)((pki)i∈[n])

where oracle Sign′(i,m,R):
return Sign(ski,m,R)

σ ← Sign(skjb ,m,R)

b∗ ← ASign′(·,·,·)(st, σ, (ski)i∈[n])

return 1 if b = b∗ ∧ {pkj0 , pkj1} ⊂ R
return 0

Experiment 10: Anonymity experiment for RS.

The two main lines of more recent work in the design of ring signatures target
reducing the signature size or removing the requirement for random oracles. We
discuss some of generic frameworks resulting from those works below.

Ring trapdoor functions. Brakerski and Kalai [BK10] introduce a frame-
work for constructing EUF-CMA signatures from weaker unforgeability notions
and observe that the transformation also holds for ring signatures. Their re-
duction is built on top of chameleon hash functions [KR00], which are collision
resistant hash functions with a trapdoor to efficiently sample a collision. For the
weaker ring signature construction so-called ring trapdoor functions, a general-
ization of trapdoor functions, are introduced. There, given functions (fi)i∈[n]

and y it is hard to find (xi)i∈[n] such that
∑n

i=1 fi(xi) = y. However, when hav-
ing a trapdoor for any of the fi is easy to find (xi)i∈[n] for all fi. Furthermore,
given pre-images it is not possible to tell for which fi a trapdoor was used. A
ring signature than essentially contains the pre-image for a y in the public key
computed from a trapdoor for one fi and randomly selecting all others. Ring
trapdoor functions can be instantiated from the computational bilinear Diffie-
Hellman assumption and from the SIS assumption.

Encrypted signatures. In Bender et al.’s construction [BKM09] all users
poses key pairs of a public-key encryption scheme and a standard signature
scheme. On a high level, ring signatures are then generated by first producing a
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signature with the user’s signing key and then encrypting this signature blinded
with respect to all encryption public keys. The signature then contains the en-
crypted signature together with a proof of knowledge of a signature that verifies
under the user’s public key and knowledge of the randomness for encrypting the
signature. This proof is performed over the disjunction of the statement repeated
for every verification key. This construction can for example be instantiated with
Waters [Wat05] or Camenisch-Lysyanskaya [CL04] signatures.

Key-homomorphic signatures. Derler and Slamanig [DS16] introduce a
generic construction that allows one to construct ring signatures from any key-
homomorphic EUF-CMA secure signature scheme with adaptable signatures.
This type of signature scheme provides an homomorphism between the secret and
public key space and it additionally also allow one to shift signatures generated
with respect to a public key by a delta given in the secret key space. Adaptabil-
ity ensures that freshly generated and shifted signatures are indistinguishable.
A ring signatures consists of a signature of the underlying scheme generated by
a random key and a disjunctive proof of knowledge of the shift amount of the
public keys contained in the ring and the randomly sampled key. The class of
suitable signature schemes includes Schnorr [Sch89], Guillou-Qisquater [GQ88],
BLS [BLS01], Katz-Wang [KW03], Waters [Wat05], PS [PS16] and randomizable
structure preserving signatures [AGO+14; Gha16].

Accumulators. Dodis et al. [DKN+04] use an accumulator with one-way do-
main to accumulate the set of public keys which are the image of a one-way
function under the respective secret key. They combine a proof of knowledge
of a witness of one public key and knowledge of the pre-image of the corre-
sponding secret key to obtain in a ring signature scheme. Dodis et al. present
an instantiation of a strong RSA assumption-based accumulator whereas Libert
et al. [LLN+16] provide a construction under lattice assumptions.

When only relying on symmetric-key primitives, the only suitable choice to
construct ring signatures based on those generic constructions is the accumu-
lator-based approach. So, at first we have to select an accumulator with one-
way domain. In this setting, Merkle trees [Mer89] combined with an one-way
function leads to an accumulator with one-way domain that is equipped with log-
arithmic size membership proofs. However, to break the anonymity of the ring
signatures schemes it would be enough to know the authentication path. While
a disjunctive proof of knowledge over all accumulated elements would hide the
path taken through the tree, this relation comes at the cost of at least linearly
sized proofs. One of the main technical tools used by Dodis et al. to obtain zero-
knowledge membership proofs of constant size is to exploit a property of the
accumulator which is called quasi-commutativity. Yet, such a property requires
some underlying algebraic structure, which we want to avoid to remain in the
symmetric setting. Consequently, we design a relation in

• David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-Quantum
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Zero-Knowledge Proofs for Accumulators with Applications to Ring Signa-
tures from Symmetric-Key Primitives. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Pro-
ceedings, volume 10786 of Lecture Notes in Computer Science, pages 419–
440. Springer, 2018. url: https://doi.org/10.1007/978-3-319-79063-
3_20

that allows us to emulate quasi-commutativity and hence to obtain zero-knowl-
edge membership proofs of logarithmic size. To achieve that, we perform dis-
junctive proofs for each level of the tree and exploit the disjunction to hide the
authentication path. We also observe that one can trade the disjunctive proof,
i.e. a second full evaluation of the hash function, with two comparatively cheap
multiplexers.

Our security proof relies on simulation-sound extractactability of the under-
lying proof system. Hence, on the way to construct ring signatures of sub-linear
size, we first prove that Fiat-Shamir-transformed ZKB++ yields a simulation-
sound-extractable proof system. For the Unruh-transformed version this result
was already known.

One of the questions left open is whether symmetric-key primitives can be
used to also construct group signatures, which have similar anonymity features,
but the set of users is explicitly managed by a group manager and are also
equipped with the possibility to re-identify anonymous signers by a dedicated
party. While it is a well-known fact that group signatures following the static
security model of Bellare et al. [BMW03] imply public-key encryption [AW04;
CG04], one could hope for group signatures in a weaker model. This question
was previously pursued by Camenisch et al. [CG04] who presented a construction
from one-way functions and non-interactive zero-knowledge arguments. Yet the
question whether this construction can be instantiated without structured hard-
ness assumptions remained open. Boneh et al. [BEF19] and Katz et al. [KKW18]
answered this question positively for group signatures without opening mecha-
nism.

2.5.2. Double-Authentication-Preventing Signatures
Double-authentication-preventing signatures (DAPS), as introduced by Poetter-
ing and Stebila, are a variant of digital signatures used to sign messages of the
form m = (a, p) with a being the so called address and p the payload. They pro-
vide unforgeability guarantees in the sense of conventional signatures,but have
the special property that signing two colliding messages, i.e. message with the
same address but differing payloads, allows anybody to extract the secret sign-
ing key from the respective signatures. Applications of DAPS include penalizing
double-spending attacks in offline transactions of cryptocurrencies [RKS15] or
penalizing certification authorities for issuing two certificates with respect to the
same domain name, but for two different public keys [BPS17], for example.

Before formally defining DAPS, we first define colliding messages as follows:
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Definition 31 (Colliding Messages). We call two messages m1 = (a1, p1) and
m2 = (a2, p2) colliding if a1 = a2, but p1 6= p2.

Below, we now formally define DAPS following [PS14; PS17].

Definition 32 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGen,Sign,Verify,Extract) of PPT algorithms, which are defined
as follows:

KGen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈M as input
and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

Extract(pk,m1,m2, σ1, σ2) : This algorithm takes a public key pk, two colliding
messages m1 and m2 and signatures σ1 for m1 and σ2 for m2 as inputs
and outputs a secret key sk.

Note that the algorithms KGen, Sign, and Verify match the definition of the
algorithms of a conventional signature scheme (cf. Definition 26). We also require
the same correctness notion as for a conventional signature scheme. For DAPS
one requires a restricted but otherwise standard notion of unforgeability [PS14;
PS17], where adversaries can adaptively query signatures for messages but only
on distinct addresses.

Definition 33 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of EUF-CMA as

Advdaps-euf-cma
A,DAPS (1κ) = Pr

[
Expdaps-euf-cma

A,DAPS (1κ) = 1
]

,

where the corresponding experiment is depicted in Experiment 11. If for all PPT
adversaries A there is a negligible function ε(·) such that

Advdaps-euf-cma
A,DAPS (1κ) ≤ ε(κ),

we say that DAPS is EUF-CMA secure.

Extraction of the secret key from two signatures on colliding messages is en-
sured by the notion of double-signature extractability (DSE). It requires that, if
given signatures on two colliding messages, then the extraction algorithm Extract
recovers the secret key from the two signatures and the public key. We first con-
sider the common notion which requires extraction to work if the key pair has
been generated honestly: the adversary is given a key pair and outputs two col-
liding messages and corresponding signatures. If the signatures are valid and
thus satisfy the requirements of the extraction algorithm, yet the key produced
by Extract is different from the signing key, then adversary wins the game.
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Expdaps-euf-cma
A,DAPS (1κ):

(sk, pk)← KGen(1κ)

Q ← ∅, R← ∅

(m∗, σ∗)← ASign′(sk,·)(pk)

where oracle Sign′(m):
(a, p)← m

if a ∈ R, return ⊥
σ ← Sign(sk,m),
Q ← Q∪ {m},
R← R∪ {a}
return σ

return 1, if Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q
return 0

Experiment 11: EUF-CMA security experiment for DAPS.

Definition 34 (DSE). For a PPT adversary A, we define the advantage function
in the sense of double-signature extraction (DSE) as

AdvDSE
A,DAPS(1

κ) = Pr
[
ExpDSE

A,DAPS(1
κ) = 1

]
where the corresponding experiment is depicted in Experiment 12. If for all PPT
adversaries A there is a negligible function ε(·) such that

AdvDSE
A,DAPS(1

κ) ≤ ε(κ),

then DAPS provides DSE.

ExpDSE
A,DAPS(1

κ):
(sk, pk)← KGen(1κ)

(m1,m2, σ1, σ2)← A(sk, pk)
return 0, if m1 and m2 are not colliding
return 0, if Verify(pk,mi, σi) = 0 for any i ∈ [2]

sk′ ← Extract(pk,m1,m2, σ1, σ2)

return 1, if sk′ 6= sk

return 0

Experiment 12: DSE security experiment for DAPS.

Second, we also recall the strong variant of extractability under malicious
keys (denoted as DSE∗). In this security experiment, the adversary is allowed
to generate the key arbitrarily.
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Definition 35 (DSE∗). For a PPT adversary A, we define the advantage func-
tion in the sense of double-signature extraction under malicious keys (DSE∗)
as

AdvDSE∗

A,DAPS(1
κ) = Pr

[
ExpDSE∗

A,DAPS(1
κ) = 1

]
where the corresponding experiment is depicted in Experiment 13. If for all PPT
adversaries A there is a negligible function ε(·) such that

AdvDSE∗

A,DAPS(1
κ) ≤ ε(κ),

then DAPS provides DSE∗.

ExpDSE∗

A,DAPS(1
κ):

(pk,m1,m2, σ1, σ2)← A(1κ)
return 0, if m1 and m2 are not colliding
return 0, if Verify(pk,mi, σi) = 0 for any i ∈ [2]

sk′ ← Extract(pk,m1,m2, σ1, σ2)

return 1, if sk′ is not the secret key corresponding to pk

return 0

Experiment 13: DSE∗ security experiment for DAPS.

We recall one generic construction technique for DAPS based on trapdoor
identification schemes. All other prior constructions are ad-hoc.

Trapdoor identification schemes. Trapdoor identification schemes have the
additional property, that the prover can sample the commitment in the first
round at random, and then—using the trapdoor—can compute the associated
randomness. The idea of the double-hash transform [BPS17] is now to first
sample the commitment based on the address using a random oracle, and to then
perform the identification protocol as normal. Now the verifier can check if the
commitment was selected based on the correct address. Once signatures for two
colliding messages are obtained, both have been generated with respect to the
same commitment, thus the soundness of the identification scheme guarantees
the extraction. Bellare et al. [BPS17] also present a second transform, namely
the double-ID transform, which follow the same basic idea. This approach works
well in the factoring setting using trapdoor identification schemes due to Guillou
and Qisquater [GQ88] and Micali and Reyzin [MR02].

This approach exemplifies the close connection between DAPS and identifi-
cation schemes respectively Σ-protocols. Two signatures σ1 and σ2 on colliding
messages m1 = (a, p1) and m2 = (a, p2) have a similarity with transcripts when
considering 2-special soundness. There we have (a, e1, z1) and (a, e2, z2) that
share the same first message a. In the case of DAPS, we can view the inputs
required to extract as (a, p1, σ1) and (a, p2, σ2) sharing the same structure as the
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Σ-protocol transcripts.

The need for a suitable trapdoor identification scheme limits the applicability
of this approach. Both the Guillou-Qisquater and the Micali-Reyzin identifi-
cation schemes rely on the RSA assumption. Additionally, it is not possible
to extend existing signature schemes deployed in practice using this approach.
Besides this approach, Boneh et al. [BKN17] present a post-quantum secure con-
struction building on top of public-key encryption schemes with trapdoors from
lattices.

As none of the approaches are suitable for extending conventional signature
schemes, we follow a different approach in our construction: we extend the sig-
nature with a secret share of the secret key. Based on the address, a polynomial
of degree 1 is selected for Shamir’s secret sharing [Sha79], whereas the payload
then determines the share. Then, given two shares from signatures on colliding
messages, we obtain two shares with respect to the same polynomial and we are
thus able to extract the secret key. To ensure that the signer uses the correct
polynomial, i.e. is derived from the address, and that the secret share has been
correctly calculated, we add a zero-knowledge proof on to the signature. We
explore this approach in two different scenarios. In

• David Derler, Sebastian Ramacher, and Daniel Slamanig. Short Dou-
ble- and N-Times-Authentication-Preventing Signatures from ECDSA and
More. In 2018 IEEE European Symposium on Security and Privacy, Eu-
roS&P 2018, London, United Kingdom, April 24-26, 2018, pages 273–287.
IEEE, 2018. url: https://doi.org/10.1109/EuroSP.2018.00027

we first introduce double-signature extractability notions covering the extension
from a conventional signature scheme to DAPS. Secondly, we show how our
approach can be applied to essentially any signature scheme in the discrete
logarithm setting, in particular to ECDSA and Schnorr. Our only requirement
on the underlying signature scheme is that the existence of a homomorphism
between the group of secret keys and public keys. For schemes in this setting, this
is a very natural assumption. However, the size of the address space is limited,
since for proving the correct computation of the share, the public key includes
encryptions of the coefficients of the used polynomials. Using Shamir’s secret
sharing also enables us to extend the construction to n-times-authentication-
preventing signatures by simply increasing the degree of the sharing polynomial
to n− 1.

One way to fix this short-coming is to first derive the coefficients via an PRF.
To ensure that the PRF was evaluated correctly, we prove the correctness of
the PRF evaluation. Given a PRF from symmetric-key primitives, we can sim-
ply attach a ZKB++-based proof of the correct evaluation. So, we present a
construction using a fixes-value-key-binding PRF [CMR98; Fis99] in

• David Derler, Sebastian Ramacher, and Daniel Slamanig. Generic Double-
Authentication Preventing Signatures and a Post-quantum Instantiation.
In Joonsang Baek, Willy Susilo, and Jongkil Kim, editors, Provable Se-
curity - 12th International Conference, ProvSec 2018, Jeju, South Korea,
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October 25-28, 2018, Proceedings, volume 11192 of Lecture Notes in Com-
puter Science, pages 258–276. Springer, 2018. url: https://doi.org/10.
1007/978-3-030-01446-9_15.

Compared to our work on DL-based instantiation, we obtain a construction
with a relaxed requirement on the secret key to public key relation, as we now
only require an one-way function. In general, the challenge here is to find an
OWF and PRF with compatible domain and codomain combined with an ef-
ficient proof system. However, with a focus on our prior work on Picnic, we
discuss an instantiation from symmetric-key primitives. Thereby we are able
give a partially positive answer to one of the open questions raised by Bellare
et al. [BPS17], who asked whether DAPS can be constructed without structured
hardness assumptions.
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Abstract. We revisit the notion of proxy re-encryption (PRE), an en-
hanced public-key encryption primitive envisioned by Blaze et al. (Euro-
crypt’98) and formalized by Ateniese et al. (NDSS’05) for delegating
decryption rights from a delegator to a delegatee using a semi-trusted
proxy. PRE notably allows to craft re-encryption keys in order to equip
the proxy with the power of transforming ciphertexts under a delega-
tor’s public key to ciphertexts under a delegatee’s public key, while not
learning anything about the underlying plaintexts.

We study an attractive cryptographic property for PRE, namely that of
forward secrecy. In our forward-secret PRE (fs-PRE) definition, the proxy
periodically evolves the re-encryption keys and permanently erases old
versions while the delegator’s public key is kept constant. As a conse-
quence, ciphertexts for old periods are no longer re-encryptable and, in
particular, cannot be decrypted anymore at the delegatee’s end. More-
over, delegators evolve their secret keys too, and, thus, not even they
can decrypt old ciphertexts once their key material from past periods
has been deleted. This, as we will discuss, directly has application in
short-term data/message-sharing scenarios.

Technically, we formalize fs-PRE. Thereby, we identify a subtle but sig-
nificant gap in the well-established security model for conventional PRE
and close it with our formalization (which we dub fs-PRE+). We present
the first provably secure and efficient constructions of fs-PRE as well as
PRE (implied by the former) satisfying the strong fs-PRE+ and PRE+ no-
tions, respectively. All our constructions are instantiable in the standard
model under standard assumptions and our central building block are
hierarchical identity-based encryption (HIBE) schemes that only need to
be selectively secure.

Keywords: Forward secrecy, proxy re-encryption, improved security
model
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1 Introduction

The security of cryptosystems essentially relies on the secrecy of the respective
secret key. For example, if for an encryption scheme a secret key is (accidentally)
leaked, the confidentiality of all the data encrypted with respect to this key so far
is immediately destroyed. One simple mitigation strategy for such a secret-key
leakage is to frequently change secret keys such that leaking a secret key only
affects a small amount of data. Implementing this in a näıve way, for instance
in context of public-key encryption, means that one either has to securely and
interactively distribute copies of new public keys frequently or to have huge pub-
lic keys3, which is rather inconvenient in practice. Consequently, cryptographic
research focused on the design of cryptosystems that inherently provide such a
property, being denoted as forward secrecy (or, forward security) [28]. The goal
hereby is that key leakage at some point in time does not affect the data which
was encrypted before the key leakage, while mitigating the drawbacks of the näıve
solution discussed before. That is, one aims at efficient non-interactive solutions
that have fixed sublinear-size public keys in the number of key switches/time
periods. Those (strong) properties are the minimal requirements in the de-facto
standard notion of forward secrecy in the cryptographic literature.

Within the last two decades, forward secrecy has been identified as an im-
portant property of various different cryptographic primitives such as digital
signatures [6], identification schemes [1], public-key encryption [15], and private-
key cryptography [7]. Only recently, another huge step forward has been made by
Green and Miers [27] as well as Günther, Jager, Hale, and Lauer [29] to bring for-
ward secrecy to important practical applications in the context of asynchronous
messaging and zero round-trip time (0-RTT) key exchange. Given revelations
and leaks about large-scale surveillance activities of security agencies within the
last years, it is of utmost importance to further develop and deploy cryptosys-
tems that inherently provide forward secrecy. We aim at advancing the research
on forward secrecy with respect to other practically important public-key prim-
itives, ideally, to ones with slightly more functionality.

Proxy re-encryption. Proxy re-encryption (PRE), envisoned by Blaze, Bleu-
mer, and Strauss [9] and formalized by Ateniese, Fu, Green, and Hohenberger [4,
5], is a cryptographic primitive that can be seen as an extension of public-
key encryption. A central feature of PRE is that senders can craft so-called
re-encryption keys, which are usually created using only public information of
the designated delegatee and the delegators’ key material. Those re-encryption
keys have the power to transform ciphertexts under a delegator’s public key to
ciphertexts under the delegatees’ public keys. Within PRE, this transformation is
done by a semi-trusted4 proxy. The widely accepted model for PRE security (i.e.,

3 With size O(n) for n key switches/time periods.
4 A semi-trusted proxy honestly follows the protocols, i.e., stores consistent re-

encryption keys and re-encrypts correctly.
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the conventional or plain PRE model) [4] requires that the proxy does not learn
anything about the plaintexts which underlie the ciphertexts to be transformed.5

Proxy re-encryption is considered very useful in applications such as en-
crypted e-mail forwarding or access control in secure file systems, which was
already discussed heavily in earlier work, e.g., in [4]. Furthermore, PRE has
been object of significant research for almost two decades now, be it in a con-
ventional setting [9, 4, 5], PRE with temporary delegation [4, 5, 34], identity-
based PRE [26, 37], extensions to the chosen-ciphertext setting [16, 34], type-
based/conditional PRE [39, 41], anonymous (or key-private) PRE [3], traceable
PRE [32], or PRE from lattice-based assumptions [18, 36]. Generic constructions
of PRE schemes from fully-homomorphic encryption [24] and from non-standard
building blocks such as resplittable-threshold public key encryption as proposed
in [30] are known, where different constructions of secure obfuscators for the re-
encryption functionality have been given [31, 19, 18]. Despite PRE being an ob-
ject of such significant research, forward-secret constructions remain unknown.6

On modeling forward-secret proxy re-encryption. Forward secrecy in the
context of PRE is more complex than in standard public-key primitives, as PRE
involves multiple different parties (i.e., delegator, proxy, and delegatees), where
delegator and delegatees all have their own secret-key material and the proxy
additionally holds all the re-encryption keys. One may observe that the proxy
needs to be considered as a semi-trusted (central) party being always online,
and, thus, it is reasonable to assume that this party is most valuable to attack.
Consequently, we model forward secrecy in the sense that the re-encryption-
key material can be evolved by the proxy to new periods while past-period
re-encryption keys are securely erased. Hence, ciphertexts under the delegator’s
public key with respect to past-periods can no longer be re-encrypted. In addi-
tion, we model forward secrecy for the delegator’s key material in a way that it
is consistent with the evolution of the re-encryption material at the proxy.

For now, we do not consider forward secrecy at the delegatee, who can be
seen as a passive party and does not need to take any further interaction with
the delegator during the life-time of the system, except providing her public key
once after set-up (e.g., via e-mail or public key server). It also does not have to
be online when ciphertexts are re-encrypted for her by the proxy. Nevertheless,
we leave it as a path for future research to cover the third dimension, i.e., model
forward secrecy for the delegator and proxy as well as forward secrecy for the
delegatee with efficient non-trivial constructions. However, it seems highly non-
trivial to achieve efficient constructions that support forward secrecy for the
delegatee additionally. In particular, we believe that the difficulty of achieving
such strong type of forward secrecy is due to the circumstance that one has to

5 The well-established security notions for PRE leave a potentially critical gap open.
To look ahead, our proposed security model for forward-secret PRE closes this gap
(implicitly also for plain PRE) and goes even beyond.

6 We stress that we only aim at efficient non-trivial (non-interactive) forward-secret
PRE constructions that have sublinear-size public and re-encryption keys in the
number of time periods.
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carefully integrate three dimension of evolving key-material, one at the delegator,
one at the proxy, and one at the delegatee. All dimensions seem to interfere
with each other.7 As it will be confirmed by our application, covering the two
dimensions already yields an interesting tool.

Moreover, to achieve forward secrecy for delegator and proxy key material,
we face the following obstacles. First, it has to be guaranteed that the honest
proxy must not be able to gain any information from the ciphertexts while at the
same time being able to transform such ciphertexts and to update re-encryption
key material consistently to newer time periods without any interaction with
the delegator. Secondly, any delegatee must not be able to decrypt past-period
ciphertexts. In this work, we give an affirmative answer to overcome those ob-
stacles.

A practical application of forward-secret PRE. We believe that forward
secrecy is an essential topic nowadays for any application. Also PRE is increas-
ingly popular, be it in applied cryptographic literature [10, 14, 42, 36, 35], work-
ing groups such as the CFRG of the IRTF8, large-scale EU-funded projects9,
and meanwhile also companies10 that foster transition of such technologies into
applications.

A practical application for forward-secret PRE is disappearing 1-to-n mes-
saging. Here, a user encrypts a message under his public key and sends it to
the proxy server that is responsible for distributing the encrypted messages to
all pre-determined n receivers (note that receivers do not have to be online at
the time the encrypted message is sent and an initial public-key exchange has
to be done only in the beginning, but no more interactivity is needed). During
setup time, the user has equipped the server with re-encryption keys (one for
each receiver) while new keys can be added any time once a new receiver is
present. Furthermore, the user does not need to manage a potentially huge list
of public keys for each message to be sent. After a period, the data gets deleted
by the proxy server, the re-encryption keys get evolved to a new period (without
any interactions), and old-period re-encryption keys get deleted. The security
of forward-secret PRE then guarantees that the proxy server does not learn the
sensitive messages, neither can the two types of parties access disappeared mes-
sages later on. Once period-i re-encryption keys leak from the proxy server, only
present and future encrypted messages (from period i onward) are compromised,
while period-(i− 1) messages stay confidential. More generally, we believe that
forward-secret PRE can be beneficially used in all kinds of settings that require
access revocation, e.g., in outsourced encrypted data storage.

We also stress that within our forward-secret PRE instantiations, each user is
only required to manage her own public and secret keys on her device and not a

7 It is currently unknown to us how to solve the problem with efficient cryptographic
tools, e.g., in the bilinear-maps setting. For efficiency reasons, multilinear maps and
obfuscation are out of focus.

8 https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt
9 https://credential.eu/

10 e.g., http://www.nucypher.com, https://besafe.io/
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list of recipient public keys (or, identities). This deviates significantly from other
primitives such as broadcast encryption (BE) [12, 22, 38], which could also be
suitable in such scenarios. However, practical BE schemes, e.g., [13], need large
public keys and are computationally expensive.

1.1 Contribution

In this paper, we investigate forward secrecy in the field of proxy re-encryption
(PRE) and term it fs-PRE. More precisely, our contributions are as follows:

– We first port the security model of PRE to the forward-secret setting (fs-
PRE−). Thereby, we observe a subtle but significant gap in existing (plain)
security models for conventional PRE with regard to the granularity of del-
egations of decryption rights. In particular, existing models allow that a
recipient, who has once decrypted a re-encrypted ciphertext, can potentially
decrypt all re-encryptable ciphertexts of the same sender without further
involvement of the proxy. In the forward-secret setting, it would essentially
require to trust the delegatees to delete their re-encrypted ciphertexts when-
ever the period is switched, which is a problematic trust assumption.11

– We close this gap by introducing an additional security notion which in-
herently requires the involvement of a proxy in every re-encryption and in
particular consider this notion in the forward-secret setting (fs-PRE+). We
also note that, when considering only a single time interval, this implicitly
closes the aforementioned gap in the conventional PRE setting.12 We also
provide an explicit separation of the weaker fs-PRE− notion (resembling ex-
isting PRE models) and our stronger notion fs-PRE+.

– We then continue by constructing the first forward-secret PRE schemes (in
the weaker as well as our stronger model) that are secure in the stan-
dard model under standard assumptions. On a technical side, only few
approaches to forward secrecy are known. Exemplary, in the public-key-
encryption (PKE) setting, we essentially have two ways to construct forward
secrecy, i.e., the Canetti-Halevi-Katz (CHK) framework [15] from selectively
secure hierarchical identity-based encryption (HIBE) [25] schemes and the
more abstract puncturable-encryption (PE) approaches by [27, 29] (where
both works either explicitly or implicitly use the CHK techniques). Partic-
ularly, we are not aware of any framework to achieve forward secrecy for
PKE schemes based on “less-complex” primitives in comparison to selec-
tively secure HIBE schemes. Consequently, we also base our constructions on
selectively secure HIBE schemes [25], which we combine with linearly homo-
morphic encryption schemes, e.g., (linear) ElGamal.

– As a side result, we generalize the recent work of PE [27, 21, 17, 29] to what
we call fully puncturable encryption (FuPE) in the full version of this paper
and show how we can use FuPE to construct fs-PRE.

11 Clearly, we still have to trust that the proxy deletes past-period re-encryption key
material.

12 In the conventional PRE setting, this gap was very recently independently addressed
by Cohen [20].
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1.2 Intuition and Construction Overview

To obtain more general results and potentially also more efficient instantiations,
we use a relaxation of HIBEs denoted as binary-tree encryption (BTE) which
was introduced by Canetti, Halevi, and Katz (CHK) in [15]. As an interme-
diate step, we introduce the notion of a forward-secret delegatable public-key
encryption (fs-DPKE) scheme and present one instantiation which we obtain by
combining the results of CHK with a suitable homomorphic public-key encryp-
tion (HPKE) scheme. Loosely speaking, a fs-DPKE scheme allows to delegate the
decryption functionality of ciphertexts computed with respect to the public key
of some user A to the public key of some other user B. Therefore, A provides
a public delegation key to B. B then uses the delegation key together with the
secret key corresponding to B’s public key to decrypt any ciphertext that has
been produced for A. A fs-DPKE scheme moreover incorporates forward secrecy
in a sense that the originator A can evolve it’s secret key and the scheme addi-
tionally allows to publicly evolve delegation keys accordingly. Interestingly, such
a scheme is already sufficient to construct a fs-PRE−-secure PRE scheme. Fi-
nally, we demonstrate how to strengthen this construction to a fs-PRE+-secure
PRE scheme, by solely relying on a certain type of key-homomorphism of the
underlying fs-DPKE scheme. The intermediate step of introducing fs-DPKE is
straightforward yet interesting, since we believe fs-DPKE is the “next natural
step” to lift PKE to a setting which allows for controlled delegation of decryp-
tion rights.

Instantiation. In Table 1, we present an instantiation including the resulting
key and ciphertext sizes. Thereby, we only look at fs-PRE instantiations that are
fs-PRE+-secure and note that the asymptotic sizes for fs-PRE−-secure fs-PRE
schemes are identical. For our instantiation, we use the BTE (or any selectively
secure HIBE) from [15] and the linear encryption scheme from [11] as HPKE
scheme under the Bilinear Decisional Diffie-Hellman (BDDH) and decision linear
(DLIN) assumption respectively.

Building Blocks |pk| |rk(i)| |sk(i)| |C| Assumption

BTE [15],
HPKE [11]

O(logn) O((logn)2) O((logn)2) O(logn) BDDH, DLIN

Table 1. Our fs-PRE+-secure instantiation. All parameters additionally scale asymp-
totically in a security parameter k which is, hence, omitted. Legend: n . . .number of pe-
riods, |pk| . . .public key size, |rk(i)| . . . size of re-encryption key for period i, |sk(i)| . . . size
of secret key for period i, |C| . . . ciphertext size.

A note on a side result. Additionally, in the full version, we include the defini-
tion and a construction of a so called fully puncturable encryption (FuPE) scheme
which is inspired by techniques known from HIBEs and the recent PE schemes
in [27, 29]. We then show that FuPE schemes closely capture the essence which
is required to construct fs-PRE+-secure schemes by presenting a construction of
a fs-PRE+-secure PRE scheme from FuPE and HPKE.
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1.3 Related Work and Outline

Work related to forward-secret PRE. Tang et al. [39, 41] introduced type-
based/conditional PRE, which allows re-encryption of ciphertexts at the proxy
only if a specific condition (e.g., a time period) is satisfied by the ciphertext. Fur-
thermore, PRE with temporary delegations was proposed by Ateniese et al. [4, 5]
and improved by Libert and Vernaud (LV) [34]. All those approaches yield a weak
form of forward secrecy. Notably, the LV schemes provide fixed public parame-
ters and non-interactivity with the delegatee as well. However, in contrast to our
approach, LV and Tang et al. require at least to update the re-encryption keys
for each time period with the help of the delegator (i.e., one message per time
period from the delegator to the proxy) and also do not allow for exponentially
many time periods, which do not suit our (stronger) forward-secret scenario.

Concurrent work on PRE. There is a considerable amount of very recent
independent and concurrent work on different aspects of PRE and its applica-
tions [20, 8, 35, 23]. The works in [8, 35, 23] are only related in that they also
deal with various aspects of PRE, but not fs-PRE. Those aspects are however
unrelated to the work presented in this paper. In contrast, the work presented
in [20] is related to one aspect of our work. It formalizes a security property for
conventional PRE, which is stronger yet similar to a special case of the fs-PRE+

notion which we introduce in context of fs-PRE.

Outline. After discussing preliminaries in Section 2, we define fs-PRE in Sec-
tion 3, discuss the gap in previous models and also briefly discuss its conse-
quences to conventional PRE. We then give the first construction of a fs-PRE
scheme from binary tree encryption in Section 4. We also show a separation re-
sult for the weaker fs-PRE− (resembling existing PRE models) and our stronger
notion fs-PRE+.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n} and let k ∈ N be the security parameter.
For an algorithm A, let y ← A(1k, x) be the process of running A, on input
1k and x, with access to uniformly random coins and assigning the result to
y. We assume that all algorithms take 1k as input and we will sometimes not
make this explicit in the following. To make the random coins r explicit, we write
A(1k, x; r). An algorithm A is probabilistic polynomial time (PPT) if its running
time is polynomially bounded in k. A function f is negligible if ∀c∃k0∀k ≥ k0 :
|f(k)| ≤ 1/kc. For binary trees, we denote the root node with ε and all other
nodes are encoded as binary strings, i.e., for a node w we denote child nodes as
w0 and w1.

Homomorphic public-key encryption. A F-homomorphic public key en-
cryption (HPKE) scheme is a public-key encryption (PKE) scheme that is homo-
morphic with respect to a class of functions F , i.e., given a sequence of cipher-
texts to messages (Mi)i∈[n] one can evaluate a function f : Mn → M ∈ F on
the ciphertexts such that the resulting ciphertext decrypts to f(M1, . . . ,Mn).
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Definition 1 ((F-)HPKE). A F-homomorphic public key encryption (F-HPKE
or HPKE for short) scheme with message space M, ciphertext space C and a
function family F consists of the PPT algorithms (Gen,Enc,Dec,Eval):

Gen(1k) : On input security parameter k, outputs public and secret keys (pk, sk).
Enc(pk,M) : On input a public key pk, and a message M ∈ M, outputs a ci-

phertext C ∈ C.
Dec(sk, C) : On input a secret key sk, and ciphertext C, outputs M ∈M∪ {⊥}.
Eval(f, (Ci)i∈[n]) : On input a function f :Mn →M ∈ F , a sequence of cipher-

texts (Ci)i∈[n] encrypted under the same public key, outputs C.

In addition to the standard and folklore correctness definition for public-key
encryption (PKE), we further require for HPKE that for all security parameters
k ∈ N, all key pairs (pk, sk) ← Gen(1k), all functions f : Mn → M ∈ F , all
message sequences (Mi)i∈[n] it holds that Dec(sk,Eval(f, (Enc(pk,Mi))i∈[n])) =
f(M1, . . . ,Mn). We are particularly interested in the case where M is a group
and F is the set of all linear functions on products of M. In that case, we call
the HPKE scheme linearly homomorphic. For a HPKE, we require conventional
IND-CPA security as with PKE schemes and recall an efficient instantiation of
a linearly homomorphic scheme, i.e., linear ElGamal [11], in the full version.

Proxy re-encryption. Subsequently, we define proxy re-encryption.

Definition 2 (PRE). A proxy re-encryption (PRE) scheme with message space
M consists of the PPT algorithms (Setup,Gen,Enc,Dec,ReGen,ReEnc) where

Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]. For j ∈ [2], they are defined as
follows.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).

Enc(j)(pk,M) : On input a public key pk, and a message M ∈M outputs a level
j ciphertext C.

Dec(j)(sk, C) : On input a secret key sk, and level j ciphertext C, outputs M ∈
M∪ {⊥}.

ReGen(skA, pkB) : On input a secret key skA and a public key pkB for B, outputs
a re-encryption rkA→B.

ReEnc(rkA→B , CA) : On input a re-encryption key rkA→B, and a ciphertext CA
for user A, outputs a ciphertext CB for user B.

Subsequently, we restate the standard security notions of proxy re-encryption
schemes [4, 5, 33]. The oracles available in the experiment are as follows. For all
experiments defined in this section, the environment keeps initially empty lists
of dishonest (DU) and honest users (HU). The oracles are defined as follows:

Gen(h)(pp, n) : Run (pk, sk) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk)}, and return
pk.

Gen(d)(pp, n) : Run (pk, sk) ← Gen(pp, n), set DU ← DU ∪ {(pk, sk)}, and return
(pk, sk).
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ReGen(h)(pku, pk) : On input a public key pku and a public key pk, abort if
(pku, ·) 6∈ HU. Otherwise, look up sku corresponding to pku from HU. Return
ReGen(sku, pk).

ReGen(h
′)(sk, pku) : On input a secret key sk and a public key pku, abort if

(pku, ·) 6∈ HU. Otherwise, return ReGen(sk, pku).

ReGen(d)(sk, pkd) : On input a secret key sk and a public key pkd, abort if
(pkd, ·) 6∈ DU. Otherwise, return ReGen(sk, pkd).

Experiment Expind-cpa-1PRE,A (1k)

pp← Setup(1k), (pk, sk)← Gen(pp), b←R {0, 1}
O ← {Genh,ReGenh(·, pk),ReGenh

′
(sk, ·),Gend,ReGend(sk, ·)}

(M0,M1, st)← AO(pk)
b∗ ← A(st,Enc(1)(pk,Mb))
if b = b∗ return 1, else return 0

Experiment 1. The IND-CPA security experiment for level 1 ciphertexts of fs-PRE
schemes.

Definition 3 (IND-CPA-1). For a PPT adversary A, we define the advantage
function in the sense of IND-CPA for level 1 ciphertexts as

Advind-cpa-1PRE,A (1k) :=

∣∣∣∣Pr
[
Expind-cpa-1PRE,A (1k) = 1

]
− 1

2

∣∣∣∣ .
If for any PPT adversary A there exists a negligible function ε such that

Advind-cpa-1PRE,A (1k) < ε(k)

then a PRE scheme is IND-CPA-1 secure.

Experiment Expind-cpa-2PRE,A (1k)

pp← Setup(1k), (pk, sk)← Gen(pp), b←R {0, 1}
O ← {Genh,ReGenh(·, pk),ReGenh

′
(sk, ·)}

(M0,M1, st)← AO(pk)
b∗ ← A(st,Enc(2)(pk,Mb))
if b = b∗ return 1, else return 0

Experiment 2. The IND-CPA security experiment for level 2 ciphertexts of PRE
schemes.

Definition 4 (IND-CPA-2). For a polynomially bounded function n, a PPT
adversary A, we define the advantage function in the sense of IND-CPA for level
2 ciphertexts as

Advind-cpa-2PRE,A (1k) :=

∣∣∣∣Pr
[
Expind-cpa-2PRE,2,A (1k) = 1

]
− 1

2

∣∣∣∣ .
If for all polynomially bounded functions n, and any PPT adversary A there
exists a negligible function ε such that

Advind-cpa-2PRE,A (1k) < ε(k)
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then a PRE scheme is IND-CPA-2 secure.

Binary tree encryption. Binary tree encryption (BTE) [15] is a relaxed version
of hierarchical identity-based encryption (HIBE) [25]. Similar to a HIBE scheme,
a BTE scheme has a (master) public key associated to a binary tree where each
node in the tree has a corresponding secret key. To encrypt a message for some
node, one uses both the public key and the name of the target node. Using the
node’s secret key, the resulting ciphertext can then be decrypted. Additionally,
the secret key of a node can be used to derive the secret keys of its child nodes.

In contrast to BTE defined in [15], we make the part of the secret key used
to perform the key derivation explicit, i.e., we will have secret keys for the
decryption and derivation keys to derive secret keys. In case, an instantiation
does not support a clear distinction, it is always possible to assume that the
derivation key is empty and everything is contained in the secret key.

Definition 5. A binary tree encryption (BTE) scheme with message space M
consists of the PPT algorithms (Gen,Evo,Enc,Dec) as follows:

Gen(1k, `) : On input security parameter k and depth of the tree `, outputs public,

secret, and derivation keys (pk, sk(ε), dk(ε)).

Der(sk(w), dk(w)) : On input secret key sk(w) and derivation key dk(w), for node

w ∈ {0, 1}<`, outputs secret keys sk(w0), sk(w1) and derivation keys dk(w0),

dk(w1) for the two children of w.
Enc(pk,M,w) : On input a public key pk, a message M ∈ M, and node w ∈
{0, 1}≤`, outputs a ciphertext C.

Dec(sk(w), C) : On input a secret key sk(w), for node w ∈ {0, 1}≤`, and ciphertext
C, outputs M ∈M∪ {⊥}.

For correctness, we require that for all security parameters k ∈ N, all depths
` ∈ N, all key pairs (pk, (sk(ε), ek(ε))) generated by Gen(1k, `), any node w ∈
{0, 1}≤`, any derived key sk(w) derived using Der from (sk(ε), dk(ε)), and all

messages M ∈M, it holds that Dec(sk(w),Enc(pk,M,w)) = M.
The indistinguishability against selective node, chosen plaintext attacks (IND-

SN-CPA) is a generalization of the standard IND-CPA security notion of PKE
schemes. Essentially, the security notion requires the adversary to commit to
the node to be attacked in advance. The adversary gets access to all secret keys
except the secret keys for all nodes that are on the path from the root node to
the targeted node.

Definition 6 (IND-SN-CPA). For a polynomially bounded function `, a PPT
adversary A, we define the advantage function in the sense of IND-SN-CPA as

Advind-sn-cpaBTE,A (1k, `(k)) =

∣∣∣∣Pr
[
Expind-sn-cpaBTE,A (1k, `(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all `, and any A there exists a negligible function ε such that Advind-sn-cpaBTE,A (

1k, `(k)) < ε(k), then a BTE scheme is IND-SN-CPA secure.
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Experiment Expind-sn-cpaBTE,A (1k, `)

(pk, sk(ε), dk(ε))← Gen(1k, `)
b←R {0, 1}
(w∗, st)← A(1k, `)
Let W be the set of all nodes that are siblings to the path from the root node to w∗

and (if possible) w∗0 and w∗1.
Compute (sk(w), dk(w)) for all w ∈W from (sk(ε), dk(ε)) using Der.
(M0,M1, st)← A(st, pk, (sk(w), dk(w))w∈W )
b∗ ← A(st,Enc(pk,Mb, w

∗))
if b = b∗ return 1, else return 0

Experiment 3. The IND-SN-CPA security experiment for a BTE scheme.

The CHK Compiler. The technique of Canetti et al. [15] can be summarized
as follows. To build a forward-secret PKE scheme with n periods, one uses a BTE
of depth ` such that n < 2`+1. Associate each period with a node of the tree and
write wi to denote the node for period i. The node for period 0 is the root node,
i.e. w0 = ε. If wi is an internal node, then set wi+1 = wi0. Otherwise, if wi is
a leaf node and i < N − 1, then set wi+1 = w′1 where w′ is the longest string
such that w′0 is a prefix of wi. The public key is simply the public key of the
BTE scheme. The secret key for period i consists of the secret key for node wi.

3 Security of (Forward-Secret) Proxy Re-Encryption

Proxy re-encryption (PRE) schemes can exhibit several important properties. In
the following, we focus on the most common PRE properties in the cryptographic
literature, i.e., uni-directionality (Alice is able to delegate decryption rights to
Bob but not from Bob to Alice), non-interactivity (Alice can generate delegation
key material without interacting with Bob), and collusion-safeness (even if Bob
and other delegatees are colluding with the proxy, they cannot extract Alice’ full
secret key). Moreover, we consider PRE schemes that only allow a single hop, i.e.,
a ciphertext can be re-encrypted only a single time in contrast to multiple times
in a row (multi-hop). Latter can be problematic due to unwanted transitivity.

In this work, we examine a further property of PRE schemes, namely the
property of forward secrecy and propose the first uni-directional, non-interactive,
collusion-safe, single hop, and forward-secret PRE scheme (dubbed fs-PRE) in
the standard model from generic assumptions. Subsequently, in Section 3.1, we
present the formal model for fs-PRE, while in Section 3.3 we discuss the rela-
tion and application of our stronger model to the conventional (i.e., plain) PRE
security model.

3.1 Syntax of Forward-Secret Proxy Re-Encryption

To realize forward-secure PRE (fs-PRE), we lift the definitions and security mod-
els of uni-directional, single-hop, non-interactive, and collusion-safe PRE to a
setting where we can have several periods. Thereby, we allow re-encryptions in
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every period such that re-encryption keys—in the same way as secret keys—are
bound to a period. Furthermore, we align our PRE definitions with Ateniese et
al. as well as Libert and Vergnaud [4, 5, 33] such that if we only have a single
period, then they are equivalent to the definitions for plain PRE in [5, 33].13

Definition 7 (fs-PRE). A forward-secure proxy re-encryption (fs-PRE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Enc,

Dec,ReGen,ReEvo,ReEnc) where Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]
for levels j ∈ [2]. We denote level-2 ciphertext as re-encryptable ciphertexts,
whereas level-1 ciphertexts are not re-encryptable.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and number of periods n ∈ N, out-

puts public and secret keys (pk, (sk(0), ek(0))).

Evo(sk(i), ek(i)) : On input secret key sk(i) and evolution key ek(i) for period i ∈
{0, . . . , n−2}, outputs a secret key sk(i+1) and evolution key ek(i+1) for period
i+ 1.

Enc(j)(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n− 1}, outputs a level-j ciphertext C.

Dec(j)(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
level-j ciphertext C, outputs M ∈M∪ {⊥}.

