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Abstract

Subdivision schemes are iterative refinement rules used to generate smooth geometric
objects, such as curves or surfaces.

In the first part of this thesis, we deal with nonlinear subdivision schemes, i.e., refine-
ment algorithms applied to data lying in nonlinear spaces. Literature already provides
a number of different approaches to transfer linear subdivision to nonlinear geometries.
We use the so-called Riemannian analogue of a linear subdivision rule which is obtained
from a linear rule by replacing affine averages by weighted geodesic averages and show
that it is well defined on Cartan-Hadamard manifolds (i.e., simply connected, complete
manifolds with nonpositive sectional curvature). Up to now, most convergence results
for nonlinear analogues of linear schemes are limited to dense enough input data. In this
thesis, we provide convergence results for Riemannian analogues of linear schemes on
Cartan-Hadamard manifolds which are valid for all input data. In particular, we prove
that if a linear subdivision scheme converges uniformly, then its Riemannian analogue on
Cartan-Hadamard manifolds does so, too. Additionally, we analyse the Hölder continuity
of the resulting limit functions.
On positively-curved Riemannian manifolds, the situation is appreciably different.

This essentially follows from two points: The Riemannian analogue is no longer glo-
bally well defined and certain distance estimates on Cartan-Hadamard manifolds are not
valid on positively-curved manifolds. As a first approach, we therefore restrict our ana-
lysis to the unit sphere and provide a strategy for showing convergence results for the
Riemannian analogue of a linear subdivision scheme.
In the second part of this thesis, we focus on Hermite subdivision schemes and their

ability of polynomial reproduction. In contrast to standard scalar subdivision schemes,
a Hermite scheme operates on vector-valued input data, which is interpreted as func-
tion and its consecutive derivative values. A convergent subdivision scheme is said to
reproduce polynomials if sampling the initial data from a polynomial yields the same
polynomial in the limit. We provide algebraic conditions on the Hermite scheme, which
fully characterise its ability to reproduce polynomials. This generalises similar conditions
known from scalar subdivision. As a start, we consider schemes reproducing function va-
lues and first derivatives, afterwards we show an extension of this result to schemes of
any order, i.e., we consider higher derivatives as well.
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1 Introduction

Subdivision rules are algorithms which produce limit curves by iteratively refining initial
control polygons. De Rham first mentioned the idea in [18]. In the context of computer
graphics the procedure was rediscovered in the 1970s by Chaikin [3]. Subdivision al-
gorithms have become of interest in computer aided geometric design due to their local
structure (which makes them easy to implement) and their capability to generate smooth
curves [25]. For example the Lane-Riesenfeld algorithm can be used to compute B-spline
curves [54, 25].
Subdivision algorithms are not limited to curve design, but are also used to generate

smooth surfaces from data attached to control nets with irregular combinatorics. The
Doo-Sabin scheme [29], the Catmull-Clark scheme [1] and the Loop scheme [56] are early
contributions to subdivision with irregular meshes. We refer to the textbook [69] for a
comprehensive overview on this topic.
Subdivision rules play an important role in geometric modelling [3, 30] and very much

in computer graphics [69]. They are used to construct wavelets and find applications
in multiresolution analysis [6, 17] as well as in approximation and interpolation theory
[26, 19].

A linear refinement rule maps a sequence (xi)i∈Zs , s > 1, in a linear space to a sequence
(Sxi)i∈Zs where the new points Sxi =

∑
j∈Zs ai−2jxj , i ∈ Z, are given as affine linear

combinations of finitely many old ones. The repeated application of this refinement rule
determines a subdivision scheme S. The coefficients (ai)i∈Zs are called the mask of the
scheme.
In this thesis, all schemes are assumed to be univariate, i.e., s = 1, but the multivariate

case is studied intensively, too [2, 38, 59].
We denote by Sk, k ∈ N, the repeated application of the refinement rule and call a

linear subdivision scheme S convergent if there exist piecewise linear functions fk with
fk
(
i

2k

)
=
(
Skx

)
i
which converge, uniformly on compact sets, to a limit.

For initial data lying in linear spaces subdivision rules are well studied regarding their
properties of convergence and smoothness of the resulting limit curves, see for example
[2, 25]. In this respect, relating the convergence of a subdivision scheme to algebraic
conditions of the symbol of its mask, i.e., the Laurent polynomial a(z) =

∑
j∈Z ajz

j ,
was crucial [2]. Furthermore, the derived scheme which operates on divided differences
of input data became another important tool in the study of refinement algorithms and
their convergence [25, 28].

One might vary the coefficients of the mask in each iteration step which makes the
subdivision rule level-dependent, see [30] for an introduction. Those schemes are also
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1 Introduction

called non-stationary as opposed to stationary schemes which keep the same refinement
rule throughout the whole subdivision process.

A well-known class of subdivision rules are interpolatory schemes which are charac-
terised by the fact that they always preserve the data of the previous refinement level.
For curve design we mention the 4-point scheme [26] and the 6-point Dubuc-Deslauriers
scheme [19]. Their convergence and approximation order are well studied and the smooth-
ness of resulting limit curves has been analysed. The Butterfly scheme was the first
interpolatory scheme used on a triangular grid to generate surfaces [27].

Another interesting question is the following: If the initial data is sampled from a
function, does a scheme reproduce the same function in the limit? Linear schemes repro-
ducing polynomials are characterised in [9]. For exponential polynomials this question
was considered for example in [31, 11]. Even if the function is not fully reproduced in the
limit, one can study the approximation order of the subdivision scheme, for stationary
[55] as well as for level-dependent schemes [13].

In this thesis, we contribute new results to two different areas within the wide field of
subdivision schemes. The first part of the thesis focuses on the convergence analysis of
subdivision rules applied to nonlinear data while the second part deals with the property
of polynomial reproduction by Hermite subdivision schemes.

Introduction to the first part of this thesis
We are interested in the convergence analysis of nonlinear subdivision schemes which

are obtained by adapting linear refinement rules to nonlinear geometries. Since data
often comes from nonlinear geometries this has become an active field of research in the
last years [21, 77, 40, 63, 34, 38]. For example, one can consider initial data lying in
symmetric spaces, Lie groups or arbitrary Riemannian manifolds instead of only linear
spaces. In particular, different methods to transfer linear subdivision schemes to non-
linear geometries have been introduced: the log-exp-analogue [70, 21], the projection
analogue [82] and binary geodesic averaging [77]. After adapting linear schemes to a
wider class of geometries, questions of their properties arise.

Before we discuss the convergence of nonlinear analogues of linear schemes in detail,
we summarise some results on nonlinear refinement algorithms (assuming their conver-
gence). They have been analysed regarding their approximation order and stability, see
for example [47, 41, 39]. Furthermore, the smoothness of the limit curves of nonlinear
analogues of linear schemes has been studied in many works, see for example [75, 42, 78].
However, it requires specific ways of transferring linear schemes to nonlinear geometries
to show that the nonlinear limit is as least as smooth as its linear counterpart, see for
example [83, 40].

If we assume that the nonlinear analogue of a linear scheme is convergent, then the
smoothness of the resulting limit curves is fully studied. The situation for the convergence
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analysis of nonlinear schemes itself, however, is different and therefore still an active
field of research. In [77] the so-called proximity conditions have been introduced to
obtain convergence results for nonlinear analogues which are obtained from linear schemes
by replacing binary averages by geodesic averages. Unfortunately, this procedure is in
general not unique and the convergence results are limited to only ‘dense enough’ input
data. However, there are results which apply to all input data if only special classes of
subdivision schemes are considered, for example interpolatory schemes [76]. Furthermore,
for special schemes convergence results could be proven for all input data by the repeated
application of binary geodesic averaging [32, 33, 73]. As an example where geodesic
subdivision has been used, we mention [67]. The author studied corner cutting schemes
and a variation of the 4-point scheme on the sphere by an iterative computation of
geodesic midpoints.

In this thesis we adapt linear schemes to Riemannian manifolds by replacing affine
averages by the Riemannian center of mass. This method is known as the Riemannian
analogue of a linear scheme, see [40]. It is said to be convergent if the subdivision rule
considered in coordinate charts of the manifold converges. In [79] the convergence of
the Riemannian analogue of a linear subdivision rule with nonnegative mask has been
studied on Cartan-Hadamard manifolds (i.e., simply connected, complete Riemannian
manifolds with nonpositive sectional curvature). More generally, convergence results
have been obtained on Cartan-Hadamard spaces with the help of stochastic methods by
interpreting the coefficients of the mask as probabilities [34, 35].

We present a convergence result for the Riemannian analogue which is valid for all
affine invariant subdivision schemes with arbitrary mask on Cartan-Hadamard manifolds.
Therefore, we prove an existence and uniqueness result of the Riemannian center of
mass on Cartan-Hadamard manifolds. The existence and uniqueness analysis of the
Riemannian center of mass, however, is not only important in the field of refinement
algorithms and approximation theory but also in stochastics on manifolds, see for example
[68].

In order to generalise further, we are interested in convergence results for all input data
on positively-curved manifolds. Since the Riemannian center of mass is in general not
globally well defined on positively-curved spaces and the estimate of distances cannot be
directly transferred from Cartan-Hadamard manifolds, we need a new strategy to obtain
convergence results. Therefore, we start by analysing subdivision schemes on a concrete
positively-curved manifold, namely the unit sphere. It turns out that already on this
elementary manifold the above mentioned difficulties become visible.

We aim for convergence results for the Riemannian analogues of linear subdivision
schemes on the unit sphere without any sign restrictions on the mask. Therefore, the
knowledge of explicit formulas for the gradient and the Hessian of the squared distance
function on the sphere are important tools. As a first approach towards a general conver-
gence analysis, we show that the Riemannian analogues of some well-known subdivision
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1 Introduction

schemes such as the cubic Lane-Riesenfeld algorithm and the 4-point scheme converge
on the unit sphere. Furthermore, we apply our strategy to a non-interpolatory scheme
whose mask contains negative coefficients.

Introduction to the second part of this thesis
It is an active field of research to study subdivision schemes refining vector-valued

sequences, rather than only scalar schemes whose input data consists of point sequences
[61, 63, 59]. Therefore, the scalar coefficients of the mask are replaced by a matrix-valued
sequence. Literature provides many results on the convergence of vector subdivision
and the smoothness of the limit curves in the univariate case [61, 62] as well as in the
multivariate case [5].

In the second part of this thesis, we focus on Hermite subdivision schemes. They are
a special class of vector subdivision, as they are considered to refine vector-valued data
consisting of function and its consecutive derivative values. The dimension of the vectors,
i.e., the function value plus the number of considered derivatives, is called the order of the
scheme. First analysed in [57], Hermite schemes nowadays find applications in various
areas, for example approximation theory [4, 14, 44, 45, 71], Hermite-type multiwavelets
[16, 51] and biomedical imaging [12, 74].

Hermite schemes due to the special structure of their input data include the smoothness
analysis of the limit curve already in its convergence analysis. However, due to the
interpretation of the vector entries as function and derivative values, they naturally
become mildly level-dependent, in the sense that the matrix-valued mask is multiplied
by so-called dilation matrices in each subdivision step.
To analyse the convergence of Hermite schemes the so-called spectral condition (or

equivalently the sum rule [43, 45]) was introduced [23]. A Hermite scheme satisfying this
condition admits a Taylor factorisation which links it to a stationary scheme and whose
contractivity leads to a convergence criterion [59, 23]. Since it turns out that not all
convergent Hermite subdivision schemes satisfy the spectral condition, further concepts
such as the generalised Taylor operator have been introduced [58]. Quite recently spec-
tral conditions have been extended to a wider approach, namely spectral chains. It is
conjectured in [60] that spectral chains provide a necessary condition for the convergence
of a Hermite subdivision scheme. Additionally, this concept is used to construct Hermite
schemes of any regularity. Subdivision rules of Hermite type have been transferred to
nonlinear geometries and analysed regarding their smoothness [63, 64].

A convergent Hermite scheme is said to reproduce polynomials, if sampling input data
from a polynomial results in the same polynomial in the limit. In particular, the capa-
bility of polynomial reproduction implies that the scheme fulfils the spectral condition
and therefore can be analysed regarding its convergence [59]. In [65] an overview of the
relation between polynomial reproduction, the spectral condition and the sum rule is
provided. Furthermore, polynomial reproduction is closely related to the approximation
order of the scheme, in the linear situation [13] as well as for Hermite data [49].
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Moreover, it has become of interest to study the capability of Hermite schemes to
reproduce not only polynomials but also exponentials [12, 74]. Factorisations of Hermite
schemes with respect to reproduction of exponential polynomials are studied in [7, 15].
The results are used for the convergence analysis, too [8, 50].

In the case of linear subdivision schemes, the question of polynomial reproduction
is fully answered by providing algebraic conditions on the symbol of the scheme [9].
We extend those results to Hermite schemes and give purely algebraic conditions which
fully characterise polynomial reproduction. We start by analysing schemes of order two,
meaning we consider input data consisting of function values and first derivatives. With
the help of this result we then give a characterisation for schemes of any order. The
number of algebraic conditions needed only depends on the degree of the polynomials.
Additionally, we demonstrate how to use our result to construct Hermite schemes that
reproduce polynomials of a certain degree by only slightly increasing its support (i.e., the
number of non-zero mask elements).

Organisation of the thesis

We start with an introduction of the basic concepts of linear subdivision. Then, we
define the Riemannian analogue of a linear scheme and show its well-definedness on
Cartan-Hadamard manifolds (i.e., simple connected, complete manifolds with nonpositive
sectional curvature). We continue by proving that a Riemannian analogue of a linear
scheme converges to a continuous limit function if the norm of the derived (resp. iterated
derived) scheme is bounded from above by its dilation factor. We analyse the Hölder
continuity of the resulting limit curves and show how to drop the assumption of simple
connectivity of the underlying manifold.
In the next section, we analyse the convergence of the Riemannian analogue of a

linear scheme on the unit sphere. To do so, we first deal with the question of well-
definedness of the Riemannian center of mass on the unit sphere. Secondly, we introduce
a strategy to estimate distances of refined data on the sphere using a second order Taylor
approximation.
We continue with an introduction to Hermite subdivision schemes. Then, we define

certain classes of polynomials and study their properties. These auxiliary polynomials
are required to give purely algebraic conditions on the symbol of a Hermite scheme which
characterise their property of polynomial reproduction. We first consider Hermite data
consisting only of function values and first derivatives and then, in the last part, we
extend the results to schemes of any order.

The first and the last part of this thesis consists of the following three publications
with only small modifications:

• S. Hüning, J. Wallner, Convergence of subdivision schemes on Riemannian mani-
folds with nonpositive sectional curvature, Advances in Computational Mathema-
tics, published online May 2019, doi:10.1007/s10444-019-09693-x.
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1 Introduction

• C. Conti, S. Hüning, An algebraic approach to polynomial reproduction of Hermite
subdivision schemes, Journal of Computational and Applied Mathematics, 349,
302-315, 2019, doi:10.1016/j.cam.2018.08.009.

• S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order,
submitted, 2019.

The results of Section 2.3 (convergence analysis of subdivision rules on the unit sphere)
are not yet published.
The research leading to this thesis was supported by the Austrian Science Fund (FWF):

W1230.
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2 Subdivision in nonlinear geometries

2.1 Introduction

We introduce linear subdivision schemes as well as the notation used throughout the
section. An overview how to transfer linear refinement algorithms to nonlinear geometries
is provided. Our main focus is on the so-called Riemannian analogue of a linear scheme.

This chapter is based on the results presented in the publication

S. Hüning, J. Wallner, Convergence of subdivision schemes on Riemannian manifolds
with nonpositive sectional curvature, Advances in Computational Mathematics, published
online May 2019, doi:10.1007/s10444-019-09693-x.

2.1.1 Linear subdivision

A linear subdivision scheme S maps a sequence of points (xi)i∈Z lying in a linear space
to a new sequence of points (Sxi)i∈Z using the rule

Sxi =
∑
j∈Z

ai−Njxj .

Here N ∈ N is the dilation factor. We require N > 2, but the usual case is N = 2.
Throughout the paper we assume that the sequence a`, ` ∈ Z, called the mask of the
subdivision rule, has compact support. This means that a` 6= 0 only for finitely many `.
It turns out that the condition ∑

j∈Z
ai−Nj = 1 for all i (2.1)

(affine invariance) is necessary for the convergence of linear subdivision schemes, see
[33] and [2] for an overview. From now on, we make the assumption that all subdivision
schemes are affine invariant.
To simplify notation, we initially consider only binary subdivision rules, i.e., rules with

dilation factor N = 2. Then we can write the refinement rule in the following way:

(Sx)2i =

m+1∑
j=−m

αjxi+j and (Sx)2i+1 =

m+1∑
j=−m

βjxi+j , (2.2)

7



2 Subdivision in nonlinear geometries

with m ∈ N and coefficients αj , βj such that

m+1∑
j=−m

αj =
m+1∑
j=−m

βj = 1. (2.3)

For example Chaikin’s algorithm [3], which is given by the mask (a−2, . . . , a1) = (1
4 ,

3
4 ,

3
4 ,

1
4),

can be written as

(Sx)2i =
3

4
xi +

1

4
xi+1 and (Sx)2i+1 =

1

4
xi +

3

4
xi+1. (2.4)

Subdivision schemes satisfying (Sx)2i = xi are called interpolatory. For example the
well-known 4-point scheme is defined by

(Sx)2i = xi and (Sx)2i+1 = −ωxi−1 +
(1

2
+ ω

)
xi +

(1

2
+ ω

)
xi+1 − ωxi+2, (2.5)

for some parameter ω, see [26]. The next example will be our main example throughout
the section.

Example 2.1. We consider a non-interpolatory subdivision scheme with negative mask.
Taking averages of the 4-point scheme with parameter ω = 1

16 and Chaikin’s scheme
yields

(Sx)2i = − 1

32
xi−1 +

21

32
xi +

13

32
xi+1 −

1

32
xi+2,

(Sx)2i+1 = − 1

32
xi−1 +

13

32
xi +

21

32
xi+1 −

1

32
xi+2.

♦

2.1.2 Adaption of subdivision to nonlinear geometries

In the last years, different ways to transfer linear schemes to nonlinear geometries have
been studied [21, 33, 40]. Various methods to apply subdivision rules to data lying in
Lie groups, symmetric spaces or Riemannian manifolds were introduced, an overview of
concepts can be found in [40]. We shortly present some of them.
The log-exp-analogue of a linear scheme uses the intrinsic geometry of a Riemannian

manifold. The idea is to lift the nonlinear data to suitable tangent spaces of the manifold
by applying the inverse of the exponential map. Since the tangent spaces are linear spaces
themselves, the refinement algorithm can be applied. Afterwards, using the exponential
map, the refined data is dropped back down to the manifold, see [21, 70]. This method
has been extended to Hermite subdivision schemes, too [63, 64].
Applying a geodesic averaging process instead of a linear one leads to convergence

results for subdivision schemes on manifolds for all input data as shown in [32, 33].
Another well-studied and extrinsic method is the projection analogue. The main idea

is to restrict the problem to surfaces which can be embedded in Euclidean spaces and
use their linear structure [83, 37].
Our main focus, however, is on the so-called Riemannian analogue of a linear scheme

which is introduced next.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Riemannian center of mass

We recall the extension of a linear subdivision scheme to manifold-valued data with the
help of the Riemannian center of mass as shown in [40]. This generalisation of the concept
of affine average is quite natural in the sense that we only replace the Euclidean distance
by the Riemannian distance. The construction requires to introduce some notation. We
denote the Riemannian inner product by 〈·, ·〉 = |·|2 on a Riemannian manifold M . The
Riemannian distance dist(x, y) between two points x, y ∈M is given by

dist(x, y) := inf
γ

∫ b

a
|γ̇(t)| dt,

where γ : [a, b] → M is a curve connecting points γ(a) = x and γ(b) = y. Consider the
weighted affine average

x∗ =

n∑
j=0

αjxj

of points xj ∈ Rd w.r.t. weights αj ∈ R, satisfying
∑
αj = 1. It can be characterised as

the unique minimum of the function

gα(x) =
n∑
j=0

αj |x− xj |2 .

We transfer this definition to Riemannian manifolds by replacing the Euclidean distance
by the Riemannian distance. Let

fα(x) =
n∑
j=0

αj dist(x, xj)
2.

We call the minimiser of this function the Riemannian center of mass and denote it by

x∗ = av(α, x).

Note that in general the Riemannian center of mass is only locally well defined. It will
be one of the aims of this work to identify settings where the average is globally well
defined. We extend the linear refinement rule (2.2) to manifold-valued data by defining

(Tx)2i = av(α, x) and (Tx)2i+1 = av(β, x). (2.6)

Definition 2.2. We call T the Riemannian analogue of the linear subdivision scheme S.

2.2 Subdivision schemes on Cartan-Hadamard manifolds

A Cartan-Hadamard manifold is a complete, simply connected Riemannian manifold
with nonpositive sectional curvature K 6 0. In this section we prove a convergence
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2 Subdivision in nonlinear geometries

result for Riemannian analogues of linear schemes on Cartan-Hadamard manifolds which
can be applied to all input data. We study the Hölder continuity of the resulting limit
curves and continue by showing how to use the universal covering of a manifold to drop
the assumption of simple connectedness of the underlying manifold. We conclude by
providing several examples.

2.2.1 The Riemannian center of mass on Cartan-Hadamard manifolds

We consider the question of the existence and uniqueness of the Riemannian analogue
of a linear subdivision scheme on Cartan-Hadamard manifolds. Before, we recall some
well-known facts about the concept of Jacobi fields since they are an important tool
within in the proofs of this section.

Jacobi fields

We make use of the textbook of do Carmo [20, Section 5] as a guideline to introduce
Jacobi fields here. For further details we refer to [20].
Let M be a Riemannian manifold and γ : [0, 1] → M a geodesic. With Jacobi fields

one can study the relation of geodesics being in a neighbourhood of γ. Therefore, we
define a 1-parameter family of geodesics by

c : [0, 1]× (−ε, ε)→M

(u, s) 7→ c(u, s)

with c(u, 0) = γ(u). Let ċ(u, s) := d
dsc(u, s). Then J(u) = ċ(u, 0) is a Jacobi field

along the geodesic γ. It is known that Jacobi fields are solutions of the linear 2nd order
differential equation J̈ + R(γ̇, J)γ̇ = 0, with R denoting the Riemann curvature tensor.
This differential equation is known as the Jacobi equation. For any given geodesic γ,
there is a linear space of Jacobi vector fields (i.e., solutions of the Jacobi equation) whose
dimension is twice the dimension of the manifold M . In particular, the behaviour of
Jacobi fields is guided by the curvature of M .

Existence and Uniqueness

Cartan-Hadamard manifolds, and more generally manifolds with nonpositive sectional
curvature, are a class of geometries where the Riemannian average can be made globally
well defined. Let M be a Cartan-Hadamard manifold, i.e., a simply connected, complete
Riemannian manifold with sectional curvature K 6 0. To show well-definedness of
geodesic averages we have to clarify the global existence and uniqueness of a minimiser
of the function

fα(x) =
m+1∑
j=−m

αj dist(xj , x)2, with
∑
j

αj = 1 (2.7)

10



2.2 Subdivision schemes on Cartan-Hadamard manifolds

and xj ∈ M . A local answer to this question is not difficult, see for example [72]. The
global well-definedness in case αj > 0 is shown in [53]. Hanne Hardering gave another
proof of the global existence in [46]. We are mainly interested in the result she gave in
Lemma 2.3. of [46] which we formulate as

Lemma 2.3 (H. Hardering, [46]). The function fα has at least one minimum. Moreover,
there exists r > 0 (depending on the coefficients αj and the distances of the points xj
from each other) such that all minima of fα lie inside the compact ball Br(x0).

To prove that the function fα has a unique minimum we generalise a statement of
H. Karcher [52]. It turns out that we can use arguments similar to his by splitting∑m+1

j=−m αj dist(xj , x)2 into two sums depending on whether the corresponding coefficient
is negative or not. Before we introduce the general notation used throughout the text,
we illustrate the idea by means of Example 2.1.

Example 2.4. Consider the refinement rule defined by the coefficients αj and βj of
Example 2.1. Define fα according to (2.7) by

fα(x) =

2∑
j=−1

αj dist(xj , x)2,

with (α−1, . . . , α2) = (− 1
32 ,

21
32 ,

13
32 ,− 1

32). We sort these coefficients in two groups depen-
ding on whether they are positive or not.
It is convenient to define α+ = 21

32 + 13
32 = 34

32 and α− =
∣∣− 1

32

∣∣+
∣∣− 1

32

∣∣ = 2
32 . We split

the interval [0, α+ + α−] in four subintervals whose length coincides with the values |αj |
(but in a different order). We define the function σ : [0, α+ + α−]→ {−1, 0, 1, 2} by

σ(t) =


−1 for t ∈

[
0, 1

32

]
2 for t ∈

(
1
32 ,

2
32

]
0 for t ∈

(
2
32 ,

23
32

]
1 for t ∈

(
23
32 ,

36
32

]
and see that

fα(x) =
2∑

j=−1

αj dist(xj , x)2 = −
α−∫
0

dist(xσ(t), x)2dt+

α−+α+∫
α−

dist(xσ(t), x)2dt.

♦

In the general case, we need the following notation to eventually rewrite the function
in (2.7) as the sum of two integrals. We begin to sort our coefficients in two groups by
defining two index sets

Iα− := {j | αj < 0}, Iα+ := {j | αj > 0}.

11



2 Subdivision in nonlinear geometries

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−−
−−
−−
−−
−−
−−
→

σ(t)

|α−1| |α2| α0

α−

α1

α− + α+

t

-1

0

1

2

Figure 2.1: Construction of the index selection function σ on basis of the sequence
(αj)

2
j=−1 with α−1, α2 < 0, α0, α1 > 0.

See Figure 2.1 for a schematically description of this procedure. We describe these sets
as

Iα− = {j1, . . . , jn}, Iα+ = {jn+1, . . . , j2m+2},

with j1 < . . . < jn and jn+1 < . . . < j2m+2 for n ∈ {1, . . . , 2m+2} and ji ∈ {−m, . . . ,m+
1}. If Iα− = ∅, we set n = 0 and Iα+ = {−m, . . . ,m+ 1}. Let

α+ =
∑
j∈Iα+

αj , α− =
∑
j∈Iα−

|αj |, β+ =
∑
j∈Iβ+

βj , β− =
∑
j∈Iβ−

|βj |. (2.8)

Assumption (2.3) implies that

α+ − α− = β+ − β− = 1. (2.9)

We are now able to rewrite the function fα in terms of two integrals

fα(x) =
m+1∑
j=−m

αj dist(xj , x)2 =
(
−
∫ α−

0
+

∫ α−+α+

α−

)
dist

(
xσ(t), x

)2
dt (2.10)

with the function σ : [0, α+ + α−]→ {−m, . . . ,m+ 1} given as follows. It is constant in
each of the successive intervals of length |αj1 |, |αj2 |, . . . , |αj2m+2 | which tile the interval
[0, α+ + α−]. Its value in the k-th interval is given by the integer jk. The values at
subinterval boundaries are not relevant. For the sake of completeness we give the formal
description of the function σ in the next

Remark 2.5. We define the functions

σ1 : {−m, . . . ,m+ 1} → R

t 7→
∑
i6j

|αi|

and

σ2 : [0, α+ + α−]→ {−m, . . . ,m+ 1}
t 7→ sup{j|σj < t}+ 1.

12



2.2 Subdivision schemes on Cartan-Hadamard manifolds

Moreover, let σ1(−m− 1) := 0. Then,

σ (t) :=



σ2

(
t− 0 +

∑
j∈{j1,...,j2m+2},

j<j1

|αj |
)

for t ∈ [0, |αj1 |]

σ2

(
t− |αj1 |+

∑
j∈{j1,...,j2m+2},

j<j2

|αj |
)

for t ∈
(
|αj1 |, |αj1 |+ |αj2 |

]
...

σ2

(
t− ∑

j∈Iα−\ {jn}
|αj |+

∑
j∈{j1,...,j2m+2},

j<jn

|αj |
)

for t ∈
( ∑

j∈Iα−\ {jn}
|αj |, α−

]
space space

space space

σ2

(
t− α− +

∑
j∈{j1,...,j2m+2},

j<jn+1

|αj |
)

for t ∈
(
α−, α− + αjn+1

]
σ2

(
t− α− − αjn+1 +

∑
j∈{j1,...,j2m+2},

j<jn+2

|αj |
)
for t ∈

(
α− + αjn+1

, α− + αjn+1
+ αjn+2

]
...

σ2

(
t− α− −

∑
j∈Iα+\ {j2m+2}

αj +
∑

j∈{j1,...,j2m+2},
j<j2m+2

|αj |
)

for t ∈
(
α− +

∑
j∈Iα+\ {j2m+2}

αj , α− + α+

]
.

We note that the first part of the definition of σ represents the summands of (2.7) corre-
sponding to coefficients of Iα− whereas the second half represents the part corresponding
to Iα+.

Using the representation of the function fα given in (2.10) we can state

Lemma 2.6. On a Cartan-Hadamard manifold the gradient of the function fα is given
by the formula

1

2
grad fα(x) =

∫ α−

0
exp−1

x xσ(t)dt−
∫ α−+α+

α−

exp−1
x xσ(t)dt,

where exp denotes the Riemannian exponential map. Furthermore, we have

d2

ds2
fα(γ(s)) > 2〈γ̇(s), γ̇(s)〉

for any geodesic γ : [0, 1]→M .

The proof of this lemma is mainly based on the proof of Theorem 1.2. in [52].

13



2 Subdivision in nonlinear geometries

Proof. Recall the definition of fα by (2.10). Let γ : [0, 1]→M be a geodesic and

ct(u, s) = expxσ(t)
(
u · exp−1

xσ(t)
γ(s)

)
.

For any s the geodesic ct(·, s) connects xσ(t) with γ(s). Those geodesics exist and
are unique since M is Cartan-Hadamard. Additionally, let c′t(u, s) := d

duct(u, s) and
ċt(u, s) := d

dsct(u, s). By construction, dist
(
xσ(t), γ(s)

)
= ‖c′t(u, s)‖. For each t, s the

vector field J(u) = ċt(u, s) along the geodesic u 7→ ct(u, s) is a Jacobi field. Since

fα(γ(s)) =
(
−
∫ α−

0
+

∫ α−+α+

α−

)
dist(xσ(t), γ(s))2dt

=
(
−
∫ α−

0
+

∫ α−+α+

α−

)
〈c′t(u, s), c′t(u, s)〉dt

we obtain

1

2

d

ds
fα(γ(s)) =

(
−
∫ α−

0
+

∫ α−+α+

α−

)〈∇
∂s
c′t(u, s), c

′
t(u, s)

〉
dt.

Here ∇∂s denotes the covariant derivative along the curve γ(s). In the following we use
the facts that ‖c′t(u, s)‖ does not depend on s, ∇∂sc

′
t(u, s) = ∇

∂u ċt(u, s) and finally that
∇
∂uc
′
t(u, s) = 0 since c is a geodesic. This leads to(

−
∫ α−

0
+

∫ α−+α+

α−

)〈∇
∂s
c′t(u, s), c

′
t(u, s)

〉
dt

=
(
−
∫ α−

0
+

∫ α−+α+

α−

)∫ 1

0

〈∇
∂s
c′t(u, s), c

′
t(u, s)

〉
du dt

=
(
−
∫ α−

0
+

∫ α−+α+

α−

)∫ 1

0

〈 ∇
∂u
ċt(u, s), c

′
t(u, s)

〉
du dt

=
(
−
∫ α−

0
+

∫ α−+α+

α−

)∫ 1

0

d

du

〈
ċt(u, s). c

′
t(u, s)

〉
du dt.

Since ċt(0, s) = 0 we finally obtain

1

2

d

ds
fα(γ(s)) =

(
−
∫ α−

0
+

∫ α−+α+

α−

)〈
ċt(1, s), c

′
t(1, s)

〉
. (2.11)

Observe that c′t(1, s) = − exp−1
γ(s) xσ(t) (by definition of the exponential map) and ċt(1, s) =

γ̇(s) (by construction) are independent of t. Therefore,

1

2

d

ds
fα(γ(s)) =

〈
γ̇(s),

(∫ α−

0
−
∫ α−+α+

α−

)
exp−1

γ(s) xσ(t)dt
〉
.

14



2.2 Subdivision schemes on Cartan-Hadamard manifolds

By the definition of the gradient we conclude that

1

2
grad fα(x) =

(∫ α−

0
−
∫ α−+α+

α−

)
exp−1

x xσ(t)dt.

Using (2.9) we see that

1

2

d2

ds2
fα(γ(s)) =

(
−
∫ α−

0
+

∫ α−+α+

α−

)〈
ċt(1, s),

∇
∂u
ċt(1, s)

〉
dt

=
(
−
∫ α−

0
+

∫ α−+α+

α−

)〈
J(1), J ′(1)

〉
dt

= 〈J(1), J ′(1)〉 > 〈γ̇(s), γ̇(s)〉.

To obtain the inequality above we used the following relations between the Jacobi field
and its derivative

J ′(1)tan = J(1)tan and 〈J ′(1)norm, J(1)〉 > 〈J(1)norm, J(1)〉, (2.12)

where J tan (resp. Jnorm) denotes the tangential (resp. normal) part of the Jacobi field; see
Appendix A in [52] for more details. Here we used the fact that the sectional curvature
of M is bounded form above by zero.

Remark 2.7. We note that a direct further differentiation of (2.11) yields

d

ds

(1

2

d

ds
fα(γ(s))

)
=
(
−
∫ α−

0
+

∫ α−+α+

α−

)〈
ċt(1, s),

∇
∂u

d

ds
ct(1, s)

〉
.

Thus,

∇
∂s

1

2
grad fα(γ(s)) =

(∫ α−

0
−
∫ α−+α+

α−

) ∇
∂u

d

ds
ct(1, s)dt.

This equality is used in the next section.

We sum up the results of the two lemmas above to state the main result of this section.

Theorem 2.8. On a Cartan-Hadamard manifold M , the function

fα(x) =

m+1∑
j=−m

αj dist(xj , x)2

(
∑
αj = 1) with xj ∈M has a unique minimum. This implies that the geodesic average

is globally well defined on Cartan-Hadamard manifolds.

Proof. By Lemma 2.3 there exists a minimum of the function fα and all its minima lie
inside a compact ball. By the second part of Lemma 2.6 the function fα is strictly convex,
so the minimum is unique.

15



2 Subdivision in nonlinear geometries

2.2.2 Convergence result on Cartan-Hadamard manifolds

In this section, we prove that the Riemannian analogue of a linear subdivision scheme
on a Cartan-Hadamard manifold converges for all input data, if the mask satisfies a
contractivity condition with contractivity factor smaller than 1, see Theorems 2.11 and
2.15. The condition implying convergence involves derived schemes (and iterates of de-
rived schemes) and is analogous to a well-known criterion which applies in the linear
case. This kind of result was previously only known for schemes with nonnegative mask
(see [79, Theorem 5]). It has already been conjectured in [40].

Contractivity condition

We begin by adapting Lemma 3 of [79].

Lemma 2.9. Consider points xj, coefficients αj, βj, for j = −m, . . . ,m + 1, and their
center of mass x∗ = av(α, x), x∗∗ = av(β, x) on a Cartan-Hadamard manifold. Moreover,
we assume that (2.3) holds. Then,

dist(x∗, x∗∗) 6
( m+1∑
j=−m

∣∣∣∑
i6j

αi − βi
∣∣∣ ) ·max

`
dist(x`, x`+1).

To prove the next result we make use of the representation of fα (resp. fβ) as in (2.10)
in terms of the function σ (resp. τ). Before we give the proof of Lemma 2.9 we illustrate
the idea by means of our main example:

Example 2.10. From Example 2.4 we know that

fα(x) = −
∫ α−

0
dist(xσ(t), x)2dt+

∫ α−+α+

α−

dist(xσ(t), x)2dt.

Similarly we obtain

fβ(x) = −
∫ β−

0
dist(xτ(t), x)2dt+

∫ β−+β+

β−

dist(xτ(t), x)2dt,

with β− = 2
32 , β+ = 34

32 and

τ(t) =


−1 for t ∈ [0, 1

32 ]

2 for t ∈
(

1
32 ,

2
32

]
0 for t ∈

(
2
32 ,

15
32

]
1 for t ∈

(
15
32 ,

36
32

]
.

In order to get the desired result in Lemma 2.9 we estimate the distance between the
gradients of the functions fα and fβ at the point x∗ = av(α, x) (as explained in more

16



2.2 Subdivision schemes on Cartan-Hadamard manifolds

detail in the proof of the Lemma 2.9). To be able to do so, we make use of Lemma 2.6
and convert the resulting four integrals into two. In this case, we get

∥∥∥1

2
grad fβ(x∗)− 1

2
grad fα(x∗)

∥∥∥ =
∥∥∥ 2∑
j=−1

(αj − βj) exp−1
x∗ xj

∥∥∥
=
∥∥∥− ∫ 8

32

0
exp−1

x∗ xν(t+ 8
32

)dt+

∫ 8
32

0
exp−1

x∗ xν(t)dt
∥∥∥,

with

ν(t) =

{
0 for t ∈ [0, 8

32 ]

1 for t ∈
(

8
32 ,

16
32

]
.

Note that the construction of the function ν is similar to the one of σ in (2.10). ♦

We are now ready to give the proof of Lemma 2.9 which follows the structure in [79]
and the ideas of [52].

Proof of Lemma 2.9. To obtain a lower bound for the absolute value of the gradient of
1
2fα(x) we make use of Theorem 1.5. in [52] . Let γ be the geodesic starting from x∗ and
ending in x and let ct(u, s) = expxσ(t)

(
u · exp−1

xσ(t)
γ(s)

)
be the family of geodesics from

xσ(t) to γ(s). We apply the Cauchy-Schwarz inequality and the fact that grad fα(x∗) = 0
by definition of x∗ to obtain∥∥∥1

2
grad fα(γ(1))

∥∥∥ · ∥∥∥γ̇(1)
∥∥∥ >

∫ 1

0

d

ds

〈1

2
grad fα(γ(s)), γ̇(s)

〉
ds.

By Remark 2.7 we conclude∥∥∥1

2
grad fα(γ(1))

∥∥∥ · ∥∥∥γ̇(1)
∥∥∥ >

(
−
∫ α−

0
+

∫ α−+α+

α−

)∫ 1

0

〈 ∇
∂u

d

ds
ct(1, s), ċt(1, s)

〉
ds dt,

with ċt(u, s) = d
dsct(u, s). As in the proof of Lemma 2.6 let J(u) = ċt(u, s) denote the

Jacobi field along the curve u 7→ ct(u, s). The dependence on s and t is not indicated in
the notation. We have J(1) = γ̇(s) and J ′(1) = ∇

∂u ċt(1, s). Using (2.9) we obtain∥∥∥1

2
grad fα(γ(1))

∥∥∥ · ∥∥∥γ̇(1)
∥∥∥ >

(
−
∫ α−

0
+

∫ α−+α+

α−

)∫ 1

0
〈J ′(1), J(1)〉 ds dt

= 〈J ′(1), J(1)〉 > 〈γ̇(s), γ̇(s)〉.

The last inequality follows in the same way as in the proof of Lemma 2.6. By the
definition of the geodesic γ we have ‖γ̇(s)‖ = dist(x, x∗) and conclude that∥∥∥1

2
grad fα(x)

∥∥∥ > dist(x, x∗). (2.13)
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2 Subdivision in nonlinear geometries

By definition of x∗ we have grad fα(x∗) = 0. Together with Lemma 2.6 we obtain

∥∥∥1

2
grad fβ(x∗)

∥∥∥ =
∥∥∥1

2
grad fβ(x∗)− 1

2
grad fα(x∗)

∥∥∥ =
∥∥∥ m+1∑
j=−m

(αj − βj) exp−1
x∗ xj

∥∥∥.
We define the sequence δ = (δj)j=−m,...,m+1 by δj = αj − βj . Let ν be the function
constructed as σ in (2.10) with respect to the coefficients δ, i.e., the value of ν is constant
in intervals of length |δj | and given by the corresponding index. Denote by δ− (resp.
δ+) the sum of the absolute values of the negative (resp. nonnegative) coefficients of δ.
Equation (2.3) implies that δ− = δ+. As in (2.10) we rewrite the sum above as an integral

∥∥∥ m+1∑
j=−m

(αj − βj) exp−1
x∗ xj

∥∥∥ =
∥∥∥− ∫ δ−

0
exp−1

x∗ xν(t)dt+

∫ δ−+δ+

δ−

exp−1
x∗ xν(t)dt

∥∥∥
=
∥∥∥∫ δ−

0

(
− exp−1

x∗ xν(t) + exp−1
x∗ xν(t+δ−)

)
dt
∥∥∥ 6

∫ δ−

0

∥∥∥ exp−1
x∗ xν(t+δ−) − exp−1

x∗ xν(t)

∥∥∥ dt.
With the help of (2.13) we conclude that

dist(x∗, x∗∗) 6
∥∥∥1

2
grad fβ(x∗)

∥∥∥ 6
∫ δ−

0

∥∥∥ exp−1
x∗ xν(t+δ−) − exp−1

x∗ xν(t)

∥∥∥ dt
6
∫ δ−

0
dist(xν(t+δ−), xν(t))dt 6

∫ δ−

0
|ν(t+ δ−)− ν(t)| dt ·max

`
dist(x`, x`+1).

To obtain the third inequality above we used the fact that on Cartan-Hadamard mani-
folds, the exponential map does not decrease distances, see for example [53].
It remains to show that∫ δ−

0
|ν(t+ δ−)− ν(t)| dt =

m+1∑
j=−m

∣∣∣∑
i6j

αi − βi
∣∣∣.

To do that, we split the sequence of coefficients δ in two sequences η1, η2 defined by

η1
j :=

{
δj if δj > 0

0 else
and η2

j :=

{
|δj | if δj < 0

0 else.

Similarly to the construction in the proof of Lemma 3 of [79], we consider the function
ε1 given by

ε1 : [0, δ−]→ {−m, . . . ,m+ 1}, ε1(t) := sup
{
j
∣∣∣ ∑
i6j

η1
i < t

}
+ 1.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Analogously, we define ε2 for the sequence η2. We finally obtain∫ δ−

0
|ν(t+ δ−)− ν(t)| dt =

∫ δ−

0
|ε1(t)− ε2(t)| dt

=

m+1∑
j=−m

∣∣∣∑
i6j

η1
i −

∑
i6j

η2
i

∣∣∣ =

m+1∑
j=−m

∣∣∣∑
i6j

αi − βi
∣∣∣.

This concludes the proof of Lemma 2.9.

Recall that a linear, binary subdivision scheme S is given by Sxi =
∑

j∈Z ai−2jxj with∑
j∈Z ai−2j = 1 for all i. In order to obtain a convergence result for the Riemannian

analogue T of S we have to estimate the distance between two consecutive points in the
sequence Skx. Let µ(r)

j =
∑
i6j

ar−2i and

µ = max
r∈{1,2}

m+1∑
j=−m

∣∣∣µ(r+1)
j − µ(r)

j

∣∣∣ . (2.14)

Then, Lemma 2.9 implies that the subdivision rule T obeys a so-called contractivity
condition

dist(T kxi+1, T
kxi) 6 µk · sup

`
dist(x`, x`+1). (2.15)

The factor µ is called contractivity factor. In Subsection 2.2.2 we show that the value of
the contractivity factor µ in (2.14) is closely related to the norm of the derived scheme.
We make use of the result H. Hardering gave in [46, Lemma 2.3] again. In particular,

she shows that all solutions of the minimisation problem stated in (2.7) lie inside a
compact ball around x0. The radius of this ball only depends on the chosen weights and
the distances of xi, i = −m, . . . ,m, from x0. In our setting, this means that the points of
the refined sequence are not too far from the initial points. To be more precise it follows
that there exists a constant C > 0 such that

dist(Tx2i, xi) 6 C · sup
`

dist(x`, x`+1), i ∈ Z. (2.16)

Subdivision schemes satisfying inequality (2.16) have been called displacement-safe by
[33]. Together with (2.15) we conclude that

dist(T k+1x2i, T
kxi) 6 Cµk% with % := sup

`
dist(x`, x`+1). (2.17)

In the linear case (see [25]) a contractivity factor smaller than 1 itself leads to a
convergence result, but this condition is not sufficient in the nonlinear case. Here we
additionally need the fact that our schemes are displacement-safe as shown in [33] for
manifold-valued subdivision schemes based on an averaging process. For interpolatory
subdivision schemes, however, a contractivity factor smaller than 1 entails convergence
of the scheme since (2.16) is satisfied anyway, see [33, 76].
We now state our convergence result which generalises the result of [79].
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2 Subdivision in nonlinear geometries

Theorem 2.11. Consider a linear, binary, affine invariant subdivision scheme S. De-
note by T the Riemannian analogue of S on a Cartan-Hadamard manifold M . Let µ be
the contractivity factor defined by (2.14). If µ < 1, then T converges to a continuous
limit T∞x for all input data x.