ReGen(sk
(i)
A , ek

(i)
A , pkB) : On input a secret key sk

(i)
A and a evolution key ek

(i)
A (or

⊥) for A and period i ∈ {0, . . . , n− 1}, and a public key pkB for B, outputs

a re-encryption rk
(i)
A→B and re-encryption-evolution key rek

(i)
A→B (or ⊥).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : On input a re-encryption key rk

(i)
A→B, and a re-encryption-

evolution key rek
(i)
A→B for period i ∈ {0, . . . , n− 2}, outputs a re-encryption

key rk
(i+1)
A→B and re-encryption evolution key rek

(i+1)
A→B for the period i+ 1.

ReEnc(rk
(i)
A→B , CA) : On input a re-encryption key rk

(i)
A→B, and a (level-2) ci-

phertext CA for user A, outputs a (level-1) ciphertext CB for user B.

Correctness. For correctness, we basically require on the one hand that ev-
ery ciphertext encrypted for some period i can be decrypted with the respec-
tive secret key from period i. On the other hand—when also considering re-
encryptable and re-encrypted ciphertexts—we require that level-2 ciphertexts
encrypted for period i can be re-encrypted with a suitable re-encryption key
for the same period and then decrypted using the (delegatee’s) respective se-
cret key for period i. More formally, for all security parameters k ∈ N, all
public parameters pp ← Setup(1k), any number of periods n ∈ N and users

U ∈ N, all key tuples (pku, sk
(0)
u , ek(0)u )u∈[U ] generated by Gen(1k, n), any pe-

riod i ∈ {0, . . . , n − 1}, for any u ∈ [U ], any evolved key sk(i+1)
u generated by

Evo(sk(i)u ), for all u′ ∈ [U ], u 6= u′, any (potentially evolved) re-encryption and

13 Observe that for a single period, i.e., n = 1, Evo and ReEvo in Definition 7 are not
defined. Dropping these algorithms and the corresponding evolution keys ek and rek
yields a plain PRE scheme.
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re-encryption-evolution keys rk
(i)
u→u′ and rek

(i)
u→u′ , respectively, for period i gen-

erated using ReGen from (potentially evolved) secret and evolution keys as well
as the target public key, and all messages M ∈M, it holds that

∀j ∈ [2] ∃j′ ∈ [2] : Dec(j
′)(sk(i)u ,Enc(j)(pku,M, i)) = M,

Dec(1)(sk
(i)
u′ ,ReEnc(rk

(i)
u→u′ ,Enc

(2)(pku,M, i))) = M.

3.2 Security of Forward-Secret Proxy Re-Encryption

The security notions for fs-PRE are heavily inspired by the security notions
of (plain) PRE [4, 5, 33] and forward-secret PKE [15]. We will discuss multi-
ple notions, combine them carefully, and introduce forward-secret indistinguish-
ably under chosen-plaintext attacks for level-1 and level-2 ciphertexts (termed
fs-IND-CPA-1 and fs-IND-CPA-2, respectively) which we argue to be reason-
able notions in our setting. Additionally, we define a new (stronger) variant of
indistinguishably-under-chosen-plaintext-attacks security for fs-PRE (dubbed fs-
RIND-CPA) that focuses on malicious users in the face of honest proxies. In
particular, the latter strengthen the folklore PRE security notion.

For all experiments defined in this section, the environment keeps initially
empty lists of dishonest (DU) and honest users (HU). The oracles are defined as
follows:

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Gen(d)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set DU ← DU ∪ {(pk, sk, ek)}, and
return (pk, sk, ek).

ReGen(h)(j, pku, pk) : On input a period j, a public key pku and a public key

pk, abort if (pku, ·, ·) 6∈ HU. Otherwise, look up sk(0)u and ek(0)u corresponding

to pku from HU. If j > 0 set (sk(i)u , ek(i)u ) ← Evo(sk(i−1)u , ek(i−1)u ) for i ∈ [j].

Return ReGen(sk(j)u , ek(j)u , pk).

ReGen(h
′)(j, sk(0), ek(0), pku) : On input a period j, secret key sk(0), evolution

key ek(0), and a public key pku, abort if (pku, ·, ·) 6∈ HU. Otherwise, if j > 0

set (sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j),
pku).

ReGen(d)(j, sk(0), ek(0), pkd) : On input a period j, secret key sk(0), evolution key

ek(0), and a public key pkd, abort if (pkd, ·, ·) 6∈ DU. Otherwise, if j > 0

set (sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j),
pkd).

fs-IND-CPA-i security. We start with the definition of fs-IND-CPA-1 and
fs-IND-CPA-2 security for fs-PRE. Inspired by the work on forward secrecy due
to Canetti, Halevi, and Katz [15], our experiments lift standard PRE security
notions as defined in Ateniese et al. [4] (AFGH) to the forward-secrecy setting.
More concretely, after the selection of a target period j∗ by the adversary A,
A gets access to the secret and the evolution key (sk(j

∗), ek(j
∗)) of the target
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period j∗, while the challenge ciphertext for A-chosen message Mb is generated
for period j∗ − 1, for uniform b ← {0, 1}. Eventually, A outputs a guess on b.
We say A is valid if A only outputs equal-length messages |M0| = |M1| and
1 ≤ j∗ ≤ n.

Furthermore, we adapted the AFGH security experiment such that A has
access to re-encryption and re-encryption-evolution keys for period j∗−1. Anal-
ogously to previous work on PRE, we present two separate notions for level-1 and
level-2 ciphertexts. The corresponding security experiments are given in Experi-
ment 4 and Experiment 5. The only difference in Experiment 4 is that for level-1
ciphertexts, i.e., the ones which can no longer be re-encrypted, the adversary
gets access to more re-encryption and re-encryption-evolution keys (obviously,
the challenge ciphertext in that experiment is a level-1 ciphertext).

Experiment Expfs-ind-cpa-1fs-PRE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h
′)(j∗ − 1, sk(0), ek(0), ·),Gen(d),

ReGen(d)(j∗ − 1, sk(0), ek(0), ·)}
(M0,M1, st)← AO(st, sk(j

∗), ek(j
∗))

b∗ ← A(st,Enc(1)(pk,Mb, j
∗ − 1))

if b = b∗ return 1, else return 0

Experiment 4. The fs-IND-CPA-1 security experiment for level-1 ciphertexts of fs-
PRE schemes.

Experiment Expfs-ind-cpa-2fs-PRE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h
′)(j∗ − 1, sk(0), ek(0), ·)}

(M0,M1, st)← AO(st, sk(j
∗), ek(j

∗))
b∗ ← A(st,Enc(2)(pk,Mb, j

∗ − 1))
if b = b∗ return 1, else return 0

Experiment 5. The fs-IND-CPA-2 security experiment for level-2 ciphertexts of fs-
PRE schemes.

Definition 8 (fs-IND-CPA-i). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function for A in the sense of
fs-IND-CPA-i for level-i ciphertexts as

Advfs-ind-cpa-ifs−PRE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-ind-cpa−ifs−PRE,A (1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
A fs-PRE scheme is fs-IND-CPA-i secure if for all polynomially bounded n(·) > 1

and any valid PPT A there exists a negligible function ε such that Advfs-ind-cpa-ifs−PRE,A(

1k, n(k)) < ε(k), where Expfs-ind-cpa−ifs−PRE,A , for all i ∈ [2], are defined in Experiment 4
and Experiment 5, respectively.
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Master-secret security. As discussed in [33], the security notion for level-
1 (i.e., non re-encryptable) ciphertexts already implies classical master-secret
security notion for PRE [4].14 However, this must not be the case in the forward-
secret setting. To formally close this gap, we give a trivial lemma (cf. Lemma 1)
which states that fs-IND-CPA-1 implies master-secret security in the sense of
Experiment 6 in the forward-secrecy setting. Essentially, master-secret security
ensures collusion safeness such that re-encryption keys in period j do not leak the
secret key corresponding to level-1 ciphertexts which can not be re-encrypted in
period j− 1. In Experiment 6, we lift master-secret security in the classical PRE
sense to the forward-secret setting. In the experiment, the adversary A selects
an target period j∗ and receives the secret and evolution keys (sk(j

∗), ek(j
∗)) for

the target period in return. Within the experiment, A has access to several ora-
cles, e.g., to obtain re-encryption and re-encryption-evolution keys for period j∗.
Eventually, A outputs secret and evolutions keys (sk∗, ek∗) and the experiment

returns 1 (i.e., A wins) if (sk∗, ek∗) = (sk(j
∗−1), ek(j

∗−1)). We say A is valid if A
only outputs 1 ≤ j∗ ≤ n.

Experiment Expfs-msk
fs−PRE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n)
(j∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),ReGen(h)(j∗, ·, pk),ReGen(h
′)(j∗, sk(0), ek(0), ·),Gen(d),ReGen(d)(j∗,

sk(0), ek(0), ·)}
(sk∗, ek∗)← AO(st, sk(j

∗), ek(j
∗))

if (sk∗, ek∗) = (sk(j
∗−1), ek(j

∗−1)) return 1, else return 0

Experiment 6. The forward secure master secret security experiment for fs-PRE
schemes.

Definition 9 (fs-master-secret security). For a polynomially bounded func-
tion n(·) > 1 and a PPT adversary A, we define the advantage function for A
in the sense of fs-master-secret security as

Advfs-msk
fs−PRE,A(1k, n(k)) := Pr

[
Expfs-msk

fs−PRE,A(1k, n(k)) = 1
]

.

A fs-PRE scheme is fs-master-secret secure if for all polynomially bounded n(·) >
1 and any valid PPT A there exists a negligible function ε such that Advfs-msk

fs−PRE,A(

1k, n(k)) < ε(k), where Expfs-msk
fs−PRE,A is defined in Experiment 6.

We now show that this notion in the sense of Definition 9 is trivially implied by
fs-IND-CPA-1 security for fs-PRE in the sense of Definition 8.

Lemma 1. If a fs-PRE scheme is fs-IND-CPA-1 secure in the sense of Defi-
nition 8, then the same fs-PRE scheme is fs-master-secret secure in the sense
of Definition 9.

14 As we will discuss below, this notion seems to suggest false guarantees and leaves a
critical gap in the security model open.
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Proof sketch. It is trivial to see that any successful PPT adversary on the fs-
master-secret security of a fs-PRE scheme can be transformed into a PPT ad-
versary on the fs-IND-CPA-1 security of that fs-PRE scheme. (Essentially, any
PPT adversary that is able to gain access to the secret key of the prior period
can trivially distinguish ciphertexts for the same period.)

The problem with (fs-)PRE security. A problem with the notion of standard
(i.e., IND-CPA and master secret) security for (plain) PRE and also our fs-PRE
notions so far is that the secret keys used for level-1 (i.e., non re-encryptable)
and level-2 (i.e., re-encryptable) ciphertexts can be independent. Consequently,
although ciphertexts on both levels can be shown to be indistinguishable, this
does not rule out the possibility that ciphertexts on level-2 reveal the respective
level-2 secret key of the sender to an legitimate receiver. This is exactly the reason
for the gap in the plain PRE model which allows to leak a “level-2 secret key”
once a re-encryption has been performed while all security properties are still
satisfied (we provide an example for such a scheme in Section 4.4). In particular,
this allows the receiver to potentially decrypt any level-2 ciphertext. We provide
a solution in form of a stronger security notion which we term fs-RIND-CPA
security in the following.

fs-RIND-CPA security. We observe that existing PRE notions only consider
that (1) as long as the users are honest, the proxy learns nothing about any
plaintext, and (2) if proxies and users collude they do not learn anything about
the ciphertexts which are not intended to be re-encrypted. We go a step further
and consider malicious users in the face of an honest proxy in the forward-
secret and, hence, also in the plain PRE sense. That is, we want to enforce that a
malicious user can only read the ciphertexts which were actually re-encrypted by
the proxy and can not tell anything about the ciphertexts which can potentially
be re-encrypted. We capture this via the notion of fs-RIND-CPA security. In this
scenario, an adversary receives re-encrypted ciphertexts generated by an honest
proxy, that it is able to decrypt. Nevertheless, for all other level-2 ciphertexts,
the adversary should still be unable to recover the plaintext. In Experiment 7,
we model this notion where the adversary gets access to a ReEnc-oracle which
is in possession of the re-encryption key from the target user to the adversary.
We say A is valid if A only outputs 1 ≤ j∗ ≤ n and equal length messages
|M0| = |M1|.

Experiment Expfs-rind-cpafs−PRE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, pk∗, st)← A(pp, n, pk)
(sk(j), ek(j))← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗]
rk← ReGen(sk(j

∗),⊥, pk∗)
(M0,M1, st)← A{ReEnc(rk,·)}(st)
b∗ ← A(st,Enc(2)(pk,Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 7. The fs-RIND-CPA security experiment for fs-PRE schemes.
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Definition 10 (fs-RIND-CPA). For a polynomially bounded function n(·)
and a PPT adversary A, we define the advantage function for A in the sense of
fs-RIND-CPA as

Advfs-rind-cpafs−PRE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-rind-cpafs−PRE,A(1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
A fs-PRE scheme is fs-RIND-CPA if for all polynomially bounded n(·) and

any valid PPT A there exists a negligible function ε such that Advfs-rind-cpafs−PRE,A(

1k, n(k)) < ε(k), where Expfs-rind-cpafs−PRE,A is defined in Experiment 7.

We distinguish fs-PRE schemes based on this last notion:

Definition 11 (fs-PRE−-security). If a fs-PRE scheme is fs-IND-CPA-1 and
fs-IND-CPA-2 secure, then we say this fs-PRE scheme is fs-PRE−-secure.

Definition 12 (fs-PRE+-security). If a fs-PRE scheme is fs-IND-CPA-1, fs-
IND-CPA-2, and fs-RIND-CPA secure, then we say this fs-PRE scheme is fs-
PRE+-secure.

3.3 Stronger Security for Proxy Re-Encryption

To conclude the discussion of the security model of fs-PRE schemes, we first
observe that it is interesting to consider the notion of fs-RIND-CPA security
in the classical setting for PRE, i.e., Experiment 7 with fixed n = 1 and no
call to the Evo algorithm. The notion again ensures involvement of the proxy
for the re-encryption of every ciphertext, and can, thus, enforce that malicious
users cannot learn anything beyond the explicitly re-encrypted ciphertexts. This
immediately leads to a stronger security model for classical PRE (given in the
full version), which we denote as PRE+. In particular, it extends the classical
model [4], dubbed PRE−, which covers standard (IND-CPA) and master-secret
security definitions, by our fs-RIND-CPA security notion ported to the PRE
setting. As our fs-IND-CPA-i notions for fs-PRE are generalizations of the es-
tablished standard security notions of PRE as defined in [4], we consequently
obtain a PRE+-secure PRE scheme from any fs-PRE+-secure fs-PRE scheme. We
formalize this observation via Lemma 2.

Lemma 2. Any fs-PRE+-secure fs-PRE scheme yields a PRE+-secure PRE sch-
eme.

In the full version, we formally prove this lemma.

4 Constructing fs-PRE from Binary Tree Encryption

In this section we present our construction of fs-PRE which is based on BTEs.
Along the way, we introduce the notion of forward-secret delegatable PKE (fs-
DPKE) as intermediate step. Such a fs-DPKE scheme then directly gives us a
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first fs-PRE satisfying fs-PRE− security. To extend our construction to satisfy the
stronger fs-PRE+ notion generically, we require a relatively mild homomorphic
property of the fs-DPKE. This property is in particular satisfied by our fs-DPKE
instantiation, which yields the first fs-PRE scheme with strong security.

4.1 Forward-Secret Delegatable Public-Key Encryption

We now formalize fs-DPKE. In such a scheme decryption rights within a public-
key encryption scheme can be delegated from a delegator to a delegatee and
secret keys of delegators can be evolved so that a secret key for some period ei
is no longer useful to decrypt ciphertexts of prior periods ej with j < i.

Definition 13 (fs-DPKE). A forward-secret delegatable PKE (fs-DPKE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Del,Enc,
Dec,DelEvo,DelDec) as follows:

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and maximum number of periods n,

outputs public, secret and evolution keys (pk, sk(0), ek(0)).

Evo(sk(i), ek(i)) : On input secret key sk(i), and evolution key ek(i) for period

i ∈ {0, . . . , n − 2}, outputs secret key sk(i+1) and evolution key ek(i+1) for
period i+ 1.

Del(sk
(i)
A , ek

(i)
A , pkB) : On input secret key sk

(i)
A and evolution key ek

(i)
A (or ⊥) for

A and period i ∈ {0, . . . , n− 1}, and public key pkB for B, outputs delegated

key dk(i) and delegated evolution key dek(i) (or ⊥) for period i.
Enc(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n− 1}, outputs a ciphertext C.

Dec(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
ciphertext C, outputs M ∈M∪ {⊥}.

DelEvo(dk(i), dek(i)) : On input a delegation key dk(i) and delegated evolution key

dek(i) for period i ∈ {0, . . . , n−2}, output delegation key dk(i+1) and delegated

evolution key dek(i+1) for period i+ 1.

DelDec(sk
(i)
B , dk

(i)
A→B , CA) : On input secret key sk

(i)
B for B and period i ∈ {0, . . . ,

n− 1}, delegation key dk
(i)
A→B from A for B and period i, and ciphertext CA

for A, outputs M ∈M∪ {⊥}.

We note that the existence of the DelEvo algorithm is entirely optional. If pro-
vided, it allows the user in possession of a delegation key to evolve it for later
periods without additional interaction with the delegator.

Correctness. For correctness we require that period i ciphertexts encrypted
for user u can be decrypted if one is in possession of the secret key of u evolved
to that period or one possess a delegation key of u to another user u′ and the
secret key for u′ for that period. More formally, we require that for all security
parameters k ∈ N, all public parameters pp generated by Setup(1k), all number

of periods n ∈ N, all users U ∈ N, all key tuples (pku, sk
(0)
u , ek(0)u )u∈[U ] generated
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by Gen(pp, n), any period i ∈ {0, . . . , n − 1}, for any u ∈ [U ], any evolved

keys (sk(i)u , ek(i)u ) generated by Evo from (sk(0)u , ek(0)u ), for all u′ ∈ [U ], u 6= u′,

any (potentially evolved) delegation key dk
(i)
u→u′ for period i generated using

Del from a (potentially evolved) secret key and the target public key, and all
messages M ∈M it holds that

Dec(sk(i)u ,Enc(pku,M, i)) = DelDec(sk
(i)
u′ , dk

(i)
u→u′ ,Enc(pku,M, i)) = M.

Security notions. The forward-secret IND-CPA notion is a straight-forward
extension of the typical IND-CPA notion: the adversary selects a target period
and gets access to secret and evolution keys of the targeted user for the selected
period and is able to request delegation keys with honest and dishonest users
for that period. The adversary then engages with an IND-CPA style challenge
for the previous period. For the experiment, which is depicted in Experiment 8,
the environment keeps a list of an initial empty list of honest users HU.

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Del(h)(j, pku, pk) : On input a period j, a public key pku and a public key pk,

abort if (pku, ·) 6∈ HU. Otherwise, look up sk(0)u , ek(0)u corresponding to pku
from HU, set (sk(i)u , ek(i)u ) ← Evo(sk(i−1)u , ek(i−1)u ) for i ∈ [j] if j > 0, and

return Del(sk(j)u , ek(j)u , pk).

Del(h
′)(j, sk(0), ek(0), pku) : On input a period j, a secret key sk(0), a evolution key

ek(0), and a public key pku, abort if (pku, ·) 6∈ HU. Otherwise, set (sk(i), ek(i))←
Evo(sk(i−1), ek(i−1)) for i ∈ [j] if j > 0, and return Del(sk(j), ek(j), pku).

Experiment Expfs-ind-cpafs−DPKE,A(1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, st)← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].

O ← {Gen(h),Del(h)(j∗ − 1, ·, pk),Del(h
′)(j∗ − 1, sk(0), ek(0), ·)}

(M0,M1, st)← AO(st, sk(j
∗), ek(j

∗)))
b∗ ← A(st,Enc(pk,Mb, j

∗ − 1))
if b = b∗ return 1, else return 0

Experiment 8. The fs-IND-CPA security experiment for a fs-DPKE scheme.

Definition 14 (fs-IND-CPA). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function in the sense of fs-IND-
CPA as

Advfs-ind-cpafs−DPKE,A(1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-ind-cpafs−DPKE,A(1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all n(·) > 1, and any A there exists a negligible function ε such that

Advfs-ind-cpafs−DPKE,A(1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-IND-CPA secure.
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4.2 Constructing fs-DPKE from BTE

Now we construct a fs-DPKE scheme from a BTE scheme by applying the CHK
compiler to a BTE and combining it with an F-HPKE scheme for handling the
delegation keys, i.e., the fs-DPKE key contains a BTE and an F-HPKE key. The
evolution key contains the secret and derivation keys for all right siblings on the
path from the root node to wi as well as the evolution key for wi. The evolution
algorithms traverse the tree in a depth-first manner, hence the evolution keys
are viewed as stack and when visiting a node, the derived secret and derivation
keys are pushed onto the stack. To simplify the presentation of the scheme, we
define an algorithm DFEval that performs the stack manipulation on a stack of
pairs:

DFEval(s
(wi)
1 , s,Eval) : On input the stack s and first element s

(wi)
1 of the pair

for node wi, an algorithm Eval, perform the following steps:

– Pop the topmost element, (⊥, s(w
i)

2 ), from the stack s.

– If wi is an internal node, set s(w
i0), s(w

i1) ← Eval(s
(wi)
1 , s

(wi)
2 ) and push

s(w
i1), s(w

i0) onto s.

– Replace the topmost element, (s
(wi+1)
1 , s

(wi+1)
2 ), with (⊥, s(w

i+1)
2 ).

– Return s
(wi+1)
1 and the new stack s.

The overall idea is now to encrypt the BTE secret key of the current period using
the F-HPKE scheme’s public key of the target user. Using the homomorphic
property of the encryption scheme, we are able to evolve the delegation keys in
the same way as the secret keys of the nodes. In particular, we will require that
the key derivation algorithm of the BTE can be represented by functions in F ,
i.e., DerBTE = (fi)i∈[m]. For notional simplicity, we will write EvalHPKE(DerBTE, ·)
instead of repeating it for each fi that represents DerBTE.

For our fs-DPKE scheme we need keys of different users to live in compatible
key spaces. To that end, we introduce Setup algorithms for both schemes that
fix the key spaces and we change the key generation algorithms to take the
public parameters instead of the security parameter as argument. Note that
when using the BTE from [15], linear ElGamal [11] as F-HPKE to encrypt the
BTE keys suffices for our needs.

Our construction. The fs-DPKE scheme is detailed in Scheme 1. We note that
only the definition of DelEvo relies on the homomorphic properties of the HPKE
scheme. So to obtain a fs-DPKE scheme without DelEvo algorithm, a compatible
PKE scheme is sufficient. Yet, we will require the homomorphic properties later to
achieve a suitable notion of adaptability regardless of the availability of DelEvo.

Similar to Canetti et al.’s construction, our fs-DPKE scheme inherits the
fs-IND-CPA security from the BTE’s IND-SN-CPA security.

Theorem 1. If instantiated with an IND-SN-CPA secure BTE scheme and a
IND-CPA secure HPKE scheme, then Scheme 1 is a fs-IND-CPA secure fs-
DPKE.
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Let (SetupBTE,GenBTE,DerBTE,EncBTE,DecBTE) be a BTE scheme and (SetupHPKE,
GenHPKE,EncHPKE,DecHPKE,EvalHPKE) a compatible F-HPKE scheme with DerBTE ∈ F .

Setup(1k) : Set ppBTE ← SetupBTE(1k), ppHPKE ← SetupHPKE(1k), and return (ppBTE,
ppHPKE).

Gen(pp, n) : Parse pp as (ppBTE, ppHPKE). Choose ` such that n < 2`+1, set (pkBTE,

sk
(ε)
BTE, dk

(ε)
BTE) ← GenBTE(ppBTE, `) and (pkHPKE, skHPKE) ← GenHPKE(ppHPKE), and

return ((pkBTE, pkHPKE), (sk
(ε)
BTE, skHPKE), (⊥, dk(ε)BTE)).

Evo(sk(i), ek(i)) : Parse sk(i) as (sk
(wi)
BTE , skHPKE) and view ek(i) organized as a stack of

secret key and evolution keys pairs. Set sk
(wi+1)
BTE , ek(i+1) ← DFEval(sk

(wi)
BTE , ek

(i),

DerBTE), and sk(i+1) ← (sk
(wi+1)
BTE , skHPKE). Return sk(i+1), ek(i+1).

Enc(pk,M, i) : Parse pk as (pkBTE, ·), and return EncBTE(pkBTE,M,wi).

Dec(sk(i), C) : Parse sk(i) as (sk
(wi)
BTE , ·), and return DecBTE(sk

(wi)
BTE , C).

Del(sk
(i)
A , ek

(i)
A , pkB) : Parse sk

(i)
A as (sk

(wi)
BTE , ·) and pkB as (·, pkHPKE). If ek

(i)
A = ⊥, return

EncHPKE(pkHPKE, sk
(wi)
BTE ). Otherwise parse ek

(i)
A as (sk

(w)
BTE, dk

(w)
BTE)w∈W , (·, dk(w

i)
BTE ), and

set dk(w) ← EncHPKE(pkHPKE, sk
(w)
BTE) and dek(w) ← EncHPKE(pkHPKE, dk

(w)
BTE) for w ∈

W ∪ {wi}. Set dk(i) ← dk(w
i) and dek(i) ← (dk(w), dek(w))w∈W , (⊥, (dek(w

i))) and
return dk(i), dek(i).

DelEvo(dk
(i)
A→B , dek

(i)
A→B) : Parse dk

(i)
A→B as dk

(wi)
A→B and view dek

(i)
A→B organized as

a stack of encrypted evolution keys. Set dk
(wi+1)
A→B , dek

(i+1)
A→B ← DFEval(dk

(wi)
A→B ,

dek
(i)
A→B ,EvalHPKE(DerBTE, ·)), and dk(i+1) ← dk

(wi+1)
BTE . Return dk(i+1), dek(i+1).

DelDec(sk
(i)
B , dk

(i)
A→B , CA) : Parse sk

(i)
B as (·, skHPKE), set sk

(wi)
BTE ← DecHPKE(skHPKE,

dk
(i)
A→B), and return DecBTE(sk

(wi)
BTE , CA).

Scheme 1. fs-DPKE scheme from BTE scheme and a compatible HPKE scheme.

Proof. We prove the theorem using a sequence of games. We denote by W all
the relevant nodes in the binary tree for period j. We note that the size of W is
bounded by log2(n). We index W as wi for i ∈ [|W |].

Game 0: The original game.

Game 1i,j (1 ≤ i ≤ qDelh , 1 ≤ j ≤ 2|W |): As the previous game, but we replace
all HPKE ciphertexts up to the j-th one in the i-th query with ciphertexts

encrypting random plaintexts. That is, we modify the Delh
′

in the i-th query
as follows:

Delh
′
(j, sk(0), ek(0), pki) : Up to the j-th call to EncHPKE, encrypt a uniformly

random value.

Transition0→11,1 , Transition1i,j→1i,j+1 , Transition1i,2|W |→1i+1,1 : A distingu-
isher D0→11,1 (respectively D1i,j→1i,j+1 or D1i,2|W |→1i+1,1) is an IND-CPA
adversary against the HPKE scheme. We construct a reduction where we

let C be a IND-CPA challenger. We modify Delh
′

in the i-th query in the
following way:
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Delh
′
(j, sk(0), ek(0), pki′) : Simulate everything honestly, but on the j-th query

choose r uniformly at random and run

c← C(sk(w(j/2)−1)

BTE , r) if j is odd and c← C(ek(wj/2)

BTE , r) if j is even,

where c← C(m0,mb) denotes a challenge ciphertext with respect to m0

and m1.
Now, the bit b chosen by C switches between the distributions of the Games.

In Game 1q
Delh

,2|W | all ciphertexts obtainable from Delh
′

are with respect to ran-
dom values. Now, an adversary B winning Game 1q

Delh
,2|W | can be transformed

into a IND-SN-CPA adversary A against the underlying BTE scheme:

1. When A is first started on 1k, `, choose i∗←R [n] and output w(i∗−1).

2. When A is started on pkBTE, (sk
(w), dk(w))w∈W , compute (pkHPKE, skHPKE)←

GenHPKE(1k). The secret key skHPKE is stored in the state st and we extend
the public key to pk← (pkBTE, pkHPKE). Now start B on the extended public
key, i.e. (j∗, st) ← B(1k, n, pk). If i∗ 6= j∗, output a random bit and halt.
Otherwise we have the secret-derivation key pairs of all nodes that are right
siblings on the path from the root node to w(j∗−1) and (if they exist) all
child nodes of w(j∗−1), hence we are able to simulate all oracle queries from
B honestly. Similarly, we can compute (sk(j

∗), dk(j
∗)) from the given keys.

Thus we run BO(st, sk(j
∗), dk(j

∗)) and forward its result.
3. When A is finally started on the challenge ciphertext, the ciphertext is simply

forwarded to B and when B outputs the bit b, A returns b and halts.

When B is running within A and j∗ = i∗, B has exactly the same view as in
Game 1q

Genh
,2|W |. In this case the probability of A to win is exactly the same

as the winning probability of B, and Game 1q
Genh

,2|W | is computationally in-
distinguishable from the initial game. The random guess of i∗ so that i∗ = j∗

induces a loss of 1
n , which is however bounded by a polynomial in the security

parameter. ut

4.3 Constructing fs-PRE from fs-DPKE

Now we present a construction of a fs-PRE+-secure fs-PRE scheme from a fs-
DPKE scheme. Therefore, we define additional properties of fs-DPKE and show
that a fs-PRE can be directly obtained from a fs-DPKE. For our transformation to
work, we need to define an additional algorithm that allows us to homomorphi-
cally shift ciphertexts and delegation keys. That is, ciphertexts and delegation
keys are modified in such a way that the delegation keys look like randomly
distributed fresh keys, which are only useful to decrypt ciphertexts adapted to
this key. Formally, we introduce an algorithm Adapt that enables this adaption:

Adapt(dk, C) : On input a delegation key dk, a ciphertext C, outputs an adapted
delegation key dk′ and ciphertext C ′.
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Since the delegation keys in our construction are encrypted BTE secret keys, we
essentially adapt secret keys and ciphertexts from a BTE. We will see that this
adaption is possible as long as the HPKE scheme used to encrypt the BTE keys
provides a suitable homomorphism on the message space.

To adapt ciphertexts and delegation keys we extend correctness to addi-
tionally require that for any message M encrypted under the public key of A,

any delegation key dk
(i)
A→B , and any adapted delegation key-ciphertext pairs

(dk′, C ′)← Adapt(dk
(i)
A→B , CA), it holds that M = DelDecDPKE(sk

(i)
B , dk′, C ′).

As security notion we introduce the fs-ADAP-IND-CPA notion, where the
adversary may see multiple adapted delegation keys and ciphertexts, but the
adversary should be unable to win an IND-CPA game for non-adapted cipher-
texts. We give the formal definition of the security experiment in Experiment 9.
This notion gives the delegator more control over the ciphertexts that should
be readable for the delegatee. If given the delegation key, the delegatee can al-
ways decrypt all ciphertexts, but if just given an adapted delegation key, only a
selected subset of ciphertexts is decryptable.

Experiment Expfs-adap-ind-cpafs−DPKE,A (1k, n)

pp← Setup(1k), (pk, sk(0), ek(0))← Gen(pp, n), b←R {0, 1}
(j∗, pk∗, st)← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗], dk← Del(sk(j

∗),⊥, pk∗)
(M0,M1, st)← A{Adapt(dk,·)}(st)
b∗ ← A(st,Enc(pk,Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 9. The fs-ADAP-IND-CPA security experiment for a fs-DPKE scheme.

Definition 15 (fs-ADAP-IND-CPA). For a polynomially bounded function
n(·) > 1, a PPT adversary A, we define the advantage function in the sense of
fs-IND-CPA as

Advfs-adap-ind-cpafs−DPKE,A (1k, n(k)) :=

∣∣∣∣Pr
[
Expfs-adap-ind-cpaDPKE,A (1k, n(k)) = 1

]
− 1

2

∣∣∣∣ .
If for all n(·) > 1, and any A there exists a negligible function ε such that

Advfs-adap-ind-cpafs−DPKE,A (1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-ADAP-IND-CPA
secure.

For Scheme 1, this adaption can be achieved solely from key-homomorphic prop-
erties of the BTE and homomorphic properties of the HPKE, respectively. Sub-
sequently, we define the required homomorphisms. Our definitions are inspired
by [2, 40]. We focus on schemes where the secret/derived key pairs, and public
keys live in groups (G,+), and (H, ·), respectively. We will require two different
properties: first, the public key is the image of the secret key under a group
homomorphism, and second, given two secret keys with a known difference, we
can map the binary tree of derived keys from one key to the other key. In other
words, the difference in the keys propagates to the derived keys.
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Definition 16. Let Ω be a BTE scheme with secret/derived key space (G,+)
and public key space (H, ·).

1. The scheme Ω provides a secret-key-to-public-key homomorphism, if there
exists an efficiently computable group homomorphism µ : G → H such that
for all (pk, sk)← Gen, it holds that pk = µ(sk).

2. The scheme Ω provides a derived-key homomorphism, if there exists a family
of efficiently computable group homomorphisms ν(w) : G→ G2 such that for
all (pk, sk(ε)) ← Gen, all nodes w it holds that (sk(w0), sk(w1)) = ν(w)(sk(w))

and for all messages M it holds that Dec(sk(w),Enc(pk,M,w)) = M .

We denote by Φ+ the set of all possible secret key differences in G. Alternatively,
it is possible to view Φ+ as set of functions representing all linear shifts in G
and we simply identify each shift by an element ∆ ∈ G.

Definition 17. A BTE scheme Ω is called Φ+-key-homomorphic, if it provides
both a secret-key-to-public-key homomorphism and a derived key homomorphism
and an additional PPT algorithm Adapt, defined as:

Adapt(pk, C,∆) : On input a delegation key dk, a ciphertext C and a secret key
difference ∆, outputs a public key pk′ and a ciphertext C ′.

such that for all ∆ ∈ Φ+, and all (pk, sk) ← Gen(. . .), all message M , and all
C ← Enc(pk,M), and (pk′, C ′) ← Adapt(pk, C,∆) it holds that pk′ = pk · µ(∆)

and Dec(sk(w) + ν(w)(∆), C ′) = M .

Definition 18 (Adaptability of ciphertexts). A Φ+-key-homomorphic BTE
scheme provides adaptability of ciphertexts, if for every security parameter k ∈
N, any public parameters pp ← Setup(1k), every message M and every period
j, it holds that Adapt(pk,Enc(pk,M, j), ∆) and (pk · µ(∆),Enc(pk · µ(∆),M, j))
as well as (sk, pk) and (sk′, µ(sk′)) are identically distributed, where (pk, sk) ←
Gen(pp, n), sk′←R G and ∆← Φ+.

Next, we discuss the BTE from [15] with respect to our notion of ciphertext
adaptability. We first recall the BTE scheme in Scheme 2 where BGGen is a
bilinear group generator. By [15, Proposition 1] this scheme is IND-SN-CPA
secure if the decisional BDH assumption holds relative to BGGen.

Now we show that Scheme 2 also provides adaptability of ciphertexts:

Lemma 3. Scheme 2 provides adaptability of ciphertexts under shared H.

Proof. We show the existence of the homomorphisms and give the Adapt al-
gorithm. Note that the master secret key can easily be viewed as containing α,
hence, the secret-to-public-key homomorphism is simply µ : α 7→ αP . As the Der
algorithm simply computes sums, the existence of the homomorphism is clear.

We now show the existence of Adapt:

Adapt(pk, C,∆) : Parse pk as (Q, `,H) and C as (U0, . . . , Ut, V ). Let Q′ ← Q+
∆ · P and set pk′ ← (Q′, `,H). Let V ′ ← V e(U0, ∆ · H(ε)) and set C ′ ←
(U0, . . . , Ut, V

′) and return (pk′, C ′).
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Setup(1k) : Run to BGGenp(1k) to generate groups G1,G2 of prime order q and a
bilinear map e and select a random generator P ∈ G1. Set pp ← (G1,G2, e, q, P )
and return pp.

Gen(pp, `) : Choose α ← Zq and set Q ← α · P . Set sk(ε) ← αH(ε) and pk ← (Q,H).
Return (pk, sk(ε)).

Der(sk(i)) : Parse sk(w) as (Rw|1, . . . , Rw, Sw). Choose r0, r1←R Zq and set
Rwi ← riP and Swi ← Sw + ri · H(wi) for i ∈ [2] and return
((Rw|1, . . . , Rw, Rw0, Sw0), (Rw|1, . . . , Rw, Rw1, Sw1))).

Enc(pk,M, i) : Choose γ ← Zq and set C ← (γ ·P, γ ·H(w|1), . . . , γ ·H(w),M · e(Q, γ ·
H(ε))). Return C.

Dec(sk(w), C) : Parse sk(w) as (Rw|1, . . . , Rw, Sw) and C as (U0, . . . , Ut, V ). Return M =
V/d where

d =
e(U0, Sw)∏t

i=1 e(Rw|i, Ui)
.

Scheme 2. BTE scheme from [15]

The adapted C ′ ciphertext is an encryption of the original message under the
public key Q′ = Q+∆ · P . ut

Now, given any Φ+-key-homomorphic BTE scheme, it can be turned into an
adaptable fs-DPKE by defining Adapt in a publicly computable way as follows:

Adapt(dk
(i)
A→B , C) : Sample ∆←R Φ+ and compute dk∆ ← EncHPKE(pkB , ν

(wi)(

∆)), and then dk′ ← EvalHPKE(+, dk
(i)
A→B , dk∆). Set (·, C ′)← AdaptBTE(pkA,

C,∆). Return (dk′, C ′).

Theorem 2. If in addition to the premise in Theorem 1 the BTE scheme also
provides adaptability of ciphertexts, then Scheme 1 is a fs-ADAP-IND-CPA se-
cure fs-DPKE scheme.

Proof. We prove this theorem with a sequence of games.

Game 0: The original game.
Game 1: We modify the simulation of the Adapt oracle as follows, where we

denote the modified oracle by Adapt′:

Adapt′( sk(i), pk, pk∗ , C) : Parse sk(i) as (sk
(wi)
BTE , ·), pk as (pkBTE, ·), and pk∗

as (·, pk∗HPKE). Choose ∆← Φ+, run

dk′ ← EncHPKE(pk∗HPKE, sk
(wi)
BTE + ν(w

i)(∆)) and

C ′ ← EncBTE(pk · µ(∆),DecBTE(sk(i), C), i) . Return (dk′, C ′).

Transition0→1: The distributions of Game 0 and Game 1 are indistinguishable
under the BTE’s adaptability of ciphertexts.

Game 2: We further modify the simulation of Adapt′ as follows:

Adapt′( sk(i), pk∗ , C) : Parse sk(i) as (sk
(wi)
BTE , ·), pk as (pkBTE, ·), and pk∗ as

(·, pk∗HPKE). Choose pk′BTE, sk
′,(ε)
BTE , ek

′,(ε)
BTE ← GenBTE and evolve the secret
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key to period i, run

dk′ ← EncHPKE(pk∗HPKE, sk
′,(wi)
BTE ) and

C ′ ← EncBTE(pk′BTE,DecBTE(sk(i), C), i) . Return (dk′, C ′).

Transition1→2: The change is conceptual.

In Game 2 all the secret BTE keys the adversary gets are chosen independently
from the challenge key. Hence, Game 2 is a standard IND-CPA game and thus
the success probability of Game 2 is negligible by Theorem 1. ut

Now, given an adaptable fs-DPKE scheme, we use the Adapt algorithm to obtain
a fs-PRE+ secure fs-PRE scheme. While the algorithms Setup, Gen, Evo, Enc(i),
and Dec(i) can simply be lifted from the fs-DPKE scheme, we note that for
each period j in the fs-PRE scheme, we use two periods, i.e., 2j − 1 and 2j, of
the fs-DPKE scheme. The period 2j − 1 is used for level 1 ciphertexts whereas
the period 2j is used for level 2 ciphertexts15. We use DelDPKE and DelEvoDPKE

for ReGen and ReEvo, respectively. For the re-encryption algorithm ReEnc, we
apply Adapt. Dec(1) for re-encrypted ciphertexts then decrypts the ciphertext
by running DelDecDPKE on the adapted delegation key and ciphertext. The full
scheme is presented in Scheme 3.

We prove that our scheme is both fs-IND-CPA-1 and fs-IND-CPA-2 secure.
Both security notions follow from the fs-IND-CPA security of the underlying
fs-DPKE scheme. In contrast, to achieve fs-RIND-CPA, we require an fs-ADAP-
IND-CPA fs-DPKE scheme.

Theorem 3. If instantiated with a fs-IND-CPA and fs-ADAP-IND-CPA secure
fs-DPKE scheme, Scheme 3 is a fs-PRE+-secure fs-PRE scheme.

Proof. Informally speaking, the security experiment for fs-IND-CPA-2 with a
fixed period j∗ corresponds to the fs-IND-CPA experiment for fs-DPKE for period
2j∗. We can build a straightforward reduction from an adversary against fs-IND-
CPA-2, A2 to fs-IND-CPA for fs-DPKE:

– When started on pp, n and pk, run (j∗, st)← A2(pp, dn2 +1e, pk). Set j′ ← 2j∗

and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′). Indeed, Del(h) and Del(h

′) return delegation
keys for period j′−1 = 2j∗−1, which are re-encryption keys for period j∗−1.

Using Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′)
DPKE, sk

(j′+1)
DPKE ), (ek

(j′)
DPKE, ek

(j′+1)
DPKE )) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗−1.

Hence we start A2 on the ciphertext and return its’ result.

15 One can see the keys for period 2j as weak keys in the sense of [4, Third Attempt]
whereas the keys for period 2j − 1 constitute the master secret keys.
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Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE,AdaptDPKE) be fs-DPKE
scheme with adaption of ciphertexts and delegation keys.

Setup(1k) : Return SetupDPKE(1k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE)← GenDPKE(pp, 2n+1), obtain (sk

(1)
DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk
(0)
DPKE, sk

(1)
DPKE), ek(0) ← (ek

(0)
DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk
(2i)
DPKE, sk

(2i+1)
DPKE ), (ek

(2i)
DPKE, ek

(2i+1)
DPKE )) and return

(sk(i+1), ek(i+1)) = (sk
(2i+2)
DPKE , sk

(2i+3)
DPKE ), (ek

(2i+2)
DPKE , ek

(2i+3)
DPKE )), where

(sk
(2i+1+j)
DPKE , ek

(2i+1+j)
DPKE )← EvoDPKE(sk

(2i+j)
DPKE , ek

(2i+j)
DPKE ) for j ∈ [2].

Enc(1)(pk,M, i) : Return EncDPKE(pk,M, 2i).

Enc(2)(pk,M, i) : Return EncDPKE(pk,M, 2i+ 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i+1), C).

ReGen(sk
(i)
A , ek

(i)
A , pkB) : Parse (sk(i), ek(i)) as ((sk

(2i)
DPKE, sk

(2i+1)
DPKE ), (ek

(2i)
DPKE, ek

(2i+1)
DPKE )),

and DelDPKE(sk
(2i+1)
A , ek

(2i+1)
A , pkB).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : Return DelEvoDPKE(DelEvoDPKE(rk

(i)
A→B , rek

(i)
A→B)).

ReEnc(rk
(i)
A→B , CA) : Choose τ ←R G and return AdaptDPKE(rk

(i)
A→B , CA, τ).

Scheme 3. fs-PRE scheme from an adaptable fs-DPKE scheme.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, dn2 + 1e, pk). Set j′ ←
2j∗ − 1 and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′) and by running DelEvo on the result. Indeed,

Del(h) and Del(h
′) return delegation keys for period j′−1 = 2j∗−2, hence af-

ter applying DelEvo we obtain re-encryption keys for period j∗−1. ReGen(d)

is simulated honestly by delegating sk
(j′)
DPKE, ek

(j′)
DPKE to a dishonest user. Us-

ing Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 2. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′+1)
DPKE , sk

(j′+2)
DPKE ), (ek

(j′+1)
DPKE , ek

(j′+2)
DPKE )) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗−1.

Hence we start A1 on the ciphertext and return its’ result.

To show receiver-IND-CPA security we build an fs-ADAP-IND-CPA adversary
against the fs-DPKE scheme. The fs-RIND-CPA adversary is denoted as Ar.

– When started on pp, n and pk, run (j∗, st) ← Ar(pp, dn2 + 1e, pk). Set j′ ←
2j∗ + 1 and return (j′, st).
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– When started on st, we can simulate ReEnc honestly using Adapt.
– Wen started on st and C, the ciphertext is a level 2 ciphertext for period j∗,

hence we return Ar(st, C).

Note that all values are consistently distributed in all three reductions. ut

4.4 Separating fs-PRE− from fs-PRE+

To expand on the gap between fs-PRE+ and fs-PRE− schemes and to provide an
explicit separation, we construct a counterexample. In particular, it is clear that
every scheme that satisfies fs-PRE+ also satisfies fs-PRE−. For our separation
we now present a scheme that is fs-PRE− but trivially violates fs-PRE+. The
scheme is also built from a fs-DPKE scheme and presented in Scheme 4. In this
scheme however, ReEnc simply embeds the delegation key in the re-encrypted
ciphertext. The shortcomings of this construction compared to Scheme 3 are
obvious: once the receiver is presented with one valid re-encrypted ciphertext, it
can recover the delegation key from that ciphertext and can decrypt all level 2
ciphertexts for this period.

Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE) be fs-DPKE scheme.