Proof. Let J = [a, b] be an interval and denote by C(J,M) the continuous functions
from J to M . We use c|J for the restriction of a map c to an interval J . Denote by
ck : R → M the broken geodesic which is the union of geodesic segments ck

∣∣[ i
2k
, i+1

2k
]

which connect successive points T kxi and T kxi+1. We show that
(
ck|J

)
k>0

is a Cauchy
sequence in C(J,M) for any J . The metric on C(J,M) is given by dist(g, h) :=
maxt∈J dist(g(t), h(t)). We now proceed as in the proof of Proposition 4 of [79]. Since
T satisfies (2.15) and is displacement-safe it follows from the definition of the geodesics
that

dist(cm, cm+1) 6 %µm + C%µm + %µm+1. (2.18)

Therefore,

dist(cm, cn) 6
(
%+ C%+ %µ

)µm − µn
1− µ

for allm 6 n. Thus,
(
ck
∣∣J)

k>0
is a Cauchy sequence in C(J,M) for any interval J = [a, b].

Completeness of the space C(J,M) implies existence of the limit function T∞x.

Example 2.12. We compute the contractivity factor of the subdivision scheme intro-
duced in Example 2.1. Using our previous results we get

µ = max
{28

32
,

8

32

}
=

28

32
< 1. (2.19)

Thus, the Riemannian analogue of the linear scheme converges on Cartan-Hadamard
manifolds for all input data. Figure 2.2 illustrates the action of this subdivision scheme
in the hyperbolic plane. ♦

Remark 2.13. So far we considered subdivision schemes with dilation factor N = 2. We
note here that one can extend the convergence result given in Theorem 2.11 to subdivision
schemes with arbitrary dilation factor. We still extend a linear subdivision scheme S to
its nonlinear counterpart T by using the Riemannian analogue introduced in Subsection
2.1.2. Analogous to the binary case, we say that T satisfies a contractivity condition
with contractivity factor µ if

dist
(
T kxi+1, T

kxi
)
6 µk · sup

`
dist

(
x`, x`+1

)
, i ∈ Z.

Also we say that T is displacement-safe if there exists a constant C > 0 such that

dist
(
(Tx)Ni, xi

)
6 C · sup

`
dist

(
x`, x`+1

)
, i ∈ Z.

The convergence result now reads as follows.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Figure 2.2: Subdivision algorithm of Example 2.1 with initial data x0 = (0.6, 0.5), x1 =
(0.6,−0.5), x2 = (−0.6,−0.5) and x3 = (−0.6, 0.5) in the hyperbolic plane
represented with the Poincaré disk model. From left to right: initial polygon,
polygon after one refinement step, polygon after 4 refinement steps.

Theorem 2.14. Let T be the Riemannian analogue of the linear subdivision rule S on
a Cartan-Hadamard manifold M . Assume that (2.1) holds. Let µ(r)

j =
∑
i6j

ar−Ni and

µ = max
r∈{1,...,N}

∑
j

∣∣∣µ(r+1)
j − µ(r)

j

∣∣∣ . (2.20)

If µ < 1, then T converges to a continuous limit T∞x for all input data x.

The convergence proof in the case N > 2 is along the same lines as for N = 2.

Derived scheme

For every linear, affine invariant subdivision scheme S there exists the derived scheme
S∗ given by the rule S∗∆ = N∆S with ∆xi = xi+1 − xi, see for example [40, Sec. 2.1].
In this section we show that the contractivity factor (2.20) is closely related to the norm

‖S∗‖ := max
r∈{1,...,N}

{∑
j

|a∗r−Nj |
}

of the derived scheme S∗ with mask a∗. This result is not surprising since it holds in the
linear case as well as for nonlinear subdivision schemes with nonnegative mask [79].

Theorem 2.15. Let S be a linear, affine invariant subdivision rule with dilation factor N .
Denote its derived scheme by S∗. If there exists an integer m > 1 such that 1

Nm ‖Sm∗‖ <
1, then the Riemannian analogue of Sm on a Cartan-Hadamard manifold converges for
all input data.

We can reuse the proof of Theorem 5 of [79] to show Theorem 2.15. We repeat it here
for the reader’s convenience.
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2 Subdivision in nonlinear geometries

Proof. Let a∗ = (a∗j )j∈Z denote the mask of the derived scheme S∗. We consider the
special input data y = (yj)j∈Z given by

yj =

{
−1 if j 6 0

0 else.

We obtain

1

N
a∗l =

1

N

∑
k
a∗l−Nk(yk+1 − yk) =

1

N
S∗(yl+1 − yl) =

1

N
S∗∆yl

= ∆Syl = Syl+1 − Syl =
∑

k60
al−Nk − al+1−Nk, and

1

N
a∗r−Nj =

∑
k60

ar−N(j+k) − ar+1−N(j+k) =
∑

i6j
ar−Ni − ar+1−Ni.

By (2.20) we get

sup
r

∑
j

|µ(r)
j − µ

(r+1)
j | = 1

N
sup
r

∑
j

|a∗r−Nj | =
1

N
‖S∗‖.

Since the dilation factor of Sm is Nm, Theorem 2.14 gives the desired result.

We have just seen that the contractivity factor (2.20) of the Riemannian analogue of
a linear subdivision scheme S is given by

µ =
1

N
‖S∗‖.

So in order to obtain a convergence result, it suffices to check if the norm of the derived
scheme S∗ is smaller than the dilation factor. Even if this is not the case we might get a
convergence result by considering iterates of derived schemes Sm∗, since the contractivity
factor might decrease, see Subsection 2.2.5.
In [25] it is shown that if we ask for uniform convergence of a linear subdivision

scheme S, the existence of an integer m > 1 such that 1
Nm ‖S∗m‖ < 1 is equivalent to

the convergence of the scheme. Thus, Theorem 2.15 states that if the linear subdivision
scheme converges uniformly, so does a certain Riemannian analogue of this scheme on
Cartan-Hadamard manifolds.

2.2.3 Hölder continuity

It has been shown in [76] that the limit function of an interpolatory subdivision scheme
for manifold-valued data has Hölder continuity − log µ

log 2 . Here µ is a contractivity factor for
the nonlinear analogue of the linear scheme. It depends only on the mask of the scheme.
In [25] a similar inequality is proven for uniformly convergent subdivision schemes in
linear spaces. We get the following related result.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

Proposition 2.16. Let T be the Riemannian analogue of a binary, affine invariant
subdivision scheme S which has contractivity factor µ < 1. Then, the limit curve T∞x
satisfies

dist
(
T∞x(t1), T∞x(t2)

)
6 D|t2 − t1|ι,

with

D = 2 ·
(C%+ %+ µ%

1− µ + %
)

and ι = 1− log ‖S∗‖
log 2

,

for all t1, t2 ∈ R with |t1 − t2| < 1 and all input data x, i.e., the limit curve is Hölder
continuous with exponent ι.
Here the data-dependent constant % is defined by the maximal distance of successive

data points which contribute to the limit curve in the interval under consideration.

Proof. Assume that t1, t2 ∈ R with |t1 − t2| < 1. Then, there exists an integer k ∈ Z
such that 2−k−1 6 |t2 − t1| 6 2−k. As in the proof of Theorem 2.11 let ck be the union
of geodesic segments ck

∣∣[ i
2k
, i+1

2k
] connecting the points T kxi and T kxi+1. Together with

(2.15) we obtain

dist
(
ck+1(t1), ck+1(t2)

)
6 2 sup

`
dist

(
T k+1x`+1, T

k+1x`
)
6 2µk+1%.

Using (2.18) we have

dist
(
T∞x(t), ck+1(t)

)
6 lim

`→∞
dist

(
c`(t), ck+1(t)

)
6

∞∑
j=k+1

dist
(
cj(t), cj+1(t)

)
=
C%+ %+ µ%

1− µ µk+1

for all t ∈ R. Summarising the previous two observations leads to

dist
(
T∞x(t1), T∞x(t2)

)
6 dist

(
T∞x(t1), ck+1(t1)

)
+ dist

(
ck+1(t1), ck+1(t2)

)
+ dist

(
ck+1(t2), T∞x(t2)

)
6 Dµk+1.

Since |t2−t1| 6 2−k, taking the logarithm shows that µk+1 6 µ− log2(|t2−t1|). We conclude
that

dist
(
T∞x(t1), T∞x(t2)

)
6 D

(
2log2(|t2−t1|)

)− log2(µ)
6 D|t2 − t1|ι,

with ι = − log µ
log 2 = 1− log ‖S∗‖

log 2 . Here the last equality holds because µ = 1
2‖S∗‖.

Example 2.17. For our main Example 2.1 we compute ι = −log(28
32)/log 2 ≈ 0.19.

This coincides with the result of the previous Proposition, since ‖S∗‖ = 7
4 and thus,

ι = 1− ‖S∗‖
log 2 ≈ 0.19. ♦
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2 Subdivision in nonlinear geometries

For subdivision schemes with arbitrary dilation factor we obtain

Proposition 2.18. Let T be the Riemannian analogue of a linear subdivision scheme S
on a Cartan-Hadamard manifold M satisfying (2.1). Moreover, we assume that T has
contractivity factor µ < 1. Then, the limit curve T∞x satisfies

dist
(
T∞x(t1), T∞x(t2)

)
6 D|t2 − t1|ι,

with

D = 2 · C%+ %+ (N − 1)µ%

1− µ +N% and ι = 1− log ‖S∗‖
log N

for all t1, t2 ∈ R with |t1 − t2| < 1 and all input data x. Here N is the dilation factor
and the data-dependent constant % is defined by the maximal distance of successive data
points which contribute to the limit curve in the interval under consideration.

2.2.4 The case of manifolds which are not simply connected

We explain how to extend our previous results to a complete Riemannian manifold M
with sectional curvature K 6 0, i.e., we drop the assumption of simple connectedness.
We use the fact thatM has a so-called simply connected covering (universal covering) M̃ .
This is a simply connected manifold which projects onto M in a locally diffeomorphic
way. The Riemannian metric on M is transported to M̃ by declaring the projection
π : M̃ → M a local isometry. An example is shown by Figure 2.3, where a strip of
infinite length and width 1 wraps around the cylinder of height 1 infinitely many times.
For the general theory of coverings, see for example [48]. Each data point xj in M has a
potentially large number of preimages π−1(xj).

Re-definition of the Riemannian analogue of a linear scheme

So far our initial data always consisted of a sequence of points inM . Now we additionally
choose a path c(t) which connects the data points xj in the correct order: we have
c(tj) = xj for suitable parameter values . . . < tj < tj+1 < . . . . Such a path is not
unique, see Figure 2.3. By well-known properties of the simply connected covering, this
path can be uniquely lifted to a path c̃(t) in M̃ which projects onto the original path c(t),
once a preimage x̃0 with π(x̃0) = x0 has been chosen. This means that for all indices j
we have

c̃(tj) = x̃j , with π(x̃j) = xj .

We can now simply apply the Riemannian analogue T̃ of the linear scheme S which
operates on data from M̃ , because M̃ is Cartan-Hadamard by construction. Note that
there is no Riemannian analogue of S inM , sinceM is not simply connected and geodesic
averages are not well defined in general. However, if our input data is a sequence xj
together with a connecting path as described above, we may let

Tx = π(T̃ x̃) where x̃ arises from x by lifting.

We can still call T a natural Riemannian analogue of the linear subdivision scheme S.
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2.2 Subdivision schemes on Cartan-Hadamard manifolds

M

x0

x1

←− x2

c(t)

M

y0

y1

←− y2

M̃
x̃0

x̃1

x̃2

c̃(t) φ−−−−−−−−−−−−→

x̃′0

x̃′1

x̃′2

M̃
ỹ0

ỹ1

ỹ2

Figure 2.3: Top: initial data on a cylinder M = S1 × [0, 1] together with connecting
paths. Bottom: their lift to the universal covering M̃ , which is the strip
(−∞,∞) × [0, 1]. The various possible liftings are mapped onto each other
by a deck transformation φ.

Lemma 2.19. For any given input data (xj), the refined data (Tx)j computed by the
Riemannian analogue T of a linear subdivision scheme S depends only on the homotopy
class of the path c(t) which is used to connect the data points.

Proof. First, we show that Tx does not depend on the choice of the preimage x̃0 in
the covering space M̃ : if another preimage x̃′0 is chosen, there is an isometric deck
transformation φ : M̃ → M̃ which maps the original lifting to the new one and which
commutes with the covering projection π. The action of T̃ is invariant under isometries,
so π(T̃ x̃′) = π(T̃ φ(x̃)) = π(φ(T̃ x̃)) = π(T̃ x̃). Further, it is well known that the lifted
location x̃j of any individual data point xj depends only on the homotopy class of the
path c, cf. [48].

With this modification of the notion of input data, our main result Theorem 2.15 now
reads as follows.
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2 Subdivision in nonlinear geometries

Figure 2.4: The 4-point scheme with ω = 1
16 in the hyperbolic plane represented with

the Poincaré disk model. Left to right: initial polygon, polygon after one
refinement step, polygon after 4 refinement steps.

Theorem 2.20. Let M be a complete manifold with K 6 0, and let S be a linear, affine
invariant subdivision rule with dilation factor N . Denote by S∗ its derived scheme. If
there exists an integer m > 1 such that 1

Nm ‖Sm∗‖ < 1, then the Riemannian analogue of
Sm on M produces continuous limits for all input data.

2.2.5 Examples

We conclude this section with further examples.

4-point scheme

Consider the general 4-point scheme S introduced in (2.5). We would like to know for
which values of ω ∈ (0,∞) the Riemannian analogue T of S converges. The mask of the
derived scheme is given by a∗−2 = a∗3 = −2ω, a∗−1 = a∗2 = 2ω and a∗0 = a∗1 = 1. Thus,
by Theorem 2.11, the contractivity factor is µ = 2|ω|+ 1

2 and T converges for arbitrary
input data if −1

4 < ω < 1
4 . For −1

2 < ω 6 0 this has already been known [34, 35]. In this
case, the mask is nonnegative.
In particular, we obtain a contractivity factor of µ = 5

8 for the well-studied case of
the 4-point scheme with ω = 1

16 . By Proposition 2.16 we obtain a Hölder exponent of
ι ≈ 0.6781. Figures 2.4 and 2.5 show an example of the 4-point scheme in the hyperbolic
plane for ω = 1

16 resp. ω = 0.23.
Now we consider two rounds of the 4-point scheme as one round of a subdivision

scheme with dilation factor N = 4 which for simplicity is again called S. If ω = 1
16 , our

refinement rule is then given by

(Sx)4i = xi,

(Sx)4i+1 = 1
162

(
xi−2 − 18xi−1 + 216xi + 66xi+1 − 9xi+2

)
,

(Sx)4i+2 = 1
162

(
− 16xi−1 + 144xi + 144xi+1 − 16xi+2

)
,

(Sx)4i+3 = 1
162

(
− 9xi−1 + 66xi + 216xi+1 − 18xi+2 + xi+3

)
.
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2.3 Subdivision on manifolds with positive sectional curvature

Figure 2.5: The 4-point scheme with ω = 0.23 in the hyperbolic plane. Left to right:
initial polygon, polygon after one refinement step, polygon after three re-
finement steps and limit curve. The limit curve is Hölder continuous with
exponent 0.06.

The contractivity factor is

µ = max
{ 84

162
,

80

162

}
=

84

162
≈ 0.3281.

Theorem 2.14 again confirms that a Riemannian analogue converges to a continuous limit
function for all input data. Proposition 2.18 yields a Hölder exponent of ι ≈ 0.80.

Cubic Lane-Riesenfeld algorithm and the 4-point scheme

We consider a non-interpolatory subdivision scheme whose mask contains negative coef-
ficients by combining the cubic Lane-Riesenfeld algorithm given by the mask

(Sx)2i =
1

8
xi−1 +

6

8
xi +

1

8
xi+1 and (Sx)2i+1 =

1

2
xi +

1

2
xi+1

with the 4-point scheme (2.5) with ω = 1
16 . Taking averages of the cubic Lane-Riesenfeld

algorithm and the 4-point scheme yields to the linear scheme

(Sx)2i =
1

16
xi−1 +

14

16
xi +

1

16
xi+1,

(Sx)2i+1 = − 1

32
xi−1 +

17

32
xi +

17

32
xi+1 −

1

32
xi+2

which for simplicity is again called S. We compute a contractivity factor of µ = 18
32 for

the Riemannian analogue of S which implies that the nonlinear analogue converges on
complete Riemannian manifolds with nonpositive sectional curvature. We get a Hölder
exponent of ι ≈ 0.83.

2.3 Subdivision on manifolds with positive sectional
curvature

In the previous section, we analysed the Riemannian analogue of a linear subdivision
scheme on Cartan-Hadamard manifolds. A key point in our studies was the assumption
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2 Subdivision in nonlinear geometries

that the considered manifolds have nonpositive sectional curvature. Naturally, the next
question is: What can we say about the convergence of the Riemannian analogue of a
linear subdivision rule on positively-curved manifolds? Earlier works show that already
the well-definedness of the Riemannian center of mass has to be studied carefully, espe-
cially if we do not restrict the mask to be nonnegative [52, 24]. It turns out that it is
advantageous to first consider the well-known unit sphere as an example.

To prove the convergence of Riemannian analogues of linear schemes on the unit sphere
we proceed as follows:

i) In Section 2.3.1, we start with an analysis of the Riemannian center of mass on
positively-curved manifolds. Afterwards, we restrict ourselves to the unit sphere
and provide a setting in which the Riemannian analogue of a linear subdivision
scheme is well defined.

ii) In Section 2.3.2, we introduce a strategy to prove convergence results for the Rie-
mannian analogue of a linear scheme on the unit sphere. The main idea is to
estimate the length of a curve γ which joins a so-called reference point of a scheme
with a point of its refined data. It requires technical details involving a second order
Taylor approximation and estimates for the gradient and the Hessian of squared
distance function on the unit sphere to give an upper bound on the length of γ.
Throughout this part the cubic Lane-Riesenfeld algorithm serves as a main example
to illustrate our results.

iii) In Section 2.3.3, we apply our strategy to show that the Riemannian analogues of
some well-known linear subdivision schemes converge on the unit sphere.

2.3.1 Riemannian center of mass on manifolds with positive sectional
curvature

Before we restrict ourselves to the unit sphere, we discuss the difficulties that arise by
studying the Riemannian analogue of a linear subdivision scheme on positively-curved
manifolds. Let M be a complete, simply connected Riemannian manifold with inner
product 〈·, ·〉 and sectional curvature K > 0. Denote by Br(x) = {y ∈M | dist (x, y) < r}
the geodesic ball of radius r > 0 around x ∈M where dist again denotes the Riemannian
distance.

Problem setting

To study the convergence of a Riemannian analogue T of a linear scheme S as given in
Definition 2.2 we have to deal with the question if the function

fα(x) =

m+1∑
j=−m

αj dist (xj , x)2 , with
∑
j

αj = 1 (2.21)
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2.3 Subdivision on manifolds with positive sectional curvature

admits a unique minimiser. Here xj ∈M are fixed points on the manifold and αj are real
coefficients. Later, the points xj correspond to the input data of a subdivision scheme
while the coefficients αj belong to its mask.
In contrast to Cartan-Hadamard manifolds, we cannot hope for global existence and

uniqueness of the Riemannian center of mass. To see this, consider the north pole xN
resp. south pole xS of the sphere and ask for their geodesic midpoint. Clearly, each point
on the equator is a suitable choice and thus, a minimiser of f(x) = 1

2 dist (xN , x)2 +
1
2 dist (xS , x)2. One can show that locally there always exists a unique minimiser while
globally there can be infinitely many.
A substantial number of contributions deals with the question of the effect of the

sectional curvature, the distances between the points xj and the choice of the coefficients
on the existence of a unique minimiser, see for example [52, 24]. In [24] the authors
provide explicit bounds on the input data (depending on the curvature and the chosen
coefficients) to ensure the existence and uniqueness of a minimiser of (2.21) on manifolds
with positive sectional curvature. In our setting, Corollary 9 of [24] reads as follows.

Lemma 2.21 (Dyer et al., [24]). Let xj ∈ Br(x), j = −m, . . . ,m + 1, for some x ∈ M
and r > 0. Then, the function fα has a unique minimiser in Br∗(x), if

i) r < r∗ < min{ ιM2 , π
4
√
K
}, with ιM denoting the injectivity radius of M ,

ii) r∗ > (1 + 2α−)r,

iii) r∗ < π
4
√
K

(1 + (1 + π
2 )α−)−1.

Here α− :=
∑
αj<0

|αj | denotes the sum of the absolute values of the negative coefficients.

Besides the fact that this existence and uniqueness result is a local answer compared
to the one on Cartan-Hadamard manifolds, there is another crucial difference. Namely,
the radius r∗ (Lemma 2.21, i)) of the ball in which the unique minimiser lies is larger
than the radius r of the ball containing the input data xj .
So, locally Lemma 2.21 provides a setting in which the Riemannian analogue T of

a linear subdivision scheme S is well defined. But the fact that the radius of the ball
containing the refined data increases, leads to the question of how to control the distance
between points in the sequence (T kxi)i∈Z, k > 1. As seen before, a convergence result
for nonlinear subdivision schemes depends on the capability to control the distances of
points in the sequence (T kxi)i∈Z from each other as well as their distance to the input
data. This can be seen e.g. in (2.15) and (2.17).
The distance estimate of refined data on Cartan-Hadamard manifolds is based on the

fact that the exponential map does not decrease distances (see the proof of Lemma 2.9).
This, however, is in general not true for positively-curved manifolds. We summarise the
observations from above.
On manifolds with positive sectional curvature

i) we cannot hope for a convergence result which is valid for all input data.
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2 Subdivision in nonlinear geometries

ii) we obtain a local setting in which the Riemannian analogue of a linear subdivision
scheme is well defined, see [24].

iii) we have to find a strategy to estimate distances between consecutive points of the
refined data as well as their distance to the input data.

The Riemannian analogue of a linear subdivision scheme on the unit sphere

From now on, we restrict ourselves to the unit sphere, i.e.,M = Sn = {x ∈ Rn+1|‖x‖ = 1}
for n > 2. In particular, we have K = 1, and 〈·, ·〉 is the Euclidean inner product. We
provide a setting on the unit sphere in which we can define the Riemannian analogue of
a linear subdivision scheme. Therefore, we choose xj ∈ Sn, j = −m, . . . ,m + 1, such
that xj ∈ Br(x) for some r > 0 and x ∈ Sn. Since the sectional curvature K = 1 on the
unit sphere and the injectivity radius is π

2 , according to Lemma 2.21 the function fα has
a unique minimiser in Br∗(x), if

r∗ > (1 + 2α−) r > r, (2.22)

r∗ <
π

4

(
1 +

(
1 +

π

2

)
α−

)−1
. (2.23)

In the special case of a scheme with only nonnegative coefficients, i.e., α− = 0, these
conditions reduce to: If r < π

4 , then there exists a radius r∗ with r < r∗ < π
4 such that

the function fα has a unique minimiser inside Br∗(x). If, however, we do have negative
coefficients, due to conditions (2.22) and (2.23), we need to choose denser input data to
ensure the existence of an area in which we have a unique minimiser. We summarise the
results of [24] for our particular setting in

Proposition 2.22. Let T be the Riemannian analogue of a linear subdivision scheme S,
as in Definition 2.2, on the unit sphere Sn. We consider two cases:

Case α− = 0:
Txi is well defined if the input data points xi contributing to the computation of
Txi lie within a ball of radius r < π

4 .

Case α− > 0:
Txi is well defined if the input data points xi contributing to the computation of
Txi lie within a ball of radius r such that there exists an r∗ > r satisfying (2.22)
and (2.23).

2.3.2 A strategy to prove convergence for Riemannian analogues of linear
schemes on the unit sphere

First, we recall some facts about the squared distance function on the unit sphere and
state a second order Taylor approximation of the function fα defined in (2.21). After-
wards, we explain a strategy to estimate the distance between consecutive points Txi
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2.3 Subdivision on manifolds with positive sectional curvature

and Txi+1, which belong to the sequence obtained after one refinement step of the Rie-
mannian analogue T of a linear scheme S. Simultaneously, we bound their distance to
the initial data. An iterative use of this method leads to the desired convergence result.
Throughout this part, we assume that the considered minima are well defined and

unique.

The Riemannian distance function on the unit sphere

For the distance estimate we use explicit formulas for the gradient and the Hessian of the
squared distance function dist (·, y)2, y ∈ M . They have been computed by X. Pennec
in [68, Supplement A] as an example of a more general analysis of Hessians of squared
distance functions on manifolds. We introduce some notation and state results of [68]
which we later use.
Let TxSn = {w ∈ Rn+1 | 〈w, x〉 = 0} denote the tangent space at a point x ∈ Sn. For

two points x, y ∈ Sn, x 6= −y, their spherical distance is dist (x, y) = arccos (〈x, y〉) and
the exponential map at x ∈ Sn is given by

expx : TxS
n → Sn

w 7→ cos (‖w‖)x+
sin (‖w‖)
‖w‖ w.

The inverse of the exponential map at x is well defined for all points on the sphere except
the antipodal point of x. It is

exp−1
x : Sn \ {−x} → TxS

n (2.24)

y 7→ dist (x, y)

sin (dist (x, y))
(y − cos (dist (x, y))x). (2.25)

Note that we will always tacitly assume that s
sin(s) means an analytic function which

evaluates to 1 for s = 0. Let w ∈ TxSn be a tangent vector. Then, expx(w) denotes the
point on the manifold which is reached by the geodesic starting in x in direction w after
time 1. We can therefore use the exponential map resp. its inverse to switch between
the manifold and its tangent space at a fixed point x ∈ Sn, such that straight lines
through the origin in the tangent space are mapped to geodesics on the sphere through
x preserving the length of the curves. Let

g : Sn → R

be a function on the sphere and

g̃ = g ◦ expx : TxS
n → R

its composition with the exponential map, for some x ∈ Sn. Then, g̃ is a representation of
g with respect to the coordinate chart exp−1

x . Since the first derivative of the exponential
map is the identity we have

grad (g) (x) = grad (g̃) (0) (2.26)
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2 Subdivision in nonlinear geometries

for the gradient of g resp. g̃. In particular, it makes no difference if we consider g or its
composition with expx. The Hessian of g̃ can be computed since the function is defined
on a linear space, namely the tangent space. We define the Hessian of g by

H (g) (x) := H (g̃) (0) . (2.27)

If we talk about the the gradient and the Hessian of a function on the unit sphere,
according to (2.26) and (2.27), we mean its composition with the exponential map defined
on a linear space.
For any fixed y ∈M the gradient of the squared distance function is given by

grad (dist(·, y)2)(x) = −2 exp−1
x (y). (2.28)

Let v := exp−1
x (y)

dist(x,y) , y 6= x, and I ∈ R(n+1)×(n+1) be the identity matrix. The Hessian
of dist (·, y)2 in the tangent space (i.e., the Hessian of its coordinate representation as
explained above) has been computed in [68] as

H
(

dist (·, y)2
)

(x) = 2

(
vvT +

dist (x, y)

sin (dist (x, y))
cos (dist (x, y)) (I − xxT − vvT )

)
.

(2.29)

Here xT , vT denote the transpose of x resp. v. This formula is valid for y 6= x. If x = y,
we have H

(
dist (·, x)2

)
(x) = 2(I − xxT ) since limx→0

x
sin(x) = 1 and cos (0) = 1.

The eigenvalues of the Hessian are λ1 = 0, λ2 = 2 and λ3 = 2 dist(x,y)
tan(dist(x,y)) .

By linearity we obtain

grad (fα) (x) = −2
m+1∑
j=−m

αj exp−1
x (xj), (2.30)

resp.

H (fα) (x) = 2
m+1∑
j=−m

αj

(
vjv

T
j +

dist (x, xj)

sin (dist (x, xj))
cos (dist (x, xj))

(
I − xxT − vjvTj

))
(2.31)

with vj :=
exp−1

x (xj)
dist(x,xj)

.

Taylor approximation of the squared distance function on the unit sphere

The second order Taylor expansion of the squared distance function helps to find an
upper bound on the distances between the minimiser of fα (as defined in (2.21)) and
some input data xj ∈ Sn, j = −m, . . . ,m+ 1. We are interested in such an upper bound
because in the convergence analysis of a Riemannian analogue T of a linear scheme S
their distance represents the distance between initial data xi and refined data Txi. The
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2.3 Subdivision on manifolds with positive sectional curvature

estimate results in a displacement-safe condition which we have already used for the
convergence analysis of nonlinear schemes on Cartan-Hadamard manifolds, see (2.16).
Let x∗ ∈ Sn be the unique minimiser of fα. Without loss of generality we choose

coordinates such that x∗ = [0, . . . , 0, 1]T . Then, the first n unit vectors form a basis of
Tx∗S

n. Now, we consider fα as a function on the tangent space Tx∗Sn and compute its
Hessian with respect to the chosen coordinate system (actually, as before, its composition
with the inverse of the exponential map, see (2.27)). Due to the particular coordinate
system the gradient of fα consists of the first n entries of the vector given in (2.30). The
Hessian is given by the n × n submatrix of H (fα) (2.31) obtained by deleting the last
column and row. The second order Taylor approximation in x∗ on the tangent space is
given by

Tfα(x) = fα(x∗) + (x− x∗)T grad (fα) (x∗) +
1

2
(x− x∗)TH (fα) (x∗) (x− x∗) .

Differentiation leads to

grad(Tfα)(x) = grad(fα)(x∗) +H(fα)(x∗)x. (2.32)

Since we are looking for minimisers of the function fα, the idea is to consider

grad (fα) (x∗) +H (fα) (x∗)x
!

= 0. (2.33)

If we assume that H (fα) (x∗) is invertible, we deduce that

x = −H (fα) (x∗)−1 grad (fα) (x∗). (2.34)

This x is the unique stationary point of the second order Taylor approximation Tfα.
We are now in a position to present the main ideas which lead to convergence results

for Riemannian analogues of linear subdivision rules on the unit sphere.

Variable mask

We introduce a parameter t ∈ [0, 1] and vary the coefficients αj of a Riemannian analogue
of a linear scheme such that they linearly depend on t. The idea is to choose coefficient
functions αj(t) such that at time t = 0 we exactly know the minimiser of fα(0), call it
the reference point x̄, and at time t = 1 the minimiser of fα(1) equals x∗. Thereby we
assume that

m+1∑
j=−m

αj(t) = 1 for any t ∈ [0, 1]. (2.35)

Consider the curve γ such that γ(t) is the minimiser of fα(t). Since γ then connects x̄ and
x∗ we have dist (x̄, x∗) 6

∫ 1
0 ‖γ̇(t)‖ dt. The idea is to estimate ‖γ̇(t)‖ in order to find an

upper bound on the distance between x̄ and x∗. If, for example, we choose the reference
point x̄ to be one of our input data points, this strategy helps us to control the distance
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2 Subdivision in nonlinear geometries

between the minimiser x∗ of fα(1) and the initial data. We will see that the choice of the
reference point is crucial for our approach to work and has to be made individually for
each scheme.
To make the described procedure more visible to the reader we illustrate it by means

of a main example throughout this part of the thesis.

Example 2.23 (cubic Lane-Riesenfeld, part I ). We choose an input data sequence
(xi)i∈Z on the sphere and consider the linear cubic Lane-Riesenfeld algorithm defined
as

(Sx)2i =
1

8
xi−1 +

6

8
xi +

1

8
xi+1, (2.36)

(Sx)2i+1 =
1

2
xi +

1

2
xi+1, (2.37)

for i ∈ Z. Since the mask has nonnegative coefficients, Proposition 2.22 ensures that one
refinement step for the Riemannian version T of S is well defined, if

sup
`

dist
(
x`, x`+1) <

π

4
.

This assumption is even sufficient for the well-definedness of all subdivision steps of T ,
if we further can show that

sup
`

dist
(
T k+1x`, T

k+1x`+1

)
6 sup

`
dist

(
T kx`, T

kx`+1

)
, for all k > 0.

We observe that Tx2i+1 is the geodesic midpoint of xi and xi+1. So, its distance to
the input data can be bounded from above by half of the maximal distance of the input
data. The more crucial part is to deal with the distance of the point Tx2i obtained by
(2.36) from xi. Consider

Tx := arg min
x∈Sn

(
1

8
dist(x, x−1)2 +

6

8
dist(x, x0)2 +

1

8
dist(x, x1)2

)
(2.38)

for x−1, x0, x1 ∈ Sn. Without loss of generality we assume that x0 = [0, . . . , 0, 1]T . With
m = 1 and α−1 = α1 = 1

8 , α0 = 3
4 as well as α2 = 0, Tx is the minimiser of fα. Note that

we have to add the zero coefficient α2 = 0 here only to be compatible with our previous
notation. In fact, it has no influence on the result and we therefore forget about it. We
choose the time dependent coefficient functions as

α−1(t) = α1(t) =
t

8
and α0(t) = 1− t

4
(2.39)

for all t ∈ [0, 1]. Thus, at time t = 0 the reference point x̄ of fα(0) equals x0 while at
time t = 1 the minimiser of fα(1) is exactly the point Tx.
This concludes preparations for the convergence analysis of the nonlinear analogue of

the cubic Lane-Riesenfeld scheme. We continue with this example in 2.25. ♦
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2.3 Subdivision on manifolds with positive sectional curvature

Estimating the distance to a minimiser

We explain how to estimate the distance between the reference point x̄ (the minimiser
of fα(0)) and the minimiser x∗ of fα(1). Recall that xj ∈ Sn, j = −m, . . . ,m+ 1.

Assumption 1. Assume that

dist (xj , xj+1) 6 r

for some constant r > 0 and all j = −m, . . . ,m. Further we choose r such that the
minimiser of fα(t) on the unit sphere is locally well defined for all t ∈ [0, 1].

Assumption 2. Let r > 0 be as in Assumption 1. Assume that

‖γ̇(0)‖ 6 rC0

for some constant C0 > 0.

Assumption 3. Let r > 0 and C0 be as in Assumption 1 resp. 2. Assume that the
following is true: If ‖γ̇(t)‖ 6 rC0 for all t ∈ [0, 1], then there exists a constant C1 < C0

such that ‖γ̇(t)‖ 6 rC1 < rC0 for all t ∈ [0, 1].

Assumption 1 is necessary for the well-definedness of the Riemannian analogue of a
linear scheme. Assumptions 2 & 3 help to estimate the distance between x̄ and x∗.

Lemma 2.24. Assume that Assumptions 1, 2 and 3 are satisfied for an r > 0 and
constants C0 and C1. Let γ denote the curve which at time t is the minimiser of fα(t).
Then,

‖γ̇(t)‖ 6 rC1

for all t ∈ [0, 1].

Proof. Let t∗ = sup{t ∈ [0, 1] | ‖γ̇(t)‖ 6 rC1}. Then,

‖γ̇(t∗)‖ 6 lim
t<t∗
‖γ̇(t)‖ 6 rC1.

Assume that t∗ < 1. Since ‖γ̇(t)‖ is continuous there exists an interval J = (t∗ − ε, t∗ +
ε), ε > 0, with ‖γ̇(t̃)‖ 6 rC1 for any t̃ ∈ J . But this is a contradiction to t∗ being
maximal.

We illustrate the computation of γ̇(0) by means of our main example.

Example 2.25 (cubic Lane-Riesenfeld, part II ). The vector γ̇(0) estimates the direction
pointing from x0 towards Tx. First, we compute H

(
fα(0)

)
(x0) (this is the Hessian of

the function fα(0) composed with the exponential map, see (2.27)). By (2.44) we have
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2 Subdivision in nonlinear geometries

α−1(0) = α1(0) = 0 as well as α0(0) = 1. We observe that limx→0
x

sin(x) = 1 and
cos (dist(x0, x0)) = 1. Using (2.31) we deduce that

H
(
fα(0)

)
(x0) = 2α0(0)

(
v0v

T
0 +

(
I − x0x

T
0 − v0v

T
0

))
= 2I

in the chosen coordinate system. Remember that the second equality is based on the
assumption x0 = [0, . . . , 0, 1]T . In particular, the inverse H

(
fα(0)

)
(x0)−1 = 1

2I is well
defined. By (2.30) we have

d

dt

∣∣∣∣
t=0

grad
(
fα(t)

)
(x0) = −2

d

dt

∣∣∣∣
t=0

1∑
j=−1

αj(t) exp−1
x0 (xj)

= −2

(
1

8
exp−1

x0 (x−1) +
1

8
exp−1

x0 (x1)

)
= −1

4

(
exp−1

x0 (x−1) + exp−1
x0 (x1)

)
,

using the geometric fact exp−1
x0 (x0) = 0. We conclude that

γ̇(0) =
1

8

(
exp−1

x0 (x−1) + exp−1
x0 (x1)

)
.

Assuming that dist (xj , xj+1) 6 r for some 0 < r < π
4 and j = −1, 0, the above shows

that

‖γ̇(0)‖ 6 1

4
r.

This is a first piece of information needed to establish constants C0, C1, and eventually
prove convergence of the cubic Lane-Riesenfeld scheme on the unit sphere. ♦
We briefly summarize what we have seen so far and point out our next steps. Let S

be a linear subdivision scheme and T its Riemannian analogue on the unit sphere.

i) We chose coefficient functions αj(t) related to the mask of S and considered the
curve γ which joins a reference point x̄ and the minimiser x∗ of fα(1). Since
dist (x̄, x∗) 6

∫ 1
0 ‖γ̇(t)‖ dt we wish to find an upper bound on ‖γ̇(t)‖ to estimate

the distance between the reference point and the minimiser of fα(1).

ii) We introduced three assumptions:

• Assumption 1 ensures the well-definedness of the Riemannian analogue T .

• Assumptions 2 & 3 provide a strategy to find an upper bound on ‖γ̇(t)‖, see
Lemma 2.24.

iii) We can use Proposition 2.22 to find input data such that Assumption 1 is verified.
As seen in Example 2.25, we can use (2.34) for the verification of Assumption 2.
Thus, it remains to verify Assumption 3.
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2.3 Subdivision on manifolds with positive sectional curvature

The remaining part of this section provides a strategy which helps to find constants
C0, C1 such that Assumption 3 is satisfied.
Let t ∈ [0, 1] be fixed. The following computations are done in the tangent space

Tγ(t)S
n where for simplicity we always assume that γ(t) is the north pole [0, . . . , 0, 1]T

of the sphere. Of course, the coordinates of the xj ’s change for different t, but since
we only consider distances which are independent of the chosen coordinate system, we
do not indicate the coordinate change in the notation of the input data. The Hessian
H
(
dist(·, y)2

)
(γ(t)) of the squared distance function in the chosen coordinate system

has the eigenvalues λ1 = 2 and λ2 =
2 dist(γ(t),xj)

tan(dist(γ(t),xj))
, see Section 2.3.2. In particular, we

have dist (γ(t), xj) <
π
2 , j = −m, . . . ,m+1, since the radius r∗ of the ball containing the

input data and the minimiser γ(t) is less than π
4 , see Section 2.3.1. That is why λ2 6 λ1

as well as 0 < λ2 6 2. So, we know that the inverse of the Hessian is well defined.
We compute the Taylor expansion of fα(t) in γ(t) as shown in (2.34) and consider the
derivative at time t. We obtain

γ̇(t) =− d

ds

∣∣∣∣
s=t

(
H
(
fα(s)

)
(γ(t))

)−1
grad

(
fα(t)

)
(γ(t)) (2.40)

−
(
H
(
fα(t)

)
(γ(t))

)−1 d

ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t)) .

By definition of the curve γ, we conclude that grad
(
fα(t)

)
(γ(t)) = 0. Thus,

γ̇(t) = −
(
H
(
fα(t)

)
(γ(t))

)−1 d

ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t)). (2.41)

In the following two lemmas we estimate the spectral norm of the inverse of the Hessian
and the norm of the derivative of the gradient in order to find an upper bound on ‖γ̇(t)‖.
Lemma 2.26. Let dist (xj , xj+1) 6 r for some r > 0, j = −m, . . . ,m. Assume that
‖γ̇(t)‖ 6 C0r for C0 > 0 and all t ∈ [0, 1]. Let `j, j = −m, . . . ,m+ 1, be constants such
that dist (xj , x̄) 6 `j. Then,

‖
(
H
(
fα(t)

)
(γ(t))

)−1 ‖ 6 1

|2− L(t)|

with L(t) =
m+1∑
j=−m

|αj(t)|
(

2− 2
C0rt+ `j

tan (C0rt+ `j)

)
for all t ∈ [0, 1].

Proof. In order to give an upper bound on the maximal eigenvalue of the inverse of the
Hessian we first bound the eigenvalues of the Hessian itself. We have

‖H
(
fα(t)

)
(γ(t)) ‖ =

∥∥∥ m+1∑
j=−m

αj(t)H
(

dist (xj , ·)2
)

(γ(t))
∥∥∥

6 2
m+1∑
j=−m

|αj(t)|,
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2 Subdivision in nonlinear geometries

since the maximal eigenvalue of the Hessian of the squared distance function is λ1 = 2.
In particular, the norm of any eigenvalue of the Hessian is bounded from above by
2
∑m+1

j=−m |αj(t)|. Furthermore, we see that

‖2I −H
(
fα(t)

)
(γ(t)) ‖ =

∥∥∥ m+1∑
j=−m

αj(t)
(

2I −H
(

dist (xj , ·)2
)

(γ(t))
)∥∥∥

6
m+1∑
j=−m

|αj(t)|
∥∥∥2I −H

(
dist (xj , ·)2

)
(γ(t))

∥∥∥. (2.42)

Denote by λ2,j(t) the smaller eigenvalue of H
(

dist (xj , γ(t))2
)
. In fact,

λ2,j(t) =
2 dist (γ(t), xj)

tan (dist (γ(t), xj))
< 2.

By Assumption 3 and since s
tan(s) is positive and monotonically decreasing for 0 6 s < π

2
we deduce that

λ2,j(t) > 2
C0rt+ `j

tan (C0rt+ `j)

for all j = −m, . . . ,m+ 1. By (2.42) we therefore obtain

‖2I −H
(
fα(t)

)
(γ(t)) ‖ 6 L(t)

and the minimal eigenvalue of H
(
fα(t)

)
(γ(t)) is bounded from below by |2−L(t)|. Thus,

the claim for the norm of inverse matrix follows.

Lemma 2.27. Let dist (xj , xj+1) 6 r for some r > 0, j = −m, . . . ,m. Assume that
‖γ̇(t)‖ 6 C0r for C0 > 0 and all t ∈ [0, 1]. Let `j, j = −m, . . . ,m+ 1, be constants such
that dist (xj , x̄) 6 `j. Then,

∥∥∥ d
ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t))

∥∥∥ 6 2
m+1∑
j=−m

|α̇j(t)| (rC0t+ `j)

for all t ∈ [0, 1].

Proof. Fix some t ∈ [0, 1]. Since dist (γ(t), xj) = ‖ exp−1
γ(t)(xj)‖ and, by assumption,

‖γ̇(t)‖ 6 C0r we deduce that

‖ exp−1
γ(t)(xj)‖ 6 ‖ exp−1

γ(t)(x̄)‖+ ‖ exp−1
x̄ (xj)‖

6 rC0t+ `j .
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2.3 Subdivision on manifolds with positive sectional curvature

So,

∥∥∥ d
ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t))

∥∥∥ 6 2
m+1∑
j=−m

∣∣∣∣ dds
∣∣∣∣
s=t

αj(s)

∣∣∣∣‖ exp−1
γ(t)(xj)‖

6 2

m+1∑
j=−m

|α̇j(t)| (rC0t+ `j)

by (2.30).

We summarise the results of the previous two lemmas in

Proposition 2.28. Let dist (xj , xj+1) 6 r for some r > 0, j = −m, . . . ,m. Assume that
‖γ̇(t)‖ 6 C0r for C0 > 0 and all t ∈ [0, 1]. Let `j, j = −m, . . . ,m+ 1, be constants such
that dist (xj , x̄) 6 `j. Then,

‖γ̇(t)‖ 6 2

|2− L(t)|
m+1∑
j=−m

|α̇j(t)| (rC0t+ `j) (2.43)

with L(t) =

m+1∑
j=−m

|αj(t)|
(

2− 2
C0rt+ `j

tan (C0rt+ `j)

)
for all t ∈ [0, 1].