Setup(1k) : Return SetupDPKE(1k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE)← GenDPKE(pp, 2n+1), obtain (sk

(1)
DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk
(0)
DPKE, sk

(1)
DPKE), ek(0) ← (ek

(0)
DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk
(2i)
DPKE, sk

(2i+1)
DPKE ), (ek

(2i)
DPKE, ek

(2i+1)
DPKE )) and return

(sk(i+1), ek(i+1)) = (sk
(2i+2)
DPKE , sk

(2i+3)
DPKE ), (ek

(2i+2)
DPKE , ek

(2i+3)
DPKE )), where

(sk
(2i+1+j)
DPKE , ek

(2i+1+j)
DPKE )← EvoDPKE(sk

(2i+j)
DPKE , ek

(2i+j)
DPKE ) for j ∈ [2].

Enc(1)(pk,M, i) : Return EncDPKE(pk,M, 2i).

Enc(2)(pk,M, i) : Return EncDPKE(pk,M, 2i+ 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk
(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i+1), C).

ReGen(sk
(i)
A , ek

(i)
A , pkB) : Parse (sk(i), ek(i)) as ((sk

(2i)
DPKE, sk

(2i+1)
DPKE ), (ek

(2i)
DPKE, ek

(2i+1)
DPKE )),

and return (rk
(i)
A→B , rek

(i)
A→B), where

(rk
(i)
A→B , rek

(i)
A→B)← DelDPKE(sk

(2i+1)
A , ek

(2i+1)
A , pkB).

ReEvo(rk
(i)
A→B , rek

(i)
A→B) : Return DelEvoDPKE(DelEvoDPKE(rk

(i)
A→B , rek

(i)
A→B)).

ReEnc(rk
(i)
A→B , CA) : Return (CA, rk

(i)
A→B).

Scheme 4. fs-PRE scheme from a fs-DPKE scheme without adaption.
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In the following Theorem, we first show that Scheme 4 is indeed fs-PRE−

secure, i.e., satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but trivially does
not satisfy fs-RIND-CPA security and thus is not fs-PRE+ secure.

Theorem 4. Scheme 4 when instantiated with a fs-IND-CPA secure fs-DPKE
scheme satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but not fs-RIND-
CPA security.

Proof. We follow the same strategy as for Theorem 3 to show fs-IND-CPA-2.

– When started on pp, n and pk, run (j∗, st)← A2(pp, dn2 +1e, pk). Set j′ ← 2j∗

and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh

′

oracles using Delh and Delh
′
. Indeed, Delh and Delh

′
return delegation keys

for period j′ − 1 = 2j∗ − 1, which are re-encryption keys for period j∗ − 1.

Using Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′)
DPKE, sk

(j′+1)
DPKE ), (ek

(j′)
DPKE, ek

(j′+1)
DPKE )) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗−1.

Hence we start A2 on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, dn2 + 1e, pk). Set j′ ←
2j∗ − 1 and return (j′, st).

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh

′

oracles using Delh and Delh
′

and by running DelEvo on the result. Indeed,

Delh and Delh
′

return delegation keys for period j′ − 1 = 2j∗ − 2, hence
after applying DelEvo we obtain re-encryption keys for period j∗−1. ReGend

is simulated honestly by delegating sk
(j′)
DPKE, ek

(j′)
DPKE to a dishonest user. Us-

ing Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 2. Set (sk(j

∗), ek(j
∗)) ←

((sk
(j′+1)
DPKE , sk

(j′+2)
DPKE ), (ek

(j′+1)
DPKE , ek

(j′+2)
DPKE )) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗−1.

Hence we start A1 on the ciphertext and return its’ result.

Following the initial observation on the recoverability of delegation keys, an
receiver-IND-CPA adversary is straightforward to define:

– When started on pp, n and pk, honestly generate a key (pk∗, sk(0), ek(0)) ←
Gen(pp, n) and store it in st. Choose j∗←R [n] and store it together with pk
in st, and return (j∗, pk∗, st).

– When started on st to output the challenge messages, chooseM0,M1,M2←R M.
Invoke the ReEnc oracle as (·, dk) ← ReEnc(rk,Enc(2)(pk,M2, j

∗)) and store
M0,M1, dk in st. Return M0,M1, st.
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– Now when started on st and the challenge ciphertext C, use dk stored in st
and obtain M ← DelDecDPKE(sk(2j

∗+1), dk, C). Check for which i ∈ {0, 1}
M = Mi and return i.

Regardless of the chosen period the adversary always wins, rendering the scheme
insecure with respect to the fs-RIND-CPA notion. ut

From this theorem we obtain the following corollary:

Corollary 1. fs-PRE+ is a strictly stronger notion than fs-PRE−.

Note that this also shows that for conventional PRE scheme there is a separa-
tion between the classical security notion of PRE (PRE−) as defined by Ateniese
et al. and the PRE+ notion.
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Abstract. Double-authentication-preventing signatures (DAPS) are sig-
natures designed with the aim that signing two messages with an identi-
cal first part (called address) but different second parts (called payload)
allows to publicly extract the secret signing key from two such signatures.
A prime application for DAPS is disincentivizing and/or penalizing the
creation of two signatures on different payloads within the same address,
such as penalizing double spending of transactions in Bitcoin by the loss
of the double spender’s money.

So far DAPS have been constructed from very specific signature sch-
emes not used in practice and using existing techniques it has proved elu-
sive to construct DAPS schemes from signatures widely used in practice.
This, unfortunately, has prevented practical adoption of this interesting
tool so far. In this paper we ask whether one can construct DAPS from
signature schemes used in practice. We affirmatively answer this question
by presenting novel techniques to generically construct provably secure
DAPS from a large class of discrete logarithm based signatures. This class
includes schemes like Schnorr, DSA, EdDSA, and, most interestingly for
practical applications, the widely used ECDSA signature scheme. The
resulting DAPS are highly efficient and the shortest among all existing
DAPS schemes. They are nearly half of the size of the most efficient fac-
toring based schemes (IACR PKC’17) and improve by a factor of 100
over the most efficient discrete logarithm based ones (ACM CCS’15).
Although this efficiency comes at the cost of a reduced address space,
i.e., size of keys linear in the number of addresses, we will show that
this is not a limitation in practice. Moreover, we generalize DAPS to any
N > 2, which we denote asN -times-authentication-preventing signatures
(NAPS). Finally, we also provide an integration of our ECDSA-based
DAPS into the OpenSSL library and perform an extensive comparison
with existing approaches.

? This is the full version of a paper which appears in 2018 IEEE European Symposium
on Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26,
2018. c©IEEE, 2018.
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1 Introduction

Digital signatures are the prevalent cryptographic primitive to provide strong in-
tegrity and authenticity guarantees for messages exchanged in the digital realm.
They are used in major cryptographic protocols such as TLS, for issuing digital
certificates (i.e., certifying public keys) within public-key infrastructures (PKIs),
to authenticate executable code or digital documents such as PDF documents
(in a legally binding way) or to sign transactions within the distributed crypto-
currency Bitcoin, to name some popular applications. Arguably, as they enable
the secure distribution and transmission of public keys, in a very real sense, they
serve as the foundation of all public key cryptography in practice.

Most widely used signature schemes today are (1) RSA-FDH, either used
with PKCS#1 v1.5 padding or as probabilistic signature scheme (RSA-PSS),
and (2) the discrete logarithm based (elliptic curve) digital signature algorithm
(EC)DSA. While RSA is predominant in legacy applications, more recent appli-
cations that make heavy use of digital signatures (such as Bitcoin) build upon
ECDSA. Actually, when analyzing the trend of the use of ECDSA for certifi-
cate signing, we can observe that its use is becoming increasingly popular over
the last few years3 (see Table 1). A similar trend can be observed in DNSSEC

Year % of ECDSA signatures

2014 0.01 %
2015 0.02 %
2016 2.54 %
2017 36.07 %

Table 1: Usage of ECDSA signatures in certificates of the top million
websites via censys.io [DAM+15].

in that an ever increasing number of DNSSEC resolvers support ECDSA4 and
some large companies like CloudFlare are heavily pushing ECDSA [vRJS16].
Papadopoulos et al. [PWH+17] argue that due to improved performance and
security it is very likely that new features for DNSSEC such as NSEC5 will only
target the elliptic curve setting instead of RSA. Actually, given that the use of
RSA signatures within DNSSEC in practice suffers from deficient key generation
methods [SW17], switching to elliptic curves seems to be a viable way to go.

Now let us recall digital signatures more technically. We have a signer who
holds a secret signing key sk and publishes its corresponding public verification
key pk. To sign a message m, the signer uses sk to produce a signature σ and
anyone who is given (m,σ) together with an authentic copy of pk can verify that
the message originated from the signer (authenticity) and has not been modified

3 https://blog.cloudflare.com/aes-cbc-going-the-way-of-the-dodo/
4 https://blog.apnic.net/2016/10/06/dnssec-and-ecdsa/
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in any way (integrity). Formal security guarantees for a signature scheme require
that anyone not holding sk, even if allowed to adaptively obtain signatures for
messages of one’s choice, will not be able to come up with a valid signature for
a non-queried message, i.e., produce a forgery. This notion is coined existential
unforgeability under chosen message attacks (EUF-CMA), formally discussed in
Section 4.1, and is the widely accepted security notion required by schemes used
in practice today.

In this paper we consider a variant of signature schemes dubbed double-
authentication-preventing signatures (DAPS) [PS14,PS17]. Here, messages to
be signed are of the form m = (a, p) and in particular they consist of an address
a and a payload p. The basic idea behind DAPS is that they behave exactly like
conventional signatures, i.e., provide unforgeability in the EUF-CMA sense, as
long as no distinct payloads p′ 6= p are signed with respect to the same address a.
If a signer produces two signatures for distinct payloads p′ 6= p but with respect
to the same address a (called colliding messages), then anyone can compute
the signer’s secret key sk from these signatures (the so called double-signature
extraction property).

This concept may sound awkward at first sight, but it is indeed interesting as
it disincentivizes the signer from “double-signing”. It suggests the use of DAPS
instead of conventional signatures whenever double-signing should be disincen-
tivized, where the address a (or its associated space respectively) can be given
some application-dependent semantics. Thereby, we can consider any form of a
digital processes where one wants to prevent fraud by discouraging users from
submitting (signing) duplicates. Think for instance of requests for reimburse-
ments for the same expense multiple times, which can be disincentivized when
using some unique ID, identifying the invoice/payment as address. In Section 2
we discuss some representative and more concrete applications of DAPS.

We observe that this is conceptually related to some other approaches dis-
cussed subsequently, but DAPS are stronger in the sense that they reveal the
secret key of the signer to the public. Within offline double spending mech-
anisms [CFN88] of centralized e-cash systems, as long as a user is honest, the
user can anonymously conduct transactions. But if a user misbehaves and spends
an e-coin multiple times, his identity is revealed. In contrast to just revealing
the identity in case of misbehaviour, however, DAPS reveal the secret key of
the signer. Revealing the secret key as discouragement to behave fraudulent is
also related to what is done within the so called PKI-assured non-transferability
approach in anonymous credential systems [CL01]. Here the secret of the cre-
dential is associated to a valuable secret outside the system, e.g., a secret key
that allows to issue signatures that are equivalent to handwritten signatures,
which disincentivizes the sharing of a credential. However, in contrast to DAPS
the secret key is not made public per se, but known to everyone with whom the
credential is shared.

A problem with existing DAPS constructions [PS14,RKS15,PS17,BPS17] is
that they are not based on widely used signature schemes and thus have not seen
adoption in practice. While the constructions in [PS14,PS17,BPS17] are factor-
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ing based ones (aka in the RSA setting), the one from Ruffing et al. in [RKS15]
is compatible with discrete-logarithm based signature public keys (and ECDSA
public keys in particular). Unfortunately, their integration of signature public
keys in so called accountable assertions5, which Ruffing et al. instantiate with a
Merkle-tree construction using chameleon hash functions [KR00], does not yield
an efficient construction. Our aim in this paper is to provide a generic construc-
tion that augments existing signature schemes widely used in practice (such as
ECDSA) to yield DAPS being provably secure, where the security proof makes
only black-box use of the signature scheme.

1.1 Contribution

Our key contributions in this paper can be summarized as follows:

– We are the first to present DAPS that are based on widely deployed and used
signature schemes and in particular ECDSA. Additionally, our approach
also works identically for Schnorr signatures, DSA or EdDSA (and many
other discrete-logarithm based schemes). Consequently, we provide the first
construction that can be directly used in real world and deployed systems.

– We introduce notions of double-signing extraction security for DAPS schemes
that extend keys of a conventional signature scheme. Our notions ensure that
extractability of the signing key of the signature scheme, e.g., the ECDSA
key, is required, even if it is not possible to extract the full DAPS secret
key. In applications where the signing key is also used in a different con-
text, inadvertently leaking the signing key already disincentivizes double-
authentication. We show that our construction satisfies this notion under
adversarially chosen, i.e., malicious, keys.

– Our DAPS are the shortest DAPS so far in any setting. For instance, for the
128 bit security level, signatures of our DAPS with ECDSA on 256 bit elliptic
curve groups are 1280 bits long, whereas most efficient factoring-based DAPS
with a modulus size of 2048 bit require 2049 bits. This compactness, however,
comes at the cost of a reduced address space and public key size linearly
depending on the address space. However, as we will show, practical use-cases
only require small address spaces and thus keep the key sizes reasonably low.

– Our construction paradigm is a generic and novel approach to combine verifi-
able Shamir secret sharing with (linear) ElGamal encryption in a semi-black
box way. In a nutshell, the idea is to homomorphically evaluate the verifica-
tion relation of the verifiable secret sharing scheme in the encrypted domain
and to prove that the respective encrypted evaluation actually contains the
expected value. This, in turn, gives us the required flexibility to perform a
black-box reduction to the EUF-CMA security of ECDSA, or, more generally,
to the EUF-CMA security of any discrete logarithm based signature scheme
where the public key is the image of the secret key under a group homo-
morphism. From a practical point of view, this allows an easy extension of
existing (EC)DSA, EdDSA and Schnorr signing keys to DAPS keys.

5 Ruffing et al. show that certain accountable assertions (and in particular their con-
struction) yield DAPS.
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– We generalize DAPS and show how our approach to construct DAPS can
easily be extended to N -times-authentication-preventing signatures (dubbed
NAPS) for any N > 2. This is achieved by setting the degree of the polyno-
mial in Shamir’s secret sharing to N − 1 (where we simply have a degree 1
polynomial in case of DAPS).

– We provide an implementation of our DAPS and integration into the popular
OpenSSL library, which requires no changes to OpenSSL’s ECDSA interface
and implementation. This allows faster adoption of our DAPS in existing
applications such as Bitcoin.

Follow up work. Bertram Poettering made us aware of follow up work on
short DAPS in the discrete logarithm setting which appears at Africacrypt
2018 [Poe18]. His DAPS provide noticeably smaller key and signature sizes,
extractability of the whole DAPS key, but his work does not allow to extend
signature schemes to DAPS in a black box way. In contrast, our results allow
to extend signature schemes to DAPS in a black box way, while the extraction
notion only allows to extract the key of the signature scheme. Additionally, the
work in [Poe18] does not yield NAPS.

2 Applications of DAPS

Below we discuss three appealing applications of DAPS. The first two are applica-
tions already given in [RKS15], which can be implemented with our construction
much more efficiently. The last field of application is more generic and includes
disincentivizing double-signing of certificates and executables.

Moreover, we stress that as our DAPS constructions are the first that are
ready to be used based on a widely deployed signature scheme that is used in
many real world applications and whose popularity is ever increasing. Thus, we
are convinced that DAPS will find many more interesting applications.

2.1 Accountable Assertions and Non-equivocation Contracts

Accountable assertions introduced in [RKS15] are a cryptographic mechanism
that allows binding of statements to contexts in an accountable way: if the
attacker asserts two contradicting statements in the same context, then any ob-
server can extract the attacker’s secret key. DAPS can be viewed as a stronger
variant of accountable assertions, as they are additionally required to be un-
forgeable. Hence efficient DAPS constructions also provide more efficient instan-
tiations of accountable assertions.

Combining accountable assertions respectively DAPS with Bitcoin deposits
as discussed in [RKS15] enables the construction of non-equivocation contracts.
Latter make it possible to penalize equivocation in distributed protocols mone-
tarily. If a party A should be penalized if it equivocates, A creates a new Bitcoin
key pair and extends it to a DAPS key pair.6 It creates a deposit under the

6 Ruffing et al. use the signature public key as a public key of a accountable assertion
instead of using a DAPS directly.
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newly created Bitcoin key pair. Whenever A is supposed to send a statement in
some context, it additionally sends a signature under the corresponding DAPS
key. If A equivocates, anyone can extract the secret key from the two assertions
with respect to the same context and can hence transfer the funds stored in the
deposit to an address under their control. In case that A does not equivocate, it
keeps full control over the deposit.

2.2 Disincentivizing Bitcoin Double-Spending

A central issue in the Bitcoin protocol is that it takes some time (in the order
of tens of minutes) until a transaction gets confirmed in the blockchain and thus
becomes valid. This makes it hard to prevent double-spending for “fast” transac-
tions, i.e., transactions which involve transferring goods immediately after com-
pleting a transaction. To this end various non-cryptographic means to detect
double-spending in fast Bitcoin transactions were proposed [KAC12,KAR+15].

With DAPS we can come up with a cryptographic solution towards solving
this problem that strongly disincentivizes double-spending of the aforementioned
type. In particular, we can ensure that double-spending will reveal the signing
key and thus the associated Bitcoin(s) of the misbehaving party. To achieve this
we can follow a similar strategy as [RKS15], but building upon our DAPS yields
a much more efficient solution which is suited to be directly added to the Bitcoin
core with a few lines of code, i.e., by extending the existing use of ECDSA for
signing to our DAPS based on ECDSA. To disincentivize double-spending for
a limited number of offline transactions, a user A of a service B first transfers
an amount of spendable coins and a penalty to a deposit. After the deposit
was confirmed by the blockchain, A can buy services from B offline by signing
transactions with the DAPS scheme and giving the signatures to B. Now, if A is
honest throughout all transactions, A can clear the deposit after some threshold.
However, when A double-spends the DAPS signatures leak the secret (ECDSA)
key to B. Thus A looses the coins deposited as penalty, since B is now able to
transfer the coins to a wallet under its control.

2.3 Disincentivizing Double-Signing

More generally, DAPS are useful to disincentivize double-signing. Poettering and
Stebila [PS14,PS17] propose the use of DAPS for certificate signing within public
key infrastructures (PKIs). For this application, it seems that [PS17] is favor-
able to what we will present. Nevertheless, there are other similar application,
where—likewise to the other applications presented in this section—our novel
constructions are favorable to prior work.

Think of the application of DAPS in context of code-signing, i.e., for the
signing of executables. When DAPS are used, the address represents a unique
ID (such as used by Apple’s App Store or Google’s Play Store) and the payload
is the version number. Providing a clean and a backdoored variant of the same
software version will leak the signing key. This disincentivizes such a behaviour
as this will then likely lead to a pandemia of malware signed with such a key.
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2.4 Observation Regarding the Address Space

Interestingly, we observe that none of the applications requires an exponentially
large address space. For example the application to accountable assertions in-
herently only requires a single address. Furthermore, in the application to disin-
centivizing double-spending for fast Bitcoins transaction, one may observe that
a small number of addresses suffices. Consider for example a public transport
company that allows customers to charge a transport pass for multiple trips. In
this case the number of taken trips can serve as address. Finally, in the appli-
cation to code signing one requires a somewhat larger address space, but still
having an address space of size 100 would allow to sign a new software version
every week for about two years.

3 Overview

In the following we provide an overview of the path we take in this paper to con-
struct DAPS. Previous approaches to construct DAPS follow the idea of finding
and formalizing some suitable cryptographic primitive that directly allows to
obtain DAPS. Examples are 2:1 trapdoor functions as in [PS14,PS17], or cer-
tain trapdoor identification schemes as in [BPS17]. While such an approach is
highly challenging and interesting from a theoretical perspective, following this
approach makes it very unlikely that one ends up with DAPS that are based
on some already deployed signature scheme like (EC)DSA. Our approach in this
paper is diametrically opposed to this approach. Namely, we look at signature
schemes used in practice and ask if and how we can turn them into DAPS.
Thereby, we put our focus on the elliptic-curve (discrete logarithm) setting.

The dead end. Before we present our approach we briefly discuss why a
seemingly rather obvious path unfortunately does not work, as we consider this
finding an interesting observation. When looking at schemes from the ElGamal
family [Gam84,HPM94], like (EC)DSA or Schnorr [Sch89] signatures, it is well
known that wrong usage may inadvertently leak the entire secret signing key.
More precisely, due to the nature of these schemes, using the same randomness
for computing signatures on different messages—as already happened in the past
either due to erroneously fixing the randomness7 or due to a bad randomness
generation8—reveals the secret signing key. While there are countermeasures to
avoid the aforementioned issues in practice at all by either making (EC)DSA
deterministic [Por13] or by explicitly designing deterministic schemes such as
EdDSA [BDL+12], the randomized versions, which are susceptible to the above
problem, are still those most commonly used.

Now, one could try to make this aforementioned “bug” a “feature” and use
this inherent property of such signature schemes in a positive way to construct
DAPS. Recall, that DAPS require extraction of the signing key when given two

7 http://www.bbc.com/news/technology-12116051
8 http://www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_
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signatures for colliding messages. Now what we could do is to adopt the idea as
used by [Por13,BDL+12]. The idea would be to pseudorandomly compute the
randomness used for signing from the message and the (secret) key. In contrast
to making conventional signatures deterministic, in DAPS we cannot trust the
signer to actually compute the randomness pseudorandomly from the address
and there must be some means for anyone to check that the signer indeed hon-
estly computed the randomness from the address. Now, one could think that
it would work to use a verifiable random function (VRFs) [MRV99] to derive
the randomness pseudorandomly from the address. In short, a VRF is a public
key primitive which computes some random and unique output from an input
together with a publicly verifiable (implicit) proof of correct computation. If one
would have a VRF where the randomness itself is not leaked, but its output is
a group element and only the holder of the VRF secret key knows the discrete
logarithm of this group element with respect to the base element of the group,
then this could work. Indeed, the Dodis-Yampolskiy (DY) construction [DY05]
satisfies this property and additionally has compact keys and proofs.9 While
using such a VRF to derive the randomness for the signature scheme from the
address seems intuitively secure, there does not seem to be a viable proof strat-
egy to prove EUF-CMA security with a (black-box) reduction to the VRF and
the signature scheme. The problem is that we see no way of decoupling the out-
put of the VRF and the randomness in the signature scheme to come up with a
working simulation strategy in the security proof. Even decoupling and proving
consistency using NIZKs did not work for any strategy we tried. As we, more-
over, do not want to resort on highly idealized models such as the generic group
model [Sho97] to directly analyse such a DAPS construction (cf. Section 4.3
for problems with such an analysis for ECDSA), we pursue an alternative path
where we can avoid such models use the signature scheme in a black-box fashion.

A working path. Besides the problems which turn up when pursuing the
direction sketched above, it turns out to be highly non-trivial to achieve the
desired functionality in the discrete logarithm setting in general. In particular,
the requirement to be able to extract a certain discrete logarithm, i.e., the secret
key, as soon as more than one signature within the same context exists, makes it
very hard to perform the simulation within the security reduction when trying
to relate the unforgeability of the DAPS to the unforgeability of the underlying
signature scheme in a black-box fashion.

Fortunately, we are nevertheless able to come up with novel techniques which
are inspired by secret sharing. In particular, we use a secret sharing of the secret
signing key (in Zq) such that producing signatures for two colliding messages,
i.e., messages with identical address but different payloads, allows to reconstruct
the secret, i.e., the signing key. If now every address a is associated to a degree 1
polynomial fa(X) with fa(0) being the signing key and every signature includes
a share fa(p) (evaluation of the polynomial on the payload p of the message
to be signed), two colliding messages reveal the signing key. The tricky part

9 We could even avoid bilinear groups in the DY VRF by providing an efficient NIZK
of validity of the verification equation instead of using a pairing to check the proof.
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is that one additionally requires a mechanisms to convince a verifier that the
signer behaves honest, i.e., really reveals a share of the key associated to the
address-polynomial, while still preserving the ability to conduct the simulation
in the security reduction. While latter is typically approached by adding verifi-
ability to the secret sharing scheme using a mapping of the coefficients defining
fa(X) to the group G = (G, q, g), we can not do so as this immediately destroys
the possibility to conduct a black-box reduction to the EUF-CMA security of
the underlying signature scheme (essentially the public verifiability destroys the
possibility to simulate in the security proof).

To this end, we need a trick to decouple the public verifiability of the secret
sharing from the signing key to make the proof work. We approach this by
encrypting the coefficients of the address-polynomials mapped to elements of G
(except the constant term representing the public key of the signature scheme)
and provide a zero-knowledge proof of knowledge (using an efficient Σ-protocol
made non-interactive via Fiat-Shamir) that the value fa(p) in the signature really
represents an evaluation of the encrypted address-polynomial. While conducting
such a proof would already be sufficient for a working scheme, we additionally
observe that we can employ linearly homomorphic encryption (e.g., ElGamal) to
do some pre-computations before we actually conduct the proof. This, in turn,
makes our approach highly efficient.

In addition, we observe that our approach directly allows us to derive a gener-
alization to N -times-authentication-preventing signatures (NAPS) for arbitrary
N > 2 by using higher degree polynomials.

Efficiency of our approach. Our constructions yield short signatures and
are practically efficient (which we extensively discuss in Section 7). For instance,
constructing a DAPS from ECDSA implemented using the prime256v1 elliptic
curve yield a signature of size 160 byte, being roughly 2.5 times the size of
conventional ECDSA signatures. Signing is roughly 3.8 times and verification
1.6 times of conventional ECDSA. On the platform we use for benchmarking,
signing and verification require 0.23 and 0.35 ms respectively.

4 Signature Schemes

In this section we firstly present a formal model for the security of signature
schemes. Secondly, we present the ECDSA signature scheme which we later use
to instantiate our DAPS construction.

4.1 Formal Model

Definition 1 (Signature Scheme). A signature scheme Σ is a triple (KGenΣ,
SignΣ,VerifyΣ) of PPT algorithms, which are defined as follows:

KGenΣ(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key skΣ and a public (verification) key pkΣ with associated
message space M (we may omit to make the message space M explicit).
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SignΣ(skΣ,m) : This algorithm takes a secret key skΣ and a message m ∈ M as
input and outputs a signature σ.

VerifyΣ(pkΣ,m, σ) : This algorithm takes a public key pkΣ, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and EUF-CMA secure. For correct-
ness we require that for all κ ∈ N, for all (skΣ, pkΣ) ← KGenΣ(1κ) and for all
m ∈M it holds that

Pr [VerifyΣ(pkΣ,m,SignΣ(skΣ,m)) = 1] = 1.

Definition 2 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr
[
ExpEUF-CMA

A,Σ (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Figure 1.

ExpEUF-CMA
A,Σ (κ):

(skΣ, pkΣ)← KGenΣ(1κ)
Q ← ∅
(m∗, σ∗)← ASign′Σ(skΣ,·)(pk)

where oracle Sign′Σ on input m:
let σ ← SignΣ(skΣ,m)
set Q ← Q∪ {m}
return σ

return 1, if VerifyΣ(pkΣ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 1: EUF-CMA security.

4.2 Elliptic Curve Groups

We briefly recall groups from elliptic curves. Let an elliptic curve E over the
finite field Fp be a plane, smooth algebraic curve usually defined by a Weierstrass
equation. The set E(Fp) of points (x, y) ∈ F2

p satisfying this equation plus the
point at infinity O, which is the neutral element, forms an additive Abelian
group, whereas the group law is determined by the chord-and-tangent method.
If we write Px we refer to the x coordinate of a point P . In general, we write
G = (G, q, g) to denote a group G of order q with generator g and we always use
multiplicative notion throughout the paper.
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KGenECDSA(1κ) : Let G = (G, q, g) be an elliptic curve group. Choose x←R Z∗q and set
sk← x and pk← gx and return (sk, pk).

SignECDSA(sk,m) : Parse sk as x

1. choose k←R Z∗q
2. compute R← gk

3. let r ← Rx (mod q) and if r = 0 goto step 1
4. let s← k−1(H(m) + rx) (mod q) and if s = 0 goto step 1
5. return σ ← (r, s)

VerifyECDSA(pk,m, σ) : Parse σ as (r, s)
1. If r = 0 ∨ s = 0 return 0
2. let z ← H(m) and w ← s−1 (mod q)
3. let u1 ← zw (mod q) and u2 ← rw (mod q)
4. let R← gu1 · pku2

5. if Rx = r (mod q) return 1 and return 0 otherwise

Scheme 1: ECDSA signature scheme.

4.3 ECDSA

In Scheme 1 we recall the ECDSA signature scheme. Thereby, H : {0, 1}∗ → Zq
is a hash function mapping exactly to the order of the group.

The security analysis of ECDSA was for quite some time a topic of de-
bates. There exist proofs of security of modified variants of ECDSA [MS02].
Brown [Bro02,Bro05] provides an analysis of standard ECDSA in the generic
group model [Sho97], which quite leaves some open questions (cf. [FKP16] for a
discussion why such a proof is problematic for ECDSA). The most recent work
on the security of ECDSA from Fersch et al. [FKP16] avoids the generic group
model and proves EUF-CMA security of ECDSA in the bijective random oracle
model (ROM). We want to emphasize that we do not require details of any tech-
nique to prove security of ECDSA in this paper, as we will make a black-box
reduction to EUF-CMA security of ECDSA.

5 Double-Authentication-Preventing Signatures

5.1 Formal Model

For double-authentication-preventing signatures (DAPS), we have a signature
scheme on a message space M = A × P of messages m = (a, p) consisting
of an address a and a payload p. The signature scheme is extended with a
fourth algorithm Ex that extracts the secret key from signatures on two colliding
messages. Before we can present the formal definition of DAPS we need to define
the term colliding messages.

Definition 3 (Colliding Messages). We call two messages m1 = (a1, p1) and
m2 = (a2, p2) colliding if a1 = a2, but p1 6= p2.

Below, we now formally introduce DAPS following [PS14,PS17].
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Definition 4 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGenD,SignD,VerifyD,ExD) of PPT algorithms, which are de-
fined as follows:

KGenD(κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key skD and a public (verification) key pkD with associated
message space M (we may omit to make the message space M explicit).

SignD(skD,m) : This algorithm takes a secret key skD and a message m ∈ M as
input and outputs a signature σ.

VerifyD(pkD,m, σ) : This algorithm takes a public key pkD, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

ExD(pkD,m1,m2, σ1, σ2) : This algorithm takes a public key pkD, two colliding
messages m1 and m2 and signatures σ1 for m1 and σ2 for m2 as inputs and
outputs a secret key skD.

Note that the algorithms KGenD, SignD, and VerifyD match the definition of
the algorithms of a conventional signature scheme. For DAPS one requires a
restricted but otherwise standard notion of unforgeability [PS14,PS17], where
adversaries can adaptively query signatures for messages but only on distinct
addresses. Figure 2 details the unforgeability security experiment.

Definition 5 (EUF-CMA [PS14]). A DAPS scheme is EUF-CMA secure, if for
all PPT adversaries A there is a negligible function ε(·) such that

Pr
[
ExpEUF-CMA

A,DAPS (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Figure 2.

ExpEUF-CMA
A,DAPS (κ):

(skD, pkD)← KGenD(1κ)
Q ← ∅, R ← ∅
(m∗, σ∗)← ASign′D(skD,·)(pkΣ)

where oracle Sign′D on input m:
(a, p)← m
if a ∈ R, return ⊥
σ ← SignD(skD,m)
Q ← Q∪ {m}, R← R∪ {a}
return σ

return 1, if VerifyD(pkD,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 2: EUF-CMA security for DAPS.

The interesting property of a DAPS scheme is the notion of double-signature
extractability (DSE). It requires that whenever one obtains signatures on two
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colliding messages, one should be able to extract the signing key using the ex-
traction algorithm ExD. We give the security game in Figure 3, where we consider
the conventional notion, denoted as DSE, which requires extraction to work if
the key pair has been generated honestly. In this game, the adversary is given a
key pair and outputs two colliding messages and corresponding signatures. The
adversary wins the game if the key produced by ExD is different from the signing
key although extraction should have succeeded, i.e, the messages were colliding
and their signatures were valid.

Definition 6 (DSE [PS14]). A DAPS scheme provides double-signature ex-
traction (DSE), if for all PPT adversaries A there is a negligible function ε(·)
such that

Pr
[
ExpDSE

A,DAPS(κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Figure 3.

ExpDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1κ)
(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′D 6= skD

return 0

Fig. 3: DSE security for DAPS.

In Appendix C we recall the strong variant of extractability under malicious
keys (denoted as DSE∗), where the adversary is allowed to generate the key
arbitrarily. The DSE∗ notion is very interesting from a theoretical perspective,
but no efficient DAPS construction, including ours, can achieve this notion so
far. However, as we will show in Section 6.5 our, constructions satisfy a weaker
notion under malicious keys introduced in this paper.

5.2 Existing DAPS Constructions

Poettering and Stebila [PS14,PS17] present the first ever DAPS construction in a
factoring-based setting, where a signature contains n+1 elements in a group Z∗N
with n being the length of the output of a cryptographic hash function and N
is an RSA modulus. At a security level of 128 bit (a 2048-bit RSA modulus and
256-bit hash), a signature contains > 250 group elements yielding a signature size
of > 64 KB and signing as well as verification times much higher than standard
signatures. Ruffing, Kate and Schroeder in [RKS15] introduced the notion of
accountable assertions (AS), a weaker primitive than DAPS, and present one AS
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that also is a DAPS (termed RKS). The RKS construction is based on Merkle
tress and chameleon hash functions in the discrete logarithm setting. Signing
and verification are much more efficient than within PS, but signature sizes are
still in the order of PS. Very recently, Bellare, Poettering and Stebila [BPS17]
proposed new factoring-based DAPS from trapdoor identification-schemes using
an adaption and extension of a transform from [BPS16]. Their two transforms
applied to the Guillou-Quisquater (GQ) [GQ88] and Micali-Reyzin (MR) [MR02]
identification scheme yield signing and verification times as well as signature
sizes comparable (or slightly above) standard RSA signatures. In a concurrent
and independent work Boneh et al. [BKN17] propose constructions of DAPS
from lattices. They consider DAPS as a special case of what they call predicate-
authentication-preventing signatures (PAPS). In PAPS one considers a k-ary
predicate on the message space and given any k valid signatures that satisfy the
predicate reveal the signing key. Consequently, DAPS are PAPS for a specific
2-ary predicate and what we call N -times-authentication-preventing signatures
(NAPS) is denoted as k-way DAPS in their work.

Unfortunately, as it is clear from the discussion, none of these DAPS schemes
relies on widely used signature schemes such as RSA or (EC)DSA signatures.
It is also important to mention that all these constructions only provide the
extractability notion under honestly generated keys (DSE)10. We now present
our DAPS in the next section and defer a detailed comparison of existing DAPS
and ours to Section 6.10.

6 Short DAPS in the DL Setting

In this section we present our generic DAPS constructions from any discrete
logarithm-based EUF-CMA secure signature scheme and in particular provide an
instantiation with ECDSA signatures. As already mentioned, we thereby will
be as non-invasive as possible in constructing DAPS “around” existing signa-
tures without modifying the setting, e.g., groups, that are used by the respective
schemes.

6.1 Intuition of Our Approach

As already mentioned in Section 3, our generic approach to construct DAPS is
based on the idea of combining a signature scheme with a verifiable secret sharing
scheme and in every signature include a share (specific to the address) of the
secret signing key. Consequently, signing two different payloads with respect to
the same address within the DAPS allows to extract the signing key of the
underlying signature scheme.

10 To be precise, in the initial work [PS14,PS17] the authors could tweak their con-
struction to provide DSE∗ at the cost of adding quite expensive non-interactive
zero-knowledge proofs to show that the public key is a well-formed Blum integer.
But this would make their already rather impractical constructions with signature
sizes > 64 KB only more impractical.
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Before presenting our construction paradigm and instantiations of DAPS,
we introduce verifiable secret sharing in Section 6.2, ElGamal encryption in
Section 6.3 and non-interactive zero-knowledge proofs from Σ-protocols (and a
standard proof for the language of DDH tuples) in Section 6.4.

6.2 Verifiable Secret Sharing

Shamir’s (k, `)-threshold secret sharing [Sha79] allows to information-theoretically
share a secret s among ` parties such that whenever k evaluations of the polyno-
mial (shares) are given, reconstruction of s is possible, but as long as only k− 1
shares are available the secret s is information-theoretically hidden. Let s be the
constant term of an otherwise randomly chosen k − 1 degree polynomial

f(X) = ρk−1X
k−1 + · · ·+ ρ1X + s

over a prime field Zq. A share is computed as f(i) for party i, 1 ≤ i ≤ `. Let S
be any set of cardinality at least k of these ` shares and let us denote the set
of indices corresponding to shares in S by IS . Using Lagrange interpolation one
can compute s = f(0) as

s =
∑
j∈IS

λjf(j) whereas λj =
∏

i∈IS\{j}

j

j − i
.

Now, we discuss a well known technique due to Feldman [Fel87] to make
Shamir’s secret sharing verifiable, by relaxing the otherwise information-theoretic
secrecy to be only computational. The basic idea is to allow the use of a one-way
homomorphism and in particular let us use a group G = (G, q, g). To enable
verifiability one publishes the sequence (gρk−1 , . . . , gρ1 , gρ0) with gρ0 = gs and
when given a share f(i), everyone can non-interactively verify whether the share
is correct by checking

gf(i) =

k−1∏
j=0

(gρj )i
j

.

Clearly, secrecy of s is only guaranteed if it has high min-entropy, as guesses can
efficiently be verified.

6.3 ElGamal Encryption

Before presenting ElGamal encryption [Gam84], let us define an encryption
scheme first.

Definition 7 (Public Key Encryption Scheme). A public key encryption
scheme Ω is a triple (KGen,Enc,Dec) of PPT algorithms such that:

KGen(1κ) : This algorithm on input security parameter κ outputs the secret and
public key (sk, pk) (the public key pk implicitly defines the message space
M).

135



Enc(pk,m) : This algorithm input the public key pk, and the message m ∈ M
and outputs a ciphertext C.

Dec(sk, C) : This algorithm on input a secret key sk and a ciphertext C outputs
a message m ∈M∪ {⊥}.

We say that an encryption scheme Ω is perfectly correct if for all κ ∈ N, for all
(sk, pk)← KGen(1κ) and for all m ∈M it holds that

Pr [Dec(sk,Enc(pk,m)) = m] = 1.

IND-CPA security requires that an adversary A cannot decide which message
is actually contained in a ciphertext C even when allowed to choose two challenge
messages m0 and m1. We formally define IND-CPA security in Appendix D.

The ElGamal encryption scheme is multiplicatively homomorphic and IND-
CPA secure under the k-LIN assumption in G. We briefly present the popular
ElGamal encryption scheme [Gam84] in a group G = (G, q, g) where the 1-LIN
(DDH) assumption holds. The key generation algorithm KGen on input κ gener-
ates a group G = (G, q, g) of prime order q of size κ bits and sets sk := x←R Zq
and pk := gx. To encrypt a message m ∈ G, Enc samples r←R Zq and computes
the ciphertext (C1, C2) := (gr,m · pkr). Finally, the decryption algorithm Dec
given sk and ciphertext (C1, C2) outputs C2 · C−sk

1 .
When setting k = 2 instead of k = 1 one obtains ElGamal under the 2-

LIN (DLIN) assumption [BBS04] (termed linear ElGamal). It has the benefit
that it can be instantiated in groups where the DDH assumption does not hold,
e.g., in certain pairing-friendly elliptic curve or Schnorr groups. We recall both
assumptions in Appendix A for the convenience of the reader. In the remainder
of this paper we use the DDH instantiation of ElGamal, but we stress that all
our protocols can be based on linear ElGamal as well.

6.4 Σ-Protocols

Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is an interactive three move
protocol between a prover and a verifier, where the prover proves knowledge of a
witness w to the statement x ∈ L. We recall the formal definition of Σ-protocols
in Appendix E.

Σ-protocol for DDH-tuples. Σ-protocols for proving that elements (g1, g2,
u1, u2) in a prime order group G form a DDH tuple are well known and estab-
lished [CP92]. We define the corresponding language via relation R

((g1, g2, u1, u2), w) ∈ R⇔ gw1 = u1 ∧ gw2 = u2 (1)

as witness relation. In Scheme 2 we briefly recall a classical Σ-protocol for R.

Lemma 1. The protocol in Scheme 2 represents a Σ-protocol for the relation R
in (1).
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Let G = (G, q, g) and let g1, g2, u1, u2 ∈ G.

Prover Verifier

(u1, u2, k = loggi ui) (u1, u2)

r←R Z∗q , ri ← gri
r1, r2

c c←R Zq

s← r + kc s accept iff ∀i : gsi = riu
c
i

Scheme 2: Σ-protocol for proving that (g1, g2, u1, u2) forms a DDH-
tuple.

We omit the proof of Lemma 1 as it is a well known result and straightforward.

Non-Interactive ZK Proof Systems (NIZK). We recall a standard defini-
tion of non-interactive zero-knowledge proof systems. Let L be an NP-language
with witness relation R as above.

Definition 8 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (SetupΠ,ProofΠ,VerifyΠ),
which are defined as follows:

SetupΠ(1κ) : This algorithm takes a security parameter κ as input, and outputs
a common reference string crs.

ProofΠ(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

VerifyΠ(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness and adaptive zero-knowledge. In Appendix F we recall formal defini-
tions of those properties.

NIZK from Σ-protocols. One can obtain a non-interactive proof system
with the above properties from any Σ-protocol by applying the Fiat-Shamir
transform [FS86] where the min-entropy µ of the commitment a sent in the first
message of the Σ-protocol is so that 2−µ is negligible in the security parameter
κ and its challenge space C is exponentially large in the security parameter.
Essentially, the transform removes the interaction between the prover and the
verifier by using a hash function H (modelled as a random oracle) to obtain
the challenge. That is, the algorithm Challenge obtains the challenge as H(a, x).
More formally, SetupΠ(1κ) fixes a hash function H : A×X→ C, sets crs← (κ,H)
and returns crs. The algorithms ProofΠ and VerifyΠ are defined as follows:

ProofΠ(crs, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
c← H(a, x). Finally obtain s and return π ← (a, s).
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VerifyΠ(crs, x, π) : Parse π as (a, s). Start V on (1κ, x) and send a as first message
to the verifier. When V outputs c, reply with s and output 1 if V accepts
and 0 otherwise.

Combining [FKMV12, Thm. 1, Thm. 2, Thm. 3, Prop. 1] (among others) shows
that a so-obtained proof system is complete, sound, adaptively zero-knowledge,
if the underlying Σ-protocol is special sound and the commitments sent in the
first move are unconditionally binding. When referring to the NIZK proof sys-
tem obtained from Scheme 2, we denote the algorithms as (SetupDDH,ProofDDH,
VerifyDDH).

A note on the CRS. We stress that for the sake of generality the output
of SetupDDH is denoted as crs. However, as we exclusively use NIZK from Σ-
protocols in our DAPS, we do not require a trusted setup and crs is just a
description of the hash function which is globally fixed, e.g., to SHA-256 or
SHA-3.

6.5 Extraction of the Signing Key of Σ

When considering constructions that extend conventional signature schemes to
a DAPS, there is a gap between DSE and DSE∗ notions and ensuring extraction
of the Σ signing key. Recall, that these notions require to extract the complete
DAPS secret key and no existing efficient DAPS scheme provides DSE∗. When
the DAPS key consists of a Σ signing key, extraction of the signing key alone,
however, already disincentivizes double-authentication for many applications,
where this key is also used outside the context of DAPS. Hence we define two
weaker double-signature extraction notions that cover extraction of the signing
key of the underlying signature scheme for honestly and maliciously generated
DAPS keys. The security games for weak double-signature extraction (wDSE)
and weak double-signature extraction under malicious keys (wDSE∗) are depicted
in Figure 4 and Figure 5.

Definition 9 (T ∈ {wDSE,wDSE∗}). A DAPS scheme provides weak double-
signature extraction (T = wDSE) respectively weak double-signature extraction
under malicious keys (T = wDSE∗), if for all PPT adversaries A there is a
negligible function ε(·) such that

Pr
[
ExpTA,DAPS(κ) = 1

]
≤ ε(κ),

where the corresponding experiments are depicted in Figure 4 and Figure 5 re-
spectively.

Clearly, DSE and DSE∗ imply their weaker counterparts and wDSE∗ implies
wDSE.
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ExpwDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1κ) with skD = (skΣ, . . . )
(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ 6= skΣ

return 0

Fig. 4: wDSE security for DAPS.

ExpwDSE∗

A,DAPS(κ):
(pkD,m1,m2, σ1, σ2)← A(1κ) where pkD = (pkΣ, . . . )
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ is not the secret key corresponding to pkΣ

return 0

Fig. 5: wDSE∗ security for DAPS.