Proof. By (2.41) we have

‖γ̇(t)‖ 6
∥∥∥ (H (fα(t)

)
(γ(t))

)−1 d

ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t))

∥∥∥
6
∥∥∥ (H (fα(t)

)
(γ(t))

)−1
∥∥∥∥∥∥ d
ds

∣∣∣∣
s=t

grad
(
fα(s)

)
(γ(t))

∥∥∥
for all t ∈ [0, 1]. The claim then follows by Lemma 2.26 and Lemma 2.27.

We illustrate the results of Proposition 2.28 by means of our main example.

Example 2.29 (cubic Lane-Riesenfeld, part III ). Lemma 2.26 shows that

L(t) =
t

4

(
2− 2

C0rt+ r

tan (C0rt+ r)

)
+

(
1− t

4

)(
2− 2

C0rt

tan (C0rt)

)
for all t ∈ [0, 1] with `0 = 0 and `−1 = `1 = r. Since this function is strictly increasing in
the interval [0, 1] we have

L(t) 6
1

4

(
2− 2

C0r + r

tan (C0r + r)

)
+

3

4

(
2− 2

C0r

tan (C0r)

)
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for all t ∈ [0, 1]. We conclude that

‖
(
H
(
fα(t)

)
(γ(t))

)−1 ‖ 6 1

2−
(

2− 1
2

C0r+r
tan(C0r+r)

− 3
2

C0r
tan(C0r)

)
=

1
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

which is an upper bound on the norm of the inverse of the Hessian which only depends
on C0 and r. This estimate is needed for the verification of Assumption 3 of our method.
Remember that we have chosen x̄ = x0 as well as

α−1(t) = α1(t) =
t

8
and α0(t) = 1− t

4
, t ∈ [0, 1]. (2.44)

Assume that r < π
4 is such that dist (xj , x0) 6 r, for j = −1, 1. Since

∑1
j=−1 |α̇j(t)| = 1

2
Equation (2.43) reads as

‖γ̇(t)‖ 6 2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
2α̇1(t)r +

1

2
rC0t

)
=

2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
1

4
r +

1

2
rC0t

)
(2.45)

for all t ∈ [0, 1]. Thus, we have obtained an upper bound on ‖γ̇(t)‖ and we are finally in
a position to estimate the distance between x0 and x∗ as follows.
If we can guarantee that

2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
1

4
r +

1

2
rC0t

)
6 C1r for some C1 < C0,

we have

dist (x0, x
∗) 6

∫ 1

0
‖γ̇(t)‖ dt

6
2

1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

∫ 1

0

r

4
+

1

2
rC0t dt

=
2

1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
r

4
+
rC0

4

)
. (2.46)

This is the last piece of preparations needed for our convergence analysis of the cubic
Lane-Riesenfeld scheme on the unit sphere. The final convergence argument, presented
in the next section, consists of specific choices of r > 0, C0 and C1. ♦
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2.3.3 Convergence results on the unit sphere

We show convergence results for the Riemannian analogues of different linear subdivision
schemes on the unit sphere. They are based on the distance estimates proved in the
previous section.

Example 2.30 (cubic Lane-Riesenfeld, part IV ). We continue with the analysis of our
main example. Before we study the convergence in full generality, we illustrate the idea
for r0 = 1

4 and input data x−1, x0, x1 ∈ Sn such that dist (x0, x−1) 6 r0 as well as
dist (x0, x1) 6 r0. Let C0 = 0.52 > 1

4 , then ‖γ̇(0)‖ < rC0 for any 0 < r 6 1
4 , see Example

2.25. In particular, Assumption 2 is satisfied for all 0 < r 6 r0. Computations show that

1

2

C0r0 + r0

tan(C0r0 + r0)
+

3

2

C0r0

tan (C0r0)
≈ 1.97.

Since s
tan(s) is positive and monotonically decreasing for 0 6 s < π

2 , we conclude

2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
r

4
+
rC0

2

)
6 1.02

(r
4

+ 0.26r
)

= 0.51r

for any 0 < r 6 r0. By (2.45) we verified that under the assumption that ‖γ̇(t)‖ 6 C0r0

for all t ∈ [0, 1], we have ‖γ̇(t)‖ 6 C1r with C1 = 0.51 < C0 for all t ∈ [0, 1] and
0 < r 6 r0, i.e., we verified Assumption 3. By (2.46) we obtain

dist (x0, x
∗) 6 1.02

(r
4

+ 0.13r
)

= 0.39r

for any 0 < r 6 r0.
We are now in a position to analyse the convergence of the Riemannian analogue T

of the linear cubic Lane-Riesenfeld algorithm. Therefore, we choose input data (xi)i∈Z
with

sup
`

dist (x`, x`+1) < r0.

Our previous computations together with the fact that the points of the sequence after
one refinement step obtained by (2.37) are the geodesic midpoints of two consecutive
input data points lead to

dist (Txi, Txi+1) 6
r0

2
+ 0.39r0 = 0.89r0,

dist (Tx2i, xi) 6 0.39r0

for all i ∈ Z. Note that this conclusion highly depends on the mask and the choice of the
reference point. We have shown that the distance of consecutive points in (Txi)i∈Z is
less than the maximal distance of consecutive input data points. In fact, we have already
shown a bit more. Namely, for r0 = 1

4 and C0 = 0.52 the following is true:

i) ‖γ̇(0)‖ 6 C0r for any 0 < r 6 1
4 .
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2 Subdivision in nonlinear geometries

ii) Under the assumption that ‖γ̇(t)‖ 6 C0r0 for all t ∈ [0, 1], the constant C1 =
0.51 < C0 satisfies ‖γ̇(t)‖ 6 C1r for all t ∈ [0, 1] and any 0 < r 6 1

4 .

Thus, we can iteratively apply our strategy to estimate distances we so far only used for
the first refinement step. We deduce that

dist
(
T kxi, T

kxi+1

)
6 0.89kr0 = 0.89k sup

`
dist (x`, x`+1) ,

dist (Tx2i, xi) 6 0.39 sup
`

dist (x`, x`+1)

for all k > 0 and i ∈ Z. The first inequality above implies that T admits a contractivity
factor µ = 0.89 < 1, while the second inequality ensures that T is displacement-safe. We
proceed as in the proof of Theorem 2.11 (which also works on positively-curved manifolds)
and conclude that the Riemannian analogue of the linear cubic Lane-Riesenfeld algorithm
admits a continuous limit on the unit sphere, if the distance of consecutive input data
points is bounded from above by 1

4 . Note that we can use the same proof as for Cartan-
Hadamard manifolds here because we restrict ourselves to an area on the unit sphere in
which all geodesics are unique and the Riemannian center of mass are well defined.
The previous paragraph deals with the special case of the fixed assumption on the

input data sup` dist (x`, x`+1) < r0 with r0 = 1
4 . Now, we analyse the general case of an

upper bound r0 (0 < r0 <
π
4 ). First, note that the well-definedness of T would no longer

be guaranteed, if r0 > π
4 , see Proposition 2.22. Furthermore, if C0 >

1
4 , Assumption 2 is

satisfied for any 0 < r 6 r0. Consider the inequalities

2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
1

4
r +

1

2
rC0

)
< rC0

⇔ 2
1
2

C0r+r
tan(C0r+r)

+ 3
2

rC0
tan(rC0)

(
1

4
+

1

2
C0

)
< C0 (2.47)

and

2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
1

4
r +

1

4
rC0

)
<
r

2

⇔ 2
1
2

C0r+r
tan(C0r+r)

+ 3
2

C0r
tan(C0r)

(
1

4
+

1

4
C0

)
<

1

2
. (2.48)

We are looking for a constant C0 >
1
4 together with the largest possible value for r < π

4
such that (2.47) and (2.48) are both satisfied. Numerical examples show that for r0 = 0.6
and C0 = 0.69 we have

2
1
2

C0r0+r0
tan(C0r0+r0) + 3

2
r0C0

tan(r0C0)

(
1

4
+

1

2
C0

)
≈ 0.68 < C0, (2.49)

2
1
2

C0r0+r0
tan(C0r0+r0) + 3

2
C0r0

tan(C0r0)

(
1

4
+

1

4
C0

)
≈ 0.49 <

1

2
, (2.50)
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2.3 Subdivision on manifolds with positive sectional curvature

while for r0 > 0.6, we do not always find a suitable constant C0. In particular, this shows
that (2.47) and (2.48) are satisfied for any 0 < r 6 0.6, again by the fact that s

tan(s) is
positive and monotonically decreasing for 0 6 s < π

2 .
By (2.49) Assumption 3 is satisfied for any 0 < r 6 0.6 and by (2.50) T admits a

contractivity factor µ ≈ 0.99 < 1, i.e., dist
(
T kxi, T

kxi+1

)
6 µk sup` dist (x`, x`+1) for all

i ∈ Z and k ∈ N. ♦

We summarize the conclusions of the example of the cubic Lane-Riesenfeld algorithm,
parts I-IV, in the following

Corollary 2.31. Let (xi)i∈Z be a sequence of points on the unit sphere. If

sup
`

dist(x`, x`+1) < 0.6,

then the Riemannian analogue of the linear cubic Lane-Riesenfeld algorithm converges to
a continuous limit function on the unit sphere.

We remark that the constant C0 might be chosen smaller for special input data as seen
at the beginning of the example, but since we are first only interested in a convergence
result, we do not specify the choice here any further.

Example: 4-point scheme

We analyse the 4-point scheme introduced in (2.5) for ω = 1
16 . First, we focus on

Tx := arg min
x∈Sn

(
− 1

16
dist (x, x−1)2 +

9

16
dist (x, x0)2 (2.51)

+
9

16
dist (x, x1)2 − 1

16
dist (x, x2)2

)
for some xj ∈ Sn, j = −1, . . . , 2. Let dist (xj , xj+1) < r0 for an r0 > 0 and j = −1, 0, 1.
In particular, we have α− = 1

8 . Thus, Conditions (2.22), (2.23) and Proposition 2.22
imply that if r0 <

0.59
1.25 · 2

3 ≈ 0.31, our input data lies inside a ball of small enough radius
such that the minimiser Tx is well defined.
So, let r0 = 0.31 and denote the geodesic midpoint of x0 and x1 by xm. We use xm

as the reference point. Observe that due to our restrictions on the input data xm is well
defined. Let

α−1(t) = α2(t) = − t

16
and α0(t) = α1(t) =

1

2
+

t

16
(2.52)

be the coefficient functions for t ∈ [0, 1] and γ be the curve connecting the minimisers of
fα(t).
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2 Subdivision in nonlinear geometries

We see that∥∥∥ d
dt

∣∣∣∣
t=0

grad
(
fα(t)

)
(xm)

∥∥∥ 6 2
∥∥∥ d
dt

∣∣∣∣
t=0

2∑
j=−1

αj(t) exp−1
xm(xj)

∥∥∥
6 2

(
1

16
exp−1

xm(x−1) +
1

16
exp−1

xm(x0) +
1

16
exp−1

xm(x1) +
1

16
exp−1

xm(x2)

)
6 2

(
2

16
· 3r

2
+

2

16
· r

2

)
= 2 · 1

4
r

for any 0 < r 6 r0. Moreover, we deduce that

L(t) =
2t

16

(
2− 2

C0rt+ 3
2r

tan(C0rt+ 3
2r)

)
+ 2

(
1

2
+

t

16

)(
2− 2

C0rt+ 1
2r

tan(C0rt+ 1
2r)

)
for a constant C0, L(t) as in Lemma 2.26 and all t ∈ [0, 1]. In particular,

L(0) = 2− r

tan
(

1
2r
) .

Considered as a function in r, L(0) is positive and monotonically increasing for 0 < r 6
r0. Thus,

L(0) 6 2− r0

tan
(

1
2r0

) ≈ 0.02

and 2
2−0.02 · 1

4r ≈ 1
4r. Lemma 2.26, together with our previous computations, yields

‖γ̇(0)‖ 6 1

4
r

for all 0 < r 6 r0 and Assumption 2 is satisfied for any constant C0 >
1
4 . We assume that

‖γ̇(t)‖ < C0r for some 0 < r 6 r0 and all t ∈ [0, 1]. Again by monotonicity L(t) 6 L(1)
and by Proposition 2.28 we therefore have

‖γ̇(t)‖ 6 2

|2− L(1)|

(
2

16

(
rC0t+

3

2
r

)
+

2

16

(
rC0t+

r

2

))
=

2

|2− L(1)|

(
1

4
rC0t+

1

4
r

)
6

2

|2− L(1)|

(
1

4
rC0 +

1

4
r

)
for all t ∈ [0, 1]. This implies that

dist (m,Tx) 6
2

|2− L(1)|

∫ 1

0

1

4
rC0t+

1

4
r dt

=
2

|2− L(1)|

(
1

8
rC0 +

1

4
r

)
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2.3 Subdivision on manifolds with positive sectional curvature

and

dist (x0, Tx) 6 dist (xm, Tx) +
r

2

for any 0 < r 6 r0. Now, we ask dist (xm, Tx) + r
2 < r to obtain a contractivity as well

as displacement-safe condition in the end. Thus, we are looking for a constant C0 >
1
4

together with suitable choices for r such that

2

|2− L(1)|

(
1

4
C0 +

1

4

)
< C0

and
2

|2− L(1)|

(
1

8
C0 +

1

4

)
<

1

2
.

Numerical computations show that if C0 = 0.45, both inequalities are satisfied for any
0 < r 6 r0 = 0.31. Thus, the Riemannian analogue T of the linear 4-point scheme is
displacement-safe and the maximal distance of consecutive points T kxi, T kxi+1 strictly
decreases, if the iteration depth k goes to infinity. It therefore admits a contractivity
factor less than 1 and we have shown

Corollary 2.32. Let (xi)i∈Z be a sequence of points on the unit sphere. If

sup
`

dist (x`, x`+1) < 0.31,

then the Riemannian analogue of the linear 4-point scheme with parameter ω = 1
16 con-

verges to a continuous limit function on the unit sphere.

While we have chosen an input data point as reference point in the first example, we
have now seen that the choice of a geodesic midpoint of two initial data points yields to
a convergence result. So far, we have considered one scheme whose mask contains only
positive coefficients (cubic Lane-Riesenfeld algorithm) and one (4-point scheme) with the
special property of being interpolatory. The next example shows that our strategy works
for non-interpolatory schemes with negative coefficients, too.

Example: Combination of 4-point scheme and Chaikin’s algorithm

We consider the linear scheme

(Sx)2i = − 1

32
xi−1 +

21

32
xi +

13

32
xi+1 −

1

32
xi+2, (2.53)

(Sx)2i+1 = − 1

32
xi−1 +

13

32
xi +

21

32
xi+1 −

1

32
xi+2, (2.54)

i ∈ Z, introduced in Example 2.1. Because of the symmetry of the two refinement rules
it is sufficient to analyse

Tx := arg min
x∈Sn

(
− 1

32
dist (x, x−1)2 +

21

32
dist (x, x0)2 (2.55)

+
13

32
dist (x, x1)2 − 1

32
dist (x, x2)2

)
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2 Subdivision in nonlinear geometries

with xj ∈ Sn, j = −1, . . . , 2. Let dist (xj , xj+1) < r0 for some r0 > 0, j = −1, 0, 1. Since
α− = 1

16 , Conditions (2.22), (2.23) and Proposition 2.22 imply that if r0 <
0.68
1.125 · 23 ≈ 0.4,

our input data lies inside a ball of small enough radius such that the minimiser Tx is
well defined. So, let r0 = 0.4. We choose our reference point x̄ ∈ Sn to be the weighted
geodesic average of x0 and x1 with weights β0 = 0.65 and β1 = 0.35. Define the coefficient
functions as

α−1(t) = α2(t) = − t

32
, α0(t) =

65

100
+

t

160
and α1(t) =

35

100
+

9

160
t (2.56)

for t ∈ [0, 1] and let γ denote the curve connecting the minimisers of fα(t). Then,∥∥∥ d
dt

∣∣∣∣
t=0

grad
(
fα(t)

)
(x̄)
∥∥∥ 6 2

∥∥∥ d
dt

∣∣∣∣
t=0

2∑
j=−1

αj(t) exp−1
x̄ (xj)

∥∥∥
6 2

(
1

32
exp−1

x̄ (x−1) +
1

160
exp−1

x̄ (x0) +
9

160
exp−1

x̄ (x1) +
1

32
exp−1

x̄ (x2)

)
6 2

(
1

32

135

100
r +

1

160

35

100
r +

9

160

65

100
r +

1

32

165

100
r

)
≈ 2 · 0.13r

for any 0 < r 6 r0. Moreover, we deduce that

L(t) =
t

32

(
2− 2

C0rt+ 1.35r

tan (C0rt+ 1.35r)

)
+
(

0.65 +
t

160

)(
2− 2

C0rt+ 0.35r

tan (C0rt+ 0.35r)

)
+

(
0.35 +

9

160
t

)(
2− 2

C0rt+ 0.65r

tan(C0rt+ 0.65r)

)
+

t

32

(
2− 2

C0rt+ 1.65r

tan(C0rt+ 1.65r)

)
for some constant C0, L(t) as in Lemma 2.26 and all t ∈ [0, 1]. Considered as a function
in r, L(0) is positive an monotonically increasing for 0 < r 6 r0. Thus, we conclude that

L(0) 6 0.02

and 2
2−0.02 · 0.13r ≈ 0.13r. Lemma 2.26 and our previous computations show that

‖γ̇(0)‖ 6 0.13r

for all 0 < r 6 r0. So, Assumption 2 is satisfied for any constant C0 > 0.13. We
assume that ‖γ̇(t)‖ < C0r for some 0 < r 6 r0 and all t ∈ [0, 1]. Again by monotonicity
L(t) 6 L(1) and by Proposition 2.28 we therefore deduce that

‖γ̇(t)‖ 6 2

|2− L(1)|
( 1

32
(rC0t+ 1.35r) +

1

160
(rC0t+ 0.35r)

+
9

160
(rC0t+ 0.65r) +

1

32
(rC0t+ 1.65r)

)
=

2

|2− L(1)|

(
1

8
rC0t+ 0.13r

)
6

2

|2− L(1)|

(
1

8
rC0 + 0.13r

)
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for all t ∈ [0, 1]. This implies that

dist (x̄, Tx) 6
2

|2− L(1)|

∫ 1

0

1

8
rC0t+ 0.13r dt

=
2

|2− L(1)|

(
1

16
rC0 + 0.13r

)
and

dist (x0, Tx) 6 dist (x̄, Tx) + 0.35r

for any 0 < r 6 r0. Now, we ask dist (x̄, Tx) + 0.35r < r
2 because this yields to a

contractivity as well as displacement-safe condition later. Thus, we are looking for a
constant C0 > 0.13 together with suitable choices for r such that

2

|2− L(1)|

(
1

8
C0 + 0.13

)
< C0

and

2

|2− L(1)|

(
1

16
C0 + 0.13

)
<

1

2
− 0.35 = 0.15.

If C0 = 0.16, numerical computations show that both inequalities are satisfied for
any 0 < r 6 r0 = 0.4. The iterative application of the estimate above shows that the
Riemannian analogue T admits a contractivity factor less than 1 and is displacement-safe.
Therefore, we have shown

Corollary 2.33. Let (xi)i∈Z be a sequence of points on the unit sphere. If

sup
`∈Z

dist (x`, x`+1) < 0.4,

then the Riemannian analogue of the linear subdivision scheme defined in (2.53) converges
to a continuous limit function on the unit sphere.

2.4 Conclusion and outlook

Convergence results for the Riemannian analogue of a linear scheme with nonnegative
mask coefficients have been studied on Cartan-Hadamard spaces in the univariate as
well as in the multivariate setting [79, 34, 35]. We have extended the convergence results
of [79] to univariate schemes with arbitrary mask on Cartan-Hadamard manifolds, see
Theorem 2.15.
Less results are known for nonlinear analogues of linear subdivision schemes on mani-

folds with positive sectional curvature. We have introduced a strategy to prove conver-
gence results and have applied it to several examples. Unfortunately, the results depend
on a well chosen reference point which is different for each scheme, see Section 2.3.3.
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2 Subdivision in nonlinear geometries

Future research

• Ideally, of course, future research leads to a general convergence result for the
Riemannian analogue of a linear scheme which only depends on the mask and the
bounds on the curvature K of the underlying manifold.

• The subdivision schemes we analysed on the unit sphere so far, all have dilation
factor 2. We guess that our strategy works for schemes with higher dilation factor,
too, even so, the choices of reference points might become more crucial.

• We studied the convergence of nonlinear analogues of univariate, linear subdivision
schemes with arbitrary mask. We are quite confident that similar results could
be obtained in the multivariate setting where the known results are restricted to
schemes with nonnegative masks, [34, 35].

Up to now, convergence results for nonlinear subdivision schemes applied to data
on meshes with irregular combinatorics are based on proximity conditions, and
therefore are limited to ‘dense enough’ input data, [80, 81]. It would be of interest
to give convergence criteria which apply to all input data.
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3 Polynomial reproduction of Hermite
schemes

In this part of the thesis, we focus on the capability of a Hermite subdivision scheme
to reproduce polynomials. Meaning, we are looking for conditions guaranteeing that
Hermite subdivision schemes applied to initial data sampled from a polynomial function
yield the same polynomial and its derivatives in the limit.

3.1 Hermite schemes of order 2

We present a characterisation of polynomial reproduction of Hermite schemes by means of
algebraic conditions on the subdivision symbol (resp. its derivatives). Those conditions
also provide the correct parametrisation of the scheme and can be used to construct
Hermite schemes producing polynomials up to a certain degree. This work generalises
the results present in [9] where only scalar schemes were considered. In a first step, we
focus on Hermite schemes dealing with function values and first derivatives only.

The presented results are based on the publication

C. Conti, S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdi-
vision schemes, Journal of Computational and Applied Mathematics, 349, 302-315, 2019,
doi:10.1016/j.cam.2018.08.009.

We begin by introducing our notation and continue with the analysis of certain classes
of polynomials in Section 3.1.2. Then, we state our algebraic conditions in Theorem
3.9. We conclude the section with some examples. In particular, we construct a Hermite
schemes which reproduces polynomials up to degree 5 from a Hermite scheme which
reproduces polynomials up to degree 3 by only slightly increasing the support of its
mask.

3.1.1 Notation and background

A (univariate) Hermite subdivision operator HA, based on the matrix mask A = {Al ∈
Rd×d, l ∈ Z}, with order d > 2, acts on a sequence of Hermite data fn = {fn(j), j ∈ Z}
as

Dn+1fn+1(i) =
∑
j∈Z

Ai−2jDnfn(j) ∀ i ∈ Z, n > 0, (3.1)
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3 Polynomial reproduction of Hermite schemes

where D = diag
(
1, 1

2 , . . . ,
1

2d−1

)
. The Hermite subdivision scheme, still denoted by

HA, is the repeated application of HA when starting with an Hermite-type initial vector
sequence composed of function and derivative values. We associate to HA the matrix
symbol

A(z) =
∑
l∈Z

Alz
l

and sub-symbols

Ae(z) =
∑
l∈Z

A2lz
2l, Ao(z) =

∑
l∈Z

A2l+1z
2l+1,

which are related by the equation

A(z) = Ae(z) + Ao(z).

Their derivatives are defined as

A(k)(z) :=
∑
l∈Z

k−1∏
r=0

(l − r)Alzl−k,

and

A(k)
e (z) :=

∑
l∈Z

k−1∏
r=0

(2l − r)A2lz
2l−k, A(k)

o (z) :=
∑
l∈Z

k−1∏
r=0

(2l + 1− r)A2l+1z
2l+1−k,

respectively.
We are interested in both primal and dual Hermite schemes. From a geometric point

of view, primal Hermite subdivision schemes are those that at each iteration retain or
modify the given vectors and create a ‘new’ vector in between two ‘old’ ones. Dual
schemes, instead, discard all given vectors after creating two new ones in between any
pair of them. This fact is algebraically connected with the choice of the parameter values
tni , i ∈ Z, to which we attach the vectors generated by the Hermite scheme. More
precisely, the primal parametrisation is such that tni = i

2n while the dual one is given

by tni =
i− 1

2
2n . Therefore, we consider in this paper the parametrisation tni = i+t

2n which
includes primal and dual cases. We simply say that τ is the parametrisation of the scheme
(see [10], for example). See Figure 3.1 for an illustration.
We continue with the notion of reproduction for Hermite schemes.

Definition 3.1. A Hermite subdivision scheme HA with parametrisation τ reproduces a
function g ∈ Cd(R) if for any initial vector sequence f0 = {f0(j) = [g(j+ τ), . . . , g(d)(j+
τ)]T , j ∈ Z} the sequence fn = {fn(j), j ∈ Z} defined by (3.1) is fn(j) = [g((j +
τ)/2n), . . . , g(d)((j + τ)/2n)]T for all n ∈ N and j ∈ Z.
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3.1 Hermite schemes of order 2

Step 0

t0i−1 t0i t0i+1

x0
i

Step 1

t12i−1 t12i t12i+1

x1
2i

Step 1

t`+1
2i

or

Primal: τ = 0 Dual: τ = −1
2

Figure 3.1: The figure illustrates the attachment of data points x0
i resp. x

1
2i to parameter

values t`i ∈ R, ` = 0, 1, for the first subdivision step. The primal parametri-
sation is shown in red, the dual one in blue.

3.1.2 Analysis of auxiliary polynomials

We study properties of auxiliary classes of polynomials which are needed to present the
algebraic conditions characterising polynomial reproduction. In case of Hermite schemes
of order d = 2, we need two different classes of polynomials. The first class already
appears in [9]. Having defined the first class, the remaining class is closely related to it.
We denote by

∏
k the set of polynomials up to degree k.

Polynomials qk

We start by defining the polynomials qk ∈
∏
k as

q0(x) := 1, qk(x) :=

k−1∏
r=0

(2x− r), k > 0. (3.2)

Obviously, we can write them in terms of the monomial base of
∏
k, so that

qk(−x) =
k∑

n=0

γknx
n, for some coefficients γkn ∈ R.

The reason why we expand qk(−x) instead of qk(x), will become clear later on. By
definition γkk = (−1)k2k, hence γkk 6= 0 for k > 0, while γk0 = 0 for all k > 1. For each
i ∈ Z we define the polynomials

q0,i(x) := 1, qk,i(x) := qk

(
x+

i

2

)
=

k−1∏
r=0

(2x+ i− r), k > 0, (3.3)
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3 Polynomial reproduction of Hermite schemes

which can also be written in terms of the monomial base as

qk,i(−x) =
k∑

n=0

γk,in xn, for some coefficients γk,in ∈ R. (3.4)

Obviously, qk,0 = qk and γk,0n = γkn, n = 0, . . . , k.

Example 3.2. Computations show that

q1,i(x) = 2x+ i,

q2,i(x) = 4x2 + (4i− 2)x+ i2 − i,
q3,i(x) = 8x3 + (12i− 12)x2 + (6i2 − 12i+ 4)x+ i3 − 3i2 + 2i.

♦
In the next lemma we collect some relations between the coefficients of the polynomials

qk,i.

Lemma 3.3. Let i ∈ Z. For all k > 1 the coefficients of the polynomials qk,i in (3.4)
satisfy

γk,i0 = (i− (k − 1))γk−1,i
0 ,

γk,in = −2γk−1,i
n−1 + (i− (k − 1))γk−1,i

n , n = 1, . . . , k − 1,

γk,ik = −2γk−1,i
k−1 .

Proof. For k = 1 the claim is true by definition of the polynomials and its coefficients.
For k > 1 it follows by (3.3) that qk,i(x) = qk−1,i(x)(2x+ i− (k − 1)). We obtain

k∑
n=0

(−1)nγk,in xn =
k−1∑
n=0

(−1)nγk−1,i
n xn(2x+ i− (k − 1))

= 2
k−1∑
n=0

(−1)nγk−1,i
n xn+1 +

k−1∑
n=0

(−1)n(i− (k − 1))γk−1,i
n xn

= 2

k∑
n=1

(−1)n−1γk−1,i
n−1 xn +

k−1∑
n=0

(−1)n(i− (k − 1))γk−1,i
n xn

= 2(−1)k−1γk−1,i
k−1 xk +

k−1∑
n=1

(2(−1)n−1γk−1,i
n−1 + (−1)n(i− (k − 1))γk−1,i

n )xn

+ (i− (k − 1))γk−1,i
0

by using (3.4). Comparison of the coefficients proves the lemma.

Next, we study the relation of the coefficients of the polynomials qk,i (which do depend
on i ∈ Z) and those of the polynomials qk, defined in (3.2) (which do not depend on i ∈ Z).
Let

(
r
n

)
= r!

(r−n)!n! denote the binomial coefficient.
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3.1 Hermite schemes of order 2

Lemma 3.4. For i ∈ Z and k > 0, γk,in =
∑k

r=n(−1)r+nγkr
(
r
n

)
( i2)r−n, n = 0, . . . , k.

Moreover, γk,ik 6= 0.

Proof. Let i ∈ Z. We have

qk

(
x+

i

2

)
=

k∑
r=0

γkr

(
− x− i

2

)r
=

k∑
r=0

(−1)rγkr

r∑
n=0

(
r

n

)( i
2

)r−n
xn

=
k∑

n=0

k∑
r=n

(−1)rγkr

(
r

n

)( i
2

)r−n
xn.

By (3.4) a comparison of the coefficients leads to

γk,in =

k∑
r=n

(−1)r+nγkr

(
r

n

)( i
2

)r−n
, n = 0, . . . , k. (3.5)

Finally, since γk,ik = γkk and γkk 6= 0 the proof is complete.

We conclude the subsection by stressing an important relation between the coefficients γkn

and the Stirling numbers of the first kind
[
k
n

]
. Those numbers, well studied for example

in [36], count the numbers of ways to arrange k elements into n cycles. From the initial

conditions
[
0
0

]
= 1,

[
n
0

]
=

[
0
n

]
= 0, n > 1, they can be computed via the following

recurrence relation: [
k + 1
n

]
= k

[
k
n

]
+

[
k

n− 1

]
, n > 1.

Following [36], the Stirling numbers of the first kind can also be described as coefficients

in the expansion of the polynomial xk =

k−1∏
r=0

(x− r) since xk =

k∑
n=0

(−1)k−n
[
k
n

]
xn. By

definition of the polynomials qk(−x) we therefore have

γkn = (−1)k2n
[
k
n

]
, n = 0, . . . , k. (3.6)

Polynomials q̃k

We now define a second class of polynomials which is closely related to the polynomials
qk,i. First, we need to introduce the coefficients αk,`, for ` = 1, . . . , k, defined in a
recursive way.
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3 Polynomial reproduction of Hermite schemes

Definition 3.5. Let k, ` ∈ N, 1 6 ` 6 k. We define the sequence of coefficients
{αk,`, ` = 1, . . . , k} as

αk,1 := 2k,

αk,k−n+1 := (−1)k2−n+1
(
nγkn −

k−n∑
j=1

(−1)jαk,jγ
k−j
n−1

)
, n = k − 1, . . . , 1.

For some explicit values of the coefficients, see Table 3.1. Due to (3.6), the recursive
formula for αk,` as given in Definition 3.5 above can be written as

αk,k−n+1 = 2n

[
k
n

]
−
k−n∑
j=1

α1
k,j

[
k − j
n− 1

]
, (3.7)

based on which we can prove the following Lemma.

Lemma 3.6. Let k, ` ∈ N, 1 6 ` 6 k. We have αk,` = 2(`− 1)!

(
k

`

)
for ` = 1, . . . , k.

Proof. We prove the statement by induction on `. For ` = 1, we have αk,1 = 2
(
k
1

)
= 2k

which is true by Definition 3.5. For k = 2, we have α2,2 = 2
(

2
2

)
= 2 which is also true.

Now, assume that k > 2 and that the statement is true for some ` − 1. We prove the
statement for `. Due to (3.7) we have

αk,` = 2(k + 1− `)
[

k
k + 1− `

]
−
k−(k+1−`)∑

j=1

α1
k,j

[
k − j

k + 1− `− 1

]

= 2(k + 1− `)
[

k
k + 1− `

]
−
∑̀
j=1

2(j − 1)!

(
k

j

)[
k − j
k − `

]
+ 2(`− 1)!

(
k

`

)
,

where we use the induction hypothesis and the fact that
[
k − `
k − `

]
= 1. It remains to show

that

(k + 1− `)
[

k
k + 1− `

]
=
∑̀
j=1

(j − 1)!

(
k

j

)[
k − j
k − `

]
.

Using the fact that
[
j
1

]
= (j − 1)! and the following identity, see [36, (6.29)],

[
n

1 +m

](
1 +m

`

)
=
∑
j∈Z

[
j
`

] [
n− j
m

](
n

j

)
,
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3.1 Hermite schemes of order 2

k
` 1 2 3 4 5 6 7

1 2
2 4 2
3 6 6 4
4 8 12 16 12
5 10 20 40 60 48
6 12 30 80 180 288 240
7 14 42 140 420 1008 1680 1440

Table 3.1: Values of the coefficients αk,`, k = 1, . . . , 7, ` = 1, . . . , k.

we conclude (in consideration of the terms that are actually equal to zero)

(k + 1− `)
[

k
k + 1− `

]
=

(
k + 1− `

1

)[
k

k + 1− `

]
=
∑̀
j=1

[
j
1

] [
k − j
k − `

](
k

j

)

=
∑̀
j=1

(j − 1)!

(
k

j

)[
k − j
k − `

]
.

Based on the previous set of coefficients, for i ∈ Z and k > 0, we define q̃k,i ∈
∏
k−1 as

q̃0,i := 0, q̃k,i(x) :=
k∑

n=1

(−1)nαk,nqk−n,i(x), k > 0, i ∈ Z. (3.8)

As done before, for k > 1, we can write them in the form

q̃k,i(−x) =

k−1∑
n=0

γ̃k,in xn, for some coefficients γ̃k,in ∈ R. (3.9)

Lemma 3.7. We have γ̃k,ik−1 = kγk,ik 6= 0 and γ̃k,in =
∑k−n

j=1 (−1)jαk,jγ
k−j,i
n , for k ∈ N,

i ∈ Z and n = 0, . . . , k − 1.

Proof. By definition of q̃k,i in (3.8), we obtain q̃k,i(−x) =
∑k

n=1(−1)nαk,nqk−n,i(−x).
Thus, the coefficient γ̃k,ik−1, which belongs to the xk−1 term, is given by

γ̃k,ik−1 = −αk,1γk−1,i
k−1 = kγk,ik .
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3 Polynomial reproduction of Hermite schemes

Here the last equality follows by Lemma 3.3. By Lemma 3.4 γk,ik 6= 0. We compute

q̃k,i(−x) =
k∑

n=1

(−1)nαk,n

k−n∑
j=0

γk−n,ij xj

=
k−1∑
j=0

(
k−j∑
n=1

(−1)nαk,nγ
k−n,i
j

)
xj .

This proves the second part of the lemma.

We compare the coefficients of the polynomials qk,i and q̃k,i defined in (3.3) and (3.8).

Proposition 3.8. The coefficients of the polynomials qk,i(x) and q̃k,i(x) satisfy the re-
lation γk,in = 1

n γ̃
k,i
n−1 for all k ∈ N, i ∈ Z and n = 1, . . . , k.

Proof. By Lemma 3.7 the claim of this lemma is equivalent to

γk,in =
1

n

k−n+1∑
j=1

(−1)jαk,jγ
k−j,i
n−1 , for i ∈ Z and n = 1, . . . , k. (3.10)

First, let n = k. Using Lemma 3.3 and the fact that αk,1 = 2k we obtain

γk,ik = −2γk−1,i
k−1 = −1

k
αk,1γ

k−1,i
k−1 .

This proves (3.23) for n = k and all i ∈ Z. Now, let n ∈ {1, . . . , k − 1}. We have

αk,k−n+1 = (−1)k2−n+1
(
nγkn −

k−n∑
j=1

(−1)jαk,jγ
k−j
n−1

)
by Definition 3.5. Using the fact that γn−1

n−1 = (−1)n−12n−1 leads to

nγkn = (−1)k2n−1αk,k−n+1 +
k−n∑
j=1

(−1)jαk,jγ
k−j
n−1

= (−1)k−n+1αk,k−n+1γ
n−1
n−1 +

k−n∑
j=1

(−1)jαk,jγ
k−j
n−1

=
k−n+1∑
j=1

(−1)jαk,jγ
k−j
n−1.

Next, we show that this implies that (3.23) is true for any i ∈ Z. Let n ∈ {1, . . . , k}.
From above for any r ∈ {n, ..., k} we just saw that

rγkr =
k−r+1∑
j=1

(−1)jαk,jγ
k−j
r−1 .
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3.1 Hermite schemes of order 2

Since r
(
r−1
n−1

)
= n

(
r
n

)
, the latter implies that

n

(
r

n

)
γkr =

k−r+1∑
j=1

(−1)jαk,j

(
r − 1

n− 1

)
γk−jr−1 .

Multiplying by (−1)n+r
(
i
2

)r−n
on both sides and summing up for r from n to k gives

n

k∑
r=n

(−1)r+nγkr

(
r

n

)(
i

2

)r−n
=

k∑
r=n

(−1)r+n

k−r+1∑
j=1

(−1)jαk,j

(
r − 1

n− 1

)
γk−jr−1

(
i

2

)r−n
=

k−1∑
r=n−1

k−r∑
j=1

(−1)r+n−1(−1)jαk,j

(
r

n− 1

)
γk−jr

(
i

2

)r−(n−1)


=
k−n+1∑
j=1

(−1)jαk,j

(
k−j∑

r=n−1

(−1)r+n−1

(
r

n− 1

)
γk−jr

(
i

2

)r−(n−1)
)
.

By (3.5) this implies that

γk,in =
1

n

k−n+1∑
j=1

(−1)jαk,jγ
k−j,i
n−1 ,

which concludes the proof.

3.1.3 Polynomial reproduction of Hermite schemes of order d = 2

We are finally in a position to give our algebraic conditions on the mask of a Hermite
subdivision scheme of order d = 2 which ensures polynomial reproduction up to degree
m. The main result is stated below but its proof is split into several Lemmas and
Propositions. Let es,d denote the s-th canonical vector of Rd and 0d ∈ Rd the zero
vector.

Theorem 3.9. Let HA be a Hermite subdivision scheme with parametrisation τ . Then,
HA reproduces constants if and only if

A(−1)e1,2 = 02, (3.11)
A(1)e1,2 = 2e1,2. (3.12)

Moreover, HA reproduces polynomials up to degree m > 1 if and only if it reproduces
constants and

A(k)(−1)e1,2 +

k∑
`=1

αk,` ·A(k−`)(−1)e2,2 = 02, (3.13)

A(k)(1)e1,2 +

k∑
`=1

α̃1
k,` ·A(k−`)(1)e2,2 =

[
2qk,2τ (− τ

2 )
q̃k,2τ (− τ

2 )

]
, (3.14)

for all k = 1, . . . ,m with α̃1
k,` = (−1)`αk,`, ` = 1, . . . , k, and αk,` as in Definition 3.5.
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3 Polynomial reproduction of Hermite schemes

We prove the first part of Theorem 3.9 by presenting it as a separated Lemma. First,
some important observations are made.

Remark 3.10. It is worthwhile to remark that:

1) Up to the reproduction of linear polynomials the algebraic conditions given in the
theorem above are also given in [66], though presented in a different way.

2) The entries of the right-hand side (3.14) (with the convention
∏−1
r=0 := 1) are

2qk,2τ

(
−τ

2

)
= 2

k−1∏
r=0

(τ − r), q̃k,2τ

(
−τ

2

)
=

k∑
n=1

(−1)nα1
k,n

k−n−1∏
r=0

(τ − r).

3) When m = 1 the previous result allows us to identify the correct parametrisation
corresponding to the choice τ = 1

2(A(1)(1)11 − 2A(0)(1)12).

Lemma 3.11. A Hermite subdivision scheme HA reproduces constants if and only if
(3.11) and (3.12) are satisfied.

Proof. Obviously, the reproduction of constants is equivalent to
∑
j∈Z

Ai−2je1,2 = e1,2 for

all i ∈ Z. Now, from (3.11) and (3.12) we have

2e1,2=(A(1) + A(−1))e1,2 = 2
∑
i∈Z

A2ie1,2 and

2e1,2=(A(1)−A(−1))e1,2 = 2
∑
i∈Z

A2i+1e1,2,

which are equivalent to the previous relation specialised for i even and i odd respectively.

Note that the reproduction of constants does not depend on the chosen parametrisa-
tion. This is not surprising, since it is so in the scalar situation as well, see [9].

Lemma 3.12. Let m > 1. Then, condition (3.13) is satisfied if and only if

A(k)
e (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
e (1)e2,2 =

1

2

(
A(k)(1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)(1)e2,2

)
,

A(k)
o (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
o (1)e2,2 =

1

2

(
A(k)(1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)(1)e2,2

)
,

for all k = 1, . . . ,m. Moreover, condition (3.11) is satisfied if and only if

Ae(1)e1,2 = Ao(1)e1,2 =
1

2
A(1)e1,2.
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3.1 Hermite schemes of order 2

Proof. Let k ∈ {1, . . . ,m}. We have A(k)(z) = A(k)
e (z)+A(k)

o (z) and therefore especially

A(k)(1) = A(k)
e (1) + A(k)

o (1), (3.15)

and

A(k)(−1) = (−1)kA(k)
e (1) + (−1)k+1A(k)

o (1).

So, condition (3.13) is equivalent to

A(k)
e (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
e (1)e2,2 = A(k)

o (1)e1,2 +
k∑
`=1

(−1)`αk,`A(k−`)
o (1)e2,2.

(3.16)
Now, using (3.15) we write

A(k)(1)e1,2 +
k∑
`=1

(−1)`αk,`A(k−`)(1)e2,2

= A(k)
e (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
e (1)e2,2 + A(k)

o (1)e1,2 +
k∑
`=1

(−1)`αk,`A(k−`)
o (1)e2,2,

which, together with (3.16), proves the first part of the Lemma. Condition (3.11) is
equivalent to Ae(1)e1,2 = Ao(1)e1,2 and since A(1) = Ae(1) + Ao(1), the claim is
proved.

In the following we make use of the polynomials qk,i and q̃k,i introduced in the previous
section. First, we unite them into the vector polynomial

Qk,i(x) :=

[
qk,i(x)
q̃k,i(x)

]
with k > 0, i ∈ Z.

Proposition 3.13. Let m > 1. Then, conditions (3.13) and (3.14) are satisfied if and
only if for all i ∈ Z and τ ∈ R,∑

j∈Z
Ai−2jQk,i+2τ (−j − τ) =

[
qk,i+2τ

(−i−τ
2

)
1
2 q̃k,i+2τ

(−i−τ
2

)] , k = 1, . . . ,m. (3.17)

Especially, conditions (3.11) and (3.12) are satisfied if and only if
∑

j∈ZAi−2jQ0,i(−j) =
e1,2 for all i ∈ Z.

Proof. Observe that by definition of the class of polynomials in (3.3) we obtain

A(k)
e (1) =

∑
j∈Z

qk,2(j−t)(t)A2j =
∑
j∈Z

qk,2t+2τ (−j − τ)A2(t−j),

A(k)
o (1) =

∑
j∈Z

qk,2(j−t)+1(t)A2j+1 =
∑
j∈Z

qk,2t+2τ+1(−j − τ)A2(t−j)+1,
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for all t ∈ Z and τ ∈ R. Let i ∈ 2Z with i = 2s for some s ∈ Z. This observation together
with Lemma 3.12 implies∑
j∈Z

Ai−2jQk,i+2τ (−j − τ) =
∑
j∈Z

A2(s−j)Qk,2s+2τ (−j − τ)

=
∑
j∈Z

qk,2s+2τ (−j − τ)A2(s−j)e1,2 +
∑
j∈Z

q̃k,2s+2τ (−j − τ)A2(s−j)e2,2

=
∑
j∈Z

qk,2s+2τ (−j − τ)A2(s−j)e1,2 +
∑
j∈Z

k∑
`=1

(−1)`αk,`qk−`,2s+2τ (−j − τ)A2(s−j)e2,2

= A(k)
e (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
e (1)e2,2

=
1

2

(
A(k)(1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)(1)e2,2

)
=

[
qk,i+2τ

(−i−τ
2

)
1
2 q̃k,i+2τ

(−i−τ
2

)] ,
showing the claim for i even. Similarly, for odd i ∈ Z, i = 2s+ 1, we obtain that∑
j∈Z

Ai−2jQk,i+2τ (−j − τ) =
∑
j∈Z

A2(s−j)+1Qk,2s+2τ+1(−j − τ)

=
∑
j∈Z

qk,2s+2τ+1(−j − τ)A2(s−j)+1e1,2 +
∑
j∈Z

q̃k,2s+2τ+1(−j − τ)A2(s−j)+1e2,2

=
∑
j∈Z

qk,2s+2τ+1(−j − τ)A2(s−j)+1e1,2

+
∑
j∈Z

k∑
`=1

(−1)`αk,`qk−`,2s+2τ+1(−j − τ)A2(s−j)+1e2,2

= A(k)
o (1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)
o (1)e2,2

=
1

2

(
A(k)(1)e1,2 +

k∑
`=1

(−1)`αk,`A(k−`)(1)e2,2

)
=

[
qk,i+2τ

(−i−τ
2

)
1
2 q̃k,i+2τ

(−i−τ
2

)] .
The second part of the Proposition follows by Lemma 3.11 and q0,i = 1 and q̃0,i = 0.