6.6 Generic DAPS in the Discrete Logarithm Setting

In the following, let Σ be a signature scheme in the discrete logarithm setting,
which is from the class C of signature schemes where the public key is the image
of the secret key under a group homomorphism. In the discrete logarithm setting
this means that the secret key x is an element from Zq and the public key is its
image gx in the group. We stress that the class C essentially covers any scheme
in the discrete logarithm setting we can think of, and, in particular schemes like
Schnorr, (EC)DSA, or EdDSA. We subsequently present our protocols based on
ElGamal in the DDH setting and recall that when the DDH is not hard in the
respective group, we can easily instantiate all our protocols on linear ElGamal
under the DLIN assumption (cf. Section 6.3)

Our approach is as follows. First we generate an ElGamal encryption key-
pair (xE , pkE). Then, for each possible address i we choose ρi ∈ Zq uniformly
at random and additionally include an encryption (Ci,1, Ci,2) of gρi as well as
pkE in the DAPS public key. The secret key additionally includes the values ρi
and the randomness ri ∈ Zq used upon encrypting ρi. When signing a message
m = (i, p) ∈ [n]×Z∗q , we obtain a signature from Σ, and extend it with a secret
share of skΣ: we let fi(X) = ρiX + skΣ and include z = fi(p) in the signature.
When signing two colliding messages, we obtain two shares for the same degree 1
polynomial fi and hence can re-construct skΣ. To ensure the correct computation
of z, each signature is extended by a proof for the following relation R, which is
essentially a proof for a verifiable secret sharing using ElGamal encryption for
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the coefficient of the non-constant term:

((g, pkE , Ci,1, C
′
i,2), r) ∈ R⇔ Ci,1 = gr ∧ C ′i,2 = pkrE

where C ′i,2 = Ci,2 · (pkΣ · g−z)
1/p.

Observe that the extraction algorithm, when applied to colliding signatures,
reveals the secret signing key skΣ, but none of the ri and ρi. However, DAPS
extraction needs to recover the full secret key, so we cannot achieve the stronger
DSE notion, but obtain wDSE security.

KGenD(1κ, n) : Let (skΣ, pkΣ) ← KGenΣ(1κ) with G = (G, q, g). Let xE ←R Z∗q and

pkE ← gxE . Let (ρi)i∈[n]←
R

(Z∗q)n and (ri)i∈[n]←
R

(Z∗q)n. Set (Ci)i∈[n] ←
(gri , pkriE g

ρi)i∈[n]. Let crs ← SetupDDH(1κ). Let sk ← (skΣ, (ri, ρi)i∈[n]) and
pk← (pkΣ, pkE , (Ci)i∈[n], crs) and return (sk, pk).

SignD(sk,m) : Parse sk as (skΣ, (ri, ρi)i∈[n]). Parse m as (i, p) with i ≤ n and p ∈ Z∗q .
1. Let σ ← SignΣ(skΣ,m)
2. let z ← ρip+ skΣ

3. let C′2 ← Ci,2 · (pkΣ · g−z)
1
p

4. π ← ProofDDH(crs, (g, pkE , Ci,1, C
′
2), ri)

5. return (σ, z, π)
VerifyD(pk,m, σ) : Parse pk as (pkΣ, pkE , (Ci)i∈[n], crs), m as (i, p) with i ≤ n, and σ as

(σ′, z, π).
1. If VerifyΣ(pkΣ,m, σ

′) = 0, return 0

2. let C′2 ← Ci,2 · (pkΣ · g−z)
1
p

3. return VerifyDDH(crs, (g, pkE , Ci,1, C
′
2), π)

ExD(pk,m1,m2, σ1, σ2) : Parse σi as (·, zi, ·), mi as (ai, pi) and pk as (·, ·, ·, ·).
1. If m1 and m2 are not colliding, return ⊥
2. if VerifyD(pk,mi, σi) = 0 for any i, return ⊥
3. let skΣ ← z1

p2
p2−p1

+ z2
p1

p1−p2
4. return skΣ

Scheme 3: Σ-DAPS: Generic DAPS from any signature scheme Σ from
class C.

We note that in our construction KGenD takes the number of addresses as
explicit argument. The scheme is also presented using Z∗q as payload space, but it
can be extended to an arbitrary payload space using the standard hash-then-sign
technique.

Theorem 1. If Σ is from class C instantiated in group G and EUF-CMA-secure,
DDH is hard relative to G and the NIZK proof system is adaptive zero-knowledge,
then Σ-DAPS is an EUF-CMA-secure DAPS.

Proof. We prove this theorem using a sequence of games. We denote the winning

event of game Gi as Si. We use gray textboxes to indicate changes within

algorithms.
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Game 0: The original EUF-CMA game.
Game 1: As before, but we modify KGenD to use setup algorithm S1,DDH of the

simulator for the NIZK proof system.
KGenD(1κ, n) : As before, but let

(crs, τ)← S1,DDH(1κ) and store τ .

Transition 0→ 1: Game 0 and Game 1 are indistinguishable under adaptive
zero-knowledge of the proof system, i.e. |Pr[S0]− Pr[S1]| ≤ εz,1(κ).

Game 2: As Game 1, but we modify SignD to use the simulation algorithm
S2,DDH of the simulator of the NIZK proof system:
SignD(sk,m) : As before, but let

π ← S2,DDH(crs, τ, (g, pkE , Ci,1, C
′
2)) .

Transition 1→ 2: Game 1 and Game 2 are indistinguishable under adaptive
zero-knowledge of the proof system, i.e. |Pr[S0]− Pr[S1]| ≤ εz,2(κ).

Game 3: As Game 2, but we modify KGenD as follows:

KGenD(1κ, n) : Let (skΣ, pkΣ)← KGenΣ(1κ) with G = (G, q, g). Let pkE ←
R G .

Let (ρi)i∈[n]←R (Z∗q)n. Let (Ci)i∈[n]←R (G2)n . Let (crs, τ)← S1,DDH(1κ).

Let sk← (skΣ, (ri, ρi)i∈[n]) and pk← (pkΣ, pkE , (Ci)i∈[n], crs) and return
(sk, pk).

Transition 2→ 3: We claim that the probability to distinguish between Game
1 and Game 2 is bounded by |Pr[S1] − Pr[S2]| ≤ n · εDDH(κ). To see this
assume n additional hybrids, where in each hybrid Hj with 1 ≤ j ≤ n we
replace ciphertext Cj by a random value. Then the distinguishing probability
of two consecutive hybrids is bounded by εDDH(κ). In particular, assume we
obtain a DDH instance (gu1 , gu2 , gu3) relative to G and set pkE ← gu2 .
Then in hybrid Hj we choose all Ci where i < j random (as they were
also already random in the previous hybrid). For Cj , we compute Cj ←
(gu1 , gu3 · gρi). Furthermore, for Ci where i > j, we choose ri←R Zq and set
Ci ← (gri , (gu2)ri · gρi). Then the validity of the DDH instance determines
whether we sample from the distribution in Game i or Game i + 1, which
proves that the distinguishing probability between two intermediate hybrids
is bounded by εDDH(κ). Taking all n transitions together, this yields n ·
εDDH(κ) which proves our initial claim.

Game 4: As Game 3, but we modify SignD as follows:

SignD(sk,m) : As before, but let z←R Zq .
Transition 3→ 4: This change is conceptual. At this point skΣ is information-

theoretically hidden.
Game 5: As Game 4, but we abort whenever the adversary comes up with a

valid forgery.
Transition 4→ 5: We denote the event that we abort by E. Both, Game 4 and

Game 5 proceed identically unless E happens, i.e., |Pr[S2]−Pr[S3]| ≤ Pr[E].
Whenever E happens in Game 5, we can build an EUF-CMA forger for Σ.
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To do so, we engage with an EUF-CMA challenger for Σ and obtain σ from
the oracle provided by the challenger (we no longer require skΣ anywhere
else). If the adversary outputs a forgery, we can output (σ′, (i,m)) as a valid
EUF-CMA forgery, i.e. |Pr[S2]− Pr[S3]| ≤ εEUF-CMA(κ).

In the final game, the adversary can no longer win, i.e., Pr[S5] = 0. Taking all
together, we have that Pr[S0] ≤ εz,1(κ) + εz,2(κ) + n · εDDH(κ) + εEUF-CMA(κ),
which concludes the proof.

We now show that our Σ-DAPS also provide wDSE security, and then ex-
tend this result to wDSE∗, and thus for the first time we have some reasonable
extraction guarantees under adversarially generated keys for practical DAPS.

Theorem 2. If the NIZK proof system is sound, then Σ-DAPS provides wDSE
security.

Proof. We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. Let m1,m2, σ1, σ2 be the output of A. For simplicity
we write mj = (a, pj), σj = (·, zj , πj) for i ∈ [2], pkD = (pkΣ, pkE , (Ci)i∈[n], crs),

and (Ca,1, Ca2)← Ca. We also let C ′j,2 ← Ca,2 · (pkΣ · g−zj )
1
pj for j ∈ [2].

Game 0: The original wDSE game.
Game 1: As before, but we abort if C ′1,2 6= C ′2,2.
Transition 0→ 1: Let E be the event that C ′1,2 6= C ′2,2. In this case we engage

with a soundness challenger C of proof system and modify KGenD as follows:

KGenD(1κ, n) : Obtain crs from C and compute everything else honestly.

Once A outputs the two colliding messages and signatures, we have proofs
attesting that both (g, pkE , Ca,1, C

′
j,2) for j ∈ [2] are DDH tuples, but, by the

perfect correctness of ElGamal, at most one of them can be a DDH tuple,
i.e., one of the words is not in the language. Hence we guess b←R {0, 1},
and forward (g, pkE , Ca,1, C

′
b+1,2), πb+1 to C. We guess the word breaking

soundness of DDH with probability 1/2. Hence Pr[E] ≤ 2 · εs(κ) where εs is
the soundness error of DDH.

Now (p1, z1) and (p2, z2) are secret shares of the same polynomial f = ρX+ skΣ.
Hence x is uniquely determined via

skΣ = f(0) = z1
p2

p2 − p1
+ z2

p1
p1 − p2

.

Since the key was set up honestly, we have Pr[S1] = 0 and in total Pr[S0] ≤
2 · εs(κ), which concludes the proof.

Recall that the crs of NIZK proof systems instantiated by applying the Fiat-
Shamir transform to a Σ-protocol consists of a globally fixed hash function,
e.g. SHA-256 or SHA-3. Consequently, this hash function can simply be part
of the DAPS description, removed from the key generation and globally fixed.
Now one can observe that the properties of the proof system do not require a
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trusted setup. So even when considering keys generated by the adversary, this
observation and the perfect correctness of the encryption scheme ensure that
our DAPS construction guarantees the successful extraction of the signing key
of the underlying signature scheme. We now give a sketch of the proof.

Theorem 3. If the NIZK proof system is sound and instantiated by applying
the Fiat-Shamir transform to the Σ-protocol in Scheme 2, then Σ-DAPS provides
wDSE∗ security.

Proof (Sketch). We observe that the only parameter which needs to be controlled
by the simulator in the proof of Theorem 2 is the crs. Now, since there is no
crs in Fiat-Shamir transformed Σ-protocols, wDSE∗ follows from this property,
Transition 0 → 1 of Theorem 2, and the observation that skΣ is then uniquely
determined by the two shares included in the signatures.

6.7 DAPS from ECDSA

As an example we give a concrete instantiation of our DAPS construction based
on ECDSA, dubbed ECDSA-DAPS. The full scheme is presented in Scheme 4.
Furthermore, we state the following corollaries.

Corollary 1. If ECDSA is EUF-CMA-secure, and the NIZK proof system is
adaptive zero-knowledge, then ECDSA-DAPS is an EUF-CMA-secure DAPS in
the random oracle model.

Corollary 2. If the NIZK proof system is sound and instantiated by applying
the Fiat-Shamir transform to the Σ-protocol in Scheme 2, then ECDSA-DAPS
provides wDSE∗ security.

The two corollaries follow directly from the observation that ECDSA is included
in the class C and Theorem 1, and Theorem 3.

6.8 Further DAPS

Our technique to construct DAPS can also be applied to the Schnorr signature
scheme (cf. Appendix B) and the finite-field variant DSA. In particular, the latter
is straightforward given the construction of ECDSA-DAPS in Scheme 4 and for
brevity we omit the scheme. Besides DSA and Schnorr, EdDSA [BDL+12] also
belongs to the class C of signatures schemes and can be extended to a DAPS in
the same way. Consequently, our DAPS construction can easily be instantiated
with EdDSA and curves ed25519 [Ber06] or ed448 [Ham15]. Even more generally,
our approach towards DAPS can generically be applied to any signature schemes
in the discrete logarithm setting from class C. Straightforwardly, if the public
key is a single group element and otherwise for any scheme having public keys
k > 1 group elements one simply has to combine the signature scheme with k
copies of our technique. Our approach might also be applied beyond discrete
logarithm based schemes if the respective setting provides a suitable encryption
scheme, verifiable secret sharing scheme for secret keys and a non-interactive
proof system.
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KGenD(1κ, n) : Let G = (G, q, g) and H : {0, 1}∗ → Zq be a hash function mapping

exactly to the order of the group. Let skΣ←R Z∗q and xE ←R Z∗q , and set pkΣ ←
gskΣ and pkE ← gxE . Let (ρi)i∈[n]←

R
(Z∗q)n and (ri)i∈[n]←

R
(Z∗q)n. Set (Ci)i∈[n] ←

(gri , pkriE g
ρi)i∈[n]. Let crs ← SetupDDH(1κ). Let sk ← (skΣ, (ri, ρi)i∈[n]) and pk ←

(pkΣ, pkE , (Ci)i∈[n], crs) and return (sk, pk).
SignD(sk,m) : Parse sk as (skΣ, (ri, ρi)i∈[n]). Parse m as (i, p) with i ≤ n and p ∈ Z∗q .

1. Choose k←R Z∗q
2. compute R← gk

3. let r ← Rx (mod q) and if r = 0 goto step 1
4. let s← k−1(H(m) + rskΣ) (mod q) and if s = 0 goto step 1
5. let z ← ρip+ skΣ

6. let C′2 ← Ci,2 · (pkΣ · g−z)
1
p

7. π ← ProofDDH(crs, (g, pkE , Ci,1, C
′
2), ri)

8. return (r, s, z, π)
VerifyD(pk,m, σ) : Parse pk as (pkΣ, pkE , (Ci)i∈[n], crs, ·), m as (i, p) with i ≤ n, and σ

as (r, s, z, π).
1. If r = 0 ∨ s = 0 return 0
2. let z ← H(m) and w ← s−1 (mod q)
3. let u1 ← zw (mod q) and u2 ← rw (mod q)
4. let R← gu1 · pku2

Σ

5. if Rx = r (mod q) return 1 and return 0 otherwise

6. let C′2 ← Ci,2 · (pkΣ · g−z)
1
p

7. return VerifyDDH(crs, (g, pkE , Ci,1, C
′
2), π)

ExD(pk,m1,m2, σ1, σ2) : Parse σi as (·, zi, ·), mi as (ai, pi) and pk as (·, ·, ·, ·).
1. If m1 and m2 are not colliding, return ⊥
2. if VerifyD(pk,mi, σi) = 0 for any i, return ⊥
3. let skΣ ← z1

p2
p2−p1

+ z2
p1

p1−p2
4. return skΣ

Scheme 4: ECDSA-DAPS: DAPS from ECDSA.

6.9 N-Times-Authentication-Preventing Signatures

Finally, we observe that our techniques can easily be generalized to what we
call N -times-authentication-preventing signatures (NAPS). That is, signature
schemes where creating N signatures with respect to the same address leaks the
secret key while they are unforgeable as long as there are < N signatures for
every address. While an extension of the formal model is straightforward and
therefore omitted, we subsequently sketch the construction.

Essentially, instead of computing z by evaluating a degree 1 polynomial
fi(X) = ρiX + skΣ ∈ Zq[X] associated to address i at the payload p, we
can generalize our approach to a degree N − 1 polynomial fi(X) = skΣ +∑
j∈[N−1] ρijX

j ∈ Zq[X]. The evaluation in the encrypted domain works like-

wise (when including the values ρij in encrypted form in the public key) and the
proof Π remains the same. Also the signature size is not influenced by this ex-
tension. Finally, the proofs easily generalize from 2 to N and hold under exactly
the same argumentation. Thus we do not restate them.
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6.10 Comparison with Previous Work

Now we want to compare the existing instantiations of DAPS in the factoring (F)
and discrete logarithm (DL) setting with the ones presented in this paper. We
stress that we are interested in cryptographic settings that are currently widely
used and thus do not consider the lattice-based DAPS in [BKN17]. In Table 2,
which is based on the recent work in [BPS17], we present a comparison of existing
DAPS in terms of operation count and sizes of public keys and signatures. For
reference, we also include the costs of ECDSA.

The costs of the factoring-based schemes are dominated by exponentiations
with the respective RSA modulus. Observe that the savings in the signature size
of one hash digest when applying the ID2 transform instead of the H2 transform,
comes at the cost of twice the amount of operations during signing and thrice
the operations during verification. While choosing MR as identification-scheme
over GQ allows to reduce the operation count for verification and the size of the
public key, signing costs are the same.

The performance of RKS largely depends on the concrete choice for the
Merkle tree. When using a pseudorandom function (PRF) with k bit output,
the arity of the tree r and the height h need to satisfy rh ≥ 22k. Additionally,
the group G needs to be compatible with the PRF, i.e., log2 |G| = 2k. For
example, when using a binary tree (r = 2), then the height needs to be at least
2k. While increasing the arity decreases the verification times, signing times and
signature sizes increase.

When looking at our DAPS construction, the operation count of signing and
verification takes an extra 4, respectively 6 group operations. The signature
contains 3 additional Zq elements. When instantiating our construction with
ECDSA, signing requires 5 group operations in total, and verification takes 8
group operations. Signatures consists of 5 Zq elements.

7 Implementation

We now present an implementation11 of our ECDSA-DAPS based on the widely
used OpenSSL12 library and its ECDSA implementation. We note that Open-
SSL’s ECDSA implementation can be extended without any modifications. But
also any other ECDSA implementation can be extended in the same way as
long as an API for the necessary group operations is available. Note that any
implementation of our DAPS construction is extendable to NAPS.

7.1 Benchmarking ECDSA-DAPS

For comparing our construction with existing DAPS implementations, we bench-
marked ECDSA-DAPS using curves secp256k1 and prime256v1 and the DAPS

11 The implementation is available at https://github.com/IAIK/daps-dl.
12 https://openssl.com.
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schemes H2[GQ], ID2[GQ], and H2[MR] from [BPS17] with a 2048 bit modu-
lus. The benchmarks were performed on an Intel Core i7-4790 CPU and 16 GB
RAM running Ubuntu 17.04 and the results are presented in Table 3. We omit
the PS and RKS DAPS in this comparison, as they are by far not competitive;
neither in terms of signature size nor performance (cf. [BPS17, Figure 21] for an
overview). For reference, we also include sizes and timings for ECDSA. For the
sizes required to store elliptic curve points, we assume that point compression is
used.13

Scheme Sign Verify |sk| |pk| |σ|
[ms] [ms] [bits] [bits] [bits]

H2[GQ] 1.12 0.65 4096 6144 2304
ID2[GQ] 2.12 2.06 4096 6144 2049
H2[MR] 1.36 0.58 4096 2048 2304

ECDSA-DAPS (s) 0.76 1.33 256 · (1 + 2n) 514 · (1 + n) 1280
ECDSA-DAPS (p) 0.23 0.35 256 · (1 + 2n) 514 · (1 + n) 1280

ECDSA (s) 0.09 0.35 256 257 512
ECDSA (p) 0.06 0.21 256 257 512

Table 3: Timings and sizes of private keys (sk), public keys (pk) and
signatures (σ) with n addresses. The curves secp256k1 and prime256v1

are denoted as s and p, respectively.

Compared to H2[GQ], ID2[GQ], and H2[MR], ECDSA-DAPS using the curve
prime256v1 is an order of magnitude faster when signing and verification is of
the same order of magnitude, yet slightly faster as the faster H2 schemes. For
ECDSA-DAPS using secp256k1 the picture for verification is slightly different:
verification is comparable to the slower ID2[GQ] scheme. The difference in the
signing and verifications times that can be observed in conventional ECDSA
and ECDSA-DAPS when switching curves, and it shows that OpenSSL includes
a more optimized implementation of the arithmetic on prime256v1.

8 Conclusion

In this paper we asked whether one can construct DAPS from signature schemes
used in practice. We affirmatively have answered this question by presenting
provably secure DAPS schemes, among others, from the widely used ECDSA
signature scheme. They are the shortest among all existing DAPS schemes and
improve over the most efficient factoring and discrete logarithm based schemes.
Moreover, we showed how to extend our approach to N -times-authentication-
preventing signatures for any N > 2. We provided an integration into the

13 We store the x-coordinate and a bit indicating the “sign” of the y-coordinate. So
points require b+ 1 bits instead of 2b bits for b-bit curves.
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OpenSSL library to foster fast adoption in practical applications, of which we
discuss some interesting ones in this paper.
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A Cryptographic Assumptions

Subsequently, we present the decisional Diffie-Hellman (DDH or 1-LIN) and deci-
sion linear (DLIN or 2-LIN) assumptions, very common assumptions underlying
the IND-CPA security of versions of the ElGamal encryption scheme.

Definition 10 (DDH). The DDH assumptions holds relative to G = (G, q, g),
if for all PPT adversaries A, there is a negligible function ε such that∣∣∣∣Pr

[
x, y, z←R Zq,
b∗ ← A

(
gx, gy, gb·xy+(1−b)z): b = b∗

]
− 1

2

∣∣∣∣ ≤ ε(κ)

Definition 11 (DLIN). The DLIN assumptions holds relative to G = (G, q, g),
if for all PPT adversaries A, there is a negligible function ε such that

∣∣∣∣∣∣Pr

u, v, h←R G, x, y, z←R Zq,

b∗ ← A
(
u, v, h, ux, vy,
hb·(x+y)+(1−b)z

)
: b = b∗

− 1

2

∣∣∣∣∣∣ ≤ ε(κ)
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B Schnorr Signature Scheme

The Schnorr signature scheme [Sch89] can be seen as a prime example of a
signature scheme obtained from an identification scheme using the Fiat-Shamir
heuristic [FS86]. We present an instantiation of Schnorr in Scheme 5. The Schnorr

KGenSchnorr(1
κ) : Let G = (G, q, g). Choose x←R Z∗q and set sk ← x and pk ← gx and

return (sk, pk).
SignSchnorr(sk,m) : Parse sk as x and choose k←R Z∗q . Compute c← H(gk‖m), s← k−cx

and return (c, s).
VerifySchnorr(pk,m, σ) : Parse σ as (c, s) and compute r ← gspkc. Return 1 if c = H(r‖m)

and 0 otherwise.

Scheme 5: Schnorr signature scheme.

signature scheme can be shown to provide EUF-CMA security in the random or-
acle model (ROM) under the DLP in G by using the now popular rewinding
technique [PS96] (cf. also [KMP16] for a recent treatment on tightness and op-
timality of such reductions).

C DSE∗ Security of DAPS

We recall the DSE∗ security notion of DAPS. The game is depicted in Figure 6,
where in contrast to Figure 3 the keys are allowed to be generated by the ad-
versary.

Definition 12 (DSE∗ [PS14]). A DAPS scheme provides double-signature ex-
traction (DSE∗), if for all PPT adversaries A there is a negligible function ε(·)
such that

Pr
[
ExpDSE∗

A,DAPS∗(κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Figure 6.

ExpDSE∗

A,DAPS(κ):
(pkD,m1,m2, σ1, σ2)← A(1κ)
return 0, if m1 and m2 are not colliding
vi ← VerifyD(pkD,mi, σi) for i ∈ [2]
return 0, if v1 = 0 or v2 = 0
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′ is not the secret key corresponding to pkD

return 0

Fig. 6: DSE∗ security for DAPS.
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D IND-CPA Security

IND-CPA security of an encryption scheme Ω is depicted in Figure 7.

Definition 13 (IND-CPA). A public key encryption scheme Ω is IND-CPA
secure, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr
[
ExpIND-CPA

A,Ω (κ) = 1
]
≤ ε(κ),

where the corresponding experiment is depicted in Figure 7.

ExpIND-CPA
A,Ω (κ)

(sk, pk)← KGen(1κ)
b← {0, 1}
(m0,m1, stateA)← A(pk)
if m0 /∈M ∨ m1 /∈M, let C ← ⊥
else, let C∗ ← Enc(pk,mb)
b∗ ← A(C∗, stateA)
return 1, if b∗ = b
return 0

Fig. 7: IND-CPA security.

E Σ-Protocols

Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined as follows.

Definition 14. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(a, c, s) ∈ A× C× S. Additionally they satisfy the following properties:

Completeness A Σ-protocol for language L is complete, if for all security pa-
rameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

Special Soundness A Σ-protocol for language L is special sound, if there exists
a PPT extractor E so that for all x, and for all sets of accepting transcripts
{(a, ci, si)}i∈[2] with respect to x where c1 6= c2, generated by any algorithm
with polynomial runtime in κ, it holds that

Pr

[
w ← E(1κ, x,
{(a, ci, si)}i∈[2])

: (x,w) ∈ R
]
≥ 1− ε(κ).
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Special Honest-Verifier Zero-Knowledge A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for every
x ∈ L and every challenge c from the challenge space, it holds that a tran-
script (a, c, s), where (a, s)← S(1κ, x, c) is indistinguishable from a transcript
resulting from an honest execution of the protocol.

F NIZK Security Properties

Definition 15 (Completeness). A non-interactive proof system for language
L is complete, if for all κ ∈ N, for all crs ← SetupΠ(1κ), for all x ∈ L, for
all w such that R(x,w) = 1, and for all π ← ProofΠ(crs, x, w), we have that
VerifyΠ(crs, x, π) = 1.

This captures perfect completeness.

Definition 16 (Soundness). A non-interactive proof system for language L is
sound, if for every PPT adversary A there exists a negligible function ε such
that:

Pr

[
crs← SetupΠ(1κ),
(x, π)← A(crs)

:
VerifyΠ(crs, x, π)

= 1 ∧ x 6∈ L

]
≤ ε(κ).

Definition 17 (Zero-Knowledge). A non-interactive proof system for lan-
guage L is zero-knowledge, if there exists an efficient simulator S = (S1,S2)
such that for any efficient adversary A there exist a negligible function ε1(·)
such that: ∣∣∣∣Pr [crs← SetupΠ(1κ) : A(crs) = 1] −

Pr [(crs, τ)← S1(1κ) : A(crs) = 1]

∣∣∣∣ ≤ ε1(κ),

and for any efficient adversary A there exists a negligible function ε2(·) such
that ∣∣∣∣Pr[Zero-KnowledgeΠ

A,S(κ) = 1]− 1

2

∣∣∣∣ ≤ ε2(κ),

where the corresponding experiment is depicted in Figure 8.
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Experiment Zero-KnowledgeΠ
A,S(κ)

b← {0, 1}
(crs, τ)← S1(1κ)

b∗ ← APb(·,·)(crs)
where oracle P0 on input (x,w):

return π ← ProofΠ(crs, x, w), if (x,w) ∈ R
return ⊥

and oracle P1 on input (x,w):
return π ← S2(crs, τ, x), if (x,w) ∈ R
return ⊥

return 1, if b = b∗

return 0

Fig. 8: Zero-Knowledge
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Abstract. We propose a new class of post-quantum digital signature
schemes that: (a) derive their security entirely from the security of symm-
etric-key primitives, believed to be quantum-secure, and (b) have ex-
tremely small keypairs, and, (c) are highly parameterizable.
In our signature constructions, the public key is an image y = f(x) of
a one-way function f and secret key x. A signature is a non-interactive
zero-knowledge proof of x, that incorporates a message to be signed. For
this proof, we leverage recent progress of Giacomelli et al. (USENIX’16)
in constructing an efficient Σ-protocol for statements over general cir-
cuits. We improve this Σ-protocol to reduce proof sizes by a factor of
two, at no additional computational cost. While this is of independent
interest as it yields more compact proofs for any circuit, it also decreases
our signature sizes.
We consider two possibilities to make the proof non-interactive: the Fiat-
Shamir transform and Unruh’s transform (EUROCRYPT’12, ’15,’16).
The former has smaller signatures, while the latter has a security anal-
ysis in the quantum-accessible random oracle model. By customizing
Unruh’s transform to our application, the overhead is reduced to 1.6x
when compared to the Fiat-Shamir transform, which does not have a
rigorous post-quantum security analysis.
We implement and benchmark both approaches and explore the possible
choice of f , taking advantage of the recent trend to strive for practical
symmetric ciphers with a particularly low number of multiplications and
end up using LowMC (EUROCRYPT’15).

Keywords: Post-quantum cryptography, zero-knowledge, signatures, block ci-
pher, Fiat-Shamir, Unruh, implementation

? The performance figures presented here are somewhat outdated. For up to date fig-
ures see https://microsoft.github.io/Picnic/. This is the full version of a paper which
appears in CCS’17: 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. ACM,
New York, NY, USA. This paper is a merge of [34,46].
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1 Introduction

More than two decades ago Shor published his polynomial-time quantum al-
gorithm for factoring and computing discrete logarithms [81]. Since then, we
know that a sufficiently powerful quantum computer is able to break nearly
all public key cryptography used in practice today. This motivates the inven-
tion of cryptographic schemes with post quantum (PQ) security, i.e., security
against attacks by a quantum computer. Even though no sufficiently powerful
quantum computer currently exists, NIST recently announced a post-quantum
crypto project7 to avoid a rushed transition from current cryptographic algo-
rithms to PQ secure algorithms. The project is seeking proposals for public key
encryption, key exchange and digital signatures thought to have PQ security.
The deadline for proposals is fall 2017.

In this paper we are concerned with constructing signature schemes for the
post-quantum era. The building blocks of our schemes are interactive honest-
verifier zero-knowledge proof systems (Σ-protocols) for statements over general
circuits and symmetric-key primitives, that are conjectured to remain secure in
a post-quantum world.

Post-Quantum Signatures. Perhaps the oldest signature scheme with post-
quantum security are one-time Lamport signatures [63], built using hash func-
tions. As Grover’s quantum search algorithm can invert any black-box func-
tion [52] with a quadratic speed-up over classical algorithms, one has to double
the bit size of the hash function’s domain, but still requires no additional assump-
tions to provably achieve post-quantum security. Combined with Merkle-trees,
this approach yields stateful signatures for any polynomial number of messages
[71], where the state ensures that a one-time signature key from the tree is not
reused. By making the tree very large, and randomly selecting a key from it
(cf. [47]), along with other optimizations, yields practical stateless hash-based
signatures [17].

There are also existing schemes that make structured (or number-theoretic)
assumptions. Code-based signature schemes can be obtained from identification
schemes based on the syndrome decoding (SD) problem [70,82,86] by applying
a variant of the well-known Fiat-Shamir (FS) transform [40]. Lattice-based sig-
nature schemes secure under the short integer solution (SIS) problem on lattices
following the Full-Domain-Hash (FDH) paradigm [13] have been introduced in
[43]. More efficient approaches [7,9,65,66] rely on the FS transform instead of
FDH. BLISS [36], a very practical scheme, also relies on the FS transform, but
buys efficiency at the cost of more pragmatic assumptions, i.e., a ring version
of the SIS problem. For signatures based on problems related to multivariate
systems of quadratic equations only recently provably secure variants relying on
the FS transform have been proposed [56].

When it comes to confidence in the underlying assumptions, hash-based sig-
natures are arguably the preferred candidate among all existing approaches. All

7 http://csrc.nist.gov/groups/ST/post-quantum-crypto/
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other practical signatures require an additional structured assumption (in addi-
tion to assumptions related to hash functions).

1.1 Contributions

We contribute a novel class of practical post-quantum signature schemes. Our
approach only requires symmetric key primitives like hash functions and block
ciphers and does not require additional structured hardness assumptions.

Along the way to building our signature schemes, we make several contri-
butions of general interest to zero-knowledge proofs both in the classical and
post-quantum setting:

– We improve ZKBoo [44], a recent Σ-protocol for proving statements over
general circuits. We reduce the transcript size by more than half without
increasing the computational cost. We call the improved protocol ZKB++.
This improvement is of general interest outside of our application to post-
quantum signatures as it yields significantly more concise zero knowledge
proofs even in the classical setting.

– We also show how to apply Unruh’s generic transform [83,84,85] to obtain
a non-interactive counterpart of ZKB++ that is secure in the quantum-
accessible random oracle model (QROM; see [18]). To our knowledge, we are
the first to apply Unruh’s transform in an efficient signature scheme.

– Unruh’s construction is generic, and does not immediately yield compact
proofs. However, we specialize the construction to our application, and we
find the overhead was surprisingly low – whereas a generic application of
Unruh’s transform incurs a 4x increase in size when compared to FS, we were
able to reduce the size overhead of Unruh’s transform to only 1.6x. Again,
this has applications wider than our signature schemes as the protocol can
be used for non-interactive post-quantum zero knowledge proofs secure in
the QROM.

We build upon these results to achieve our central contribution: two concrete
signature schemes. In both schemes the public key is set up to be an image
y = f(k) with respect to one-way function f and secret key k. We then turn an
instance of ZKB++ to prove knowledge of k into two signature schemes – one
using the FS transform and the other using Unruh’s transform. The FS variant,
dubbed Fish, yields a signature scheme that is secure in the ROM, whereas the
Unruh variant, dubbed Picnic, yields a signature scheme that is secure in the
QROM, and we include a complete security proof.

We review symmetric-key primitives with respect to their suitability to serve
as f in our application and conclude that the LowMC family of block ci-
phers [4,6] is well suited. We explore the parameter space of LowMC and show
that we can obtain various trade-offs between signature size and computation
time. Thereby, our approach turns out to be very flexible as besides the afore-
mentioned trade-offs we are also able to adjust the security parameter of our
construction in a very fine-grained way.
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We provide an implementation of both schemes for 128-bit post-quantum
security, demonstrating the practical relevance of our approach. In particular,
we provide two reference implementations on GitHub8,9. Moreover, we rigor-
ously compare our schemes with other practical provably secure post-quantum
schemes.

1.2 Related Work

We now give a brief overview of other candidate schemes and defer a detailed
comparison of parameters and performance to Section 7. We start with the only
existing instantiation that solely relies on standard assumptions, i.e., comes with
a security proof in the standard model (SM). The remaining existing schemes rely
on structured assumptions related to codes, lattices and multivariate systems of
quadratic equations that are assumed to be quantum safe and have a security
proof in the ROM. At the end of the section, we review the state of the art in
zero-knowledge proofs for non-algebraic statements.

Hash-Based Signatures (SM). Hash-based signatures are attractive as they
can be proven secure in the standard model (i.e., without ROs) under well-known
properties of hash functions such as second pre-image resistance. Unfortunately,
highly efficient schemes like XMSS [22] are stateful, which seems to be prob-
lematic for practical applications [68]. Stateless schemes like SPHINCS [17] are
thus more desirable, but this comes at reduced efficiency and increased signature
sizes. SPHINCS has a tight security reduction to security of its building blocks,
i.e., hash functions, PRGs and PRFs. At the 128-bit post-quantum security level,
signatures are about 41 kB in size, and keys are of size about 1 kB each.

Code-Based Signatures (ROM). In the code-based setting the most promi-
nent and provably secure approach is to convert identification schemes due to
Stern [82] and Véron [86] to signatures using FS. For the 128-bit PQ security
level one obtains signature sizes of around ≈ 129 kB (in the best case) and public
key size of ≈ 160 bytes.10 We note that there are also other code-based signa-
tures [27] based on the Niederreiter [72] dual of the McEliece cryptosystem [67],
which do not come with a security reduction, have shown to be insecure [38]
and also do not seem practical [64]. There is a more recent provably secure
approach [37], however, it is not immediate if this leads to efficient signatures.

Lattice-Based Signatures (ROM). For lattice based signatures there are
two major directions. The first are schemes that rely on the hardness of worst-
to-average-case problems in standard lattices [43,66,9,30,7]. Although they are
desirable from a security point of view, they suffer from huge public keys, i.e.,
in the orders of a few to some 10 MBs. TESLA [7] (based upon [9,66]) improves
all aspects in the performance of GPV [43], but still has keys on the order of 1

8 https://github.com/Microsoft/Picnic
9 https://github.com/IAIK/fish-begol

10 The given estimates are taken from a recent talk of Nicolas Sendrier (available at
https://pqcrypto.eu.org/mini.html), as, unfortunately, there are no free imple-
mentations available.
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MB. More efficient lattice-based schemes are based on ring analogues of classical
lattice problems [53,36,10,3,11] whose security is related to hardness assumptions
in ideal lattices. These constructions drop key sizes to the order of a few kBs.
Most notable is BLISS [36,35], which achieves performance nearly comparable to
RSA. However, it must be noted, that ideal lattices have not been investigated
nearly as deeply as standard lattices and thus there is less confidence in the
assumptions (cf. [75]).

MQ-Based Signatures (ROM). Recently, Hülsing et al. in [56] proposed a
post-quantum signature scheme (MQDSS) whose security is based on the prob-
lem of solving a multivariate system of quadratic equations. Their scheme is
obtained by building upon the 5-pass (or 3-pass) identification scheme in [79]
and applying the FS transform. For 128-bit post-quantum security, signature
sizes are about 40 kB, public key sizes are 72 bytes and secret key sizes are 64
bytes. We note that there are other MQ-based approaches like Unbalanced Oil-
and-Vinegar (UOV) variants [74] or FHEv− variants (cf. [76]), having somewhat
larger keys (order of kBs) but much shorter signatures. However, they have no
provable security guarantees, the parameter choice seems very aggressive, there
are no parameters for conservative (post-quantum) security levels, and no im-
plementations are available.

Supersingular Isogenies (QROM). Yoo et al. in [87] proposed a post-quantum
signature scheme whose security is based on supersingular isogeny problems. The
scheme is obtained by building upon the identification scheme in [39] and apply-
ing the Unruh transform. For 128-bit post-quantum security, signature sizes are
about 140 kB, public key sizes are 768 bytes, and secret key sizes are 49 bytes.

At the same time, Galbraith et al. [41] published a preprint containing one
conceptually identical isogeny-based construction, and one based on endomor-
phism rings. They report improved signature sizes using a time-space trade-off
and only present their improvements in terms of classical security parameters.

Zero-Knowledge for Arithmetic Circuits. Zero-knowledge (ZK) proofs [49]
are a powerful tool and exist for any language in NP [48]. Nevertheless, prac-
tically efficient proofs were until recently only known for restricted languages
covering algebraic statements in certain algebraic structures, e.g., discrete log-
arithms [80,28] or equations over bilinear groups [51]. Expressing any NP lan-
guage as a combination of algebraic circuits could be done for example by ex-
pressing the relation as a circuit, however for circuits of practical interest (such
as hash functions or block ciphers), this quickly becomes prohibitively expen-
sive. Even SNARKS, where proof size can be made small (and constant) and
verification is highly efficient, have very costly proofs (cf. [42,15,26] and the ref-
erences therein).11 Unfortunately, signatures require small proof computation
times (efficient signing procedures), and this direction is not suitable.

Quite recently, dedicated ZK proof systems for statements expressed as Boolean
circuits by Jawurek et al. [58] and statements expressed as RAM programs by

11 Using SNARKS is reasonable in scenarios where provers are extremely powerful
(such as verifiable computing [42]) or the runtime of the prover is not critical (such
as Zerocash [14]).
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Hu et al. [55] have been proposed. As we exclusively focus on circuits, let us take
a look at [58]. They proposed using garbled circuits to obtain ZK proofs, which
allow efficient proofs for statements like knowledge of x for y = SHA-256(x).
Unfortunately, this approach is inherently interactive and thus not suitable for
the design of practical signature schemes. The very recent ZKBoo protocol due
to Giacomelli et al. [44], which we build upon, for the first time, allows to con-
struct non-interactive zero-knowledge (NIZK) proofs with performance being of
interest for practical applications.

QROM vs ROM. One way of arguing security for signatures obtained via
the FS heuristic in the stronger QROM is to assume that it simply holds as
long as the underlying protocol and the hash function used to instantiate the
random oracle (RO) are quantum-secure. However, it is known [18] that there are
signature schemes secure in the ROM that are insecure in the quantum-accessible
ROM (QROM), i.e., when the adversary can issue quantum queries to the RO.
One central issue in this context is how to handle the rewinding of adversaries
within security reductions as in the FS transform [31]. Possibilities to circumvent
this issue are via history-free reductions [18] or the use of oblivious commitments
within the FS transform, which is not applicable to our approach. Although
many existing schemes ignore QROM security, given the general uncertainty
of the capabilities of quantum adversaries, we prefer to avoid this assumption.
Building upon results from Unruh [83,84,85], we achieve provable security in the
QROM under reasonable assumptions.

2 Building Blocks

Below, we informally recall the notion of Σ-protocols and other standard prim-
itives.

Sigma Protocol. A sigma protocol (or Σ-protocol) is a three flow protocol
between a prover Prove and a verifier Verify, where transcripts have the form
(r, c, s). Thereby, r and s are computed by Prove and c is a challenge chosen
by Verify. Let f be a relation such that f(x) = y, where y is common input
and x is a witness known only to Prove. Verify accepts if φ(y, r, c, s) = 1 for
an efficiently computable predicate φ. There also exists an efficient simulator,
given y and a randomly chosen c, outputs a transcript (r, c, s) for y that is
indistinguishable from a real run of the protocol for x, y.

n-Special Soundness. A Σ-protocol has n-special soundness if n transcripts (r, c1,
s1), . . . , (r, cn, sn) with distinct ci guarantee that a witness may be efficiently
extracted.

Fiat-Shamir. The FS transform [40] converts a Σ-protocol into a non-interactive
zero knowledge proof of knowledge. A Σ-protocol consists of a transcript (r, c, s).
The corresponding non-interactive proof (r′, c′, s′) generates r′ and s′ as in the
interactive case, but obtains c′ ← H(r′) instead of receiving it from the verifier.
This is known to be a secure NIZK in the random oracle model against standard
(non-quantum) adversaries [40].
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Other Building Blocks. This paper requires other common primitives, namely
one-way functions, pseudorandom generators, and commitments. We use the
canonical hash-based commitment and require commitments to be hiding and
binding. Definitions are given in Appendix C, where we also recall the definition
of signature schemes, and existential unforgeability under chosen message attacks
(EUF-CMA), which is the standard security notion for signature schemes.

3 ZKBoo and ZKB++

ZKBoo is a proof system for zero-knowledge proofs on arbitrary circuits de-
scribed in [45]. We recall the protocol here, and present ZKB++, an improved
version of ZKBoo with proofs that are less than half the size.

3.1 ZKBoo

While ZKBoo is presented with various possible parameter options, we present
only the final version from [45] with the best parameters. Moreover, while ZKBoo
presents both interactive and non-interactive protocol versions, we present only
the non-interactive version since our main goal is building a signature scheme.

Overview. ZKBoo builds on the MPC-in-the-head paradigm of Ishai et al.
[57], that we describe only informally here. The multiparty computation protocol
(MPC) will implement the relation, and the input is the witness. For example,
the MPC could compute y = SHA-256(x) where players each have a share of x
and y is public. The idea is to have the prover simulate a multiparty computation
protocol “in their head”, commit to the state and transcripts of all players, then
have the verifier “corrupt” a random subset of the simulated players by seeing
their complete state. The verifier then checks that the computation was done
correctly from the perspective of the corrupted players, and if so, he has some
assurance that the output is correct and the prover knows x. Iterating this for
many rounds then gives the verifier high assurance.

ZKBoo generalizes the idea of [57] by replacing MPC with so-called “circuit
decompositions”, which do not necessarily need to satisfy the properties of an
MPC protocol and therefore lead to more efficient proofs in practice. Fix the
number of players to three. In particular, to prove knowledge of a witness for
a relation R := {(x, y), φ(x) = y}, we begin with a circuit that computes φ,
and then find a suitable circuit decomposition. This contains a Share function
(that splits the input into three shares), three functions Outputi∈{1,2,3} (that
take as input all of the input shares and some randomness and produce an
output share for each of the parties), and a function Reconstruct (that takes as
input the three output shares and reconstructs the circuit’s final output). This
decomposition must satisfy correctness and 2-privacy which intuitively means
that revealing the views of any two players does not leak information about the
witness x.

The decomposition is used to construct a proof as follows: the prover runs the
computation φ using the decomposition and commits to the views – three views
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per run. Then, using the FS heuristic, the prover sends the commitments and
output shares from each view to the random oracle to compute a challenge – the
challenge tells the prover which two of the three views to open for each of the t
runs. Because of the 2-privacy property, opening two views for each run does not
leak information about the witness. The number of runs, t, is chosen to achieve
negligible soundness error – i.e., intuitively it would be infeasible for the prover
to cheat without getting caught in at least one of the runs. The verifier checks
that (1) the output of each of the three views reconstructs to y, (2) each of the
two open views were computed correctly, and (3) the challenge was computed
correctly.

We now give a detailed description of the non-interactive ZKBoo protocol.
Throughout this paper, when we perform arithmetic on the indices of the players,
we omit the implicit mod 3 to simplify the notation.

Definition 1 ((2,3)-decomposition). Let f(·) be a function that is computed
by an n-gate circuit φ such that f(x) = φ(x) = y, and let κ be the security
parameter. Let k1, k2, and k3 be tapes chosen uniformly at random from {0, 1}κ
corresponding to players P1, P2 and P3, respectively. Consider the following set
of functions, D:

(view
(0)
1 , view

(0)
2 , view

(0)
3 )← Share(x, k1, k2, k3)

view
(j+1)
i ← Update(view

(j)
i , view

(j)
i+1, ki, ki+1)

yi ← Output(Viewi)

y ← Reconstruct(y1, y2, y3)

such that Share is a potentially randomized invertible function that takes x as
input and outputs the initial view for each player containing the secret share xi
of x, i.e. view

(0)
i = xi. The function Update computes the wire values for the

next gate and updates the view accordingly. The function Outputi takes as input

the final view, Viewi ≡ view
(n)
i after all gates have been computed and outputs

player Pi’s output share, yi.