Note that the right-hand side (3.17) does not depend on i ∈ Z since qk,i+2τ

(−i−τ
2

)
=

qk,2τ
(−τ

2

)
.
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Proposition 3.14. Let HA be a Hermite subdivision scheme with parametrisation τ and
m > 0. Then, HA satisfies conditions (3.11) – (3.12) and conditions (3.13) – (3.14) for
all k = 1, . . . ,m, if and only if∑

j∈Z
Ai−2je1,2 = e1,2, i ∈ Z,

∑
j∈Z

Ai−2j

[
(j + τ)k

k(j + τ)k−1

]
=

1

2k

[
(i+ τ)k

k(i+ τ)k−1

]
, k = 1, . . . ,m, i ∈ Z, (3.18)

with the convention that (3.18) (resp. (3.13) – (3.14)) is empty if m = 0.

Proof. We prove the proposition by induction over m. The case m = 0 follows by Lemma
3.11. Assume that the statement is true for some m − 1 and all k = 1, . . . ,m − 1. The
proof uses the representations of the polynomials qk,`(x) and q̃k,`(x) as in (3.4) and (3.9).
For i ∈ Z, using Proposition 3.13 we obtain[

qm,i+2τ

(−i−τ
2

)
1
2 q̃m,i+2τ

(−i−τ
2

)] =
∑
j∈Z

Ai−2jQm,i+2τ (−j − τ)

=
∑
j∈Z

Ai−2jqm,i+2τ (−j − τ)e1,2 +
∑
j∈Z

Ai−2j q̃m,i+2τ (−j − τ)e2,2

=
∑
j∈Z

Ai−2j

m∑
n=0

γm,i+2τ
n

[
(j + τ)n

0

]
+
∑
j∈Z

Ai−2j

m−1∑
n=0

γ̃m,i+2τ
n

[
0

(j + τ)n

]

= γm,i+2τ
m

∑
j∈Z

Ai−2j

[
(j + τ)m

m(j + τ)m−1

]

+
∑
j∈Z

Ai−2j

m−1∑
n=0

γm,i+2τ
n

[
(j + τ)n

0

]
+
∑
j∈Z

Ai−2j

m−2∑
n=0

γ̃m,i+2τ
n

[
0

(j + τ)n

]
︸ ︷︷ ︸

(∗)

.

Note that we used the relation γ̃m,i+2τ
m−1 = mγm,i+2τ

m to obtain the last equality above, see
Proposition 3.8.
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Before we apply the induction hypothesis to (∗) we apply Proposition 3.8 again and
get ∑

j∈Z
Ai−2j

m−1∑
n=0

γm,i+2τ
n

[
(j + τ)n

0

]
+
∑
j∈Z

Ai−2j

m−2∑
n=0

γ̃m,i+2τ
n

[
0

(j + τ)n

]
= γm,i+2τ

0

∑
j∈Z

Ai−2je1,2

+
m−2∑
n=0

γm,i+2τ
n+1

∑
j∈Z

Ai−2j

[
(j + τ)n+1

0

]
+ γ̃m,i+2τ

n

∑
j∈Z

Ai−2j

[
0

(j + τ)n

]
= γm,i+2τ

0

∑
j∈Z

Ai−2je1,2 +
m−2∑
n=0

γm,i+2τ
n+1

∑
j∈Z

Ai−2j

[
(j + τ)n+1

(n+ 1)(j + τ)n

]
.

Now we use the assumption that the scheme reproduces constants for the first part
of the right-hand side and apply the induction hypothesis for k = 1, . . . ,m − 1 to the
second part. Therefore,∑
j∈Z

Ai−2j

m−1∑
n=0

γm,i+2τ
n

[
(j + τ)n

0

]
+
∑
j∈Z

Ai−2j

m−2∑
n=0

γ̃m,i+2τ
n

[
0

(j + τ)n

]

= γm,i+2τ
0 e1,2 +

m−2∑
n=0

1

2n+1
γm,i+2τ
n+1

[
(i+ τ)n+1

(n+ 1)(i+ τ)n

]
︸ ︷︷ ︸

(∗∗)

.

The next step is to rewrite the sum (∗∗) by first applying Proposition 3.8 and then using
the definition of the polynomial qm,i (resp. q̃m,i) as in (3.4) (resp. (3.9)). So,

γm,i+2τ
0 e1,2 +

m−2∑
n=0

1

2n+1
γm,i+2τ
n+1

[
(i+ τ)n+1

(n+ 1)(i+ τ)n

]

= γm,i+2τ
0 e1,2 +

m−1∑
n=0

γm,i+2τ
n+1

( i+ τ

2

)n+1
e1,2 +

1

2

m−1∑
n=0

γ̃m,i+2τ
n

( i+ τ

2

)n
e2,2

− γm,i+2τ
m

( i+ τ

2

)m
e1,2 −

1

2
γ̃m,i+2τ
m−1

( i+ τ

2

)m−1
e2,2

= γm,i+2τ
0 e1,2 + qm,i+2τ

(
− i+ τ

2

)
e1,2 − γm,i+2τ

0 e1,2 +
1

2
q̃m,i+2τ

(
− i+ τ

2

)
e2,2

− γm,i+2τ
m

( i+ τ

2

)m
e1,2 −

1

2
γ̃m,i+2τ
m−1

( i+ τ

2

)m−1
e2,2

= qm,i+2τ

(
− i+ τ

2

)
e1,2 +

1

2
q̃m,i+2τ

(
− i+ τ

2

)
e2,2 − γm,i+2τ

m

( i+ τ

2

)m
e1,2

− 1

2
γ̃m,i+2τ
m−1

( i+ τ

2

)m−1
e2,2.
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We apply Proposition 3.8 to the right-hand side above to obtain

γm,i+2τ
0 e1,2 +

m−2∑
n=0

1

2n+1
γm,i+2τ
n+1

[
(i+ τ)n+1

(n+ 1)(i+ τ)n

]
=

[
qm,i+2τ

(−i−τ
2

)
1
2 q̃m,i+2τ

(−i−τ
2

)]− γm,i+2τ
m

(1

2

)m [ (i+ τ)m

m(i+ τ)m−1

]
.

Summarising our previous computations leads to

γm,i+2τ
m

∑
j∈Z

Ai−2j

[
(j + τ)m

m(j + τ)m−1

]
= γm,i+2τ

m

(1

2

)m [ (i+ τ)m

m(i+ τ)m−1

]
.

Since γm,i+2τ
m 6= 0, this is equivalent to∑

j∈Z
Ai−2j

[
(j + τ)m

m(j + τ)m−1

]
=
(1

2

)m [ (i+ τ)m

m(i+ τ)m−1

]
,

which concludes the induction step.

Remark 3.15. If m = 1 the sums in the proof above which are not defined are assumed
to be zero. The conclusion of the proposition in this case is still true.

We are finally in a position to prove Theorem 3.9.

Proof of Theorem 3.9. We prove the statement by induction over the degree m of the
polynomials. For m = 0 we refer to Lemma 3.11. So, for m > 1 assume the statement is
true for somem−1 and all k = 0, . . . ,m−1 and show that the Hermite subdivision scheme
HA reproduces polynomials of degree m. Let p(x) = xm + g(x) with g(x) ∈ ∏m−1. By
Definition 3.1 we have to show that for n ∈ N and i ∈ Z,

fn(i) =

[
p((i+ τ)/2n)
p′((i+ τ)/2n)

]
=⇒ fn+1(i) =

[
p((i+ τ)/2n+1)
p′((i+ τ)/2n+1)

]
.

Let n ∈ N and i ∈ Z. By (3.1) we have

Dn+1fn+1(i) =
∑
j∈Z

Ai−2jDn

[
((j + τ)/2n)m

m((j + τ)/2n)m−1

]
+
∑
j∈Z

Ai−2jDn

[
g((j + τ)/2n)
g′((j + τ)/2n)

]
.

This is equivalent to

2nmDn+1fn+1(i) =
∑
j∈Z

Ai−2j

[
(j + τ)m

m(j + τ)m−1

]
+ 2nm

∑
j∈Z

Ai−2jDn

[
g((j + τ)/2n)
g′((j + τ)/2n)

]
.

Now, we apply Proposition 3.14 to the first summand of the right-hand side above and
the induction hypothesis to the second. We obtain

2nmDn+1fn+1(i) =
1

2m

[
(i+ τ)m

m(i+ τ)m−1

]
+ 2nmDn+1

[
g((i+ τ)/2n+1)
g′((i+ τ)/2n+1)

]
.
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3 Polynomial reproduction of Hermite schemes

So, we see that

Dn+1fn+1(i) =

[
2−(n+1)m(i+ τ)m + g((i+ τ)/2n+1)

2−(n+1)mm(i+ τ)m−1 + 2−(n+1)g′((i+ τ)/2n+1)

]
.

This is equivalent to

fn+1(i) =

[
((i+ τ)/2n+1)m + g((i+ τ)/2n+1)

m((i+ τ)/2n+1)m−1 + g′((i+ τ)/2n+1)

]
,

proving the claim.

3.1.4 Examples of Hermite schemes of order d = 2

We give some examples to illustrate how to use the algebraic conditions obtained in
Theorem 3.9. Moreover, we show how to use our results to modify known Hermite
schemes such that they reproduce polynomials of higher degree.

Interpolatory scheme

We start with the interpolatory Hermite subdivision scheme HA introduced by Merrien
in [57]. The non-zero coefficients of its mask are given by

A−1 =

[
1
2 λ

1
2(1− µ) µ

4

]
, A0 =

[
1 0
0 1

2

]
, A1 =

[
1
2 −λ

1
2(µ− 1) µ

4

]
.

It is known that the scheme reproduces polynomials of degree 1 for all λ, µ ∈ R. It
reproduces Π2 if and only if λ = −1

8 . Moreover, it also reproduces polynomials of degree
3, if additionally µ = −1

2 .
We check our conditions of Theorem 3.9. Immediately, we get that HA satisfies con-

ditions (3.11) and (3.12) and therefore reproduces constants. For the following compu-
tations we use the values of the coefficients αk,` as given in Table 3.1.
For d = k = 1 the equations (3.13) and (3.14) of Theorem 3.9 we get

A(1)(−1)e1,2 + 2A(−1)e2,2 =

[
0

−µ− 1

]
+ 2

[
0

−µ
2 + 1

2

]
= 02,

A(1)(1)e1,2 − 2A(1)e2,2 =

[
0

µ− 1

]
− 2

[
0

µ
2 + 1

2

]
= −2e2,2.

Thus, the scheme reproduces Π1 for all parameter values λ and µ. If we consider the
case of quadratic polynomials, we obtain the additional equations

A(2)(−1)e1,2 + 4A(1)(−1)e2,2 + 2A(−1)e2,2 =

[
−1− 8λ

0

]
, (3.19)

A(2)(1)e1,2 − 4A(1)(1)e2,2 + 2A(1)e2,2 = 2e2,2.
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3.1 Hermite schemes of order 2

So, by (3.19) and the results of Theorem 3.9, we see that the subdivision scheme HA
reproduces quadratic polynomials if and only if λ = −1

8 . We compute (3.13) and (3.14)
for d = k = 3 and assume that λ = −1

8 . We get

A(3)(−1)e1,2 + 6A(2)(−1)e2,2 + 6A(1)(−1)e2,2 + 4A(−1)e2,2 =

[
0

−1− 2µ

]
,

A(3)(1)e1,2 − 6A(2)(1)e2,2 + 6A(1)(1)e2,2 − 4A(1)e2,2 =

[
0

−5− 2µ

]
.

According to Theorem 3.9, we conclude that the scheme reproduces cubic polynomials if
and only if additionally µ = −1

2 . Theorem 3.9 also tells us that the Hermite scheme HA
does not reproduces polynomials of degree 4 since

A(4)(−1)e1,2 + 8A(3)(−1)e2,2 + 12A(2)(−1)e2,2

+ 16A(1)(−1)e2,2 + 12A(−1)e2,2 = e1,2 6= 02.

Next, we use our algebraic conditions to obtain a modified Hermite subdivision scheme
which reproduces polynomials of higher degree by only slightly increasing the support of
the scheme. Consider the interpolatory Hermite subdivision scheme HĀ with non-zero
coefficients

Ā−3 =

[
b1 b2
b3 b4

]
, Ā−1 =

[
a1 a2

a3 a4

]
, Ā0 =

[
1 0
0 1

2

]
,

Ā1 =

[
a1 −a2

−a3 a4

]
, Ā3 =

[
b1 −b2
−b3 b4

]
,

for some real numbers ai, bi, i = 1, . . . , 4. By Theorem 3.9 these coefficients have to
satisfy the following linear system in order to reproduce polynomials up to degree 5

b1 =
1

128
− 3b2, b4 =

1

1408
− 384

1408
b3, a1 =

1

2
− b1,

a3 = 24b4 + 9b3 +
3

4
, a4 =

1

4
− b4 −

1

2
a3 −

3

2
b3, a2 = −1

8
− 3b2 − 2b1.

Choosing the values b3 = 0 and b2 = 1
384 leads to a1 = 1

2 , a2 = −17/128 ≈ −0.13,
a3 = 135/176 ≈ 0.77 and a4 = −189/1408 ≈ −0.13. With this choice of coefficients the
non-zero matrices Ā−1, Ā0 and Ā1 of the mask of the scheme HĀ are closely related to
the corresponding ones of HA. See Figure 3.2 for the basic limit functions of the scheme
HĀ.

de Rham transform of a Hermite scheme

We now consider the de Rham transform of the interpolatory Hermite scheme HA as
introduced in [10, 22]. This scheme is a dual scheme, meaning that τ = −1

2 .
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test

�2 �1 0 1 2

0

0.2

0.4

0.6

0.8

1

�2 �1 0 1 2

�0.05

0

0.05

�2 �1 0 1 2

�2

0

2

�2 �1 0 1 2

0

0.5

1

1

Figure 3.2: Left column: Basic limit function and derivative of the interpolatory Hermite
scheme HĀ introduced in Section 3.1.4 for initial data e1,2 at 0 and 02 else.
Right column: Basic limit function and derivative of the interpolatory Her-
mite scheme HĀ introduced in Section 3.1.4 for initial data e2,2 at 0 and 02

else.

For λ, µ ∈ R the non-zero matrices of its mask (for simplicity again denoted by Ai)
are given by

A−2 =
1

8

[
2 + 4λ(1− µ) 4λ+ 2λµ
4− 2µ− 2µ2 µ2 + 8λ(1− µ)

]
,

A−1 =
1

8

[
6− 4λ(1− µ) 8λ− 2λµ
4− 2µ− 2µ2 µ2 − 8λ(1− µ) + 2µ

]
,

A0 =
1

8

[
6− 4λ(1− µ) −8λ+ 2λµ
−4 + 2µ+ 2µ2 µ2 − 8λ(1− µ) + 2µ

]
,

A1 =
1

8

[
2 + 4λ(1− µ) −4λ+−2λµ
−4 + 2µ+ 2µ2 µ2 + 8λ(1− µ)

]
.

We see that the scheme reproduces constants since it satisfies (3.11) and (3.12). We
obtain

A(1)(−1)e1,2 + 2A(−1)e2,2 =
1

8

[
16λ(1− µ)

0

]
+

2

8

[
−8λ+ 8λµ

0

]
= 02

A(1)(1)e1,2 − 2A(1)e2,2 =
1

8

[
−8

−16 + 8µ+ 8µ2

]
− 2

8

[
0

4µ2 + 4µ

]
=

[
−1
−2

]
.

Since 2q1,2τ

(
− τ

2

)
= −1 and q̃1,2τ

(
− τ

2

)
= −2 we conclude that the scheme reproduces
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3.2 Hermite schemes of any order

linear polynomials by Theorem 3.9. Next, we check if the scheme also reproduces poly-
nomials of degree 2. By Table 3.1 we have α2,1 = 4 and α2,2 = 2. We compute
2q2,2τ (− τ

2 ) = 3
2 and q̃2,2τ (− τ

2 ) = 4. According to Theorem 3.9 we have to check if the
scheme satisfies

A(2)(−1)e1,2 + 4A(1)(−1)e2,2 + 2A(−1)e2,2 = 02,

A(2)(1)e1,2 − 4A(1)(1)e2,2 + 2A(1)e2,2 =

[
3
2
4

]
,

in order to decide whether it reproduces
∏

2 or not. Computations lead to

A(2)(−1)e1,2 + 4A(1)(−1)e2,2 + 2A(−1)e2,2 =

[
0

2− 2µ+ 16λ− 16λµ

]
,

A(2)(1)e1,2 − 4A(1)(1)e2,2 + 2A(1)e2,2 =

[
3 + 12λ

4

]
.

We conclude that the scheme reproduces polynomials up to degree 2 if and only if λ = −1
8 .

Similar computations for the case of cubic polynomials show that the choice of µ = −1
2

leads to the reproduction of cubic polynomials.

3.2 Hermite schemes of any order

In this section, we extend Theorem 3.9 to Hermite schemes of any order d, meaning we
use input data consisting of function values and its first d−1 derivatives. The crucial step
to generalise the previous result is to define now d classes of polynomials (generalising
q̃k,i, see (3.8)). Therefore, we need suitable coefficients, according to Definition 3.5,
which should be computable explicitly. Otherwise, it would be hard to use the obtained
algebraic conditions in practise.

The new results of this section are based on the publication

S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order, sub-
mitted, 2019.

We use the same notation as in the previous section with one modification: The
class of polynomials q̃k,i will be denoted by qk,i,1 since this notation fits better with the
generalisation. In Section 3.2.1 we define and analyse crucial auxiliary polynomials while
in Section 3.2.2 the algebraic results are presented.

3.2.1 Analysis of auxiliary polynomials

To prove our main Theorem 3.19 we use the same strategy as presented in the previous
section. We briefly recall the definition of the class of polynomials qk,i which is along the
same lines as in Section 3.1.
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3 Polynomial reproduction of Hermite schemes

Polynomials qk

We recall the definition of the polynomials qk by

q0(x) := 1, qk(x) :=
k−1∏
r=0

(2x− r), k > 0.

In the monomial base we write

qk(−x) =

k∑
n=0

γknx
n, for γkn = 2n(−1)k

[
k
n

]
∈ R.

Let i ∈ Z. Consider the polynomials

q0,i(x) := 1, qk,i(x) := qk

(
x+

i

2

)
=

k−1∏
r=0

(2x+ i− r), k > 0,

which can also be written in terms of the monomial base as

qk,i(−x) =

k∑
n=0

γk,in xn, for some coefficients γk,in ∈ R.

Polynomials qk,i,s−1

This section contains the crucial modifications needed to extend the main result of the
previous section to Hermite schemes of any order. To be precise, we generalise the
definitions of the polynomials q̃k,i. Therefore, we first define some families of coefficients
αk,s−1,s−1 which are a direct extension of those given in Definition 3.5. In particular,
αk,s−1,1 = αk,s−1.
We underline that, throughout this section we let

s, k ∈ N with k > s− 1, s > 2 with i ∈ Z. (3.20)

Definition 3.16. We define

αk,s−1,s−1 := 2s−1
s−2∏
m=0

(k −m),

αk,k−n+s−1,s−1 := (−1)k2−n+s−1

 s−2∏
m=0

(n−m)γkn −
k−n+s−2∑
j=s−1

(−1)jαk,j,s−1γ
k−j
n−s+1


for n = k − 1, . . . , s− 1.

Table 3.2 presents some values of αk,`,2. Since γkn = 2n(−1)k
[
k
n

]
we can write
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3.2 Hermite schemes of any order

k
` 2 3 4 5 6

2 8
3 24 24
4 48 96 88
5 80 240 440 400
6 120 480 1320 2400 2192

Table 3.2: Values of the coefficients αk,`,2 for k = 2, . . . , 6 and ` = 2, . . . , k.

αk,k−n+s−1,s−1 as

αk,k−n+s−1,s−1 = 2s−1
s−2∏
m=0

(n−m)

[
k
n

]
−
k−n+s−2∑
j=s−1

αk,j,s−1

[
k − j

n− s+ 1

]
(3.21)

for n = k − 1, . . . , s− 1.

Lemma 3.17. For k, s as in (3.20), we have αk,`,s−1 = 2s−1(s− 1)!

[
`

s− 1

](
k

`

)
for all

` = s− 1, . . . , k.

Proof. The proof works by induction on `. For ` = s − 1 the statement is true by
Definition 3.16 and the fact that

2s−1(s− 1)!

[
s− 1
s− 1

](
k

s− 1

)
= 2s−1(s− 1)!

(
k

s− 1

)
= 2s−1

s−2∏
m=0

(k −m).

Assume that the statement is true for some ` − 1. We prove it for `. Due to (3.21) we
have

αk,`,s−1 = 2s−1
s−2∏
m=0

(k + s− 1− `−m)

[
k

k + s− 1− `

]
−

`−1∑
j=s−1

αs−1
k,j

[
k − j
k − `

]

= 2s−1
s−2∏
m=0

(k + s− 1− `−m)

[
k

k + s− 1− `

]

−
∑̀
j=s−1

2s−1(s− 1)!

[
j

s− 1

](
k

j

)[
k − j
k − `

]
+ 2s−1(s− 1)!

[
`

s− 1

](
k

`

)

where we use the induction hypothesis and the fact that
[
k − `
k − `

]
= 1. We have to prove

that
s−2∏
m=0

(k + s− 1− `−m)

[
k

k + s− 1− `

]
=
∑̀
j=s−1

(s− 1)!

[
j

s− 1

](
k

j

)[
k − j
k − `

]
.
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We have

1

(s− 1)!

s−2∏
m=0

(k + s− 1− `−m)

[
k

k + s− 1− `

]
=

(
k + s− 1− `

s− 1

)[
k

k + s− 1− `

]

=
∑̀
j=s−1

[
j

s− 1

] [
k − j
k − `

](
k

j

)
using the identity [

n
`+m

](
`+m

`

)
=
∑
k

[
k
`

] [
n− k
m

](
n

k

)
given for example in [36, (6.29)].