We require correctness and 2-privacy as informally outlined before. We defer a
formal definition to Appendix A.1. The concrete decomposition used by ZKBoo
is presented in Appendix A.2.

ZKBoo Complete Protocol Given a (2, 3)-decomposition D for a function φ,
the ZKBoo protocol is a Σ-protocol for languages of the form L := {y | ∃ x :
y = φ(x)}. We note that this directly yields a non-interactive zero-knowledge
(NIZK) proof system for the same relation using well known results. We recall
the details of ZKBoo in Appendix A.

Serializing the Views. In the (2,3)-decomposition, the view is updated with
the output wire value for each gate. While conceptually a player’s view includes
the values that they computed locally, when the view is serialized, it is sufficient
to include only the wire values of the gates that require non-local computations
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(i.e., the binary multiplication gates). The verifier can recompute the parts of
the view due to local computations, and they do not need to be serialized. Giving
the verifier locally computed values does not even save any computation as the
verifier will still need to recompute the values in order to check them.

In ZKBoo, the serialized view includes: (1) the input share, (2) output wire
values for binary multiplication gates, and (3) the output share.

The size of a view depends on the circuit as well as the ring that it is computed
over. Let φ : (Z2`)

m → (Z2`)
n be the circuit being computed over Z2` such that

there are m input wires, n output wires, and each wire can be expressed with
` bits. Moreover, assume that the circuit has b binary-multiplication gates. The
size of a view in bits is thus given by: |Viewi| = `(m+ n+ b).

ZKBoo Proof Size. Using the above notation, we can now calculate the size of
ZKBoo proofs. Let κ be the (classical) security-parameter. The random tapes
will be of size κ as mentioned above. Furthermore, let c be the size of the com-
mitments ci (in bits) for a commitment scheme secure at the given security level.
In ZKBoo, hash-based commitments were used and instantiated with SHA-256,
and thus c = 256. In ZKBoo, the openings D of the commitments contain the
value being committed to as well as the randomness used for the commitments.
Let s denote the size of the randomness in bits used for each commitment. The
size of the output share yi is the same as the output size of the circuit, (`·n). Let t
denote the number of parallel repetitions that we must run, and from ZKBoo we
know that to achieve soundness error of 2−κ, we must set t = dκ(log2 3− 1)−1e.
The total proof size is given by

|p| = t · [3 · (|yi|+ |ci|) + 2 · (|Viewi|+ |ki|+ s)]

= t · [3 · (`n+ c) + 2 · (` · (m+ n+ b) + κ+ s)]

= t · [3c+ 2κ+ 2s+ ` · (5n+ 2m+ 2b)]

= dκ(log2 3− 1)−1e · [3c+ 2κ+ 2s+ ` · (5n+ 2m+ 2b)]

3.2 ZKB++

We now present ZKB++, an improved version of ZKBoo with NIZK proofs
that are less than half the size of ZKBoo proofs. Moreover, our benchmarks
show that this size reduction comes at no extra computational cost.12

We present the ZKB++ optimizations in an incremental way over the orig-
inal ZKBoo protocol.

12 Our analysis of the original ZKBoo source code uncovered some errors which were
corrected in the new implementation.
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O1: The Share Function. We make the Share function sample the shares
pseudorandomly as:

(x1, x2, x3)← Share(x, k1, k2, k3) :=

x1 = R1(0 · · · |x− 1|)
x2 = R2(0 · · · |x− 1|)
x3 = x− x1 − x2

where Ri is a pseudorandom generator seeded with ki, and by Ri(0 · · · |x − 1|)
we denote the first |x| bits output by Ri.

We note that sampling in this manner preserves the 2-privacy of the decom-
position. In particular, given only two of {(k1, x1), (k2, x2), (k3, x3)}, x remains
uniformly distributed over the choice of the third unopened (ki, xi).

We specify the Share function in this manner as it will lead to more compact
proofs. For each round, the prover is required to “open” two views. In order to
verify the proof, the verifier must be given both the random tape and the input
share for each opened view. If these values are generated independently of one
another, then the prover will have to explicitly include both of them in the proof.
However, with our sampling method, in View1 and View2, the prover only needs
to include ki, as xi can be deterministically computed by the verifier.

The exact savings depend on which views the prover must open, and thus
depend on the challenge. The expected reduction in proof size resulting from
using the ZKB++ sampling technique instead of the technique used in ZKBoo
is (4t · |x|)/3 bits.

O2: Not Including Input Shares. Since the input shares are now generated
pseudorandomly using the seed ki, we do not need to include them in the view
when e = 1. However, if e = 2 or e = 3, we still need to send one input share
for the third view for which the input share cannot be derived from the seed.
Since the challenge is generated uniformly at random from {1, 2, 3}, the expected
number of input shares that we’ll need to include for a single iteration is 2/3.

O3: Not Including Commitments. In ZKBoo proofs, the commitments of
all three views are sent to the verifier. This is unnecessary as for the two views
that are opened, the verifier can recompute the commitment. Only for the third
view that the verifier is not given the commitment needs to be explicitly sent.

We stress that there is no lost security here (in some sense we use e as a
“commitment to the commitments”) as even when the prover sends the commit-
ments, the verifier must check that the prover has sent the correct commitments
by hashing the commitments to recompute the challenge. Here too, the verifier
checks that the commitments that it computed are the same ones that were used
by the prover by hashing them as part of the input to recompute the challenge.

There is also no extra computational cost in this approach – whereas the
verifier now must recompute the commitments, in the original ZKBoo proto-
col, the verifier needed to verify the commitments in step 2 ( see Scheme 3 in
Appendix A ). For the hash-based commitment scheme used in ZKBoo, the
function to verify the commitment first recomputes the commitment and thus
there is no extra computation.
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O4: No Additional Randomness for Commitments. Since the first input
to the commitment is the seed value ki for the random tape, the protocol input
to the commitment doubles as a randomization value, ensuring that commit-
ments are hiding. Further, each view included in the commitment must be well
randomized for the security of the MPC protocol. In the random oracle model
the resulting commitments are hiding (the RO model is needed here since ki is
used both as seed for the PRG and as randomness for the commitment. Since
one already needs the RO model to make the proofs non-interactive, there is no
extra assumption here).

O5: Not Including the Output Shares. In ZKBoo proofs, as part of a, the
output shares yi are included in the proof. Moreover, for the two views that are
opened, those output shares are included a second time.

First, we do not need to send two of the output shares twice. However, we
actually do not need to send any output shares at all as they can be determin-
istically computed from the rest of the proof as follows:

For the two views that are given as part of the proof, the output share can
be recomputed from the remaining parts of the view. Essentially, the output
share is just the value on the output wires. Given the random tapes and the
communicated bits from the binary multiplication gates, all wires for both views
can be recomputed.

For the third view, recall that the Reconstruct function simply XORs the
three output shares to obtain y. But the verifier is given y, and can thus instead
recompute the third output share. In particular, given yi, yi+1 and y, the verifier
can compute: yi+2 = y + yi + yi+1.

Computational Trade-Off. While we would expect some computational cost from
recomputing rather than sending the output shares, our benchmarks show that
there is no additional computational cost incurred by this modification, perhaps
because it is a small part of the overall verification. For the challenge view, Viewe,
the verifier anyway needs to recompute all of the wire values in order to do the
verification, so there is no added cost.

For the second view, Viewe+1, the verifier must recompute the wire values as
well since the verifier will need to compute the values which must be stored as
output of the (2, 3)-decomposition, so there is effectively no cost.

For the third view, the extra cost of recomputing the output share is just two
additions in the ring, which is exactly the cost of a single call to Reconstruct.

However, in step 2 of the verification in ZKBoo, the verifier has to call
Reconstruct in order to verify that the three output shares given are correct
(see Scheme 3 in Appendix A ). But in our optimization, the verifier no longer
needs to perform this check as the derivation of the third share guarantees that
it will reconstruct correctly. Thus, the verifier is adding one Reconstruct but
saving one, and thus no cost is incurred.

We note that the outputs will be checked as the yi’s are hashed with H
to determine the challenge. The verifier recomputes the challenge and if the yi
values used by the verifier do not match those used by the prover, the challenge
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will be different (by the collision resistance property of H), and the proof will
fail.

O6: Not Including Viewe. In step 2 of the proof, the verifier recomputes every
wire in Viewe and checks as he goes that the received values are correct. However
we note that this is not necessary.

The verifier can recompute Viewe given just the random tapes ke, ke+1 and
the wire values of Viewe+1. But the verifier does not need to explicitly check
that each wire value in Viewe is computed correctly. Instead, the verifier will
recompute the view, and check the commitments using the recomputed view.
By the binding property of the commitment scheme, the commitments will only
verify if the verifier has correctly recomputed every value stored in the view.

Notice that this modification reduces the computational time as the verifier
does not need to perform part of step 2, i.e., there is no need to check every wire
as checking the commitment will check these wires for us. But more crucially,
this modification reduces the proof size significantly. There is no need to send the
AND wire values for Viewe as we can recompute them and check their correctness.
Indeed, for this view, the prover only needs to send the input wire value and
nothing else.

Putting it All Together: ZKB++ This series of optimizations results in our
new protocol ZKB++ which is presented in Scheme 1.

Notice that in ZKB++, the prover explicitly sends the challenge e to the
verifier. In the original ZKBoo protocol, the verifier is explicitly given all of
the inputs to the challenge random oracle, so it can compute the challenge right
away, and then check the proofs. However, in our protocol, the verifier is no
longer explicitly given these inputs. Thus our verifier must first recompute all
implicitly given values. To be able to compute those values, the challenge e is
required which is why we explicitly include e in the proof.

There are 3 possible challenges for each iteration, so the cost of sending e for
a t iteration proof is t · log2(3).

ZKB++ Proof Size. The expected proof size is

|p| = t[|ci|+ 2|ki|+ 2/3|xi|+ b|wi|+ |ei|]
= t[c+ 2κ+ 2/3`m+ b`+ log2(3)]

= t[c+ 2κ+ log2(3) + ` · (2/3 ·m+ b)]

= dκ(log2 3− 1)−1e[c+ 2κ+ log2(3) + ` · (2/3 ·m+ b)]

The ZKB++ improvements reduce the proof size compared to ZKBoo by a
factor of 2; independent of the concrete circuit.

As an example, we can consider the concrete case of proving knowledge of
a SHA-256 pre-image. For this example, we set ` = 1 (for Boolean circuits),
c = 256 (we use SHA-256 as a commitment scheme), and s = κ (the randomness
for the commitment in ZKBoo that we eliminated in ZKB++). For the circuit,
we use the SHA-256 boolean circuit from [23], for which m = 512, n = 256, and
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For public φ and y ∈ Lφ, the prover has x such that y = φ(x). The prover and verifier
use the hash functions G(·), H(·), and H ′(·) modeled as random oracles (H ′ will be
used to commit to the views). The integer t is the number of parallel iterations.
p← Prove(x):

1. For each iteration ri, i ∈ [1, t]: Sample random tapes k
(i)
1 , k

(i)
2 , k

(i)
3 and simulate

the MPC protocol to get an output view View
(i)
j and output share y

(i)
j . For each

player Pj compute

(x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
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3 ) = (G(k
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2 , C

(i)
3 ).

2. Compute the challenge: e← H(a(1), . . . , a(t)). Interpret the challenge such that for
i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration ri, i ∈ [1, t]: let b(i) = (y
(i)

e(i)+2
, C

(i)

e(i)+2
) and set

z(i) ←
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4. Output p← [e, (b(1), z(1)), (b(2), z(2)), · · · , (b(t), z(t))].

b← Verify(y, p):

1. For each iteration ri, i ∈ [1, t]: Run the MPC protocol to reconstruct the views,
input and output shares that were not explicitly given as part of the proof p. In
particular:

x
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e(i)
←


G(k

(i)
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2. Compute the challenge: e′ ← H(a′(1), . . . , a′(t)). If, e′ = e, output Accept, otherwise

output Reject.

Scheme 1: The ZKB++ proof system, made non-interactive using the Fiat-
Shamir transform.
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b = 22272. Given these parameters, if we set κ = 128, then the ZKB++ proof
size is 618 kilobytes, which is only 48% of ZKBoo proof size (1287 kilobytes).
At the 80-bit security level, the ZKB++ proof size is 385 kilobytes, and at the
40-bit security level, the proof size is 193 kilobytes. For all these figures, we used
256-bit commitments, and thus in practice they may be slightly reduced by using
a weaker commitment scheme.

ZKB++ Security. From our argumentation above we conclude that the secu-
rity of ZKBoo directly implies security of ZKB++ in the (Q)ROM.

4 The Fish Signature Scheme

The FS transform is an elegant way to obtain EUF-CMA secure signature schemes.
The basic idea is similar to constructing NIZK proofs from Σ-protocols, but the
challenge c is generated by hashing the prover’s first message r and the mes-
sage m to be signed, i.e., c ← H(r,m). In the following we will index the non-
interactive PPT algorithms (ProveH , VerifyH) by the hash function H, which
we model as a random oracle. Let us consider a language LR with associated
witness relation R of pre-images of a one-way function fk : Dκ → Rκ, sampled
uniformly at random from a family of one-way functions {fk}k∈Kκ , indexed by
key k and security parameter κ:

((y, k), x) ∈ R ⇐⇒ y = fk(x).

Henceforth, we may use {fk} for brevity. The function family {fk} could be
any one-way function family, but since we found that function families based on
block ciphers gave the most efficient signatures, we tailor our description to this
choice of {fk}. Here we have that

fk(x) := Enc(x, k),

where Enc(x, k) denotes the encryption of a single block k ∈ {0, 1}c·κ with respect
to key x ∈ {0, 1}c·κ. One can sample a one-way function {fk} with respect to
security parameter κ uniformly at random by sampling a uniformly random
block k ∈ {0, 1}c·κ. In Appendix D we formally argue that we can use a block
cipher (viewed as a PRF) in this way to instantiate an OWF. In the classical
setting we set c = 1, whereas we set c = 2 in the post-quantum setting to account
for the generic speedup imposed by Grover’s algorithm [52]. The rationale for
using a random instead of a fixed block k when creating the signature keypair
is to improve security against multi-user key recovery attacks and generic time-
memory trade-off attacks like [54]. To reduce the size of the public key, one
could choose a smaller value that is unique per user, or use a fixed value (with
a potential decrease in security). Since public keys in our schemes are small (at
most 64 bytes), our design uses a full random block.

When using ZKBoo to prove knowledge of such a pre-image, we know [44]
that this Σ-protocol provides 3-special soundness. We apply the FS transform
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to this Σ-protocol to obtain an EUF-CMA secure signature scheme. In the so-
obtained signature scheme the public verification key pk contains the image y
and the value k determining fk. The secret signing key sk is a random value
x from Dκ. The corresponding signature scheme, dubbed Fish, is illustrated in
Scheme 2.

Gen(1κ) : Choose k←R Kκ, x←R Dκ, compute y ← fk(x), set pk ← (y, k) and sk ←
(pk, x) and return (sk, pk).

Sign(sk,m) : Parse sk as (pk, x), compute p = (r, s) ← ProveH((y, k), x) and return
σ ← p, where internally the challenge is computed as c← H(r,m).

Verify(pk,m, σ) : Parse pk as (y, k), and σ as p = (r, s). Return 1 if the following holds,
and 0 otherwise:

VerifyH((y, k), p) = 1,
where internally the challenge is computed as c← H(r,m).

Scheme 2: Generic description the Fish and Picnic signature schemes. In both
schemes Prove is implemented with ZKB++, in Fish it is made non-interactive
with the FS transform, while in Picnic, Unruh’s transform is used.

If we view ZKBoo as a canonical identification scheme that is secure against
passive adversaries one just needs to keep in mind that most definitions are tai-
lored to 2-special soundness, and the 3-special soundness of ZKBoo requires an
additional rewind. In particular, an adapted version of the proof of [61, Theo-
rem 8.2] which considers this additional rewind attests the security of Scheme 2.
The security reduction, however, is a non-tight one, like most signature schemes
constructed from Σ-protocols.13 We obtain the following:

Corollary 1. Scheme 2 instantiated with ZKB++ and a secure one-way func-
tion yields an EUF-CMA secure signature scheme in the ROM.

5 The Picnic Signature Scheme

The Picnic signature scheme is the same as Fish, except for the transform used
to make ZKB++ noninteractive. Unruh [83] presents an alternative to the FS
transform that is provably secure in the QROM. Indeed, Unruh even explicitly
presents a construction for a signature scheme and proves its security given a
secure a Σ−protocol. Unruh’s construction requires a Σ−protocol and a hard
instance generator, but he does not give an instantiation. We use his approach to
argue that with a few modifications, our signature scheme is also provably secure
in the QROM. One interesting aspect is that, while on first observation Unruh’s
transform seems much more expensive than the standard FS transform, we show
how to make use of the structure of ZKB++ to reduce the cost significantly.

13 There are numerous works on signatures from (three move) identification schemes
[73,77,1,2,62,12,32]. Unfortunately existing proof techniques do not give tight secu-
rity reductions.
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Unruh’s Transform: Overview. At a high level, Unruh’s transform works as
follows: Given a Σ-protocol with challenge space C, an integer t, a statement x,
and a random permutation G, the prover will

1. Run the first phase of the Σ-protocol t times to produce r1, . . . , rt.
2. For each i ∈ {1, . . . , t}, and for each j ∈ C, compute the response sij for ri

and challenge j. Compute gij = G(sij).
3. Compute H(x, r1, . . . , rt, g11, . . . , gt|C|) to obtain a set of indices J1, . . . , Jt.
4. Output π = (r1, . . . , rt, s1J1 , . . . , stJt , g11, . . . , gt|C|).

Similarly, the verifier will verify the hash, verify that the given siJi values match
the corresponding giJi values, and that the siJi values are valid responses w.r.t.
the ri values.

Informally speaking, in Unruh’s security analysis, zero knowledge follows
from HVZK of the underlying Σ-protocol: the simulator just generates t tran-
scripts and then programs the random oracle to get the appropriate challenges.
The proof of knowledge property is more complex, but the argument is that any
adversary who has non-trivial probability of producing an accepting proof will
also have to output some gij for j 6= Ji which is a correct response for a different
challenge - then the extractor can invert G and get the second response, which
by special soundness allows it to produce a witness.

To instantiate the function G in the protocol, Unruh shows that one does
not need a random oracle that is actually a permutation. Instead, as long as the
domain and co-domain of G have the same length, it can be used, since it is
indistinguishable from a random permutation.

Applying the Unruh transform to ZKB++: The Direct Approach.
We can apply Unruh to ZKB++ in a relatively straightforward manner by
modifying our protocol. Although ZKB++ has 3-special soundness, whereas
Unruh’s transform is only proven for Σ-protocols with 2-special soundness, the
proof is easily modified to 3-special soundness.

Since ZKB++ has 3-special soundness, we would need at least three re-
sponses for each iteration. Moreover, since there only are three possible chal-
lenges in ZKB++, we would run Unruh’s transform with C = {1, 2, 3}, i.e.,
every possible challenge and response. We would then proceed as follows:

Let G : {0, 1}|sij | → {0, 1}|sij | be a hash function modeled as a random
oracle.14 Non-interactive ZKB++ proofs would then proceed as follows:

1. Run the first ZKB++ phase t times to produce r1, . . . , rt.
2. For each i ∈ {1, . . . , t}, and for each j ∈ 1, 2, 3, compute the response sij for
ri and challenge j. Compute gij = G(sij).

3. Compute H(x, r1, . . . , rt, g11, . . . , gt3) to obtain a set of indices J1, . . . , Jt.
4. Output π = (r1, . . . , rt, s1J1 , . . . , stJt , g11, . . . , gt3).

14 Actually, the size of the response changes depending on what the challenge is. If the
challenge is 0, the response is slightly smaller as it does not need to include the extra
input share. So more precisely, this is actually two hash functions, G0 used for the
0-challenge response and G1,2 used for the other two.
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While this works, it comes as a significant overhead in the size of the proof. That
is, we have to additionally include g11, . . . , gt3. Each gij is a permutation of an
output share and there are 3t such values, so in particular the extra overhead
would yield a proof size of

t · [c+ 2κ+ log2(3) + ` · (2/3 ·m+ b)]+

3t · [2κ+ ` · (2/3 ·m+ b)] =

t · [c+ 8κ+ log2(3) + ` · (8/3m+ 4b)].

Since for most functions, the size of the proof is dominated by t · `b, this proof is
roughly four times as large as in the FS version. To this end, we again introduce
some optimizations.

O1: Making Use of Overlapping Responses. We can make use of the struc-
ture of the ZKB++ proofs to achieve a significant reduction in the proof size.
Although we refer to three separate challenges, in the case of the ZKB++
protocol, there is a large overlap between the contents of the responses corre-
sponding to these challenges. In particular, there are only three distinct views
in the ZKB++ protocol, two of which are opened for a given challenge.

Instead of computing a permutation of each response, sij , we can compute a
permutation of each view, vij . For each i ∈ {1, . . . , t}, and for each j ∈ {1, 2, 3},
the prover computes gij = G(vij).

The verifier checks the permuted value for each of the two views in the
response. In particular, for challenge i ∈ {1, 2, 3}, the verifier will need to check
that gij = G(vij) and gi(j+1) = G(vi(j+1)).

O2: Omit Re-Computable Values. Moreover, since G is a public function,
we do not need to include G(vij) in the transcript if we have included vij in the
response. Thus for the two views (corresponding to a single challenge) that the
prover sends as part of the proof, we do not need to include the permutations of
those views. We only need to include G(vi(j+2)), where vi(j+2) is the view that
the prover does not open for the given challenge.

Putting it Together: New Proof Size. Combining these two modifications
yields a major reduction in proof size. For each of the t iterations of ZKB++,
we include just a single extra G(v) than we would in the FS transform.

As G is a permutation, the per-iteration overhead of ZKB++/Unruh over
ZKB++/FS is the size of a single view. This overhead is less that one-third
of the overhead that would be incurred from the naive application of Unruh as
described before. In particular, the expected proof size of our optimized version
is then

t · [c+ 2κ+ log2(3) + ` · (2/3 ·m+ b)]+

t · [κ+ ` · (1/3 ·m+ b)] =

t · [c+ 3κ+ log2(3) + ` · (m+ 2b)].

The overhead depends on the circuit. For LowMC, we found the overhead ranges
from 1.6 to 2 compared to the equivalent ZKB++/FS proof.
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Security of the Modified Unruh Transform. For zero knowledge, we can
take the same approach as in Unruh [84]: to simulate the proof we choose the set
of challenges J1, . . . , Jt, run the (2,3)-decomposition simulator to obtain views
for each pair of dishonest parties Ji, Ji+1, honestly generate giJi and giJi+1 and
the commitments to those views, and choose gJi+2 and the corresponding com-
mitment at random. Then we program the random oracle to output J1, . . . , Jt
on the resulting tuple. The analysis follows exactly as in [84].

For the soundness argument, our protocol has two main differences from
Unruh’s general version: (1) the underlying protocol we use only has 3-special
soundness, rather than the normal 2-special soundness, and (2) we have one
commitment for each view, and one G(v) for each view, rather than having a
separate G(viewi, viewi+1) for each i.

As mentioned above, the core of Unruh’s argument [84, Lemma 17], says
that the probability that the adversary can find a proof such that the extractor
cannot extract but the proof still verifies is negligible.

For our case, the analysis is as follows: For a given tuple of commitments
r1 . . . rt, and G-values g11, gt|C| that is queried to the random oracle either one
of the following is true: (1) There is some i for which (G−1(gi1), G−1(gi2)),
(G−1(gi2), G−1(gi3)), (G−1(gi3), G−1(gi1)), are valid responses for challenges
1, 2, 3 respectively15, or (2) For all i at least one of these pairs is not a valid
response. In particular this means that if this is the challenge produced by the
hash function, A will not be able to produce an accepting response. From that,
we can argue that if the extractor cannot extract from a given tuple, then the
probability (over the choice of a RO) that there exists an accepting response
for A to output is at most (2/3)t. Then, we can rely on [84, Lemma 7], which
tells us that given qH queries, the probability that A produces a tuple from
which we cannot extract but A can produce an accepting response is at most
2(qH + 1)(2/3)t.

The rest of our argument can proceed exactly as in Unruh’s proof and we
obtain the following:

Corollary 2. Scheme 2 instantiated with ZKB++, a secure permutation and
one-way function yields an EUF-CMA secure signature scheme in the QROM.

The full proof is given in Appendix F. The security reduction in our proof is
non-tight, the gap is proportional to the number of RO queries.

Unruh’s Transform with Constant Overhead? We conjecture that we may
be able to further reduce the overhead of Unruh’s transform to a fixed size that
does not depend on the circuit being used. We leave this as a conjecture for now
as it does not follow from Unruh’s proof, and we have not proved it.

If we were to include just the hash using G of the seeds (and the third
input share that is not derivable from its seed), it seems that this would be
enough for the extractor to produce a witness. Combining this with the previous
optimizations, we only need to explicitly give the extractor a permutation of the

15 In fact G is not exactly a permutation, but we ignore that here. We can make this
formal exactly as in Unruh’s proof, by considering the set of pre-images.
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input share of the third view. For the first two views, the views are communicated
in the open, and the extractor can compute the permutation himself. This would
reduce the overhead when compared to FS from about 1.6x to 1.16x.

6 Selecting an Underlying Primitive

We require one or more symmetric primitives suitable to instantiate a one-way
function. We now first investigate how choosing a primitive with certain prop-
erties impacts the instantiations of our schemes. From this, we derive concrete
requirements, and present our choice, LowMC.

6.1 Survey of Suitable Primitives

The signature size depends on constants that are close to the security expectation
(cf. Section 7 for our choices). The only exceptions are the number of binary
multiplication gates, and the size of the rings, which all depend on the choice
of the primitive. Hence we survey existing designs that can serve as a one-way
function subsequently.

Standardized General-Purpose Primitives. The smallest known Boolean
circuit of AES-128 needs 5440 AND gates, AES-192 needs 6528 AND gates,
and AES-256 needs 7616 AND gates [20]. An AES circuit in F24 might be more
efficient in our setting, as in this case the number of multiplications is lower than
1000 [25]. This results in an impact on the signature size that is equivalent to 4000
AND gates. Even though collision resistance is often not required, hash functions
like SHA-256 are a popular choice for proof-of-concept implementations. The
number of AND gates of a single call to the SHA-256 compression function is
about 25000 and a single call to the permutation underlying SHA-3 is 38400.

Lightweight Ciphers. Most early designs in this domain focused on small
area when implemented in hardware where an XOR gate is by a small factor
larger than an AND or NAND gate. Notable designs with a low number of AND
gates at the 128-bit security level are the block ciphers Noekeon [29] (2048) and
Fantomas [50] (2112). Furthermore, one should mention Prince [19] (1920), or
the stream cipher Trivium [33] (1536 AND gates to compute 128 output bits)
with 80-bit security.

Custom Ciphers with a Low Number of Multiplications. Motivated by
applications in SHE/FHE schemes, MPC protocols and SNARKs, recently a
trend to design symmetric encryption primitives with a low number of multipli-
cations or a low multiplicative depth started to evolve. This is a trend we can
take advantage of.

We start with the LowMC [6] block cipher family. In the most recent version
of the design [4], the number of AND gates can be below 500 for 80-bit security,
below 800 for 128-bit security, and below 1400 for 256-bit security. The stream
cipher Kreyvium [24] needs similarly to Trivium 1536 AND gates to compute 128
output bits, but offers a higher security level of 128 bits. Even though FLIP [69]
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was designed to have especially low depth, it needs hundreds of AND gates per
bit and is hence not competitive in our setting.

Last but not least there are the block ciphers and hash functions around
MiMC [5] which need less than 2 · s multiplications for s-bit security in a field of
size close to 2s. Note that MiMC is the only design in this category which aims
at minimizing multiplications in a field larger than F2. However, since the size
of the signature depends on both the number of multiplications and the size of
the field, this leads to a factor 2s2 which, for all arguably secure instantiations
of MiMC, is already larger than the number of AND gates in the AES circuit.

LowMC has two important advantages over other designs: It has the lowest
number of AND gates for every security level: The closest competitor Kreyvium
needs about twice as many AND gates and only exists for the 128-bit security
level. The fact that it allows for an easy parameterization of the security level is
another advantage. We hence use LowMC for our concrete proposal and discuss
it in more detail in the following.

6.2 LowMC

LowMC is a flexible block cipher family based on a substitution-permutation
network. The block size n, the key size k, the number of 3-bit S-boxes m in
the substitution layer and the allowed data complexity d of attacks can indepen-
dently be chosen. To reduce the multiplicative complexity, the number of S-boxes
applied in parallel can be reduced, leaving part of the substitution layer as the
identity mapping. The number of rounds r needed to achieve the goals is then
determined as a function of all these parameters. For the sake of completeness
we include a brief description of LowMC in Appendix B.

To minimize the number of AND gates for a given k and d, we want to
minimize r · m. A natural strategy would be to set m to 1, and to look for
an n that minimizes r. Examples of such an approach are already given in the
document describing version 2 of the design [4]. In our setting, this approach
may not lead to the best results, as it ignores the impact of the large amount
of XOR operations it requires. To find the most suitable parameters, we thus
explore a larger range of values for m.

Whenever we want to instantiate our signature scheme with LowMC with
s-bit PQ-security, we set k = n = 2·s. This choice to double the parameter in the
quantum setting takes into account current knowledge of quantum-cryptanalysis
for models that are very generous to the attacker [60,59]. Note that setting s =
64, 96, 128 matches the requirements of the upcoming NIST selection process16

for security levels 1, 3 and 5, respectively. Section 7 gives benchmarks for levels
1, 3, and 5.

Furthermore, we observe that the adversary only ever sees a single plaintext-
ciphertext pair. In the security proof given in Appendix D, we build a distin-

16 http://csrc.nist.gov/groups/ST/post-quantum-crypto/

176

http://csrc.nist.gov/groups/ST/post-quantum-crypto/index.html


guisher that only needs to see one additional pair. This is why we can set the
data complexity d = 1.17

7 Implementation and Parameters

We pursue two different directions. First, we present a general purpose implemen-
tation for the Fish signature scheme.18 This library exposes an API to generate
LowMC instances for a given parameter set, as well as an easy to use interface
for key generation, signature generation/verification in both schemes. Using this
library we explore the whole design space of LowMC to find the most suitable
instances. Second, we present a library which implements the Picnic signature
scheme19. This implementation is parameterized with the previously selected
LowMC instance, since the QROM instantiation imposes a constant overhead
which is independent of the LowMC instance. Both libraries are implemented in
C using the OpenSSL20 and m4ri21 libraries. We have released both our libraries
as open source under the MIT License.

7.1 Implementation of Building Blocks

The building blocks in the protocol are instantiated similar to the implemen-
tation of ZKBoo [44]. In Appendix C and D, we give more formal arguments
regarding our choices.

PRG. Random tapes are generated pseudorandomly using AES in counter
mode, where the keys are generated using OpenSSL’s secure random number
generator. In the linear decomposition of the AND gates we use a function that
picks the random bits from the bit stream generated using AES. Since the num-
ber of AND gates is known a-priori, we can pre-compute all random bits at the
beginning. Concretely, we assume that AES-256 in counter mode provides 128
bits of PRG security, when used to expand 256-bit seeds to outputs ≈ 1kB in
length.

Commitments. The commitment function (used to commit to the views) is
implemented using SHA-256.

Challenge Generation. For both schemes the challenge is computed with a
hash function H : {0, 1}∗ → {0, 1, 2}t implemented using SHA-256 and rejection
sampling: we split the output bits of SHA-256 in pairs of two bits and reject all
pairs with both bits set.

17 d is given in units of log2(n), where n is the number of pairs. Thus setting d = 1
corresponds to 2-pairs, which is exactly what we need for our signature schemes.

18 https://github.com/IAIK/fish-begol
19 https://github.com/Microsoft/Picnic
20 https://openssl.org
21 https://bitbucket.org/malb/m4ri
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One-Way Function. The OWF function family {fk}k∈Kκ used for key gener-
ation in both signature schemes is instantiated with LowMC. Concretely, we
instantiate {fk} using a block cipher with

fk(x) := Enc(x, k),

where Enc(x, k) denotes the LowMC encryption of a single block k ∈ {0, 1}κ
with respect to key x ∈ {0, 1}κ. For such an instantiation we assume that we
have κ/2 bit security. In Appendix D we provide further details on this choice.
There, to make our results more general, we also show that a block cipher with
k = n = 2s when viewed as a PRF can be used as an OWF with 2s-bit classical
security, and thus gives us the s-bit post-quantum security that we desire. Our
implementations support multiple LowMC parameter sets.

Function G. As explained in Section 5, G may be implemented with a random
function with the same domain and range. We implementG(x) as h(0‖x)‖h(1‖x) . . .,
where h is SHA-256 and the output length is |x|.
Hash Function Security. We make the following concrete assumptions for the
security of our schemes. We assume that SHA-256 provides 128 bits of pre-image
resistance against quantum adversaries. For collision resistance, when consider-
ing quantum algorithms, in theory it may be possible to find collisions using a
generic algorithm of Brassard et al. [21] with cost O(2n/3). A detailed analysis
of the costs of the algorithm in [21] by Bernstein [16] found that in practice the
quantum algorithm is unlikely to outperform the O(2n/2) classical algorithm.
Multiple cryptosystems have since made the assumption that standard hash
functions with n-bit digests provide n/2 bits of collision resistance against quan-
tum attacks (for examples, see papers citing [16]). We make this assumption as
well, and in particular, that SHA-256 provides 128 bits of PQ collision-resistance.

7.2 Circuit for LowMC

For the linear (2,3)-decomposition we view LowMC as circuit over F2. The
circuit consists only of AND and XOR gates. The number of bits we have to
store per view is 3 · r ·m, where r is the number of rounds and m is the number
of S-boxes.

Since the affine layer of LowMC only consists of AND and XOR operations,
it benefits from using block sizes such that all computations of this layer can be
performed using SIMD instruction sets like SSE2, AVX2 and NEON, i.e., 128-bit
or 256-bit. Since our implementation uses (arrays of) native words to store the
bit vectors, the implementation benefits from a choice of parameters such that
3 ·m is close to the word size. This choice allows us to maximize the number of
parallel S-box evaluations in the bitsliced implementation.

7.3 Experimental Setup and Results

Our experiments were performed on an Intel Core i7-4790 CPU (4 cores with
3.60 GHz) and 16 GB RAM running Ubuntu 16.10. Henceforth, we target the
128 bit post-quantum setting.
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Number of Parallel Repetitions. While we already established that ZKB++
is a suitable Σ-protocol (see the discussion at the end of Section 3.2), we must set
the number of parallel repetitions to achieve the desired soundness error. For a
single repetition we have a soundness error of 2/3, which means that we need 219
parallel repetitions for 128-bit security ((3/2)219 ≥ 2128). For 128-bit PQ security,
we must set our repetition count to t := 438. This is double the repetition count
required for classical security due to Grover’s algorithm [52]. To see the effects
of the search algorithm, an adversary at first computes t views such that it can
answer two of the three possible challenges honestly for each view. Considering
the possible permutations of the individual views, the adversary is thus able to
answer 2t out of the 3t challenges. Grover’s algorithm is then tasked to find a
permutation of the views such that they correspond to one of the 2t challenges.
Out of the 2t permutations, the expected number of solutions is (4/3)t, hence
Grover’s algorithm reduces the time to find a solution to (3/2)t/2. So for the 128-
bit PQ security level, we require t be large enough to satisfy (3/2)t/2 ≥ 2128, and
so t = 438 is the smallest possible repetition count.

Each of the parallel repetitions are largely independent. Thus, we can split
the signature generation/verification among multiple cores. In Appendix E we
discuss the benefits of using multiple cores.

Selection of the Most Suitable LowMC Instances. We now explore the
design space of LowMC. Figure 1 shows that choosing a concrete LowMC
instance allows a trade-off between computational efficiency and signature size,
parameterized by the number of rounds and by the number of S-boxes.

Using the notation [blocksize]-[keysize]-[#sboxes]-[#rounds], we recommend
the 256-256-10-38 instance as a good balance between speed and size.

To support our choice of LowMC, we note that running the implementation
for the SHA-256 circuit from [44] with t = 438 repetitions on the same machine
yields roughly 2.7MB proof size, signing times of 237ms, and verification times
of 137ms. Informally speaking, this can be seen as a baseline instantiation of our
scheme Fish with SHA-256 instead of LowMC and ZKBoo instead of ZKB++
(cf. Table 1 for our results when using LowMC).

7.4 Comparison with Related Work

To compare our schemes to other post-quantum signature candidates, we focused
on those that have a reference implementation available and ran the benchmarks
on our machine. Table 1 gives an overview of the results, including MQDSS [56],
the lattice based schemes TESLA [7]22, ring-TESLA [3] and BLISS [36], the
hash-based scheme SPHINCS-256 [17], the supersingular isogeny-based scheme
SIDHp751 [87], and also give sizes for the code-based scheme FS-Véron [86]

22 Due to an erroneous security analysis the scheme has been revised [8]. But since
this happened after we performed our benchmark computations, we present the
performance of the original TESLA scheme.
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Fig. 1. Measurements for instance selection (128-bit post-quantum security, average
over 100 runs).

to complete the picture.23 For our schemes, we include LowMC instances with
128, 192, and 256 bit block- and keysize for levels 1, 3, and 5, respectively.
For all three levels we use 10 S-boxes for LowMC. Additionally, for level 5
we also include the extreme points from the instance selection. Note however,
that the implementations for levels 1 and 5 profit more from our SIMD-based
optimizations then the implementation for level 3.

Our implementation is a highly parameterizable implementation, flexible enough
to cover the entire design spectrum of our approaches. In contrast, the implemen-
tations of other candidates used for comparison come with a highly optimized
implementation targeting a specific security level (and often also specific in-
stances). Thus, our timings are more conservative than the ones of the other
schemes. Yet, while timings and sizes can largely not compete with efficient
lattice-based schemes using ideal lattices, they are comparable to all other ex-
isting post-quantum candidates. We want to stress that ideal lattices have not
been investigated nearly as deeply as standard lattices and thus there is less con-
fidence in the assumptions (cf. [75]) and also the choice of parameters of these
schemes can be seen as quite aggressive.

23 Key sizes and signature sizes from BLISS were taken from [36], as they were not
readily available in the implementation. Sizes for FS-Véron are taken from https:

//pqcrypto.eu.org/mini.html.
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Scheme
Gen Sign Verify |sk| |pk| |σ|

Model
[ms] [ms] [ms] [bytes] [bytes] [bytes]

Fish-L1-10-20 0.01 3.94 1.69 16 32 37473 ROM
Fish-L3-10-30 0.01 51.33 32.01 24 48 73895 ROM
Fish-L5-1-316 0.01 364.11 201.17 32 64 108013 ROM
Fish-L5-10-38 0.01 29.73 17.46 32 64 118525 ROM
Fish-L5-42-14 0.01 13.27 7.45 32 64 152689 ROM
Picnic-L5-10-38 0.01 31.31 16.30 32 64 195458 QROM

MQ 5pass 0.96 7.21 5.17 32 74 40952 ROM
SPHINCS-256 0.82 13.44 0.58 1088 1056 41000 SM
BLISS-I 44.16 0.12 0.02 2048 7168 5732 ROM
Ring-TESLA∗ 16k 0.06 0.03 12288 8192 1568 ROM
TESLA-768∗ 48k 0.65 0.36 3216k 4128k 2336 (Q)ROM
FS-Véron n/a n/a n/a 32 160 129024 ROM
SIDHp751 16.41 7.3k 5.0k 48 768 141312 QROM

Table 1. Timings and sizes of private keys (sk), public keys (pk) and signatures (σ)
at the post-quantum 128-bit security level. ∗An errata to [3] says that this parameter
set is not supported by the security analysis (due to a flaw).

8 Summary

We have proposed two post-quantum signature schemes, i.e., Fish and Picnic. On
our way, we optimize ZKBoo to obtain ZKB++. For Fish, we then apply the
FS transform ZKBoo, whereas we optimize the Unruh transform and apply it
to ZKB++ for Picnic. Fish is secure in the ROM, while Picnic is secure in the
QROM. ZKB++ optimizes ZKBoo by reducing the proof sizes by a factor of
two, at no additional computational cost. While this is of independent interest
as it yields more compact (post-quantum) zero-knowledge proofs for any circuit,
it also decreases our signature sizes. Our work establishes a new direction to
design post-quantum signature schemes and we believe that this is an interest-
ing direction for future work, e.g., by the design of new symmetric primitives
especially focusing on optimizing the metrics required by our approach. Also, as
ZKBoo/ZKB++ are still relatively young it is likely that we will see further
improvements in the next few years (for a recent example see [78]).
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A Additional Material on ZKBoo

In Scheme 3 we restate the full ZKBoo protocol.

For public φ and y ∈ Lφ, the prover has x, such that y = φ(x). Com(·) is a secure
commitment scheme. The prover and verifier use the hash function H(·), which is
modeled as random oracle. The integer t is the number of parallel iterations.
p← Prove(x):

1. For each iteration ri, i ∈ [1, t]: Sample random tapes k
(i)
1 , k

(i)
2 , k

(i)
3 and run the

decomposition to get an output view View
(i)
j and output share y

(i)
j . In particular,

for each player Pj :

(x
(i)
1 , x

(i)
2 , x

(i)
3 )← Share(x, k

(i)
1 , k

(i)
2 , k

(i)
3 ),

View
(i)
j ← Update(Update(· · · Update(x

(i)
j , x

(i)
j+1, k

(i)
j , k

(i)
j+1) . . .) . . .) . . .),

y
(i)
j ← Output(View

(i)
j )

Commit [C
(i)
j , D

(i)
j ] ← Com(k

(i)
j ,View

(i)
j ) and let a(i) =

(y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ).

2. Compute the challenge: e← H(a(1), . . . , a(t)). Interpret the challenge such that for
i ∈ [1, t], e(i) ∈ {1, 2, 3}

3. For each iteration ri, i ∈ [1, t], let z(i) = (D
(i)
e , D

(i)
e+1).

4. Output p = [(a(1), z(1)), (a(2), z(2)), · · · , (a(t), z(t))]

b← Verify(y, p):

1. Compute the challenge: e′ ← H(a(1), · · · , a(t)). Interpret the challenge such that
for i ∈ [1, t], e′(i) ∈ {1, 2, 3}.

2. For each iteration ri, i ∈ [1, t]: If there exists j ∈ {e′(i), e′(i) + 1} such that

Open(C
(i)
j , D

(i)
j ) = ⊥, output Reject. Otherwise, for all j ∈ {e′(i), e′(i) + 1}, set

{k(i)j ,View
(i)
j } ← Open(C

(i)
j , D

(i)
j ).

3. If Reconstruct(y
(i)
1 , y

(i)
2 , y

(i)
3 ) 6= y, output Reject. If there exists j ∈ {e′(i), e′(i) +1}

such that y
(i)
j 6= Output(View

(i)
j ), output Reject. For each wire value w

(e)
j ∈ Viewe,

if w
(e)
j 6= Update(view

(j−1)
e , view

(j−1)
e+1 , ke, ke+1) output Reject.

4. Output Accept.

Scheme 3: The ZKBoo non-interactive proof system
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A.1 (2,3)-Decomposition

We define the experiment EXP
(φ,x)
decomp in Scheme 4, which runs the decomposition

over a circuit φ on input x: We say that D is a (2, 3)-decomposition of φ if the

EXP
(φ,x)
decomp:

1. First run the Share function on x: view
(0)
1 , view

(0)
2 , view

(0)
3 ← Share(x, k1, k2, k3)

2. For each of the three views, call the update function successively for every gate in
the circuit: view

(j)
i = Update(view

(j−1)
i , view

(j−1)
i+1 , ki, ki+1) for i ∈ [1, 3], j ∈ [1, n]

3. From the final views, compute the output share of each view: yi ← Output(Viewi)

Scheme 4: Decomposition Experiment

following two properties hold when running EXP
(φ,x)
decomp:

(Correctness) For all circuits φ, for all inputs x and for the yi’s produced by ,
for all circuits φ, for all inputs x,

Pr[φ(x) = Reconstruct(y1, y2, y3)] = 1

(2-Privacy) Let D be correct. Then for all e ∈ {1, 2, 3} there exists a PPT sim-
ulator Se such that for any probabilistic polynomial-time (PPT) algorithm A,
for all circuits φ, for all inputs x, and for the distribution of views and ki’s pro-

duced by EXP
(φ,x)
decomp we have that

∣∣Pr[A(x, y, ke,Viewe, ke+1,Viewe+1, ye+2) =

1]− Pr[A(x, y,Se(φ, y)) = 1]
∣∣ is negligible.

A.2 Linear Decomposition of a Circuit

ZKBoo uses an explicit (2,3)-decomposition, which we recall here. Let R be
an arbitrary finite ring and φ a function such that φ : Rm → R` can be ex-
pressed by an n-gate arithmetic circuit over the ring using addition by constant,
multiplication by constant, binary addition and binary multiplication gates. A
(2, 3)−decomposition of φ is given by the following functions. In the notation
below, arithmetic operations are done in Rs where the operands are elements of
Rs):

– (x1, x2, x3)← Share(x, k1, k2, k3) samples random x1, x2, x3 ∈ Rm such that
x1 + x2 + x3 = x.

– yi ← Outputi(view
(n)
i ) selects the ` output wires of the circuit as stored in

the view view
(n)
i .

– y ← Reconstruct(y1, y2, y3) = y1 + y2 + y3
– view

(j+1)
i ← Update

(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) computes Pi’s view of the

output wire of gate gj and appends it to the view. Notice that it takes as
input the views and random tapes of both party Pi as well as party Pi+1.

We use wk to refer to the k-th wire, and we use w
(i)
k to refer to the value of

wk in party Pi’s view. The update operation depends on the type of gate gj .
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The gate-specific operations are defined as follows.

Addition by Constant (wb = wa + k).

w
(i)
b =

{
w

(i)
a + k if i = 1,

w
(i)
a otherwise.

Multiplication by Constant (wb = wa · k).

w
(i)
b = k · w(i)

a

Binary Addition (wc = wa + wb).

w(i)
c = w(i)

a + w
(i)
b

Binary Multiplication (wc = wa · wb).

w(i)
c = w(i)

a · w(i)
b + w(i+1)

a · w(i)
b +

w(i)
a · w(i+1)

b +Ri(c)−Ri+1(c),

where Ri(c) is the c-th output of a pseudorandom generator seeded with ki.

Note that with the exception of the constant addition gate, the gates are sym-
metric for all players. Also note that Pi can compute all gate types locally with
the exception of binary multiplication gates as this requires inputs from Pi+1.
In other words, for every operation except binary multiplication, the Update

function does not use the inputs from the second party, i.e., view
(j)
i+1 and ki+1.

While we do not give the details here, [45] shows that this decomposition
meets the correctness and 2-privacy requirements of Definition 1.

B Description of LowMC

LowMC by Albrecht et al. [6,4] is very parameterizable symmetric encryption
scheme design enabling instantiation with low AND depth and low multiplicative
complexity. Given any blocksize, a choice for the number of S-boxes per round,
and security expectations in terms of time and data complexity, instantiations
can be created minimizing the AND depth, the number of ANDs, or the number
of ANDs per encrypted bit. Table 2 lists the choices for the parameters which
are also highlighted in the figures.

The description of LowMC is possible independently of the choice of param-
eters using a partial specification of the S-box and arithmetic in vector spaces
over F2. In particular, let n be the blocksize, m be the number of S-boxes, k the
key size, and r the number of rounds, we choose round constants Ci←R Fn2 for
i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regular matrices Li←R Fn×n2 inde-
pendently during the instance generation and keep them fixed. Keys for LowMC
are generated by sampling from Fk2 uniformly at random.
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Blocksize S-boxes Keysize Rounds
n m k r

256 1 256 316
256 10 256 38
256 42 256 14

Table 2. A range of different parameter sets for LowMC. All parameters are computed
for data complexity d = 1

LowMC encryption starts with key whitening which is followed by several
rounds of encryption. A single round of LowMC is composed of an S-box layer,
a linear layer, addition with constants and addition of the round key, i.e.

LowMCRound(i) = KeyAddition(i)

◦ ConstantAddition(i)

◦ LinearLayer(i) ◦ SboxLayer.

SboxLayer is an m-fold parallel application of the same 3-bit S-box on the
first 3 ·m bits of the state. The S-box is defined as S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕
ac, a⊕ b⊕ c⊕ ab).

The other layers only consist of F2-vector space arithmetic. LinearLayer(i)
multiplies the state with the linear layer matrix Li, ConstantAdditon(i) adds
the round constant Ci to the state, and KeyAddition(i) adds the round key to
the state, where the round key is generated by multiplying the master key with
the key matrix Ki.

Algorithm 1 gives a full description of the encryption algorithm.

Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn2 and key y ∈ Fk2
s← K0 · y + p
for i ∈ [1, r] do

s← Sbox(s)
s← Li · s
s← Ci + s
s← Ki · y + s

end for
return s

C Building Blocks

Commitments. Formally a (non-interactive) commitment scheme consists of
three algorithms KG, Com, Open with the following properties:
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KG(1κ) : The key generation algorithm, on input the security parameter κ it
outputs a public key pk (we henceforth assume pk to be an implicit input to
the subsequent algorithms).

Com(M) : On input of a messageM , the commitment algorithm outputs (C(M),
D(M))← Com(M ;R), whereR are the coin tosses. C(M) is the commitment
string, while D(M) is the decommitment string which is kept secret until
opening time.

Open(C,D) : On input C,D, the verification algorithm either outputs a message
M or ⊥.

We note that if the sender refuses to open a commitment we can set D = ⊥
and Open(pk, C,⊥) = ⊥. Computationally secure commitments must satisfy the
following properties

Correctness If (C(M), D(M)) = Com(M) then Open(pk, C(M), D(M)) = M .
Hiding For every message pair M,M ′ the probability ensembles {C(M)}κ∈N

and {C(M ′)}κ∈N are computationally indistinguishable for security param-
eter κ.

Binding We say that an adversary A wins if it outputs C,D,D′ such that
Open(C,D) = M , Open(C,D′) = M ′ and M 6= M ′. We require that for
all efficient algorithms A, the probability that A wins is negligible in the
security parameter.

To simplify our notation, we will often not explicitly generate the public key pk
when we make use of commitments.

Our implementation uses hash-based commitments, which requires modeling
the hash function as a random oracle in our security analysis. Note also that
randomizing the Com function may not be necessary if M has high entropy.

One-Way Functions. We define the notion of families of one-way functions.

Definition 2. A family of functions {fk}k∈Kκ with fk : Dκ → Rκ is called one-
way, if (1) for all κ and for all k ∈ Kκ there exists a PPT algorithm A1 so that
∀x ∈ Dκ : A1(x) = fk(x), and (2) for every PPT algorithm A2 there is a
negligible function ε(·) such that it holds that

Pr
[
k←R Kκ, x←R Dκ, x

∗ ← A2(1κ, fk(x)) : f(x) = f(x∗)
]
≤ ε(κ).

Pseudorandom Functions and Generators. We require the notion of pseu-
dorandom functions and generators, which we formally recall below.

Definition 3 (Pseudorandom Function). Let {fk}k∈Kκ be an efficiently com-
putable, length-preserving function family with fk : {0, 1}κ → {0, 1}κ. We say
that {fk} is a pseudorandom function (PRF) family, if for all PPT distinguish-
ers D,

|Pr[Dfk(1κ) = 1]− Pr[DFκ(1κ) = 1]|

is negligible in κ, where k ← {0, 1}κ is chosen uniformly at random and Fκ is
chosen uniformly at random from the set of functions mapping κ-bit strings to
κ-bit strings.
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We now define a weaker notion of a pseudorandom function in which we put
an upper bound on the number of queries that the distinguisher can make to its
oracle.

Definition 4 (q-Pseudorandom Function). Let {fk} and Fκ be as defined
in Definition 3, and let q be a positive integer constant. We say that F is a
q-pseudorandom function (q-PRF) if for all PPT distinguishers D that make at
most q queries to their oracle,

|Pr[Dfk(1κ) = 1]− Pr[DFκ(1κ) = 1]|

is negligible in κ.

Note that a pseudorandom function is also a q-pseudorandom function for any
constant q. When considering concrete security of PRFs against quantum at-
tacks, we assume that an n-bit function provides n/2 bits of security.

Pseudorandom Generators. We require the notion of pseudorandom gener-
ators, which we formally recall below.

Definition 5 (Pseudorandom Generator). An (n, `) pseudorandom gener-
ator (PRG) is a function P : {0, 1}n → {0, 1}` that expands an n-bit seed to
an `-bit random string. Informally, the PRG is said to be secure if for randomly
chosen seeds, the output is indistinguishable from the uniform distribution on
{0, 1}`.
Concretely, we assume that AES-256 in counter mode provides 128 bits of PRG
security, when used to expand 256-bit seeds to outputs less than 1kB in length.

Signature Schemes. Below we recall a standard definition of signature schemes.

Definition 6. A signature scheme Σ is a triple (Gen, Sign,Verify) of PPT al-
gorithms, which are defined as follows:

Gen(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m ∈ M as
input and outputs a signature σ.

Verify(pk,m, σ) : This algorithm takes a public key pk, a message m ∈M and a
signature σ as input and outputs a bit b ∈ {0, 1}.

Besides the usual correctness property, Σ needs to provide some unforgeability
notion. In this paper we are only interested in schemes that provide existential
unforgeability under adaptively chosen message attacks (EUF-CMA security),
which we define below.

Definition 7 (EUF-CMA). A signature scheme Σ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function ε(·) such that

Pr
[

(sk, pk)← Gen(1κ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m∗, σ∗) = 1 ∧ m∗ /∈ QSign
]
≤ ε(κ),
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where the environment keeps track of the queries to the signing oracle via QSign.

D Security of Key Generation

In this section, we argue that using the block cipher in the way we use it can
serve as our hard instance generator to generate keys for our signature scheme.
Below, we recall the definition of hard instance generators as presented in [84]:

Definition 8 (Hard Instance Generators). An algorithm G is called a hard
instance generator for a relation R if

1. there is a negligible function ε1(·) so that it holds that

Pr[(y, x)← G(1κ) : (y, x) ∈ R] ≥ 1− ε1(κ),

2. and for every PPT algorithm A there is a negligible function ε2(·) so that it
holds that

Pr[(y, x)← G(1κ), x∗ ← A(y) : (y, x∗) ∈ R] ≤ ε2(κ).

To establish a relation between public and secret keys, we use a family of block-
cipher-based one-way functions {fk} where

fk(x) := Enc(x, k).

That is, Enc(x, k) denotes the encryption of a single block k ∈ {0, 1}c·κ with
respect to key x ∈ {0, 1}c·κ. Upon key generation, one first samples a concrete
one-way function {fk} with respect to security parameter κ uniformly at random
by sampling a uniformly random block k ∈ {0, 1}c·κ. This function is then fixed
by including k in the public key of the scheme, which implicitly defines the
relation R. That is

(y, x) ∈ R⇐⇒ y = fk(x).

Now, we assume that using LowMC in this way yields a suitable one-way func-
tion. As already mentioned by Unruh in [84], a one-way function directly yields
a suitable hard instance generator (observe the similarity in the definitions). To
make our results more general, we show that any block-cipher where the keysize
is equal to the blocksize, and in particular equal to c·κ (where we set c = 1 in the
classical setting, whereas we set c = 2 in the post-quantum setting to account
for the generic speedup imposed by Grover’s algorithm [52]), when viewed as a
family of PRFs, also yields a suitable one-way function family.

Theorem 1. Let {fk}k∈Kκ with fk : Mκ → Mκ be a family of pseudorandom
functions, then {fk}k∈Kκ is also a family of one-way functions with respect to k
for any input x ∈ Mκ.

Proof. The first condition of Definition 2 clearly holds, as for any κ, any k ∈ Kκ,
and any x ∈ Mκ we can efficiently compute y = fk(x) by definition 3. What
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remains is to prove the second condition. In particular, we need to show that for
every PPT algorithm A there is a negligible function ε(·) so that it holds that

Pr[k←R Kκ, k
∗ ← A(1κ, fk(x)) : fk(x) = fk∗(x)] ≤ ε(κ),

for any x ∈ Mκ. We denote by keyset(y) the set of keys B such that for all
k ∈ B, fk(r) = y. If there is no such satisfying key, keyset(y) returns the empty
set. For an algorithm A, denote by ty the probability that A will output a key
k′ on input y such that fk′(r) = y. Then, using this notation we can rewrite the
probability above as

P1 :=
∑
y

|keyset(y)|
|Kκ|

· ty

and we need to show that P1 is negligible for any A.
First, we define, probability P2, which is the probability that A will output

the “correct key”, by which we mean the same key that was chosen to generate y.
Since the key was chosen uniformly at random, information-theoretically, there
is no way for A to distinguish between the “correct key” and any other valid
key (i.e. any k′ for which fk′(r) = y). Thus, the only strategy that A has is to
output any valid key and with probability 1/keyset(y), the key that it outputs will
be the “correct key”. Thus, we have:

P2 : = Pr[k←R Kκ, k
∗ ← A(1κ, fk(x)) : k = k∗]

=
∑
y

|keyset(y)|
|Kκ|

· ty ·
1

|keyset(y)|

=
1

|Kκ|
∑
y

ty

We now show that P2 is negligible. Assume that there exists an A for which
P2 is equal to a non-negligible ε. Then we can build a distinguisher D that
distinguishes between F and a random function as follows:

DO(1|k|)

1. y′ ← O(r). Queries the oracle on x and receive response y′.
2. Invoke A on input y′.

(a) if ⊥ ← A(y′), output 0.
(b) if k∗ ← A(y′), check that this is the “correct key” as follows

i. First check that fk∗(r) = y. If not, output 0. Else, continue
ii. Next, choose a value q ← Mκ uniformly at random and query on

that value – i.e. query for z ← O(q).
iii. Check that z = fk∗(q). If it does not, output 0. If it does, output 1.

Now, let’s analyze the output of D. Whenever A outputs the “correct key”, D
will output 1. Moreover, A will output the correct key with probability ε. Thus,
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if D’s oracle is a pseudorandom function – i.e. if O = fk, then with probability
at least ε, D will output 1. To see that this is true notice that when O = fk,
the key k for fk is chosen from the same distribution as in a real execution, and
thus A’s success probability on outputting the “correct key” will be exactly ε.24

If, however, O is a random function – i.e. O = Fn, then D will only output 1
in the event that Fn(q) = fk∗(q). In step (iii), once we have chosen a key k∗, the
probability of the random function agreeing with Fk∗ on q is δ = 1

|M|−1 , which

is negligible in |k| since |M| ≥ |K| = 2|k|.

Thus, we have built a good distinguisher since:

|Pr[Dfk(1|k|) = 1]− Pr[DFn(1|k|) = 1]| ≥ ε− δ

which is non-negligible.

This contradicts our assumption that {fk} is a pseudorandom function fam-
ily, and we therefore conclude that P2 is negligible.

We now show that |P1 −P2| is negligible. Once again, consider an algorithm
A that on input y outputs a key k′ such that fk′(x) = y with probability ty.
Consider the following two games.

Game 1. A key k ← Kκ is chosen uniformly at random and y = fk(x) is given to
the adversary. The adversary wins if it can produce a key k′ such that fk′(x) = y.
The probability of A succeeding at this game is exactly P1:

∑
y

|keyset(y)|
|Kκ|

· ty

Game 2. y ←M is chosen uniformly at random and given to the adversary. The
adversary wins if it can output a key k′ such that Fk′(r) = y. The difference
between this game and the previous one is that now we choose y uniformly
irrespective of the keys. Thus all y’s will be chosen with equal probability no
matter how many keys (if any) map r to y. The success probability of A in this
game is

P3 :=
1

|Mκ|
∑
y

ty

Now, if you could distinguish between Game 1 and Game 2, you could build
an algorithm D that distinguishes f from a random function. D simply queries
its oracle at r, and send the response y to A. If the oracle is a pseudorandom
function, then the success probability will be exactly the same as Game 1, namely
P1. If it is a random function, the success probability is exactly the same as Game
2, namely P3. Thus, by Definition 3, we know that |P1 − P3| is negligible.

24 It is possible that when O = fk, D will output 1 with probability greater than ε
–i.e. if A outputs the wrong key that happens to agree with the “correct key” on the
queried values, but for the sake of our argument it suffices to show that it outputs
1 with probability at least ε.
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Since |Kκ| ≤ |Mκ|, then P2 ≤ P3, and in particular, when |Kκ| = |Mκ|,
P2 = P3. We thus have that |P1 − P2| is negligible. Since we have shown that
both P2 and |P1 − P2| are negligible, it follows that P1 is negligible as well.ut

E Parallelization of Proofs

One positive aspect regarding the t parallel repetitions is that they are inde-
pendent of each other. This observation was also made for ZKBoo in [44]. In
particular, this holds for all steps in the signing and verification algorithm up
to the initial requests to OpenSSL’s random number generator and the com-
putation of the challenge. This allows us to take advantage of the multi-core
architecture of modern processors using OpenMP.25 As exemplified for Fish in
Figure 2, we can observe a significant performance increase until the number
of threads matches the actual number of CPU cores26. We note that exactly
the same effects also occur for instantiations of Picnic. Furthermore, they also
occur regardless of the LowMC parameters. The speed-up is not linear with
our current implementation. The speed-up from one to two threads is about 2x,
but becomes smaller as additional cores are added, likely because memory access
becomes a bottleneck.
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Fig. 2. Runtime of the parallelized version of Sign and Verify of Fish using an increasing
number of threads. The x-axis shows the running time, while y-axis shows the various
LowMC parameter sets, sorted by signature size (as in Figure 1).

25 http://openmp.org
26 HyperThreading was disabled to reduce noise in the benchmarks.
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F Security of the proof system in the quantum random
oracle model

Here we prove that the proof system we get by applying our modified Unruh
transform to ZKB++ as described in Section 5 is both zero knowledge and
simulation-extractable in the quantum random oracle model.

Before we begin, we note that the quantum random oracle model is highly
non-trivial, and a lot of the techniques used in standard random oracle proofs do
not apply. The adversary is a quantum algorithm that may query the oracle on
quantum inputs which are a superposition of states and receive superposition of
outputs. If we try to measure those states, we change the outcome, so we do not
for example have the same ability to view the adversary’s input and program
the responses that we would in the standard ROM.

Here we rely on lemmas from Unruh’s work on quantum-secure Fiat-Shamir
like proofs [84]. We follow his proof strategy as closely as possible, modifying
it to account for the optimizations we made and the fact that we have only
3-special soundness in our underlying Σ-protocol.

Zero Knowledge This proof very closely follows the proof from [84]. The main
difference is that we also use the random oracle to form our commitments, which
is addressed in the transition from game 2 to game 3 below.

Consider the simulator described in Figure 5. From this point on we assume
for simplicity of notation that View3 includes x3.

We proceed via a series of games.

Game 1: This is the real game in the quantum random oracle model. Let Hcom

be the random oracle used for forming the commitments, Hchal be the ran-
dom oracle used for forming the challenge, and G be the additional random
permutation.

Game 2: We change the prover so that it first chooses random e∗ = e∗(1), . . . ,
e∗(t), and then on step 2, it programs Hchal(a

(1), . . . , a(t), h(1), . . . , h(t)) = e∗.
Note that each the a(1), . . . , a(t), h(1), . . . , h(t) has sufficient collision-entropy,

since it includes {h(i) = (g
(i)
1 , g

(i)
2 , g

(i)
3 )}, the output of a permutation on

input whose first k bits are chosen at random (the k
(i)
j ), so we can apply

Corollary 11 from [84] (using a hybrid argument) to argue that Game 1 and
Game 2 are indistinguishable.

Game 3: We replace the output of each Hcom(ke∗(i) ,Viewe∗(i)) and G(ke∗(i) ,
Viewe∗(i)) with a pair of random values.
First, note that Hcom and G are always called (by the honest party) on the
same inputs, so we will consider them as a single random oracle with a longer
output space, which we refer to as H for this proof.
Now, to show that Games 2 and 3 are indistinguishable, we proceed via a
series of hybrids, where the i-th hybrid replaces the first i such outputs with
random values.
To show that the i-th and i + 1-st hybrid are indistinguishable, we rely on
Lemma 9 from [84]. This lemma says the following: For any quantum A0, A1
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p← Sim(x): In the simulator, we follow Unruh, and replace the initial state (before
programming) of the random oracles with random polynomials of degree 2q− 1 where
q is an upper bound on the number of queries the adversary makes.

1. For i ∈ [1, t], choose random e(i) ← {1, 2, 3}. Let e be the corresponding binary
string.

2. For each iteration ri, i ∈ [1, t]: Sample random seeds k
(i)

e(i)
, k

(i)

e(i)+1
and run the

circuit decomposition simulator to generate View
(i)

e(i)
, View

(i)

e(i)+1
, output shares y

(i)
1 ,

y
(i)
2 , y

(i)
3 , and if e(i) = 1 x

(i)
3 .

For j = e(i), e(i) +1 commit [C
(i)
j , D

(i)
j ]← [H(k

(i)
j ,View

(i)
j ), k

(i)
j ||View

(i)
j ], and com-

pute g
(i)
j = G(k

(i)
j ,View

(i)
j ).

Choose random Ce(i)+2, g
(i)

e(i)

Let a(i) = (y
(i)
1 , y

(i)
2 , y

(i)
3 , C

(i)
1 , C

(i)
2 , C

(i)
3 ). And h(i) = g

(i)
1 , g

(i)
2 , g

(i)
3 .

2. Set the challenge: program H(a(1), . . . , a(t)) := e.

3. For each iteration ri, i ∈ [1, t]: let b(i) = (y
(i)

e(i)+2
, C

(i)

e(i)+2
) and set

z(i) ←


(View

(i)
2 , k

(i)
1 , k

(i)
2 ) if e(i) = 1,

(View
(i)
3 , k

(i)
2 , k

(i)
3 , x

(i)
3 ) if e(i) = 2,

(View
(i)
1 , k

(i)
3 , k

(i)
1 , x

(i)
3 ) if e(i) = 3.

4. Output p← [e, (b(1), z(1)), (b(2), z(2)), · · · , (b(t), z(t))].

Scheme 5: The zero knowledge simulator

which make q0, q1 queries to H respectively and classical AC , all three of
which may share state, let PC be the probability if we choose a random
function H and a random output B, then run AH0 followed by AC to generate
x, and then run AH1 (x,B), that for a random j, the j-th query AH1 makes is
measured as x′ = x. Then as long as the output of AC has collision-entropy
at least k, the advantage with which AH1 , when run after A0, AC as described,
distinguishes (x,B) from (x,H(x)) is at most (4 +

√
2)
√
q02−k/4 + 2q1

√
PC .

In other words, if we can divide our game into three such algorithms and
argue that the A1 queries H on something that collapses to x with only
negligible probability, then we can conclude that the two games are indis-
tinguishable. Let A0 run the game up until just before the i th iteration in

the proof generation. Let AC be the process which chooses k
(i)
1 , k

(i)
2 , k

(i)
3 and

generates View
(i)
1 ,View

(i)
2 ,View

(i)
3 , and outputs x = ke∗(i) ,Viewe∗(i) . (Note

that this has collision entropy |ke∗(i) | which is sufficient.) Let A1 be the pro-
cess which runs the rest of the proof, and then runs the adversary on the
response.

Now we just have to argue that the probability that we make a measurement
of A1’s j-th query to H and get x is negligible. To do this, we reduce to
the security of the PRG used to generate the random tapes (and hence the
views). Note that besides the one RO query, ke∗(i) is only used as input to the
PRG. So, suppose there exists a quantum adversary A for which the resulting
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A1 has non-negligible probability of making an H-query that collapses to x.
Then we can construct a quantum attacker for the PRG: we run the above
A0, AC , but instead of choosing ke∗(i) we use the PRG challenge as the
resulting random tape, and return a random value as the RO output. Then
we run A1, which continues the proof (which should query ke∗(i) only with
negligible probability since ks are chosen at random), and then runs the
adversary. We pick a random j, and on the adversary’s j-th query, we make
a measurement and if it gives us a seed consistent with our challenge tape,
we output 1, otherwise a random bit. If PC is non-negligible then we will
obtain the correct seed and distinguish with non-negligible probability.

Game 4: For each i instead of choosing random ke∗(i) and expanding it via the
PRG to get the random tape used to compute the views, we choose those
tapes directly at random.
Note that in Game 3, ke∗(i) are now only used as seeds for the PRG, so this
follow from pseudorandomness via a hybrid argument.

Game 5: We use the simulator to generate the views that will be opened, i.e.
j 6= e∗(i) for each i. We note that now the simulator no longer uses the
witness.
This is identical by perfect privacy of the circuit decomposition.

Game 6: To allow for extraction in the simulation-extractability game we re-
place the random oracles with random polynomials whose degree is larger
than the number of queries the adversary makes. The argument here identi-
cal to that in [84].

Online Extractability Before we prove online simulation-extractability, we
define some notation to simplify the presentation:

For any proof π = e, {b(i), g(i), z(i)}i=1...t, let hash-input(π) = {a(i), h(i) =

(g
(i)
1 , g

(i)
2 , g

(i)
3 )} be the values that the verifier uses as input to Hchal in the

verification of π as described in Figure 1.
For a proof π = (e, {b(i), g(i), z(i)}i=1...t), let open0(z(i)), open1(z(i)) denote

the values derived from z(i) and used to compute C
(i)
ei and C

(i)
ei+1 respectively in

the description of Ver in Figure 1.
We say a tuple (a, j, (o1, o2)) is valid if a = (y1, y2, y3, C1, C2, C3), Cj =

Hcom(o1), Cj+1 = Hcom(o2) and o1, o2 consist of k,View pairs for player j, j + 1
that are consistent according to the circuit decomposition. We say (a, j, (O1, O2))
is set-valid if there exists o1 ∈ O1 and o2 ∈ O2 such that (a, j, (o1, o2)) is valid
and set-invalid if not.

We first restate lemma 16 from [84] tailored to our application, in particular
the fact that our proofs do not explicitly contain the commitment but rather the
information the verifier needs to recompute it.

Lemma 1. Let qG be the number of queries to G made by the adversary A and
the simulator S in the simulation extractability game, and let n be the number
of proofs generated by S. Then the probability that A produces x, π∗ /∈ simproofs
where x, π∗ is accepted by VerH , and hash-input(π∗) =
hash-input(π′) for a previous proof π′ produced by the simulator, is at most n(n+
1)/2(2−k)3t +O((qG + 1)32−k) (Call this event MallSim.)
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Proof. This proof follows almost exactly as in [84].
First, we argue that G is indistinguishable from a random function exactly

in [84].
Then, observe that there are only two ways MallSim can occur:
Let e′ be the hash value in π′. Then either S reprograms H sometime after

π′ is generated so that H(hash-input(π′)) is no longer e′, or π∗ also contains the
same e as π, i.e. e = e′. S only reprograms H if it chooses the same hash-input

in a later proof - and hash-input includes g
(i)
j , i.e. a random function applied to

an input which includes a randomly chosen seed. Thus, the probability that S
chooses the same hash-input twice is at most n(n+1)/2(2−k)3t+O((qG+1)32−k,
where (2−k)3t is the probability that two proofs use all the same seeds, and
O((qG + 1)32−k is the probability that two different seeds result in a collision in
G, where the latter follows from Theorem 8 in [84].

The other possibility is that hash-input(π∗) = hash-input(π′) , and e = e′,
but b(i), g(i), z(i) 6= b′(i), g′(i), z′(i) for some i. First note, that if e = e′ and
hash-input(π∗) = hash-input(π′), then g(i) = g′(i) and b(i) = b′(i) for all i, by
definition of hash-input. Thus, the only remaining possibility is that z(i) 6= z′(i)

for some i. But since h(i) = h′(i) for all i, this implies a collision in G, which
again by Theorem 8 in [84] occurs with probability at most O((qG + 1)32−k.

We conclude that MallSim occurs with probability at most n(n+1)/2(2−k)3t+
O((qG + 1)32−k. ut

Here, next we present our variant of lemma 17 from [84]. Note that this is
quoted almost directly from Unruh with two modifications to account for the
fact that our proofs do not explicitly contain the commitment but rather the
information the verifier needs to recompute it, and the fact that our underlying
Σ-protocol has only 3 challenges and satisfies 3-special soundness. H0 in this
lemma will correspond in our final proof to the initial state of Hchal.

Lemma 2. Let G,Hcom be arbitrarily distributed functions, and let H0 : {0, 1}≤` →
{0, 1}2t be uniformly random (and independent of G). , Then, it is hard to find

x and π such that for {a(i), (g(i)1 , g
(i)
2 , g

(i)
3 )} = hash-input(π) and J1|| . . . ||Jt :=

H0(hash-input(π))

(i) g
(i)
Ji

= G(open0(z(i))) and g
(i)
Ji+1 = G(open1(z(i))) for all i.

(ii) (a(i), Ji, (open0(z(i)), open1(z(i)))) is valid for all i.
(iii) For every i, there exists a j such that (a(i), j, G−1(gi,j), G

−1(gi,j+1))) is set-
invalid.

More precisely, if AG,H0 makes at most qH queries to H0, it outputs (x, π) with
these properties with probability at most 2(qH + 1)( 2

3 )t/2

Proof. Without loss of generality, we can assume that G,Hcom are fixed functions
which A knows, so for this lemma we only treat H0 as a random oracle.

For any given value of H0, we call a tuple c = (x, {a(i)}i, {g(i)j }i,j) a candi-

date iff: for each i, among the three transcripts, (a(i), 1, G−1(g1)(i), G−1(g
(i)
2 )),

(a(i), 2, G−1(g
(i)
2 ),
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G−1(g
(i)
3 )), and (a(i), 3, G−1(g

(i)
3 ), G−1(g

(i)
1 )) at least one is set-valid, and at least

one is set-invalid. Let ntwovalid(c) be the number of i’s for which there are 2 set-
valid transcripts. Let Evalid(c) be the set of challenge tuples which correspond
to only set-valid conversations. (Note that |Evalid(c)| = 2ntwovalid(c).) We call a
candidate an H0-solution if the challenge produced by H0 only opens set-valid
conversations, i.e. in lies in Evalid(c). We now aim to prove that AH outputs an
H0 solution with negligible probability.

For any given candidate c, for uniformly random H0, the probability that
c is an H0-solution is ≤ ( 2

3 )t. In particular, for candidate c the probability is

( 2
3 )t ∗ 2ntwovalid(c)−t.

Let Cand be the set of all candidates. Let F : Cand → {0, 1} be a random
function such that for each c F (c) is i.i.d. with Pr[F1(c) = 1] = (2/3)t .

Given F , we construct HF : {0, 1}∗ → Zt3 as follows:

– For each c /∈ Cand, HF (c) is set to a uniformly random y ∈ Zt3.
– For each c ∈ Cand such that F (c) = 0, HF (c) is set to a uniformly random
y ∈ Zt3 \ Evalid(c).

– For each c ∈ Cand with F (c) = 1, with probability 2ntwovalid−t, choose a random
challenge tuple e from Evalid(c), and set HF (c) := e. Otherwise HF (c) is set
to a uniformly random y ∈ Zt3 \ Evalid(c).

Note that for each c, and e the probability of H(c) being set to e is 3−t.
Suppose AH0 outputs an H0-solution with probability µ, then since HF has the
same distribution as H0, AHF () outputs an HF solution c with probability µ.
By our definition of HF , if c is an HF solution, then F (c) = 1. Thus, AHF ()
outputs c such that F (c) = 1 with probability at least µ.

As in [84], we can simulate AHF () with another algorithm which generates
HF on the fly, and thus makes at most the same number of queries to F that A
makes to HF . Thus by applying Lemma 7 from [84], we get

µ ≤ 2(qH + 1)(
2

3
)t/2.

ut
Finally, as the sigma protocol underlying our proofs is only computationally

sound (because we use Hcom for our commitment scheme), we need to argue
that an extractor can extract from 3 valid transcripts with all but negligible
probability.

Lemma 3. There exists an extractor EΣ such that for any ppt quantum ad-
versary A, the probability that A can produce (a, {(ν1,j , ν2,j)}j=1,2,3) such that
(a, j, (ν1,j , ν2,j)) is a valid transcript for j = 1, 2, 3, but EΣ(a, {(ν1,j , ν2,j)}j=1,2,3)
fails to extract a proof, is negligible.

Proof. Recall that a = (y1, y2, y3, C1, C2, C3), and if all three transcripts are
valid, Cj = Hcom(ν1,j) = Hcom(ν2,j−1) for j = 1, 2, 3. Thus, either we have
ν1,j = ν2,j−1 for all j or A has found a collision in Hcom. But, Theorem 8 in [84]
tells us that the probability of finding a collision in a random function with k-bit
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output using at most q queries is at most O((q + 1)32−k), which is negligible. If
ν1,j = ν2,j−1 for all j, then we have 3 kj ||Viewj values, all of which are pairwise
consistent, so we conclude by the correctness of the circuit decomposition, and
the fact that (x = y, w) ∈ R iff φ(w) = y that if we sum the input share in
View1,View2,View3, we get a witness such that (x,w) ∈ R. ut

Theorem 2. Our version of the Unruh protocol satisfies simulation-extractability
against a quantum adversary.

Proof. We define the following extractor:

1. On input π, compute hash-input(π) = {a(i), h(i) = (g
(i)
1 , g

(i)
2 , g

(i)
3 )}

2. For i ∈ 1, . . . , t: For j ∈ 1, 2, 3, check whether there is a solution ν1,j ∈
G−1(g

(i)
j ), ν2,j ∈ G−1(g

(i)
j+1) such that (a(i), j, (ν1,j , ν2,j)) is a valid transcript.

If there is a valid transcript for all j, output EΣ(a(i), {(ν1,j , ν2,j)}j=1,2,3) as
defined by Lemma 3 and halt.

3. If no solution is found, output ⊥.

First we define some notation, again borrowed heavily from [84]:

Let Evi,Evii,Eviii be events denoting that A in the simulation extractability
game produces a proof satisfying conditions (i), (ii), and (iii) from Lemma 2
respectively.

Let SigExtFail be the event that the extractor finds a successful (a, {(ν1,j ,
ν2,j)}j=1,2,3), but EΣ fails to produce a valid witness.

Let ShouldExt denote the event that A produces x, π such that VerH accepts
and (x, π) /∈ simproofs.

Then our goal is to prove that the w produced by the extractor is such that
(x,w) ∈ R. I.e., we want to prove that the following probability is negligible.
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Pr[ShouldExt ∧ (x,w) /∈ R]

≤Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim]

+ Pr[MallSim]

= Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

≤Pr[(x,w) /∈ R ∧ ¬Eviii]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Eviii]

+ Pr[MallSim]

= Pr[SigExtFail]

+ Pr[ShouldExt ∧ (x,w) /∈ R ∧ ¬MallSim ∧ Evi ∧ Evii ∧ Eviii]

+ Pr[MallSim]

≤Pr[SigExtFail]

+ Pr[Evi ∧ Evii ∧ Eviii]

+ Pr[MallSim]

Here, the second equality follows from the definition of SigExtFail and Eviii,
and the description of the extractor. The third equality follows from the fact
that ¬MallSim means that the hash function on hash-input(π) has not been re-
programmed, and the fact that ShouldExt means verification succeeds, which
means that conditions (i) and (ii) are satisfied.

Finally, by Lemmas 3, 2, and 1, we conclude that this probability is negligible.
ut
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Post-Quantum Zero-Knowledge Proofs for
Accumulators with Applications to Ring

Signatures from Symmetric-Key Primitives?
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Abstract. In this paper we address the construction of privacy-friendly
cryptographic primitives for the post-quantum era and in particular ac-
cumulators with zero-knowledge membership proofs and ring signatures.
This is an important topic as it helps to protect the privacy of users in
online authentication or emerging technologies such as cryptocurrencies.
Recently, we have seen first such constructions, mostly based on assump-
tions related to codes and lattices. We, however, ask whether it is possible
to construct such primitives without relying on structured hardness as-
sumptions, but solely based on symmetric-key primitives such as hash
functions or block ciphers. This is interesting because the resistance of
latter primitives to quantum attacks is quite well understood.

In doing so, we choose a modular approach and firstly construct an ac-
cumulator (with one-way domain) that allows to efficiently prove knowl-
edge of (a pre-image of) an accumulated value in zero-knowledge. We,
thereby, take care that our construction can be instantiated solely from
symmetric-key primitives and that our proofs are of sublinear size. Lat-
ter is non trivial to achieve in the symmetric setting due to the absence
of algebraic structures which are typically used in other settings to make
these efficiency gains. Regarding efficient instantiations of our proof sys-
tem, we rely on recent results for constructing efficient non-interactive
zero-knowledge proofs for general circuits. Based on this building block,
we then show how to construct logarithmic size ring signatures solely
from symmetric-key primitives. As constructing more advanced primi-
tives only from symmetric-key primitives is a very recent field, we discuss
some interesting open problems and future research directions. Finally,
we want to stress that our work also indirectly impacts other fields: for
the first time it raises the requirement for collision resistant hash func-
tions with particularly low AND count.

Keywords: post-quantum cryptography, privacy-preserving cryptogra-
phy, provable security, accumulator, zero-knowledge for circuits

? This is the extended version of a paper which appears in Post-Quantum Cryptog-
raphy - 9th International Conference, PQCrypto 2018, Fort Lauderdale, FL, USA,
April 9-11, 2018, Proceedings. ©Springer, 2018. The final publication is available
at Springer via https://doi.org/10.1007/978-3-319-79063-3_20.
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1 Introduction

The design of cryptographic schemes that remain secure in the advent of power-
ful quantum computers has become an important topic in recent years. Although
it is hard to predict when quantum computers will be powerful enough to break
factoring and discrete logarithm based cryptosystems, it is important to start
the transition to post-quantum cryptography early enough to eventually not
end up in a rush. This is underpinned by the NIST post-quantum cryptogra-
phy standardization project3, which aims at identifying the next generation of
public key encryption, key exchange and digital signature schemes basing their
security on conjectured quantum hard problems. Apart from these fundamental
schemes, there are many other valuable schemes which would nicely comple-
ment a post-quantum cryptographic toolbox. In this paper we are interested
in privacy-friendly cryptographic primitives for the post-quantum era and in
particular accumulators with zero-knowledge membership proofs and ring sig-
natures. Such schemes help to protect the privacy of users, and significantly
gained importance due to recent computing trends such as Cloud computing
or the Internet of Things (IoT). Examples where privacy-enhancing protocols
are already widely deployed today are remote attestation via direct anony-
mous attestation (DAA) [BCC04] as used by the Trusted Platform Module
(TPM)4, privacy-friendly online authentication within Intel’s Enhanced Privacy
ID (EPID) [BL07], or usage within emerging technologies such as cryptocurren-
cies to provide privacy of transactions.5

Let us now briefly discuss the primitives we construct in this paper. An ac-
cumulator scheme [BdM93] allows to represent a finite set as a succinct value
called the accumulator. For every element in the accumulated set, one can ef-
ficiently compute a so called witness to certify its membership in the accumu-
lator. However, it should be computationally infeasible to find a witness for
non-accumulated values. We are interested in accumulators supporting efficient
zero-knowledge membership proofs. Ring signature schemes [RST01] allow a
member of an ad-hoc group R (the so called ring), defined by the member’s
public keys, to anonymously sign a message on behalf of R. Such a signature
attests that some member of R produced the signature, but the actual signer
remains anonymous.

For ring signatures there is a known approach to construct them from ac-
cumulators and non-interactive zero-knowledge proof systems in the random
oracle model. The main technical hurdle in the post-quantum setting is to find
accumulators, and, more importantly, compatible proof systems under suitable
assumptions. Only recently, Libert et al. in [LLNW16] showed that it is possi-
ble to instantiate this approach in the post-quantum setting and provided the
first post-quantum accumulator from lattices. This combined with suitable non-
interactive variants of Σ-protocols yields post-quantum ring signatures in the

3 https://csrc.nist.gov/groups/ST/post-quantum-crypto/
4 https://trustedcomputinggroup.org/tpm-library-specification/
5 https://getmonero.org/resources/moneropedia/ringsignatures.html
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random oracle model (ROM). However, this does not give rise to a construc-
tion of ring signatures from symmetric-key primitives such as hash functions
or block ciphers, as we pursue in this paper. The main technical tools we use
in our construction are recent results from zero-knowledge proof systems for
general circuits [GMO16, CDG+17], and our techniques are inspired by recent
approaches to construct post-quantum signature schemes based on these proof
systems [CDG+17]. We note that there are also post-quantum ring signature
candidates from problems related to codes [MCG08] and multivariate cryptog-
raphy [MP17]. However, they all have size linear in the number of ring members,
whereas we are only interested in sublinear ones. Additionally, former schemes
are proven secure in weaker security models.

Contribution. Our contributions can be subsumed as follows:

– We present the first post-quantum accumulator (with one-way domain) to-
gether with efficient zero-knowledge proofs of (a pre-image of) an accumu-
lated value, which solely relies on assumptions related to symmetric-key
primitives. That is, we do not require any structured hardness assumptions.
Our proofs are of sublinear size in the number of accumulated elements and
can be instantiated in both, the ROM as well as the quantum accessible ROM
(QROM). Besides being used as an important building block in this paper,
such accumulators are of broader interest. In particular, such accumulators
with efficient zero-knowledge membership proofs have many other applica-
tions beyond this work, e.g., membership revocation [BCD+17] or anony-
mous cash such as Zerocoin [MGGR13]. We also note that the only previ-
ous construction of post-quantum accumulators with efficient zero-knowledge
membership proofs in [LLNW16] relies on hardness assumptions on lattices.

– We use our proposed accumulator to construct ring signatures of sublinear
size. Therefore, we prove an additional property—simulation-sound extract-
ability—of the proof system (ZKB++ [CDG+17]) we are using. This then
allows us to rigorously prove the security of our ring signature construc-
tion in the strongest model of security for ring signatures due to Bender et
al. [BKM09]. Consequently, we propose a construction of sublinear size ring
signatures solely from symmetric-key primitives.

– We present a selection of symmetric-key primitives that can be used to in-
stantiate our ring signature construction and evaluate the practicality of
our approach. In particular, we present signature sizes for rings of vari-
ous sizes when instantiating the one-way function and hash function using
LowMC [ARS+15, ARS+16]. Finally, we present some interesting directions
for future research within this very recent domain.

Additional Contribution Compared to PQCrypto’18 Version. We pro-
pose a concrete, optimized implementation of the circuit used in the zero-know-
ledge membership proof for the accumulator. Our techniques roughly allow re-
duce the proof (signature) sizes by a factor of 2 when compared to the circuit
used for the evaluation in the PQCrypto’18 version. A recent work of Boneh et
al. [BEF18], who construct post-quantum group signatures, also presents results
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allowing to optimize our zero-knowledge membership proof sizes compared to the
PQCrypto’18 version. We want to emphasize that the results presented in this
extended full paper allow for even smaller zero-knowledge membership proofs
than what is obtained with the optimizations due to Boneh et al. in [BEF18].
Note that the optimizations presented in this version also allows to instanti-
ate the group signature scheme [BEF18, Construction II] with smaller signature
sizes.

2 Preliminaries

Notation. Let x←R X denote the operation that picks an element uniformly at
random from a finite set X and assigns it to x. We assume that all algorithms
run in polynomial time and use y ← A(x) to denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins.
For algorithms representing adversaries we use calligraphic letters, e.g., A. We
assume that every algorithm outputs a special symbol ⊥ on error. We write
Pr[Ω : E ] to denote the probability of an event E over the probability space Ω.
A function ε : N→ R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function. Finally, we define [n] := {1, . . . , n}.

2.1 Zero-Knowledge Proofs and Σ-Protocols

Σ-Protocols. Let L ⊆ X be an NP-language with witness relation R so that
L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined as follows.

Definition 1 (Σ-Protocol). A Σ-protocol for language L is an interactive
three-move protocol between a PPT prover P = (Commit,Prove) and a PPT
verifier V = (Challenge,Verify), where P makes the first move and transcripts
are of the form (a, e, z) ∈ A×E×Z, where a is output by Commit, e is output by
Challenge and z is output by Prove. Additionally, Σ protocols satisfy the following
properties

Completeness. For all security parameters κ, and for all (x,w) ∈ R, it holds
that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. There exists a PPT extractor E so that for all x, and
for all sets of accepting transcripts {(a, ei, zi)}i∈[s] with respect to x where
∀i, j ∈ [s], i 6= j : ei 6= ej, generated by any algorithm with polynomial
runtime in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) : (x,w) ∈ R

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator S
so that for every x ∈ L and every challenge e ∈ E, it holds that a transcript
(a, e, z), where (a, z) ← S(1κ, x, e) is computationally indistinguishable from
a transcript resulting from an honest execution of the protocol.
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The s-special soundness property gives an immediate bound for soundness: if
no witness exists then (ignoring a negligible error) the prover can successfully
answer at most to (s− 1)/t challenges, where t = |E| is the size of the challenge
space. In case this value is too large, it is possible to reduce the soundness error
using `-fold parallel repetition of the Σ-protocol. Furthermore, it is also well
known that one can easily express conjunctions and disjunctions of languages
proven using Σ-protocols. For the formal details refer to [Dam10, CDS94].

Non-Interactive ZK Proof Systems. Now, we recall a standard definition
of non-interactive zero-knowledge proof systems. Therefore, let L be an NP-
language with witness relation R so that L = {x | ∃ w : R(x,w) = 1}.

Definition 2 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (Setup, Proof, Verify), defined
as:

Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

We require the properties completeness, adaptive zero-knowledge, and simulation-
sound extractability as defined below.

Definition 3 (Completeness). A non-interactive proof system Π is complete,
if for every adversary A it holds that

Pr

[
crs← Setup(1κ), (x,w)← A(crs),
π ← Proof(crs, x, w)

:
Verify(crs, x, π) = 1

∨ (x,w) 6∈ R

]
≈ 1.

Definition 4 (Adaptive Zero-Knowledge). A non-interactive proof system
Π is adaptively zero-knowledge, if there exists a PPT simulator S = (S1,S2)
such that for every PPT adversary A there is a negligible function ε(·) such that∣∣∣∣∣∣

Pr
[
crs← Setup(1κ) : AP(crs,·,·)(crs) = 1

]
−

Pr
[
(crs, τ)← S1(1κ) : AS(crs,τ,·,·)(crs) = 1

]
∣∣∣∣∣∣ ≤ ε(κ),

where, τ denotes a simulation trapdoor. Thereby, P and S return ⊥ if (x,w) /∈ R
or π ← Proof(crs, x, w) and π ← S2(crs, τ, x), respectively, otherwise.