For k, s as in (3.20), i ∈ N, we introduce the polynomials

qk,i,s−1(x) :=
k∑

n=s−1

(−1)nαk,n,s−1qk−n,i(x) (3.22)

and q`,i,s−1 := 0 for all ` = 0, . . . , s− 2. In the monomial base we write

qk,i,s−1(−x) =

k−(s−1)∑
n=0

γk,i,s−1
n xn

for some coefficients γk,i,s−1
n ∈ R.

Note that the coefficients γk,in of the previous section correspond to γk,i,1n now.

Proposition 3.18. The coefficients of the polynomials qk,i,s−1(x) and qk,i(x) satisfy the
relation

∏s−2
m=0(n−m)γk,in = γk,i,s−1

n−(s−1) for all i ∈ Z and n = s− 1, . . . , k.

Proof. The claim of the proposition is equivalent to

s−2∏
m=0

(n−m)γk,in =
k−n+s−1∑
j=s−1

(−1)jαk,j,s−1γ
k−j,i
n−s+1 for i ∈ Z and n = s− 1, . . . , k. (3.23)

To see this, we first use the definition of qk,i,s−1 as in (3.22) and then write qk−n,i in its
canonical form. This leads to

qk,i,s−1(−x) =
k∑

n=s−1

(−1)nαk,n,s−1qk−n,i(−x) =

k−s+1∑
j=0

(
k−j∑

n=s−1

(−1)nαk,n,s−1γ
k−n,i
j

)
xj .

Thus, we have γk,i,s−1
j =

∑k−j
n=s−1(−1)nαk,n,s−1γ

k−n,i
j which proves that (3.23) is equiva-

lent to the claim of the Proposition. First, let n = k. Using Lemma 3.3 we obtain

γk,ik = (−2)s−1γk−s+1,i
k−s+1 .
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Moreover, by the definition of αk,s−1,s−1 we have

αk,s−1,s−1γ
k−s+1,i
k−s+1 =

s−2∏
m=0

(k −m)(−1)s−12s−1γk−s+1,i
k−s+1 .

This proves (3.23) for n = k and all i ∈ Z.
Now, let n ∈ {s− 1, . . . , k − 1}. Definition 3.16 and the fact that

γn−s+1
n−s+1 = (−1)n−s+12n−s+1

lead to

s−2∏
m=0

(n−m)γkn = (−1)k2n−s+1αk,k−n+s−1,s−1 +
k−n+s−2∑
j=s−1

(−1)jαk,j,s−1γ
k−j
n−s+1

= (−1)k−n+s−1αk,k−n+s−1,s−1γ
n−s+1
n−s+1 +

k−n+s−2∑
j=s−1

(−1)jαk,j,s−1γ
k−j
n−s+1

=
k−n+s−1∑
j=s−1

(−1)jαk,j,s−1γ
k−j
n−s+1.

Next, we show that this implies that (3.23) is true for any i ∈ Z. We still have n ∈
{s− 1, . . . , k}. From above we know that for any r ∈ {n, ..., k} we have

s−2∏
m=0

(r −m)γkr =

k−r+s−1∑
j=s−1

(−1)jαk,j,s−1γ
k−j
r−s+1.

Since

s−2∏
m=0

(n−m)

(
r

n

)
=

s−2∏
m=0

(r −m)

(
r − s+ 1

n− s+ 1

)
,

the latter implies that

s−2∏
m=0

(n−m)

(
r

n

)
γkr =

k−r+s−1∑
j=s−1

(−1)jαk,j,s−1

(
r − s+ 1

n− s+ 1

)
γk−jr−s+1.
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Multiplying by the term (−1)n+r
(
i
2

)r−n on both sides and summing up r from n to k
leads to
s−2∏
m=0

(n−m)

k∑
r=n

(−1)r+nγkr

(
r

n

)(
i

2

)r−n

=
k∑

r=n

(−1)r+n

k−r+s−1∑
j=s−1

(−1)jαk,j,s−1

(
r − s+ 1

n− s+ 1

)
γk−jr−s+1

(
i

2

)r−n
=

k−s+1∑
r=n−s+1

 k−r∑
j=s−1

(−1)r+n−s+1+jαk,j,s−1

(
r

n− s+ 1

)
γk−jr

(
i

2

)r−(n−s+1)


=

k−n+s−1∑
j=s−1

(−1)jαk,j,s−1

(
k−j∑

r=n−s+1

(−1)r+n−s+1

(
r

n− s+ 1

)
γk−jr

(
i

2

)r−(n−s+1)
)
.

By Lemma 3.4 this implies that

s−2∏
m=0

(n−m)γk,in =

k−n+s−1∑
j=s−1

(−1)jαk,j,s−1γ
k−j,i
n−s+1,

which concludes the proof.

3.2.2 Proof of the main theorem

We use the same proof technics as in the previous section to show our main theorem.

Theorem 3.19. Let HA denote a Hermite subdivision scheme of order d > 2. Then,
HA reproduces constants if and only if

A(−1)e1,d = 0d, (3.24)
A(1)e1,d = 2e1,d. (3.25)

Moreover, HA reproduces polynomials up to degree m > 1 if and only if it reproduces
constants and

A(k)(−1)e1,d +
d∑
s=2

(
k∑

`=s−1

αk,`,s−1 ·A(k−`)(−1)es,d

)
= 0d, (3.26)

A(k)(1)e1,d +
d∑
s=2

(
k∑

`=s−1

α̃k,`,s−1 ·A(k−`)(1)es,d

)
= qd. (3.27)

for all k = 1, . . . ,m with α̃k,`,s−1 = (−1)`αk,`,s−1 , ` = s − 1, . . . , k , with αk,`,s−1 as in

Definition 3.16 and qd := 2D
(
qk,2τ (−τ2 )e1,d +

d∑
s=2

qk,2τ,s−1

(−τ
2

)
es,d
)
.
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3.2 Hermite schemes of any order

Note that the case d = 2 reduces exactly to Theorem 3.9.

Lemma 3.20. A Hermite subdivision scheme HA reproduces constants if and only if
(3.24) and (3.25) are satisfied.

Replacing e1,2 by e1,d in the proof of Lemma 3.11 shows Lemma 3.20.

Lemma 3.21. Let m > 1. Then, condition (3.26) is satisfied if and only if

A(k)
e (1)e1,d +

d∑
s=2

k∑
`=s−1

(−1)`αk,`,s−1A(k−`)
e (1)es,d

=
1

2

(
A(k)(1)e1,d +

d∑
s=2

k∑
`=s−1

(−1)`αk,`,s−1A(k−`)(1)es,d
)
,

A(k)
o (1)e1,d +

d∑
s=2

k∑
`=s−1

(−1)`αk,`,s−1A(k−`)
o (1)es,d

=
1

2

(
A(k)(1)e1,d +

d∑
s=2

k∑
`=s−1

(−1)`αk,`,s−1A(k−`)(1)es,d
)
,

for all k = 1, . . . ,m. Moreover, condition (3.24) is satisfied if and only if

Ae(1)e1,d = Ao(1)e1,d =
1

2
A(1)e1,d.

Summing up s from 2 to d, replacing e1,2 by e1,d and using the proof strategy presented
in Lemma 3.12 show the statement above.
Consider the vector polynomial

Qk,i(x) :=

d∑
s=1

qk,i,s−1(x)es,d with k > 0, i ∈ Z

which consists of our previously defined polynomials qk,i,s−1. To simplify notation we
require qk,i,0 := qk,i.

Proposition 3.22. Let m > 1. Then, conditions (3.26) and (3.27) are satisfied if and
only if for all i ∈ Z and τ ∈ R,∑

j∈Z
Ai−2jQk,i+2τ (−j − τ) = DQk,i+2τ

(−i− τ
2

)
k = 1, . . . ,m.

Especially, conditions (3.24) and (3.25) are satisfied if and only if
∑

j∈ZAi−2jQ0,i(−j) =
e1,d for all i ∈ Z.
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Proof. We have A(k)
e (1) =

∑
j∈Z qk,2t+2τ (−j − τ)A2(t−j) for all t ∈ Z and τ ∈ R. Let

i ∈ 2Z with i = 2t for some t ∈ Z. With Lemma 3.21 we obtain∑
j∈Z

Ai−2jQk,i+2τ (−j − τ)

=
∑
j∈Z

qk,2t+2τ (−j − τ)A2(t−j)e1,d +

d∑
s=2

∑
j∈Z

qk,2t+2τ,s−1(−j − τ)A2(t−j)es,d

=
∑
j∈Z

qk,2t+2τ (−j − τ)A2(t−j)e1,d

+
d∑
s=2

k∑
`=s−1

∑
j∈Z

(−1)`αk,`,s−1qk−`,2t+2τ (−j − τ)A2(t−j)es,d

=
1

2

(
A(k)(1)e1,d +

d∑
s=2

k∑
`=s−1

(−1)`αk,`,s−1A(k−`)(1)es,d
)

= DQk,2τ+i

(−i− τ
2

)
.

For odd i ∈ Z, i = 2t+ 1, the proof works analogously.

Proposition 3.23. Let HA be a Hermite subdivision scheme of order d > 2 with
parametrisation τ and m > 0. Then, HA satisfies conditions (3.24) – (3.25) and condi-
tions (3.26) – (3.27) for all k = 1, . . . ,m, if and only if∑

j∈Z
Ai−2je1,d = e1,d i ∈ Z,

∑
j∈Z

Ai−2j(j + τ)ke1,d +
d∑
s=2

∑
j∈Z

Ai−2j

s−2∏
`=0

(k − `)(j + τ)k−s+1es,d (3.28)

=
1

2k

(
(i+ τ)ke1,d +

d∑
s=2

s−2∏
`=0

(k − `)(i+ τ)k−s+1es,d
)

k = 1, . . . ,m, i ∈ Z,

with the convention that (3.28) (resp. (3.26) – (3.27)) is empty if m = 0.

Proof. The proof works by induction on m. The case m = 0 follows by Lemma 3.20.
Assume that the statement is true for some m− 1 and all k = 1, . . . ,m− 1.
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3.2 Hermite schemes of any order

For i ∈ Z, using Proposition 3.22 we obtain

DQm,i+2τ

(−i− τ
2

)
=
∑
j∈Z

Ai−2jQm,i+2τ (−j − τ)

=
∑
j∈Z

Ai−2jqm,i+2τ (−j − τ)e1,d +
d∑
s=2

∑
j∈Z

Ai−2jqm,i+2τ,s−1(−j − τ)es,d

=
∑
j∈Z

Ai−2j

m∑
n=0

γm,i+2τ
n (j + τ)ne1,d +

d∑
s=2

∑
j∈Z

Ai−2j

m−s+1∑
n=0

γm,i+2τ,s−1
n (j + τ)nes,d

= γm,i+2τ
m

∑
j∈Z

Ai−2j(j + τ)me1,d + γm,i+2τ
m

d∑
s=2

∑
j∈Z

Ai−2j

s−2∏
`=0

(m− `)(j + τ)m−s+1es,d

+
∑
j∈Z

Ai−2j

m−1∑
n=0

γm,i+2τ
n (j + τ)ne1,d +

d∑
s=2

∑
j∈Z

Ai−2j

m−s∑
n=0

γm,i+2τ,s−1
n (j + τ)nes,d︸ ︷︷ ︸

(∗)

.

Here, we used the relation
∏s−2
`=0(m− `)γm,i+2τ

m = γm,i+2τ,s−1
m−s+1 of Proposition 3.18. The

idea now is to rewrite (∗) further before making use of the induction hypothesis. First,
note that

d∑
s=2

m−s∑
n=0

γm,i+2τ,s−1
n

∑
j∈Z

Ai−2j(j + τ)nes,d

=
d∑
s=2

m−1∑
b=s−1

γm,i+2τ,s−1
b−s+1

∑
j∈Z

Ai−2j(j + τ)b−s+1es,d

=

d∑
s=2

m−1∑
n=s−1

s−2∏
`=0

(n− `)γm,i+2τ
n

∑
j∈Z

Ai−2j(j + τ)n−s+1es,d

=
d∑
s=2

m−2∑
n=s−2

s−2∏
`=0

(n+ 1− `)γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n−s+2es,d

=

d∑
s=2

m−2∑
n=0

s−2∏
`=0

(n+ 1− `)γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n−s+2es,d.

Here, the last equality is true because for any n ∈ {0, . . . , s− 3} the occurring summand
is 0 because one of the factors in the product

∏s−2
`=0(n+ 1− `) is for sure 0.

75



3 Polynomial reproduction of Hermite schemes

By Proposition 3.18 we therefore conclude

∑
j∈Z

Ai−2j

m−1∑
n=0

γm,i+2τ
n (j + τ)ne1,d +

d∑
s=2

∑
j∈Z

Ai−2j

m−s∑
n=0

γm,i+2τ,s−1
n (j + τ)nes,d

= γm,i+2τ
0

∑
j∈Z

Ai−2je1,d +
m−2∑
n=0

γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n+1e1,d

+

d∑
s=2

m−2∑
n=0

s−2∏
`=0

(n+ 1− `)γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n−s+2es,d.

We use the induction hypothesis for k = 1, . . . ,m − 1 and the fact that the scheme
reproduces constants to obtain

γm,i+2τ
0

∑
j∈Z

Ai−2je1,d +

m−2∑
n=0

γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n+1e1,d

+
d∑
s=2

m−2∑
n=0

s−2∏
`=0

(n+ 1− `)γm,i+2τ
n+1

∑
j∈Z

Ai−2j(j + τ)n−s+2es,d

= γm,i+2τ
0

∑
j∈Z

Ai−2je1,d +
m−2∑
n=0

γm,i+2τ
n+1

(∑
j∈Z

Ai−2j(j + τ)n+1e1,d

+
d∑
s=2

s−2∏
`=0

(n+ 1− `)
∑
j∈Z

Ai−2j(j + τ)n−s+2es,d

)

= γm,i+2τ
0 e1,d +

m−2∑
n=0

1

2n+1
γm,i+2τ
n+1

(
(i+ τ)n+1e1,d +

d∑
s=2

s−2∏
`=0

(n+ 1− `)(i+ τ)n−s+2es,d

)
︸ ︷︷ ︸

(∗∗)

.

Next, we rewrite the sum (∗∗) and then use the definitions of the polynomial qm,i resp.
qm,i,d−1.
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3.2 Hermite schemes of any order

So,

γm,i+2τ
0 e1,d +

m−2∑
n=0

1

2n+1
γm,i+2τ
n+1

(
(i+ τ)n+1 e1,d +

d∑
s=2

s−2∏
`=0

(n+ 1− `) (i+ τ)n−s+2 es,d

)

= γm,i+2τ
0 e1,d +

m−1∑
n=0

γm,i+2τ
n+1

( i+ τ

2

)n+1
e1,d − γm,i+2τ

m

( i+ τ

2

)m
e1,d

+
d∑
s=2

m−2∑
n=s−2

1

2n+1
γm,i+2τ
n+1

s−2∏
`=0

(
n+ 1− `

)(
i+ τ

)n−s+2
es,d

= γm,i+2τ
0 e1,d +

m−1∑
n=0

γm,i+2τ
n+1

( i+ τ

2

)n+1
e1,d − γm,i+2τ

m

( i+ τ

2

)m
e1,d

+
d∑
s=2

1

2s−1

m−2∑
n=s−2

γm,i+2τ,s−1
n−s+2

( i+ τ

2

)n−s+2
es,d

= γm,i+2τ
0 e1,d +

m−1∑
n=0

γm,i+2τ
n+1

( i+ τ

2

)n+1
e1,d − γm,i+2τ

m

( i+ τ

2

)m
e1,d

+
d∑
s=2

1

2s−1

m−s+1∑
n=0

γm,i+2τ,s−1
n

( i+ τ

2

)n
es,d −

d∑
s=2

1

2s−1
γm,i+2τ,s−1
m−s+1

( i+ τ

2

)m−s+1
es,d

= qm,i+2τ

(−i− τ
2

)
e1,d +

d∑
s=2

1

2s−1
qm,i+2τ,s−1

(−i− τ
2

)
es,d

− γm,i+2τ
m

( i+ τ

2

)m
e1,d −

d∑
s=2

1

2s−1
γm,i+2τ,s−1
m−s+1

( i+ τ

2

)m−s+1
es,d

= qm,i+2τ

(−i− τ
2

)
e1,d +

d∑
s=2

1

2s−1
qm,i+2τ,s−1

(−i− τ
2

)
es,d

− γm,i+2τ
m

( i+ τ

2

)m
e1,d −

d∑
s=2

1

2s−1

s−2∏
`=0

(
m− `

)
γm,i+2τ
m

( i+ τ

2

)m−s+1
es,d

= DQm,i+2τ

(−i− τ
2

)
− γm,i+2τ

m

( i+ τ

2

)m
e1,d −

d∑
s=2

1

2s−1

s−2∏
`=0

(
m− `

)
γm,i+2τ
m

( i+ τ

2

)m−s+1
es,d.

Summarising our computations above shows that (∗) is equal to the last term above.
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Replacing (∗) by this expression leads to

γm,i+2τ
m

∑
j∈Z

Ai−2j(j + τ)me1,d + γm,i+2τ
m

d∑
s=2

∑
j∈Z

Ai−2j

s−2∏
`=0

(m− `)(j + τ)m−s+1es,d

= γm,i+2τ
m

( i+ τ

2

)m
e1,d + γm,i+2τ

m

d∑
s=2

1

2s−1

s−2∏
`=0

(m− `)
( i+ τ

2

)m−s+1
es,d

=
1

2m
γm,i+2τ
m (i+ τ)me1,d +

1

2m
γm,i+2τ
m

d∑
s=2

s−2∏
`=0

(m− `)(i+ τ)m−s+1es,d

Since γm,i+2τ
m 6= 0, this concludes the induction step.

Proof of Theorem 3.19. We prove the statement by induction on m. For m = 0, see
Lemma 3.20. We choose p(x) = xm + g(x) with g(x) a polynomial of degree 6 m − 1.
By (3.1) we have

2nmDn+1fn+1(i) =
∑
j∈Z

Ai−2j

d∑
s=2

s−2∏
`=0

(m− `)(j + τ)m−s+1es,d +
∑
j∈Z

Ai−2j(j + τ)me1,d

+ 2nm
∑
j∈Z

Ai−2jDn
d∑
s=1

g(s−1)
(j + τ

2n

)
es,d.

Applying Proposition 3.23 and the induction hypothesis leads to

Dn+1fn+1(i) = 2−(n+1)m(i+ τ)me1,d + g
( i+ τ

2n+1

)
e1,d

+ 2−(n+1)m
d∑
s=2

s−2∏
`=0

(m− `)(i+ τ)m−s+1es,d + Dn+1
d∑
s=2

g(s−1)
( i+ τ

2n+1

)
es,d.

3.2.3 Example: Interpolatory scheme of order d = 3

Consider the primal and interpolatory Hermite scheme studied in [10]. The non-zero
matrices of its mask are given by

A−1 = D

λ1 λ2 λ3

µ1 µ2 µ3

ε1 ε2 ε3

 , A0 = D, A1 = D

 λ1 −λ2 λ3

−µ1 µ2 −µ3

ε1 −ε2 ε3

 ,
with D = diag(1, 1

2 ,
1
4) and parameters λi, µi, εi ∈ R. It is known that the scheme

reproduces polynomials up to degree 3 if

λ1 =
1

2
, ε1 = 0, µ2 =

1− µ1

2
,

ε3 =
1− ε2

2
, λ3 =

−1− 8λ2

16
, µ3 =

2µ1 − 3

24
. (3.29)
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3.2 Hermite schemes of any order

We use our algebraic conditions presented in Theorem 3.19 to verify this fact.

A(−1)e1,3 =

−2λ1 + 1
0
−2ε1

 = 03,

A(1)e1,3 =

2λ1 + 1
0

2ε1

 = 2e1,3

in order to reproduce constants. This gives the first two relations of (3.29). By Table 3.1
we have α1,1 = 2. By Theorem 3.19 we see that the scheme has to satisfy

A(1)(−1)e1,3 + 2A(−1)e2,3 =

 0
−µ1 − 2µ2 + 1

0

 = 03,

A(1)(1)e1,3 − 2A(1)e2,3 =

 0
−µ1 − 2µ2 − 1

0

 = −2e2,3

to reproduce linear polynomials. But this is the case if and only if µ2 = 1−µ1
2 . We go one

step further and consider the reproduction of quadratic polynomials. Therefore, observe
that α2,1,1 = 4, α2,2,1 = 2 and α2,2,2 = 8, see Tables 3.1 and 3.2. Moreover, q2,i,1(− i

2) = 2
and q2,i,2(− i

2) = 8. So, we obtain the two conditions

A(2)(−1)e1,3 + 4A(1)(−1)e2,3 + 2A(−1)e2,3 + 8A(−1)e3,3

=

 −2λ1 − 8λ2 − 16λ3

−µ1 − 2µ2 + 1
−1

2ε1 − 2ε2 − 4ε3 + 2

 = 03,

A(2)(1)e1,3 − 4A(1)(1)e2,3 + 2A(1)e2,3 + 8A(1)e3,3

=

 2λ1 + 8λ2 + 16λ3

µ1 + 2µ2 + 1
1
2ε1 + 2ε2 + 4ε3 + 2

 =

0
2
4


which are satisfied if and only if ε3 = 1−ε2

2 and λ3 = −1−8λ2
16 as given in (3.29). Now,

we consider the algebraic conditions to reproduce polynomials of degree 3. Observe that
α3,1,1 = α3,2,1 = 6, α3,3,1 = 4 and α3,2,2 = α3,3,2 = 24. Therefore, we get

A(3)(−1)e1,3+6A(2)(−1)e2,3 + 6A(1)(−1)e2,3 + 4A(−1)e2,3

+ 24A(1)(−1)e3,3 + 24A(−1)e3,3 =

 −6λ1 − 24λ2 − 48λ3

−3µ1 − 10µ2 − 24µ3 + 2
−6

4ε1 − 6ε2 − 12ε3 + 6

 = 03,
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3 Polynomial reproduction of Hermite schemes

A(3)(1)e1,3−6A(2)(1)e2,3 + 6A(1)(1)e2,3 − 4A(1)e2,3

+ 24A(1)(1)e3,3 − 24A(−1)e3,3 =

 −6λ1 − 24λ2 − 48λ3

−3µ1 − 10µ2 − 24µ3 − 2
−6

4ε1 − 6ε2 − 12ε3 − 6

 =

 0
−4
−12


which are satisfied if and only if µ3 = 2µ2−3

24 . So, our algebraic conditions coincide
with (3.29).
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