Definition 5 (Simulation-Sound Extractability). An adaptively zero-kn-
owledge non-interactive proof system Π is simulation-sound extractable, if there
exists a PPT extractor E = (E1, E2) such that for every adversary A it holds that∣∣∣∣∣Pr

[
(crs, τ)← S1(1κ) : A(crs, τ) = 1

]
−

Pr
[
(crs, τ, ξ)← E1(1κ) : A(crs, τ) = 1

] ∣∣∣∣∣ = 0,
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and for every PPT adversary A there is a negligible function ε2(·) such that

Pr

 (crs, τ, ξ)← E1(1κ),
(x?, π?)← AS(crs,τ,·)(crs),
w ← E2(crs, ξ, x?, π?)

:
Verify(crs, x?, π?) = 1 ∧

(x?, π?) /∈ QS ∧ (x?, w) /∈ R

 ≤ ε2(κ),

where S(crs, τ, x) := S2(crs, τ, x) and QS keeps track of the queries to and answers
of S.

The Fiat-Shamir Transform. The Fiat-Shamir transform [FS86] is a fre-
quently used tool to convert Σ-protocols 〈P,V〉 to their non-interactive coun-
terparts. Essentially, the transform removes the interaction between P and V by
using a RO H : A× X→ E to obtain the challenge e.6 That is, one uses a PPT
algorithm Challenge′(1κ, a, x) which obtains e ← H(a, x) and returns e. Then,
the prover can locally obtain the challenge e after computing the initial message
a. Starting a verifier V′ = (Challenge′,Verify) on the same initial message a will
then yield the same challenge e. More formally, we obtain the non-interactive
PPT algorithms (PH ,VH) indexed by the used RO:

PH(1κ, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with e←
H(a, x), and finally obtain z. Returns π ← (a, z).

VH(1κ, x, π) : Parse π as (a, z). Start V′ on (1κ, x), send a as first message to V′.
When V′ outputs e, reply with z and output 1 if V′ accepts and 0 otherwise.

One can obtain a non-interactive proof system satisfying the properties above by
applying the Fiat-Shamir transform to any Σ-protocol where the min-entropy
α of the commitment a sent in the first phase is so that 2−α is negligible in
the security parameter κ and the challenge space E is exponentially large in
the security parameter. Formally, Setup(1κ) fixes a RO H : A × X → E, sets
crs ← (1κ, H) and returns crs. The algorithms Proof and Verify are defined as
follows: Proof(crs, x, w) := PH(1κ, x, w), Verify(crs, x, π) := VH(1κ, x, π).

Signatures via Fiat-Shamir. The Fiat-Shamir (FS) transform can elegantly
be used to convert (canonical) identification schemes into adaptively secure sig-
nature schemes. The basic idea is similar to above, but slightly differs regarding
the challenge generation, i.e., one additionally includes the message upon gen-
erating the challenge. Note that in the context of the stronger variant of the
FS transform we rely on, one can simply modify the language so that the state-
ments additionally include the message to be signed. This is because our variant
of the FS transform includes the statement upon challenge generation, which
is why extending the statement by the message also implicitly means including
the message in the challenge generation. We will not make this language change
explicit in the following, but implicitly assume that the language is changed if a
message is included as the last parameter of the statement to be proven.

6 This is a stronger variant of FS (cf. [FKMV12, BPW12]). The original weaker variant
of the FS transform does not include the statement x in the challenge computation.
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The Unruh Transform. Similar to FS, Unruh’s transform [Unr12, Unr15,
Unr16] allows one to construct NIZK proofs and signature schemes from Σ-
protocols. In contrast to the FS transform, Unruh’s transform can be proven
secure in the QROM (quantum random oracle model), strengthening the security
guarantee against quantum adversaries. At a high level, Unruh’s transform works
as follows: given Σ-protocol, the prover repeats the first phase of the Σ-protocol
t times and for each of those runs produces responses for M randomly selected
challenges. All those responses are permuted using a random permutation G.
Querying the random oracle on all first rounds all permuted responses then
determines the responses to publish for each round.

2.2 Efficient NIZK Proof Systems for General Circuits

ZKB++ [CDG+17], an optimized version of ZKBoo [GMO16], is a proof system
for zero-knowledge proofs over arbitrary circuits. ZKBoo and ZKB++ build on
the MPC-in-the-head paradigm by Ishai et al. [IKOS09], which roughly works as
follows. The prover simulates all parties of a multiparty computation protocol
(MPC) implementing the joint evaluation of some function, say y = SHA-256(x),
and computes commitments to the states of all players. The verifier then ran-
domly corrupts a subset of the players and checks whether those players did the
computation correctly.

ZKBoo generalizes the idea of [IKOS09] by replacing MPC with circuit
decompositions. There the idea is to decompose the circuit into three shares,
where revealing the wire values of two shares does not leak any information
about the wire values on the input of the circuit. The explicit formulas for
circuit decomposition can be found in [GMO16] for ZKBoo and in [CDG+17] for
ZKB++. Multiplication gates induce some dependency between the individual
shares which is why the wire values on the output of the multiplication gates
needs to be stored in the transcripts. Hence, the transcripts grow linearly in
the number of multiplication gates. Due to space limitations we do not include
further details on ZKB++ and refer the reader to [CDG+17] for the details.

3 PQ Accumulators & ZK Membership Proofs

Our goal is to come up with an accumulator and associated efficient zero-
knowledge membership proof system, which remains secure in the face of attacks
by a quantum attacker. The first building block we, thus, require for our con-
structions are accumulators which can be proven secure under an assumption
which is believed to resist attacks by a quantum computer. In this work our goal
is to solely rely on unstructured assumptions, and thus resort to using Merkle
tree as accumulators. Merkle trees were first used in the context of accumulators
by Buldas, Laud, and Lipmaa in [BLL00], who called their primitive undeniable
attesters. In the fashion of [DKNS04], we then extend the accumulator model
to accumulators with one-way domain, i.e., accumulators where the accumula-
tion domain coincides with the range of a one-way function so that one can
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accumulate images of the one-way function. For the associated zero-knowledge
membership proof system, we build up on recent progress in proving statements
over general circuits as discussed in Section 2.2.

The main technical hurdle we face in this context is designing the statement
to be proven with the proof system so that we can actually obtain proofs which
are sublinear (in particular logarithmic) in the number of accumulated elements.
Obtaining sublinear proofs is complicated mainly due to the absence of any
underlying algebraic structure on the accumulator.

3.1 Formal Model

We rely on the formalization of accumulators by [DHS15], which we slightly
adapt to fit our requirement for a deterministic Eval algorithm. Based on this
formalization we then restate the Merkle tree accumulator (having a determin-
istic Eval algorithm) within this framework.

Definition 6 (Accumulator). A static accumulator is a tuple of efficient al-
gorithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t 6= ∞, then t is an upper bound on the number of elements to be accumu-
lated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists.
We assume that the accumulator public key pkΛ implicitly defines the accu-
mulation domain DΛ.

Eval((sk∼Λ , pkΛ),X ) : This deterministic algorithm takes a key pair (sk∼Λ , pkΛ) and
a set X to be accumulated and returns an accumulator ΛX together with some
auxiliary information aux.

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼Λ , pkΛ), an
accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi for xi otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witxi and a value xi. It returns 1 if witxi is a witness for
xi ∈ X and 0 otherwise.

We require accumulators to be correct and collision free. While we omit the
straight forward correctness notion, we recall the collision freeness notion below,
which requires that finding a witness for a non-accumulated value is hard.

Definition 7 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr

 (skΛ, pkΛ)← Gen(1κ, t),
(wit?xi , x

?
i ,X?)← A(pkΛ)

:
Verify(pkΛ,Λ

?,
wit?xi , x

?
i) = 1 ∧
x?i /∈ X?

 ≤ ε(κ),

where Λ? ← Eval((skΛ, pkΛ),X?).
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Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k←R Kκ and return (skΛ, pkΛ)← (∅, Hk).

Eval((skΛ, pkΛ),X ) : Parse pkΛ as Hk and X as (x0, . . . , xn−1).

We assume without loss of generality that X is an ordered sequence instead of a
set. If @ k ∈ N so that n = 2k return ⊥. Otherwise, let `u,v refer to the u-th leaf
(the leftmost leaf is indexed by 0) in the v-th layer (the root is indexed by 0) of a
perfect binary tree. Return ΛX ← `0,0 and aux← ((`u,v)u∈[n/2k−v ])v∈[k], where

`u,v ←
{
Hk(`2u,v+1||`2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((sk∼Λ , pkΛ),ΛX , aux, xi) : Parse aux as ((`u,v)u∈[n/2k−v ])v∈[k] and return witxi
where

witxi ← (`bi/2vc+η,k−v)0≤v≤k, where η =

{
1 if bi/2vc (mod 2) = 0
−1 otherwise.

Verify(pkΛ,ΛX ,witxi , xi) : Parse pkΛ as Hk, ΛX as `0,0, set `i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

`bi/2v+1c,k−(v+1) =

{
Hk(`bi/2vc,k−v||`bi/2vc+1,k−v) if bi/2vc (mod 2) = 0
Hk(`bi/2vc−1,k−v||`bi/2vc,k−v) otherwise.

Scheme 1. Merkle tree accumulator.

3.2 The Accumulator

In Scheme 1, we cast the Merkle tree accumulator in the framework of [DHS15].
Then, we restate some well-known lemmas and sketch the respective proofs.

Lemma 1. Scheme 1 is correct.

The lemma above is easily verified by inspection. The proof is omitted.

Lemma 2. If {Hk}k∈Kκ is a family of collision resistant hash functions, the
accumulator in Scheme 1 is collision free.

Proof (Sketch). Upon setup, the reduction engages with a collision resistance
challenger for the family of hash functions, obtains Hk, and completes the setup
as in the original protocol. Now, one may observe that every collision in the
accumulator output by the adversary implies that the reduction knows at least
two colliding inputs for Hk, which upper bounds the probability of a collision in
the accumulator by the collision probability of the hash function.

3.3 Accumulators with One-Way Domain

We now extend the definition of accumulators to ones with one-way domain
following the definition of [DKNS04], but we adapt it to our notation.
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Definition 8 (Accumulator with One-Way Domain). A collision-free ac-
cumulator with accumulation domain DΛ and associated function family {fΛ :
IΛ → DΛ} where Gen(1κ, t) also selects fΛ is called an accumulator with one-way
domain if

Efficient Verification. There exists an efficient algorithm D that on input
(x, z) ∈ DΛ × IΛ returns 1 if and only if fΛ(z) = x.

Efficient Sampling. There exists a (probabilistic) algorithm W that on input
1κ returns a pair (x, z) ∈ DΛ × IΛ with D(x, z) = 1.

One-Wayness. For all PPT adversaries A there is a negligible function ε(·)
such that:

Pr [(x, z)←W (1κ), z? ← A(1κ, x) : D(x, z) = 1] ≤ ε(κ).

Note that when we set fΛ to be the identity function, then we have a conventional
accumulator.

3.4 Membership Proofs of Logarithmic Size

The main technical tool used by [DKNS04] to obtain zero-knowledge membership
proofs of constant size is to exploit a property of the accumulator which is
called quasi-commutativity. Clearly, such a property requires some underlying
algebraic structure which we explicitly want to sacrifice in favor of being able to
solely rely on assumptions related to symmetric-key primitives with relatively
well understood post-quantum security. To this end we have to use a different
technique. First observe that when näıvely proving that a non-revealed value is
a member of our accumulator would amount to a disjunctive proof of knowledge
over all members, which is at least of linear size. Therefore, this is not an option
and we have to develop an alternative technique.

The Relation. Essentially our idea is to “emulate” some kind of commut-
ativity within the order of the inputs to the hash function in each level by a
disjunctive proof statement, i.e., we exploit the disjunction to hide where the
path through the tree continues. The single statements in every level of the
tree are then included in one big conjunction. The length of this statement is
O(k) = O(log n). More formally we define a relation R on {0, 1}κ × {fΛ} ×
{Hk} × IΛ × ({0, 1}κ)2k which—for a given non-revealed pre-image z—attests
membership of the corresponding image fΛ(z) in the accumulator ΛX :

((ΛX , fΛ, Hk),(z, (ai)i∈[k], (bi)i∈[k])) ∈ R ⇐⇒ (ak = fΛ(z) ∨ bk = fΛ(z))

∧
k−1∧
i=0

(ai = Hk(ai+1||bi+1) ∨ ai = Hk(bi+1||ai+1)),

where ΛX = a0. In Figure 1 we illustrate that the relation indeed works for
arbitrary members of the accumulator without influencing the form of the state-
ment or the witness. This illustrates that proving the statement in this way does
not reveal any information on which path in the tree was taken. To see this,
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observe that at each level of the tree the relation covers both cases where ai is
either a left or right child. Given that, it is easy to verify that having a witness
for relation R implies having a witness for the accumulator together with some
(non-revealed) member.

((`0,0, fΛ, Hk), (z, (`1,1, `2,2), (`0,1, `3,2)))

`0,0

`0,1

`0,2 `1,2

`1,1

`2,2

z

`3,2

((`0,0, fΛ, Hk), (z, (`0,1, `1,2), (`1,1, `0,2)))

`0,0

`0,1

`0,2 `1,2

z

`1,1

`2,2 `3,2

Fig. 1. Visualization of different paths in the Merkle tree and the corresponding wit-
ness. The nodes on the path corresponding to a0, a1 and a2 are underlined.

Remark 1. In order to use relation R with the conventional accumulator in
Scheme 1, we just have to set fΛ to be the identity function (which yields x = z)
and then set ak = Hk(z) and bk = Hk(z).

3.5 Converting Accumulator Witnesses

Now, the remaining piece to finally be able to plug in a witness witfΛ(z) for
some accumulated value fΛ(z) with pre-image z into the relation R above is
some efficient helper algorithm which rearranges the values z and witfΛ(z) so
that they are compatible with the format required by R. Such an algorithm is
easily implemented, which is why we only define the interface below.

Trans(z,witfΛ(z)) : Takes as input a value z as well as a witness witfΛ(z)
and

returns a witness of the form (z, (ai)i∈[k], (bi)i∈[k]) for R.

Since Trans can be viewed as a permutation on the indexes it is easy to see that
the function implemented by Trans is bijective and its inverse is easy to compute.
We denote the computation of the inverse of the function implemented by Trans
as (z,witfΛ(z))← Trans−1(z, (ai)i∈[n], (bi)i∈[n]).

4 Logarithmic Size Ring Signatures

The two main lines of more recent work in the design of ring signatures target
reducing the signature size or removing the requirement for random oracles (e.g.,
[DKNS04, CGS07, GK15, BCC+15, DS16, Gon17, MS17]). We, however, note
that all these approaches require assumptions that do not withstand a quan-
tum computer. To the best of our knowledge, the first non-trivial post-quantum
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scheme (i.e., one that does not have linear size signatures) in the random oracle
model is the lattice-based scheme recently proposed by Libert et al. [LLNW16].
We provide an alternative construction in the random oracle model with logarith-
mic sized signatures, but avoid lattice assumptions and only rely on symmetric-
key primitives.

4.1 Formal Model

Below, we formally define ring signature schemes (adopting [BKM09]).

Definition 9 (Ring Signature). A ring signature scheme RS is a tuple RS =
(Setup,Gen,Sign,Verify) of PPT algorithms, which are defined as follows.

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters PP.

Gen(PP) : This algorithm takes as input parameters PP and outputs a keypair
(sk, pk).

Sign(ski,m,R) : This algorithm takes as input a secret key ski, a message m ∈
M and a ring R = (pkj)j∈[n] of n public keys such that pki ∈ R. It outputs
a signature σ.

Verify(m,σ,R) : This algorithm takes as input a message m ∈M, a signature σ
and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we provide formal definitions
for the remaining properties, following [BKM09], in Definition Collection 1. We
note that Bender et al. in [BKM09] have formalized multiple variants of these
properties, where we always use the strongest one.

4.2 Generic Approaches to Design Ring Signatures

A folklore approach to design ring signatures in the random oracle model is to
use the NP relation RRS together with a one-way function µ, which defines the
relation between secret and public keys:

(R, sk) ∈ RRS ⇐⇒ ∃ pki ∈ RRS : pki = µ(sk),

and allows to demonstrate knowledge of a witness (a secret key) of one of the
public keys in the ring R. Usually, one then designs a Σ-protocol for relation
RRS and converts it into a signature scheme using the Fiat-Shamir heuristic.

Linear-Size Signatures. A frequently used instantiation of the above approach
is instantiating the relation above by means of a disjunctive proof of knowl-
edge [CDS94]. Using this approach, one obtains ring signatures of linear size. It
might be tempting to think that there is a lot of optimization potential for sig-
nature sizes in ring signatures. However, without additional assumptions about
how the keys are provided to the verifier, signatures of linear size are already
the best one can hope for: the verifier needs to get every public key in the ring
to verify the signature.
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Unforgeability requires that without any secret key ski that corresponds to a public
key pki ∈ R, it is infeasible to produce valid signatures with respect to arbitrary such
rings R. Our unforgeability notion is the strongest notion defined in [BKM09] and is

there called unforgeability w.r.t. insider corruption.

Definition 10 (Unforgeability). A ring signature scheme provides unforgeability, if
for all PPT adversaries A, there exists a negligible function ε(·) such that it holds that

Pr


PP← Setup(1κ),
{(sk, pk)← Gen(PP)}i∈[poly(κ)],
O ← {Sig(·, ·, ·),Key(·)},
(m?, σ?,R?)← AO({pki}i∈[poly(κ)])

:

Verify(m?, σ?,R?) = 1 ∧
(·,m?,R?) /∈ QSign ∧

R? ⊆ {pki}i∈[poly(κ)]\QKey

 ≤ ε(κ),

where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)], and
QSig records the queries to Sig. Furthermore, Key(i) returns ski and QKey records the
queries to Key.

Anonymity requires that it is infeasible to tell which ring member produced a certain
signature as long as there are at least two honest members in the ring. Our

anonymity notion is the strongest notion defined in [BKM09] and is there called
anonymity against full key exposure.

Definition 11 (Anonymity). A ring signature scheme provides anonymity, if for all
PPT adversaries A and for all polynomials poly(·), there exists a negligible function
ε(·) such that it holds that

Pr



PP← Setup(1κ),
{(ski, pki)← Gen(PP)}i∈[poly(κ)],

b←R {0, 1}, O ← {Sig(·, ·, ·)},
(m, j0, j1,R, st)← AO({pki}i∈[poly(κ)]),
σ ← Sign(skjb ,m,R),
b? ← AO(st, σ, {ski}i∈[poly(κ)])

:
b = b? ∧

{pkji}i∈{0,1} ⊆ R

 ≤ 1/2 + ε(κ),

where Sig(i,m,R) := Sign(ski,m,R).

Definition Collection 1. Security Definitions for Ring Signature Schemes

Reducing Signature Size. However, to further reduce the signature size there
is a nice trick which is based on the observation that in many practical scenarios
the prospective ring members are already clear prior to the signature genera-
tion. Consequently, one can compactly encode all public keys in this ring within
some suitable structure and compute the signatures with respect to this com-
pact structure. This trick was first used by Dodis et al. [DKNS04]. Loosely their
approach can be described as follows. They use a cryptographic accumulator
with a one-way domain to accumulate the ring R, a set of public keys being the
output of applying the one-way function µ to the respective secret key. This way
they obtain a succinct representation of R. Then, they use a proof system that
allows to prove knowledge of a witness of one accumulated value (i.e., the public
key) and knowledge of the pre-image thereof (i.e., the corresponding secret key).
This proof can be turned into a signature using the Fiat-Shamir heuristic.
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Depending on the size of the zero-knowledge membership proof this can yield
sublinear (logarithmic or even constant size) signatures. Dodis et al. presented
an instantiation of an accumulator together with the respective zero-knowledge
proofs that yield constant size ring signatures based on the strong RSA assump-
tion. Logarithmic size ring signatures under lattice assumptions are presented
in [LLNW16].

4.3 Our Construction of Logarithmic Size Ring Signatures

Our construction basically follows the approach discussed above to reduce sig-
nature size. However, in contrast to Dodis et al., besides targeting the post-
quantum setting, we (1) do not require a trusted setup7, and (2) cannot rely
on accumulators with one-way domain which provide quasi-commutativity. Lat-
ter is too restricting and not compatible with the setting in which we work. In
particular, it excludes Merkle tree accumulators, which is why we chose to rely
on a more generic formalization of accumulators (cf. Section 3). Like Dodis et
al., we assume that in practical situations rings often stay the same for a long
period of time (e.g., some popular rings are used very often by various members
of the ring), or have an implicit short description. Consequently, we measure the
signature size as that of the actual signature, i.e., the information one requires
in addition to the group description. We want to stress once again that when
counting the description of the ring as part of the signature, every secure ring
signature schemes needs to have signature sizes which are at least linear in the
size of the ring.

For the ease of presentation let us fix one such popular ring R identified by
the corresponding accumulator ΛR and we assume that |R| = 2t for some t ∈ N.8

We present our construction as Scheme 2.

Remark 2. Note that in Scheme 2 crs is not a common reference string (CRS)
that needs to be honestly computed by a trusted third party. We simply stick
with the notion including a CRS for formal reasons, i.e,. to allow the abstract
notion of NIZKs, but as we exclusively use NIZK from Σ-protocols, we do not
require a trusted setup and crs is just a description of the hash function which
can be globally fixed, e.g., to SHA-256 or SHA-3. Recall, within Fiat-Shamir
Π.Setup(1κ) fixes a RO H : A× X→ E, sets crs← (1κ, H) and returns crs.

Remark 3. A trusted setup in context of ring signatures is actually problem-
atic, as it assumes that some mutually trusted party honestly executes the
setup. For instance, in case of the strong RSA accumulator [BP97, CL02] as
used within [DKNS04], the party running the Gen algorithm of the accumulator
can arbitrarily cheat. This can easily be done by keeping the accumulator secret
(a trapdoor) instead of discarding it. Using this information, a dishonest setup
allows to insert and delete arbitrary elements into and from the accumulator

7 A trusted setup somehow undermines the idea behind ring signatures.
8 If this is not the case, one can always add dummy keys to the ring to satisfy this

condition.
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Setup(1κ) : Let Λ be the accumulator with one-way domain based on Scheme 1, run
(skΛ, pkΛ) ← Λ.Gen(1κ, t) (note that skΛ = ∅). Run crs ← Π.Setup(1κ) and return
PP← (pkΛ, crs) = ((Hk, fΛ), (1κ, H)).

KeyGen(PP) : Parse PP as ((Hk, fΛ), crs), run (x, z) ← fΛ.W (1κ), and set pk ← (PP, x),
sk← (pk, z). Return (sk, pk).

Sign(ski,m,R) : Parse ski as ((((Hk, fΛ), crs), xi), zi) and R as (pk1, . . . , pkt) = ((·,
x1), . . . , (·, xt)). Let X = (x1, . . . , xt), run (ΛX , aux) ← Λ.Eval((·, pkΛ),X ) and
witfΛ(zi) ← Λ.WitCreate((·, pkΛ),ΛX , aux, fΛ(zi)). Obtain (zi, (aj)j∈[t], (bj)j∈[t]) ←
Trans(zi,witfΛ(zi)), and return the signature σ ← (π,ΛX ), where

π ← Π.Proof(crs, (ΛX , fΛ, Hk), (zi, (aj)j∈[t], (bj)j∈[t])).

Verify(m,σ,R) : Parse σ as (π,ΛX ) and R as (pk1, . . . , pkt) = ((((Hk, fΛ), crs), x1),
. . . , (·, xt)). Let X = (x1, . . . , xt), and compute

(Λ′X , aux′)← Λ.Eval((·, pkΛ),X ).

If Λ′X 6= ΛX return 0. Otherwise return Π.Verify(crs, (ΛX , fΛ, Hk), π).

Scheme 2. Construction of logarithmic size RS.

without changing the accumulator value. In context of ring signatures one thus
can arbitrarily modify existing rings used within signatures, which could lead to
modification of rings to just include public keys into the ring so that for every
member of the ring the sole fact to know that one of these persons produced a
signature already leads to severe consequences. We stress that in our case there
is no trusted setup. In particular, there is no accumulator secret and the public
parameters are just descriptions of hash functions and a OWF.

Now, we argue that our ring signature presented in Scheme 2 represents a
secure ring signature scheme, where we omit correctness which is straightforward
to verify.

Theorem 1. If Λ is a collision free accumulator with one-way domain with re-
spect to fΛ and Π is a simulation-sound extractable non-interactive proof system,
then the ring signature scheme in Scheme 2 is unforgeable.

Proof. We prove unforgeability using a sequence of games.

Game 0: The original unforgeability game.

Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and hence-
forth simulate all proofs in Sign without a witness using τ .

Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1
is a zero-knowledge distinguisher for Π, i.e., |Pr[S0]− Pr[S1]| ≤ εzk(κ).

Game 2: As Game 1, but we further modify Gen to setup (crs, τ, ξ) using E1
and store ξ.

Transition - Game 1 → Game 2: By simulation-sound extractability, this change
is only conceptual, i.e., Pr[S1] = Pr[S2].
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Game 3: As Game 2, but for the forgery (m?, σ?,R?) output by the adversary
we parse σ? as (π,ΛX ) and obtain (zi, (ai)i∈[k], (bi)i∈[k])← E2(crs, ξ, (ΛX , fΛ,
Hk), π). If the extractor fails, we abort.

Transition - Game 2 → Game 3: Game 2 and Game 3 proceed identically, un-
less we abort. The probability for the abort event to happen is upper bounded
by εext(κ) which is why we can conclude that |Pr[S3]− Pr[S2]| ≤ εext(κ).

Game 4: As Game 3, but we abort if we have extracted (zi, (ai)i∈[n], (bi)i∈[n])

so that we have that (·,witfΛ(zi)) ← Trans−1(zi, (ai)i∈[n], (bi)i∈[n]) is a valid
witness for some fΛ(zi) which was never accumulated.

Transition - Game 3 → Game 4: If we abort in Game 4, we have a collision for
the accumulator. That is |Pr[S3]− Pr[S4]| ≤ εcf(κ).

Game 5: As Game 4, but we guess the index i? the adversary will attack be-
forehand, and abort if our guess is wrong.

Transition - Game 4 → Game 5: The success probability in Game 4 is the same
as in Game 5, unless our guess is wrong, i.e., Pr[S5] = 1/poly(κ) · Pr[S4].

Game 6: As Game 5, but instead of honestly generating the keypair for user
i?, we engage with a challenger of a OWF to obtain xi? and include it in pki?
accordingly. We set ski? ← ∅.

Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

In the last game, we have an adversary against the OWF, i.e., Pr[S6] ≤ εowf(κ).
All in all, we have that Pr[S0] ≤ poly(κ) · εowf(κ) + εzk(κ) + εext(κ) + εcf(κ)

Theorem 2. If Π is a zero-knowledge non-interactive proof system, then the
ring signature scheme in Scheme 2 is anonymous.

Proof. We prove anonymity using a sequence of games.

Game 0: The original anonymity game.
Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and hence-

forth simulate all proofs in Sign without a witness using τ .
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher for Π, i.e., |Pr[S0]− Pr[S1]| ≤ εzk(κ).

In Game 1 the simulation is independent of b, meaning that Pr[S1] = 1/2. Thus,
we have Pr[S0] ≤ 1/2 + εzk(κ), which concludes the proof. ut

5 Implementation Aspects and Evaluation

In this section we discuss some implementation aspects regarding instantiating
our ring signature scheme. Moreover, we evaluate the efficiency of a concrete in-
stantiation. Since we require simulation-sound extractable NIZK proof systems,
we confirm that the Fiat-Shamir (resp. Unruh) transformed version of ZKB++
represents a suitable proof system in the ROM (resp. QROM). We again want
to note that we were not able to include the ZKB++ construction due to space
limitations, but refer the reader to [CDG+17] for the details.
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5.1 Simulation-Sound Extractability of ZKB++

To instantiate our ring signature scheme using ZKB++, we first need to con-
firm that the NIZK proof system obtained by applying the Fiat-Shamir/Unruh
transform to ZKB++ is in fact simulation-sound extractable. For the Unruh-
transformed proof system, this was already shown in [CDG+17, Theorem 2] in
the QROM, which is why we only focus on the Fiat-Shamir version. We base
our argumentation upon the argumentation in [FKMV12]. What we have to do
is to show that the FS transformed ZKB++ is zero-knowledge and provides
quasi-unique responses in the ROM. We do so by proving two lemmas. Com-
bining those lemmas with [FKMV12, Theorem 2 and Theorem 3] then yields
simulation-sound extractability as a corollary.

Lemma 3. Let QH be the number of queries to the random oracle H, QS be
the overall queries to the simulator, and let the commitments be instantiated
via a RO H ′ with output space {0, 1}ρ and the committed values having min
entropy ν. Then the probability ε(κ) for all PPT adversaries A to break zero-
knowledge of κ parallel executions of the FS transformed ZKB++ is bounded by
ε(κ) ≤ s/2ν + (QS ·QH)/23·ρ.

The lemma above was already proven for ZKBoo in [DOR+16]. For ZKB++
the argumentation is the same. We restate the proof below for completeness.

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is statistically
close to the real proof oracle. For our proof let the environment maintain a list
H where all entries are initially set to ⊥.

Game 0: The zero-knowledge game where the proofs are honestly computed,
and the ROs are simulated honestly.

Game 1: As Game 0, but whenever the adversary requests a proof for some
tuple (x,w) we choose e←R {0, 1, 2}κ before computing a and z. If H[(a, x)] 6=
⊥ we abort and call that event E. Otherwise, we set H[(a, x)]← e.

Transition - Game 0 → Game 1: Both games proceed identically unless E hap-
pens. The message a includes 3 RO commitments with respect to H ′, i.e.,
the min-entropy is lower bounded by 3 · ρ. We have |Pr[S0] − Pr[S1]| ≤
(QS ·QH)/23·ρ.

Game 2: As Game 1, but we compute the commitments in a so that the ones
which will never be opened according to e contain random values.

Transition - Game 1 → Game 2: The statistical difference between Game 1 and
Game 2 can be upper bounded by |Pr[S1]−Pr[S2]| ≤ κ·1/2ν (for compactness
we collapsed the s game changes into a single game).

Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof. ut
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Lemma 4. Let the commitments be instantiated via a RO H ′ with output space
{0, 1}ρ and let QH′ be the number of queries to H ′, then the probability to break
quasi-unique responses is bounded by Q2

H′/2ρ.

Proof. To break quasi-unique responses, the adversary would need to come up
with two valid proofs (a, e, z) and (a, e, z′). The last message z (resp z′) only con-
tains openings to commitments, meaning that breaking quasi unique responses
implies finding a collision for at least one of the commitments. The probability
for this to happen is upper bounded by Q2

H′/2ρ which concludes the proof. ut

Combining Lemma 3 and Lemma 4 with [FKMV12, Theorem 2 and Theorem 3]
yields the following corollary.

Corollary 1. The FS transformed ZKB++ is simulation-sound extractable.

5.2 Implementation of the Circuit

One very important factor, when it comes to the actual size of the signatures,
is the concrete implementation of the circuit. To this end, we explicitly describe
our design strategy, which uses 2-to-1 multiplexers as central components. A
2-to-1 multiplexer selects between two input wires based on a selection bit. In
particular, given a selection bit s and two input wires i0 and i1, the multiplexer
outputs is. More formally, we can describe the multiplexer as function ν defined
as

ν(s, i0, i1) = (¬s ∧ i0) ∨ (s ∧ i1).

This function can be expressed using only 1 AND and 2 XOR gates for 1-bit
input wires as

ν(s, i0, i1) = ((i0 ⊕ i1) ∧ s)⊕ i0.

For values of multiple bits, ν is applied bit-by-bit. Now, to instantiate ai =
Hk(ai+1‖bi+1) ∨ ai = Hk(bi+1‖ai+1) in a straight-forward way, it would be
possible to write the expression as ai = ν(si+1, Hk(ai+1‖bi+1), Hk(bi+1‖ai+1)
where the selection bits si+1 encode the path and are additionally part of the
witness. Besides the cost for the two hash function evaluations, this would require
us to account for 1 AND gate for each output bit of the hash function Hk and
each level of the Merkle tree accumulator.

However, with a little more care, we can even obtain a more efficient solution.
Namely, when shifting the multiplexer from the output of the hash function to
its inputs and when additionally rotating ai+1 and bi+1 based on the selection
bit we obtain an equivalent representation of the equation given above:

ai = Hk(ν(si+1, ai+1, bi+1)‖ν(si+1, bi+1, ai+1)).

When we let ν′(s, i0, i1) = ν(s, i0, i1)‖ν(s, i1, i0), we can write this as

ai = Hk(ν′(si+1, ai+1, bi+1)).
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The important point to observe here is that we can trade one (cheap) additional
multiplexer for one (expensive) full evaluation of the hash function. Note that
ν′ computes (i0⊕ i1)∧ s twice, and thus we can further simplify it and explicitly
instantiate ν′ as conditional swap gate:

ν′(s, i0, i1) = i0 ⊕ s′‖i1 ⊕ s′ where s′ = (i0 ⊕ i1) ∧ s.

Thus ν′ only requires 1 AND gate. Additionally, the possibility to swap the
inputs allows us to drop all ai from the witness and to re-write the statement as

ΛX = Hk(ν′(s1, Hk(. . . Hk(ν′(sk, fΛ(z), bk), . . .), b1))).

We remark that this statement bears similarities with the recent statement
used by Boneh et al. [BEF18]. However, in contrast to our work, they intro-
duce a novel property for the used hash function which they term third preim-
age resistance, and construct a third preimage resistant hash function H as
H(x, y) = H(x, y) ⊕H(y, x). The important difference to our approach is that
they need two evaluations of the hash function, whereas we only need one.

5.3 Selection of Symmetric-Key Primitives

When instantiating our ring signature scheme using ZKB++, the selection of
the underlying primitives is of importance for the actual signature sizes as well
as the overall performance. As ZKB++’s proof size depends on the number
of multiplication gates and the size of the operands, we require a OWF and
a collision-resistant hash function with a representation as circuit, where the
product of the multiplicative complexity and the number of bits required to
store field elements is minimal. Note that for the OWF we can observe that, when
instantiating it with a block cipher, only one plaintext-ciphertext pair per key is
visible to an adversary. Hence, we have the same requirements as in [CDG+17],
which is why we also choose LowMC [ARS+15, ARS+16] with a reduced data
complexity to build the OWF. For the selection of the collision-resistant hash
function we are presented with different options:

Standardized Hash Functions. SHA-256 or SHA-3 are the obvious choices
for collision resistant hash functions. SHA-256’s compression function requires
around 25000 multiplication gates [BCG+14] and SHA-3’s permutation even
more with around 38400 gates [NIS15].

Sponge Construction with Low Multiplicative Complexity Ciphers.
Using a block cipher with small multiplicative complexity as permutation in a
sponge construction, e.g., using LowMC or MiMC [AGR+16], enables the con-
struction of hash functions with similar security guarantees as SHA-256 and
SHA-3, but with a significantly reduced multiplicative complexity. Using the
numbers from [AGR+16], MiMCHash-256 requires 1293 multiplications with a
field size of 1025 bits. LowMCHash-256 only requires a 1 bit binary field and
3540 AND gates9. Thus, a hash based on LowMC is a better candidate for our
use case.
9 Numbers updated according to a personal discussion with Christian Rechberger.
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Davies-Mayer Transformation with Low Multiplicative Complexity
Ciphers. As a lower-cost alternative to sponge based constructions, Boneh et
al. [BEF18] suggest to use a collision resistant hash function obtained by ap-
plying the Davis-Meyer transformation to a block cipher with low multiplicative
complexity. This is reasonable because collision resistance is only required for a
fixed message length, being equivalent to the sum of block size and key size of
the underlying blockcipher (i.e., LowMC).

5.4 Signature Size Estimations

Finally we present signature sizes when instantiating our ring signature scheme
with LowMC for both, the OWF and the hash function. For the instantiation of
the hash function we present estimations based on sponge constructions as well
as Davies-Mayer constructions. Table 1 presents the signature size estimations
for the sponge-based instantiation for different choices of ring sizes and aiming
at a 128 bit post-quantum security level. We compute them using the formulas
from [CDG+17]. The proofs are of size t · (c+ 2s+ log2(3) + ` ·m+ i)) bits when
using the Fiat-Shamir transform, and of t ·(c+3s+log2(3)+2` ·m+ i) bits when
using the Unruh-transform, respectively, where t is the number of repetitions, c
the size of the commitments, i the size of the input to the circuit, ` the size of the
underlying field, m the number of AND gates, and s the size of the seeds used
to generate the random tapes. We use ZKB++ as instantiated in [CDG+17]
and give the numbers for both the Fiat-Shamir and Unruh transformed proof
system.

Ring size |σ| (FS/ROM) |σ| (Unruh/QROM)

2k 948708 + 1775214 · k bits 1560156 + 3437862 · k bits
25 1200 KB 2289 KB
210 2283 KB 4388 KB
220 4450 KB 8584 KB

Table 1. Signature sizes at the 128 bit post-quantum security level using LowMC with
1024 bit block size, 10 S-boxes and 118 rounds in the sponge framework.

Following [BEF18] we also present numbers using a hash function obtained using
the Davies-Meyer transform in Table 2.

Ring size |σ| (FS/ROM) |σ| (Unruh/QROM)

2k 948708 + 986814 · k bits 1560156 + 1861062 · k bits
25 719 KB 1327 KB
210 1321 KB 2463 KB
220 2526 KB 4735 KB

Table 2. Signature sizes at the 128 bit post-quantum security level using Davies-Meyer
with LowMC with 256 bit block size, 10 S-boxes and 58 rounds.

Improvements compared to the Work of Boneh et al. [BEF18]. Using
the same LowMC instance with 1374 AND gates as Boneh et al. [BEF18], we
obtain significantly shorter sizes for the membership proof in the accumulator
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(and therefore also significantly shorter ring signature sizes) compared to what
we would obtain when using their techniques to prove membership in the accu-
mulator in zero knowledge. For ring size of 220 we obtain 2134 KB when using
Fiat-Shamir and 3952 KB when using Unruh, respectively. This reduction in
proof (signature) size is not surprising: observe that the statement they have to
prove requires the evaluation of two hash functions per level in the tree. We only
require a conditional swap gate and a single hash function evaluation yielding a
much lower number of required AND gates (roughly 1/2). We want to stress that
our conditional swap gate-based approach is also useful to reduce the group sig-
nature sizes of [BEF18, Construction II], which internally uses zero-knowledge
membership proofs with respect to a Merkle tree accumulator.

Finally, we also note that Ligero [AHIV17], a recent NIZK proof system for
general circuits, offers proofs of logarithmic size in the number of multiplication
gates in the prime field case respectively in the number of AND and XOR gates
in the case of binary fields, which would allow us to reduce the signature size
significantly. However, to the best of our knowledge, it is unclear whether Ligero
provides simulation-sound extractability.

6 Conclusions

In this this work we made some important steps towards establishing privacy-
enhancing primitives which are solely built from symmetric-key primitives and
therefore do not require any structured hardness assumptions. In our work, we
followed a modular concept and first introduced a post-quantum accumulator
with efficient zero-knowledge membership proofs of sublinear size. Besides the
applications to logarithmic size ring signatures as we presented in this paper, we
believe that our post-quantum accumulator construction with zero-knowledge
proofs may well have broader impact in the construction of other (privacy-
enhancing) protocols in the post-quantum setting.

Open Questions. In addition, we believe that our work also opens up quite
some possibilities for further research.

First, in the context of privacy-enhancing protocols, it would be interesting
to investigate how to extend our methods to obtain group signatures [CvH91],
i.e., anonymous signatures that provide the possibility to re-identify anonymous
signers by a dedicated party. We note that Dodis et al. [DKNS04] informally
discuss that when adding ID escrow functionality to their ring signature scheme
yields group signatures. Basically, the lattice-based construction of Libert et
al. [LLNW16] can be considered as an instantiation of the former paradigm.
The problem is that this paradigm requires IND-CCA2 secure public-key en-
cryption, which does not exist given our constraints. In addition, it is well
known [AW04, CG04] that group signatures in the static model by Bellare et al.
in [BMW03] imply public-key encryption. This means that the best one could
hope for would be a construction being secure in a weakened version of the
Bellare et al. model. Work in this direction was earlier pursued by Camenisch
and Groth [CG04], who showed how to construct group signature schemes in a
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weaker model from one-way functions and non-interactive zero-knowledge argu-
ments. The question which remains open in our context is whether one can find
instantiations without the requirement for structured hardness assumptions and
providing the practical efficiency one would hope for, i.e., ideally instantiations
which just require to prove statements with respect to a few evaluations of a block
cipher. A similar question was recently investigated by Boneh et al. in [BEF18],
where they constructed practical group signature schemes from symmetric-key
primitives. They use a security model without opening mechanism but with re-
vocation feature for keys and signatures, respectively. Since this is a different
model, our question still remains open.

Second, in the context of symmetric-key primitives, one may observe that—
despite the recent trend to construct symmetric-key primitives with particularly
low AND count—there is no practical application so far which would require
collision resistant hash functions with particularly low AND count. Since our
accumulator construction relies on collision resistant hash functions, our work
may well also open up new fields of research in the symmetric-key community.
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Abstract. Double-authentication preventing signatures (DAPS) are a
variant of digital signatures which have received considerable attention
recently (Derler et al. EuroS&P 2018, Poettering Africacrypt 2018).
They are unforgeable signatures in the usual sense and sign messages
that are composed of an address and a payload. Their distinguishing
feature is the property that signatures on two different payloads with
respect to the same address allow to publicly extract the secret signing
key. Thus, they are a means to disincentivize double-signing and are a
useful tool in various applications.
DAPS are known in the factoring, the discrete logarithm and the lattice
setting. The majority of the constructions are ad-hoc. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that
allows to extend any discrete logarithm based secure signature scheme
to DAPS. However, their scheme has the drawback that the number of
potential addresses (the address space) used for signing is polynomially
bounded (and in fact small) as the size of secret and public keys of
the resulting DAPS are linear in the address space. In this paper we
overcome this limitation and present a generic construction of DAPS with
constant size keys and signatures. Our techniques are not tailored to a
specific algebraic setting and in particular allow us to construct the first
DAPS without structured hardness assumptions, i.e., from symmetric
key primitives, yielding a candidate for post-quantum secure DAPS.

Keywords: digital signatures, double-authentication prevention, Shamir
secret sharing, provable-security, generic construction, exponential size
address space

1 Introduction

Digital signatures are an important cryptographic primitive used to provide
strong integrity and authenticity guarantees for digital messages. Among many
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2018, Proceedings. c©Springer 2018. The final publication is available via Springer
at https://doi.org/10.1007/978-3-030-01446-9_15.
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other applications, they are used to issue digital certificates for public keys within
public-key infrastructures, to guarantee the origin of executable code, to sign
digital documents such as PDF documents (in a legally binding way), as well as
in major cryptographic protocols such as TLS. Recently, signatures also emerged
to be a cornerstone of distributed cryptocurrencies such as Bitcoin, i.e., are used
to bind coins to users (by means of public keys) and to sign transactions.

Double-authentication preventing signatures (DAPS) are a variant of digital
signatures used to sign messages of the form m = (a, p) with a being the so
called address and p the payload. They provide unforgeability guarantees in the
sense of conventional signatures but have the special property that signing two
different payloads p 6= p′ using the same address a allows to publicly extract the
secret signing key from the respective signatures. In the literature, various com-
pelling applications for DAPS have been proposed. Those applications include
penalizing double spending attacks in cryptocurrencies [RKS15] or penalizing
certification authorities for issuing two certificates with respect to the same do-
main name, but for two different public keys [PS14], for example. In this work
we purely focus on DAPS constructions and we refer the reader to [PS14,PS17]
for a comparison with other types of self-enforcing digital signatures.

Currently, DAPS are known in the factoring [PS14,PS17,BPS17], the discrete
logarithm [RKS15,DRS18b,Poe18] and the lattice setting [BKN17]. The majority
of the constructions (the only exception being [DRS18b]) are ad-hoc. Unfortu-
nately, such an approach yields very specific constructions, whose security may
not be well understood. Having generic DAPS constructions, in contrast, yields
much more flexibility, as it allows to plug in building blocks whose security is
well understood. In addition, this yields simplicity and modularity in the security
analysis. Only recently, Derler et al. (EuroS&P 2018) presented the first generic
construction that allows to extend any discrete logarithm based EUF-CMA se-
cure signatures scheme to DAPS. However, their scheme has the drawback that
the number of potential addresses (the address space) used for signing is poly-
nomially bounded (and in fact small) as the size of secret and the public keys
of the resulting DAPS are linear in the address space. We ask whether we can
come up with a generic construction without this drawback.

Somewhat orthogonal to the motivational discussion above, our work is also
driven by the question whether it is possible to construct DAPS without relying
on structured hardness assumptions, i.e., solely from symmetric key primitives
(following up on a very recent line of work [CDG+17a,DRS18a,BEF18,KKW18]).
This is interesting, because symmetric key primitives are conjectured to remain
secure in the advent of sufficiently powerful quantum computers. Such quantum
computers would break all discrete log and RSA based public key cryptosys-
tems [Sho97].

1.1 Existing DAPS Constructions

DAPS have been introduced by Poettering and Stebila [PS14,PS17] in a factoring-
based setting. Ruffing, Kate and Schröder later introduced the notion of ac-
countable assertions (AS) in [RKS15], being a related but weaker primitive than
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Approach Address space Extraction Setting Generic

[PS14,PS17] exponential DSE factoring ×
[RKS15] exponential DSE DLOG ×
[BPS17] exponential DSE factoring ×
[BKN17] exponential DSE lattices ×
[DRS18b] small wDSE∗ DLOG X
[Poe18] small DSE DLOG ×
Construction 1 exponential wDSE symmetric X
Construction 2 exponential DSE any X

Table 1: Overview of DAPS constructions

DAPS. In addition they present one AS that also is a DAPS (RKS henceforth).
The RKS construction is based on Merkle tress and chameleon hash functions
in the discrete logarithm setting. Very recently, Bellare, Poettering and Ste-
bila [BPS17] proposed new factoring-based DAPS from trapdoor identification-
schemes using an adaption and extension of a transform from [BPS16]. Their two
transforms applied to the Guillou-Quisquater (GQ) [GQ88] and Micali-Reyzin
(MR) [MR02] identification scheme yield signing and verification times as well as
signature sizes comparable (or slightly above) standard RSA signatures. Boneh et
al. [BKN17] propose constructions of DAPS from lattices. They consider DAPS
as a special case of what they call predicate-authentication-preventing signa-
tures (PAPS). In PAPS one considers a k-ary predicate on the message space
and given any k valid signatures that satisfy the predicate reveal the signing key.
Consequently, DAPS are PAPS for a specific 2-ary predicate. Derler, Ramacher
and Slamanig (DRS henceforth) in [DRS18b] recently provided the first black-
box construction of DAPS from digital signatures schemes and demonstrate how
this approach can be used to construct N -times-authentication-preventing sig-
natures (NAPS) (a notion called k-way DAPS in [BKN17]). In addition, they
introduced weaker extraction notions, where the focus of the extraction is on the
signing key of the underlying signature scheme only. A drawback of their work
is that the constructions have O(n) secret and public key size where n is the size
of the address space. So their constructions are only suitable for small message
spaces. In a follow up work Poettering [Poe18], also focusing on DAPS for small
address spaces, showed how for a certain class of signature schemes (obtained
via Fiat-Shamir from certain identification schemes), the DRS approach can be
improved by reducing the signature size by a factor of five and the size of the
secret key from O(n) to O(1). However, this comes at the cost of no longer being
able to do a black-box reduction to the underlying signature scheme. In Table 1
we provide a comparison of existing DAPS approaches with the ones presented
in this paper regarding address space, extraction capabilities, algebraic setting
as well as their characteristic as either being tailored to a specific setting or
generic.
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1.2 Contribution

Our contributions can be summarized as follows:

– We propose a generic DAPS, respectively NAPS, construction building upon
DRS’ secret-sharing approach, which resolves the address-space limitation in
the DRS construction, and, in particular, supports an exponentially large ad-
dress space. This improvement is achieved by deriving the coefficients of the
secret sharing polynomial from the address using a carefully chosen pseudo-
random function with an output domain being compatible with the secret
key space of the underlying signature scheme. Consequently, the overhead
in the public-key reduces to a constant factor. Like the DRS approach, our
generic approach satisfies a relaxed notion of extractability. Interestingly,
we can instantiate this construction solely from symmetric-key primitives,
yielding a candidate for post-quantum secure DAPS/NAPS.

– While the aforementioned construction thus closes an important gap in the
literature, the signature sizes are somewhat large compared to signatures in
the discrete log or RSA setting. To this end, we additionally follow a differ-
ent direction which basically targets the extension of any digital signature
scheme (such as ECDSA or EdDSA, for example) to a DAPS. Essentially,
we present a compiler which uses an arbitrary DAPS scheme to extend any
given signature scheme to a DAPS. While this might sound somewhat odd
at first sight, we want to stress that all existing DAPS which have compact
keys and exponentially large address space are ad-hoc constructions, whereas
practical applications most likely will use standardized signature schemes.
Using our construction it is possible to generically bring extraction to any
signature scheme. Hence we obtain more efficient DAPS being compatible
with standardized signature schemes such as ECDSA or EdDSA.

2 Preliminaries

In this section we firstly present a formal model for the security of signature
and DAPS schemes, recall non-interactive zero-knowledge proof systems and
Shamir’s secret sharing.

2.1 Digital Signature Schemes

Subsequently we formally recall the notion of digital signature schemes.

Definition 1 (Signature Scheme). A signature scheme Σ is a triple (KGenΣ,
SignΣ,VerifyΣ) of PPT algorithms, which are defined as follows:

KGenΣ(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key skΣ and a public (verification) key pkΣ with associated
message space M (we may omit to make the message space M explicit).

SignΣ(skΣ,m) : This algorithm takes a secret key skΣ and a message m ∈ M as
input and outputs a signature σ.
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VerifyΣ(pkΣ,m, σ) : This algorithm takes a public key pkΣ, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

We require a signature scheme to be correct and to provide existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security). For cor-
rectness we require that for all κ ∈ N, for all (skΣ, pkΣ)← KGenΣ(1κ) and for all
m ∈M it holds that

Pr [VerifyΣ(pkΣ,m,SignΣ(skΣ,m)) = 1] = 1.

Definition 2 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of EUF-CMA as

AdvEUF-CMA
A,Σ (κ) = Pr

[
ExpEUF-CMA
A,Σ (κ) = 1

]
where the corresponding experiment is depicted in Figure 1. If for all PPT ad-
versaries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,Σ (κ) ≤ ε(κ)

we say that Σ is EUF-CMA secure.

ExpEUF-CMA
A,Σ (κ):

(skΣ, pkΣ)← KGenΣ(1κ)
Q ← ∅
(m∗, σ∗)← ASign′Σ(skΣ,·)(pk)

where oracle Sign′Σ on input m:
σ ← SignΣ(skΣ,m), Q ← Q∪ {m}
return σ

return 1, if VerifyΣ(pkΣ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 1: EUF-CMA security.

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signatures (DAPS) are signature schemes be-
ing capable of signing messages from a message space M of the form A × P.
Each message m = (a, p) ∈M thereby consists of an address a in address space
A and a payload p from payload space P. In addition to the algorithms provided
by conventional signature schemes, a DAPS scheme provides a fourth algorithm
ExD that extracts the secret key from signatures on two colliding messages, i.e.,
two different messages sharing the same address. Formally, a pair of colliding
messages is defined as follows:
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Definition 3 (Colliding Messages). We call two messages m1 = (a1, p1) and
m2 = (a2, p2) colliding if a1 = a2, but p1 6= p2.

Below, we now formally define DAPS following [PS14,PS17].

Definition 4 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGenD,SignD,VerifyD,ExD) of PPT algorithms, which are de-
fined as follows:

KGenD(1κ) : This algorithm takes a security parameter κ as input and outputs a
secret (signing) key skD and a public (verification) key pkD with associated
message space M (we may omit to make the message space M explicit).

SignD(skD,m) : This algorithm takes a secret key skD and a message m ∈ M as
input and outputs a signature σ.

VerifyD(pkD,m, σ) : This algorithm takes a public key pkD, a message m ∈ M
and a signature σ as input and outputs a bit b ∈ {0, 1}.

ExD(pkD,m1,m2, σ1, σ2) : This algorithm takes a public key pkD, two colliding
messages m1 and m2 and signatures σ1 for m1 and σ2 for m2 as inputs and
outputs a secret key skD.

Note that the algorithms KGenD, SignD, and VerifyD match the definition of
the algorithms of a conventional signature scheme. For DAPS one requires a
restricted but otherwise standard notion of unforgeability [PS14,PS17], where
adversaries can adaptively query signatures for messages but only on distinct
addresses. Figure 2 details the unforgeability security experiment.

Definition 5 (EUF-CMA [PS14]). For a PPT adversary A, we define the ad-
vantage function in the sense of EUF-CMA as

AdvEUF-CMA
A,DAPS (κ) = Pr

[
ExpEUF-CMA
A,DAPS (κ) = 1

]
where the corresponding experiment is depicted in Figure 2. If for all PPT ad-
versaries A there is a negligible function ε(·) such that

AdvEUF-CMA
A,DAPS (κ) ≤ ε(κ)

we say that DAPS is EUF-CMA secure.

The interesting property of a DAPS scheme is the notion of double-signature
extractability (DSE). It requires that whenever one obtains signatures on two
colliding messages, one should be able to extract the signing key using the ex-
traction algorithm ExD. We present the security definition denoted as DSE in
Figure 3. Thereby, we consider the common notion which requires extraction to
work if the key pair has been generated honestly. In this game, the adversary is
given a key pair and outputs two colliding messages and corresponding signa-
tures. The adversary wins the game if the key produced by ExD is different from
the signing key, although extraction should have succeeded, i.e, the messages
were colliding and their signatures were valid.
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ExpEUF-CMA
A,DAPS (κ):

(skD, pkD)← KGenD(1κ)
Q ← ∅, R← ∅
(m∗, σ∗)← ASign′D(skD,·)(pkΣ)

where oracle Sign′D on input m:
(a, p)← m
if a ∈ R, return ⊥
σ ← SignD(skD,m), Q ← Q∪ {m}, R← R∪ {a}
return σ

return 1, if VerifyD(pkD,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 2: EUF-CMA security for DAPS.

Definition 6 (DSE [PS14]). For a PPT adversary A, we define the advantage
function in the sense of double-signature extraction (DSE) as

AdvDSE
A,DAPS(κ) = Pr

[
ExpDSE
A,DAPS(κ) = 1

]
where the corresponding experiment is depicted in Figure 3. If for all PPT ad-
versaries A there is a negligible function ε(·) such that

AdvDSE
A,DAPS(κ) ≤ ε(κ),

then DAPS provides DSE.

ExpDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1κ)
(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD,mi, σi) = 0 for any i ∈ [2]
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′D 6= skD

return 0

Fig. 3: DSE security for DAPS.

In Appendix A we recall the strong variant of extractability under malicious
keys (denoted as DSE∗), where the adversary is allowed to generate the key
arbitrarily. The DSE∗ notion is very interesting from a theoretical perspective,
but no practically efficient DAPS construction can achieve this notion so far.

DRS in [DRS18b] argue that when DAPS are constructed by extending a
conventional signature scheme Σ, extraction of the part of the signing key cor-
responding to Σ is already sufficient to disincentivizes double-authentication

239



for many applications. Hence, Derler et al. [DRS18b] defined two weaker double-
signature extraction notions that cover extraction of the signing key of the under-
lying signature scheme for honestly and maliciously generated DAPS keys. The
security games for weak double-signature extraction (wDSE) and weak double-
signature extraction under malicious keys (wDSE∗) are depicted in Figure 4 and
Figure 5. DSE and DSE∗ imply their weaker counterparts and wDSE∗ implies
wDSE.

Definition 7 (T ∈ {wDSE,wDSE∗}). For a PPT adversary A, we define the
advantage function in the sense of weak double-signature extraction (T = wDSE)
and weak double-signature extraction under malicious keys (T = wDSE∗), as

AdvTA,DAPS(κ) = Pr
[
ExpTA,DAPS(κ) = 1

]
where the corresponding experiments are depicted in Figure 4 and Figure 5 re-
spectively. If for all PPT adversaries A there is a negligible function ε(·) such
that

AdvTA,DAPS(κ) ≤ ε(κ),

then DAPS provides T .

ExpwDSE
A,DAPS(κ):

(skD, pkD)← KGenD(1κ) with skD = (skΣ, . . . )
(m1,m2, σ1, σ2)← A(skD, pkD)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD,mi, σi) = 0 for any i ∈ [2]
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ 6= skΣ

return 0

Fig. 4: wDSE security for DAPS.

ExpwDSE∗

A,DAPS(κ):
(pkD,m1,m2, σ1, σ2)← A(1κ) where pkD = (pkΣ, . . . )
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD,mi, σi) = 0 for any i ∈ [2]
sk′D ← ExD(pkD,m1,m2, σ1, σ2) where sk′D = (sk′Σ, . . . )
return 1, if sk′Σ is not the secret key corresponding to pkΣ

return 0

Fig. 5: wDSE∗ security for DAPS.
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Finally, for our constructions we may sometimes require a very mild addi-
tional property of DAPS which we call verifiability of secret keys. Informally it
requires that there is an additional efficient algorithm VKey which, given a key
pair, outputs 1 if the given secret key is the key corresponding to the given public
key. Formally we define verifiability of keys as follows:

Definition 8 (Verifiability of Keys). We say that a DAPS scheme DAPS =
(KGenD,SignD,VerifyD,ExD) provides verifiability of keys, if it provides an ad-
ditional efficient algorithm VKey so that for all κ ∈ N, for all (sk, pk) it holds
that

VKey(sk, pk) = 1 =⇒ (sk, pk) ∈ KGenD(1κ).

2.3 Non-Interactive ZK Proof Systems (NIZK)

We recall a standard definition of non-interactive zero-knowledge proof systems.
Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}.

Definition 9 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (SetupΠ,ProofΠ,VerifyΠ),
which are defined as follows:

SetupΠ(1κ) : This algorithm takes a security parameter κ as input, and outputs
a common reference string crs.

ProofΠ(crs, x, w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof π.

VerifyΠ(crs, x, π) : This algorithm takes a common reference string crs, a state-
ment x, and a proof π as input, and outputs a bit b ∈ {0, 1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness and adaptive zero-knowledge and simulation-sound extractability. In
Appendix C we recall formal definitions of those properties.

NIZK from Σ-protocols. AΣ-protocol for language L is an interactive three move
protocol between a prover and a verifier, where the prover proves knowledge of
a witness w to the statement x ∈ L. We recall the formal definition of Σ-
protocols in Appendix B. One can obtain a non-interactive proof system with
the above properties by applying the Fiat-Shamir transform [FS86] to any Σ-
protocol where the min-entropy µ of the commitment a sent in the first message
of the Σ-protocol is so that 2−µ is negligible in the security parameter κ and its
challenge space C is exponentially large in the security parameter. Essentially,
the transform removes the interaction between the prover and the verifier by
using a hash function H (modelled as a random oracle) to obtain the challenge.
That is, the algorithm Challenge obtains the challenge as H(a, x). Due to the
lack of space we postpone a formal presentation to Appendix C.1.
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Efficient NIZK Proof Systems for General Circuits. Over the last few years
NIZK proof systems for general circuits have seen significant progress improv-
ing their overall efficiency. Based on the MPC-in-the-head paradigm by Ishai et
al. [IKOS09], ZKBoo [GMO16] and the optimized version ZKB++ [CDG+17a]
are zero-knowledge proof systems covering languages over arbitrary circuits.
They roughly work as follows: The prover simulates all parties of a multiparty
computation (MPC) protocol implementing the joint evaluation of some func-
tion, say y = SHA-3(x), and computes commitments to the states of all play-
ers. The verifier then randomly corrupts a subset of the players and checks
whether those players performed the computation correctly. Following the same
paradigm, Katz et al. [KKW18] recently proposed to use a MPC protocol with
a preprocessing phase, which allows to significantly reduce the proof sizes. This
proof system, denoted as KKW, allows one to choose a larger number of players
then in the case of ZKBoo and ZKB++, where larger numbers lead to smaller
proofs. For all three proof systems, the number of binary multiplication gates is
the main factor influencing the proof size, as the proof size grows linearly with
the number of those gates.

Finally, Ames et al. [AHIV17] introduced Ligero, which offers proofs of log-
arithmic size in the number of multiplication gates if the circuit is represented
using a prime field. When considering binary circuits, the number of addition
respectively XOR gates has also to be accounted for in the proof size. But, as
noted by Katz et al. in [KKW18], especially for large circuits with more than
100,000 gates Ligero beats ZKBoo, ZKB++ and KKW in term of proof size.

2.4 Shamir’s Secret Sharing

Shamir’s (k, `)-threshold secret sharing [Sha79] is a secret sharing scheme which
allows to information-theoretically share a secret s among a set of ` parties so
that any collection of at least k shares allow to reconstruct s. Let s be the
constant term of an otherwise randomly chosen k − 1 degree polynomial

f(X) = ρk−1X
k−1 + · · ·+ ρ1X + s

over a finite field F. A share is computed as f(i) for party i, 1 ≤ i ≤ `. Let S be
any set of cardinality at least k of these ` shares and let IS be the set of indices
corresponding to shares in S. Using Lagrange interpolation one can then can
reconstruct the secret s by computing s = f(0) as

s =
∑
j∈IS

λjf(j) with λj =
∏

i∈IS\{j}

j

j − i
.

As long as only k − 1 or less shares are available the secret s is information-
theoretically hidden.

3 DAPS without Structured Hardness Assumptions

For our first construction we follow the basic idea of Derler et al. [DRS18b] and
build DAPS by including secret shares of the signing key in the signatures. To
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KGenD(1κ) : Fix a signature scheme Σ = (KGenΣ,SignΣ,VerifyΣ), a value-key-binding
PRF F : S ×D → R with respect to β ∈ D. Let skPRF←R S, and crs← SetupΠ(1κ).
Let c = F(skPRF, β). Set skD ← (skΣ, skPRF), pkD ← (pkΣ, crs, β, c).

SignD(skD,m) : Parse skD as (skΣ, skPRF) and m as (a, p).
1. ρ← F(skPRF, a)
2. z ← ρp+ skΣ

3. π ← ProofΠ(crs, (pkΣ, β, c, a, z,m), (skΣ, skPRF, ρ))
4. Return (z, π).

VerifyD(pkD,m, σ) : Parse pkD as (pkΣ, crs, β, c), m as (a, p) and σ as (z, π).
1. Return VerifyΠ(crs, (pkΣ, β, c, a, z,m), π).

ExD(pkD,m1,m2, σ1, σ2) : Parse σi as (zi, ·), mi as (ai, pi).
1. If m1 and m2 are not colliding, return ⊥
2. if VerifyD(pkD,mi, σi) = 0 for any i, return ⊥
3. let skΣ ← z1p2−z2p1

p2−p1
4. return skΣ

Scheme 1: Generic DAPS from Σ.

resolve the address space limitation of their approach, however, we derive the
coefficients of the sharing polynomial using a pseudorandom function (PRF).
By then additionally proving the correct evaluation of the PRF, it is no longer
necessary to store encrypted versions of the coefficients in the public key. The
only issue which remains, is to additionally prove consistency with respect to a
“commitment” to the PRF secret key contained in the public key (we commit to
it using a fixed-value key-binding PRF as defined in Appendix D). To bind the
message to the proof, we use a signature-of-knowledge style methodology [CL06].

More precisely, we start from a one-way function f : S → P , which we use
to define the relation between public and secret keys, i.e., so that pkΣ = f(skΣ).
In addition we carefully choose a PRF F , which maps to the secret key space S.
At the core of our DAPS construction we use a NIZK proof to prove consistency
of the secret signing key, as well as the correctness of the secret sharing. For this
proof we define an language L with associated witness relation R in the following
way:

((pkΣ, β,c, a, z), (skΣ, skPRF, ρ)) ∈ R⇐⇒
ρ = F(skPRF, a) ∧ z = ρp+ skΣ ∧ c = F(skPRF, β) ∧ pkΣ = f(skΣ)

In this statement we cover three aspects: First, we prove that the polynomial for
Shamir’s secret sharing is derived from the address and that the secret share is
correctly calculated. Second, we prove the relation between the secret and public
key of the signature scheme. Third, we “commit” to the PRF secret key using a
fixed-value key-binding PRF. The full scheme is depicted in Scheme 1.

It is important to note that the PRF needs to be compatible with the signa-
ture scheme, in the sense that secret-key space of Σ, i.e., S, and R match. For
simplicity, we assume that R = S. Additionally, the domain and codomain of
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the PRF also define the message space of the DAPS. In the following theorem
we prove that Scheme 1 is an EUF-CMA-secure DAPS.

Theorem 1. If the NIZK proof system Π is simulation-sound extractable, F is
a PRF, and f is an OWF, then Scheme 1 provides EUF-CMA security.

Proof. We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. We let QΣ be the number of signing oracle queries.

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ)← S1,Π(1κ) and store τ .
Transition 0⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0]− Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As Game 1, but we modify SignD as follows:

SignD(sk,m) : As before, but let π ← S2,Π(crs, τ, (pkΣ, β, c, a, z,m)) .
Transition 1⇒ 2: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S1]− Pr[S2]| ≤ AdvZK
A,S,Π(κ).

Game 3: As before, but we modify KGenD and SignD as follows.

KGenD(1κ) : As before, but let c←R R .

SignD(skD,m) : As before, but let ρ←R R .
Transition 2⇒ 3: We engage with a PRF challenger C against F . We modify

SignD as follows:

KGenD(1κ) : As before, but let c←R C(β) .

SignD(skD,m) : As before, but let ρ←R C(a) .
Thus an adversary distinguishing the two games also distinguishes the PRF
from a random function, i.e. |Pr[S4]− Pr[S3]| ≤ AdvD,F (κ).

Game 4: As before, but we modify SignD as follows.
SignD(skD,m) : As before, but track all (a, ρ) pairs in Q.
We abort if there exists (a1, ρ), (a2, ρ) ∈ Q such that a1 6= a2.

Transition 3⇒ 4: Both games proceed identically, unless the abort event hap-
pens. The probability of the abort event is bounded by 1/|R|, i.e. |Pr[S5] −
Pr[S4]| ≤ QΣ/|R|.

Game 5: As before, but we modify SignD as follows.

SignD(skD,m) : As before, but let z←R R .
Transition 4⇒ 5: This change is conceptional. Note that ρ is uniformly ran-

dom and not revealed, and thus z is uniformly random.
Game 6: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ, ξ)← E1,Π(1κ) and store (τ, ξ) .
Transition 5⇒ 6: Both games are indistinguishable under simulation-sound

extractability of the proof system, i.e. |Pr[S6]− Pr[S5]| ≤ AdvExt1

A,E,Π(κ).

Game 7: As before, but we now use the extractor to obtain sk∗Σ ← E2,Π(crs, ξ,
(pkΣ, β, c, a, z,m), π) and abort in case the extraction fails.

Transition 6⇒ 7: Both games proceed identically, unless we abort. The prob-
ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. |Pr[S7]− Pr[S6]| ≤ AdvExt2

A,E,Π(κ).
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Reduction. Now we are ready to present a reduction which engages with an OWF
challenger C. In particular, we obtain a challenge and embed it in the public key,
i.e.

KGenD(1κ) : As before, but pkΣ ← C .

Once the adversary returns a forgery, we extract sk∗Σ and forward the solution to
the OWF challenger. Hence Pr[S7] ≤ AdvOWF

A,f (κ), which concludes the proof. ut
We now show that Scheme 1 also provides wDSE security. We note that in

the proof of Theorem 2 we do not need to simulate proofs, so a weaker extrac-
tion notion would suffice. The proof of Theorem 1, however, already requires
simulation-sound extractability which is why we directly resort to simulation-
sound extractability.

Theorem 2. If the NIZK proof system Π is simulation-sound extractable and
the PRF F is computationally fixed-value-key-binding, then Scheme 1 provides
wDSE security.

Proof. We prove this theorem using a sequence of games. We denote the winning
event of game Gi as Si. Let m1,m2, σ1, σ2 denote the output of A. For simplicity
we write mj = (a, pj), σj = (zj , πj) for j ∈ [2]. Now, we have proofs attesting
that zj = ρpj + skΣ for j ∈ [2].

Game 0: The original game.
Game 1: As before, but we modify KGenD as follows:

KGenD(1κ) : As before, but let (crs, τ)← S1,Π(1κ) and store τ .
Transition 0⇒ 1: Both games are indistinguishable under adaptive zero-knowl-

edge of the proof system, i.e. |Pr[S0]− Pr[S1]| ≤ AdvSim
A,S,Π(κ).

Game 2: As before, but we modify KGenD as follows:
KGenD(1κ) : As before, but let (crs, τ, ξ)← E1,Π(1κ) and store ξ .

Transition 1⇒ 2: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. |Pr[S2]− Pr[S1]| ≤ AdvExt1

A,E,Π(κ).
Game 3: As before, but we now use the extractor to obtain (sk∗Σ,j , sk∗PRF,j) ←
E2,Π(crs, ξ, (pkΣ, β, c, a, zj ,mj), π) for j ∈ [2] and abort if the extraction fails.

Transition 2⇒ 3: Both games proceed identically, unless we abort. The prob-
ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. |Pr[S3]− Pr[S2]| ≤ 2 · AdvExt2

A,E,Π(κ).
Game 4: As before, but we abort if skPRF 6= sk∗PRF,j for any j ∈ [2].
Transition 3⇒ 4: Both games proceed identically, unless we abort. Let j ∈ [2]

be such that skPRF 6= sk∗PRF,j . We bound the abort probability using F . Let
C be a computational fixed-value-key-binding challenger. We modify KGenD

as follows:
KGenD(1κ) : As before, but let (skPRF, β) ← C.
Then we have that F(skPRF, β) = F(sk∗PRF,j , β), hence we forward sk∗PRF,j to
C. Thus we built an adversary B against fixed-value-key-binding of F , i.e.
|Pr[S4]− Pr[S3]| ≤ AdvcFKVB

B,F (κ) = ε(κ).

As we have now ensured that the correct PRF secret key was used to generate ρ
from a, skΣ is now uniquely determined via the secret sharing. Thus the adversary
can no longer win, i.e. Pr[S4] = 0. ut
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Extension to NAPS. Following the ideas outlined in [DRS18b], Scheme 1 can be
extended to an N -time authentication-preventing signature scheme by changing
the sharing polynomial ρX+skΣ to a polynomial of degree N−1 with coefficients
ρ1, . . . , ρN−1 obtained from the PRF via ρi = F(skPRF, a‖i).

Instantiations. The requirement on the signature scheme are very weak, yet
finding a suitable combination of primitives can be difficult. Thus we discuss
some possible instantiations. One candidate scheme on top of which the DAPS
extension can be applied is Picnic [CDG+17a,CDG+17b]. In Picnic the pub-
lic key pkΣ is the image of the secret key skΣ under a one-way function built
from LowMC [ARS+15,ARS+16]. Signatures are then generated by proving this
relation using a NIZK from ZKB++ made non-interactive. In this case it is
straight forward to use the block cipher LowMC (denoted by E) as PRF by
setting F(s, x) = E(s, x) ⊕ x. We argue that this PRF can also be considered
a computational fixed-value-key-binding PRF, since it is reasonable to assume
that finding a new key which maps one particular input to one particular output
is no easier than generic key search. Furthermore, when increasing the block size
of LowMC relative to the key size, the existence of second key mapping to the
same output becomes increasingly unlikely.

The circuit for the secret sharing can either be implemented using a binary
circuit realizing the required arithmetic, or, more efficiently, by computing the
sharing bit-wise. For the latter, we consider ρ, p and skΣ as n bit values, and
compute secret shares zi = ρipi + skΣ,i for each bit i ∈ [n]. Thus only n ANDs
are required to implemented the secret sharing. All in all Picnic signatures can
be easily extended to a DAPS without requiring extensive changes. We also
note that the Fiat-Shamir transformed ZKB++ is in fact simulation-sound ex-
tractable NIZK proof systems as confirmed in [DRS18a]. Using the signature size
formulas, we can estimate DAPS signatures sizes at around 408 KB, meaning
there is a overhead of 293 KB compared to Picnic signatures requiring roughly
115 KB in the ROM targeting 256 bit classical security. Analogously to the
QROM security of Picnic, Unruh’s transform [Unr12,Unr15,Unr16] can be used
to obtain QROM security for the DAPS construction.

Also hash-based signatures such as SPHINCS [BHH+15] are well suited for
this construction. Similar to the case of Picnic, the PRF can be instantiated
using LowMC. However, the consistency proof is more expensive, as computing
the public key requires multiple evaluations of hash functions.

Relying on Structured Hardness Assumptions. The situation is different for sig-
nature schemes relying on structured hardness assumptions, e.g., those in the
discrete logarithm setting such as Schnorr signatures [Sch89], ECDSA and Ed-
DSA [BDL+12]. While they would fulfill the requirement for the secret-key-to-
public-key relation, i.e., here working in a group G with generator g the OWF
is of the form f(x) := gx, the problem is finding an efficient NIZK proof sys-
tem to prove statements over Zp and in a prime order group G simultaneously.
Furthermore the NIZK proof system would also need to support statements
over binary circuits for the PRF evaluation. Recently, Agrawal et al. [AGM18]
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made progress in this direction, enabling non-interactive proofs of composite
statements for relations over multiple groups and binary circuits. Using these
techniques to construct DAPS is an interesting open problem.

4 Extending Any Signature Scheme Using DAPS

Finally, we follow a different direction for our second approach. Here we start
from an already existing DAPS and use it to extend any unforgeable signature
scheme to a DAPS. Interestingly, both the unforgeability and extraction follow
in a black-box way from the signature scheme and the underlying DAPS, re-
spectively. In this construction, the secret key consists of the secret keys of the
underlying DAPS and signature scheme. To guarantee extraction of the full se-
cret key, we apply the technique of Bellare et al. [BPS17] and encrypt the key
of the signature scheme using a one-time pad derived from the secret key of the
DAPS scheme. The public key then consists of that encrypted key and the public
keys of the underlying DAPS and signature scheme. However, for extraction of
maliciously generated keys, i.e., DSE∗-security, this means that public keys need
to be extended with a NIZK proof that the encryption was performed correctly.
For the sake of simplicity, we thus concentrate on the DSE security of the scheme.
We present the compiler in Scheme 2.

KGenD(1κ) : Fix some signature scheme Σ = (KGenΣ, SignΣ,VerifyΣ) and some DAPS
DAPS = (KGenD,SignD,VerifyD,ExD) with verifiability of keys. Let (skΣ, pkΣ) ←
Σ.KGenΣ(1κ), (sk, pk) ← DAPS.KGenD(1κ), Y ← skΣ ⊕ H(sk), and return
(skD, pkD) := ((skΣ, sk), (pkΣ, pk, Y )).

SignD(skD,m) : Parse skD as (skΣ, sk).
1. σ0 ← Σ.SignΣ(skΣ,m)
2. σ1 ← DAPS.SignD(sk,m)
3. Return σ = (σ0, σ1)

VerifyD(pkD,m, σ) : Parse pkD as (pkΣ, pk, ·), and return 1 if all of the following checks
hold and 0 otherwise:
– Σ.VerifyΣ(pk, (a, p)) = 1
– DAPS.VerifyD(pkD, (a, p)) = 1

ExD(pkD,m1,m2, σ1, σ2) : Parse pkD as (pkΣ, pk, Y ), obtain sk← DAPS.ExD(pk,m1,m2,
σ1, σ2) and skΣ ← Y ⊕H(sk), and return skD = (skΣ, sk).

Scheme 2: Black-Box Extension of any Signature Scheme to DAPS.

In the following theorem we formally state that the DAPS construction in
Scheme 2 yields an EUF-CMA-secure DAPS.

Theorem 3. If Σ is unforgeable, DAPS is unforgeable and provides verifiability
of keys, then the DAPS construction in Scheme 2 is unforgeable in the ROM.

The theorem above is proven in Appendix E.1. Additionally, Scheme 2 provides
DSE-security if the underlying DAPS provides it as well.
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Theorem 4. If DAPS provides DSE-security, then the construction of DAPS in
Scheme 2 provides DSE-security as well.

The theorem above is proven in Appendix E.2.

5 Conclusion

In this work, we close two important gaps in the literature on DAPS. First, we
present a generic DAPS construction, which, in contrast to [DRS18b], does not
come with the drawback of a polynomially bounded address space. Our con-
struction only relies on assumptions related to symmetric key primitives, which
is why we also obtain a candidate for a post-quantum DAPS construction. Sec-
ond, we also present an alternative generic construction of DAPS which basically
shows how to bring DAPS features to any signature scheme. This is of particu-
lar practical importance, as it allows to extend arbitrary signature schemes with
double signature extraction features. As our compiler works by using an arbi-
trary DAPS scheme to extend a given signature scheme in a black-box way, this
yields more efficient DAPS than previously known for standardized and widely
used signature schemes such as ECDSA or EdDSA.
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A DSE∗ Security of DAPS

We recall the DSE∗ security notion of DAPS. The game is depicted in Figure 6,
where in contrast to Figure 3 the keys are generated by the adversary.

Definition 10 (DSE∗ [PS14]). For a PPT adversary A, we define the advan-
tage function in the sense of double-signature extraction under malicious keys
(DSE∗) as

AdvDSE∗

A,DAPS(κ) = Pr
[
ExpDSE∗

A,DAPS(κ) = 1
]
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where the corresponding experiment is depicted in Figure 6. If for all PPT ad-
versaries A there is a negligible function ε(·) such that

AdvDSE∗

A,DAPS(κ) ≤ ε(κ),

then DAPS provides DSE∗.

ExpDSE∗

A,DAPS(κ):
(pkD,m1,m2, σ1, σ2)← A(1κ)
return 0, if m1 and m2 are not colliding
return 0, if VerifyD(pkD,mi, σi) = 0 for any i ∈ [2]
sk′D ← ExD(pkD,m1,m2, σ1, σ2)
return 1, if sk′ is not the secret key corresponding to pkD

return 0

Fig. 6: DSE∗ security for DAPS.

B Σ-Protocols

Let L ⊆ X be an NP-language with associated witness relation R so that L =
{x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined as follows.

Definition 11. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(a, c, s) ∈ A× C× S. Additionally they satisfy the following properties:

Completeness A Σ-protocol for language L is complete, if for all security pa-
rameters κ, and for all (x,w) ∈ R, it holds that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

Special Soundness A Σ-protocol for language L is special sound, if there exists
a PPT extractor E so that for all x, and for all sets of accepting transcripts
{(a, ci, si)}i∈[2] with respect to x where c1 6= c2, generated by any algorithm
with polynomial runtime in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ci, si)}i∈[2]) : (x,w) ∈ R

]
≥ 1− ε(κ).

Special Honest-Verifier Zero-Knowledge A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for every
x ∈ L and every challenge c from the challenge space, it holds that a tran-
script (a, c, s), where (a, s)← S(1κ, x, c) is indistinguishable from a transcript
resulting from an honest execution of the protocol.
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C NIZK Security Properties

Definition 12 (Completeness). A non-interactive proof system for language
L is complete, if for all κ ∈ N, for all crs ← SetupΠ(1κ), for all x ∈ L, for
all w such that R(x,w) = 1, and for all π ← ProofΠ(crs, x, w), we have that
VerifyΠ(crs, x, π) = 1.

This captures perfect completeness.

Definition 13 (Soundness). For an efficient adversary A, we define the ad-
vantage function in the sense of soundness as

AdvSound
A,Π (κ) = Pr

[
crs← SetupΠ(1κ),
(x, π)← A(crs)

:
VerifyΠ(crs, x, π) = 1

∧ x 6∈ L

]
.

If for any efficient adversary A there exists a negligible function ε(·) such that

AdvSound
A,Π (κ) ≤ ε(κ),

Π is sound.

Definition 14 (Adaptive Zero-Knowledge). For an efficient simulator S =
(S1,S2) and an efficient adversary A, we define the advantage functions in the
sense of zero-knowledge as

AdvSim
A,S,Π(κ) =

∣∣∣∣Pr [crs← SetupΠ(1κ) : A(crs) = 1]−
Pr [(crs, τ)← S1(1κ) : A(crs) = 1]

∣∣∣∣
and

AdvZK
A,S,Π(κ) =

∣∣∣∣Pr
[
ExpZK
A,S,Π(κ) = 1

]
− 1

2

∣∣∣∣
where the corresponding experiment is depicted in Figure 7. If there exists an
efficient simulator S = (S1,S2) such that for any efficient adversary A there
exist negligible functions ε1(·) and ε2(·) such that

AdvSim
A,S,Π(κ) ≤ ε1(κ) and AdvZK

A,S,Π(κ) ≤ ε2(κ)

then Π provides adaptive zero-knowledge.

Definition 15 (Simulation-Sound Extractability). For an adaptively zero-
knowledge non-interactive proof system Π, for an efficient extractor extractor
E = (E1, E2) and an efficient adversary A, we define the advantage functions in
the sense of simulation-sound extractability as

AdvExt1

A,E,Π(κ) =

∣∣∣∣Pr [(crs, τ)← S1(1κ) : A(crs) = 1]−
Pr [(crs, τ, ξ)← E1(1κ) : A(crs) = 1]

∣∣∣∣
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ExpZK
A,S,Π(κ):
b← {0, 1}
(crs, τ)← S1(1κ)

b∗ ← APb(·,·)(crs)
where oracle P0 on input (x,w):

return π ← ProofΠ(crs, x, w), if (x,w) ∈ R
return ⊥

and oracle P1 on input (x,w):
return π ← S2(crs, τ, x), if (x,w) ∈ R
return ⊥

return 1, if b = b∗

return 0

Fig. 7: Adaptive Zero-Knowledge

and

AdvExt2

A,E,Π(κ) = Pr
[
ExpExt2

A,E,Π(κ) = 1
]

where the corresponding experiment is depicted in Figure 8. If there exists an
efficient extractor E = (E1, E2) such that for any efficient adversary A there
exist negligible functions ε1(·) and ε2(·) such that

AdvExt1

A,E,Π(κ) ≤ ε1(κ) and AdvExt2

A,E,Π(κ) ≤ ε2(κ)

then Π provides simulation-sound extractactability.

ExpExt2
A,E,Π(κ):

(crs, τ, ξ)← E1(1κ)
QS = ∅
(x∗, w∗)← AS(·,·)(crs)

where oracle S on input (x,w):
QS ← QS ∪ {(x,w)}
return π ← S2(crs, τ, x), if (x,w) ∈ R
return ⊥

w ← E2(crs, ξ, x∗, π∗)
return 1, if VerifyΠ(crs, x∗, π∗) = 1 ∧ (x∗, π∗) 6∈ QS ∧ (x∗, w) 6∈ R
return 0

Fig. 8: Simulation-sound extractability

C.1 NIZK from Σ-Protocols

To convert a Σ-protocol to a NIZK, SetupΠ(1κ) fixes a hash function H : A×X→
C, sets crs ← (κ,H) and returns crs. The algorithms ProofΠ and VerifyΠ are
defined as follows:
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ProofΠ(crs, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
c← H(a, x). Finally obtain s and return π ← (a, s).

VerifyΠ(crs, x, π) : Parse π as (a, s). Start V on (1κ, x) and send a as first message
to the verifier. When V outputs c, reply with s and output 1 if V accepts
and 0 otherwise.

Combining [FKMV12, Thm. 1, Thm. 2, Thm. 3, Prop. 1] (among others) shows
that a so-obtained proof system is complete, sound, adaptively zero-knowledge,
if the underlying Σ-protocol is special sound and the commitments sent in the
first move are unconditionally binding. Security of the Fiat-Shamir transform
in the quantum-accessible ROM (QROM) requires stronger properties of the Σ-
protocols [Unr17], however Unruh’s transform [Unr12,Unr15,Unr16] can be used
to obtain QROM-secure NIZKs from Σ-protocols.

D One-way Functions and Pseudorandom Function
Families

We recall the definitions of one-way functions and pseudorandom function (fam-
ilies).

Definition 16 (OWF). Let f : S → P be a function. For a PPT adversary A
we define the advantage function as

AdvOWF
A,f (κ) = Pr

[
x←R S, x∗ ← A(1κ, f(x)) : f(x) = f(A∗)

]
.

The function f is one-way function (OWF) if it is efficiently computable and for
all PPT adversaries A there exists a negligible function ε(·) such that

AdvOWF
A,f (κ) ≤ ε(κ).

Definition 17 (PRF). Let F : S × D → R be a family of functions and let
Γ be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function as

AdvPRF
D,F (κ) =

∣∣∣Pr
[
s←R S,DF(s,·)(1κ) = 1]− Pr[f ←R Γ,Df(·)(1κ) = 1

]∣∣∣ .
F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRF
D,F (κ) ≤ ε(κ).

Below, we provide a slightly stronger variant of a definition of a notion introduced
in [CMR98,Fis99].

Definition 18 (Fixed-Value-Key-Binding PRF). A PRF family F : S ×
D → R and a β ∈ D, is fixed-value-key-binding if for all adversaries A

Pr
[
s←R S, s′ ← A(s, β) : F(s, β) = F(s′, β) ∧ s 6= s′

]
= 0.
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Moreover, we present a relaxed (computational) version of the above definition.

Definition 19 (Computational Fixed-Value-Key-Binding PRF). For a
PRF family F : S ×D → R and a β ∈ D, we define the advantage function of a
PPT adversary A as

AdvcFKVB
A,F (κ) = Pr

[
s←R S, s′ ← A(1κ, s, β) : F(s, β) = F(s′, β) ∧ s 6= s′

]
.

F is computationally fixed-value-key-binding if for all PPT adversaries there
exists as negligible function ε(·) such that

AdvcFKVB
A,F (κ) = ε(κ).

E Security Proofs

E.1 Proof of Theorem 3

Proof. To prove the theorem above, we proceed in a sequence of games where
we play ExpEUF-CMA

DAPS,A (κ) with the DAPS in Scheme 2 and adversary A.

Game 0: The original unforgeability game.
Game 1: As Game 0, but we choose Y uniformly at random and abort as soon

as A queries the random oracle H on sk with VKey(sk, pk) = 1.
Transition 0⇒ 1: Let this event be called E. The distributions in Game 0 and

Game 1 are identical unless E happens. We bound the probability of E to
happen by constructing an adversary B with

AdvEUF-CMA
B,DAPS (κ) ≥ Pr[E].

To do so, we honestly generate (skΣ, pkΣ) and engage in an experiment
ExpEUF-CMA
B,DAPS (κ) to obtain pk for DAPS. We choose Y uniformly at random,

and set (skD, pkD) ← ((skΣ,⊥), (pkΣ, pkD, Y )). Whenever a signature for
DAPS is required, we use the signing oracle provided by ExpEUF-CMA

B,DAPS (κ). If
E happens, we have that VKey(sk, pk) = 1, which—by the correctness of
DAPS—means that we can choose an arbitrary unqueried message m from
the message space of DAPS which satisfies the winning condition, and output
(m,DAPS.SignD(sk,m)) as a forgery for DAPS. All in all, we thus have that
|Pr[S0]− Pr[S1]| ≤ AdvEUF-CMA

B,DAPS (κ).
Reduction. Now we are ready to show that the winning probability in Game 1

is bounded by max{AdvEUF-CMA
B1,Σ (κ),AdvEUF-CMA

B2,DAPS (κ)}. To do so, we construct
two reductions which use A to construct B1 or B2 respectively. Both B1 and
B2 will succeed whenever A succeeds.
B1 : In this case, we engage in an experiment ExpEUF-CMA

B1,Σ (κ) to obtain pkΣ.
We choose Y uniformly at random, obtain (sk, pk) ← DAPS.KGenD(1κ)
and set (skD, pkD) ← ((⊥, sk), (pkΣ, pk, Y )). Whenever a Σ signature is
required, the signature is obtained using the oracle provided by the
experiment. If the adversary eventually outputs a forgery (m∗, σ∗) =
(m∗, (σ∗0 , σ

∗
1)) we output (m∗, σ∗0) as a forgery to win ExpEUF-CMA

B1,Σ (κ).

Clearly, AdvEUF-CMA
A,Game 1(κ) ≤ AdvEUF-CMA

B1,Σ (κ).
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B2 : In this case, we engage in an experiment ExpEUF-CMA
B2,DAPS (κ) to obtain pk. We

choose Y uniformly at random, obtain (skΣ, pkΣ) ← Σ.KGenΣ(1κ) and
set (skD, pkD) ← ((skΣ,⊥), (pkΣ, pk, Y )). Whenever a DAPS signature
is required, the signature is obtained using the oracle provided by the
experiment. If the adversary eventually outputs a forgery (m∗, σ∗) =
(m∗, (σ∗0 , σ

∗
1)) we output (m∗, σ∗1) as a forgery to win ExpEUF-CMA

B2,DAPS (κ).

Clearly, AdvEUF-CMA
A,Game 1(κ) ≤ AdvEUF-CMA

B2,DAPS (κ).

All in all, we now have Pr[S0] = AdvEUF-CMA
A,DAPS (κ) ≤ max{AdvEUF-CMA

B1,Σ (κ),

AdvEUF-CMA
B2,DAPS (κ)}+ AdvEUF-CMA

DAPS,B (κ) which concludes the prove. ut

E.2 Proof of Theorem 4

Proof. We prove this theorem using a reduction. Assume that A breaks DSE-
security of Scheme 2. We build a DSE adversary B against DAPS: When B
is started on the secret key sk and public key pk of DAPS, we compute the
key pair of Σ honestly, i.e., (skΣ, pkΣ) ← Σ.KGenΣ(1κ). Then, we compute
the combined public key by extending it with Y ← skΣ ⊕ H(sk). Now, we
start A on the combined key-pair (skΣ, sk), (pkΣ, pk, Y ). Once A returns col-
liding messages m1,m2 and signatures σ1 = (σ1,0, σ1,1), σ2 = (σ2,0, σ2,1), for-
ward the messages with the corresponding DAPS signatures σ1,1, σ2,1 to B. Let
(sk∗Σ, sk∗)← ExD((pkΣ, pk, Y ),m1,m2, σ1, σ2). Since, by definition, the adversary
needs to output (sk∗Σ, sk∗) 6= (skΣ, sk), it follows that sk∗Σ 6= skΣ or sk∗ 6= sk. If we
have sk∗ = sk, we have that sk∗Σ = Y ⊕H(sk) = skΣ since Y was set up honestly.
Hence we have sk∗ 6= sk, so B wins the DSE-security game if A wins it, which
concludes the proof. ut
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