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ABSTRACT: Sensorimotor rhythm-based brain-

computer interfaces (SMR-BCI) may enable patients 

with prolonged disorders of consciousness (PDoC) or 

severe physical impairment to learn to intentionally 

modulate motor cortical neural oscillations. SMR-BCI 

could mitigate the need for movement-dependent 

behavioural responses, hence providing diagnostic 

information and/or communication strategies.  Here, an 

SMR-BCI was evaluated in a three-staged protocol for 

PDoC. Stage I assessed awareness and capacity to 

modulate brain activity intentionally. Stage II facilitated 

SMR-BCI learning via stereo-auditory feedback 

training. Stage III tested use of SMR-BCI to answer 

closed categorized yes/no questions. Out of 14 patients 

with PDoC and locked in syndrome (LIS), eight patients 

showed capacity to modulate brain activity during stage 

I and thus participated in stage II. For practical reasons 

only five of these patients completed stage III. Two 

able-bodied participants were enrolled for 

benchmarking. Five of the eight participants performed 

significantly greater than chance level in 50-100% of 

runs (p<0.05). Average top run performance accuracy 

correlated with diagnoses category. Participants across 

the PDoC spectrum showed capacity to engage with 

SMR-BCI to answer closed questions. 

 

INTRODUCTION 

 

A gold standard assessment tool for Prolonged 

Disorders of Consciousness (PDoC) is yet to be 

realized, and communication strategies are difficult to 

establish. Consciousness requires arousability and 

awareness. Patients with PDoC have altered states of 

consciousness whereby, unresponsive wakefulness 

syndrome (UWS) is defined by clear signs of arousal 

but absence of awareness; minimally conscious state 

(MCS) is defined by preserved arousal level and 

distinguishable yet shifting signs of awareness. An 

individual with locked-in syndrome (LIS) is both 

conscious and aware, yet unable to communicate 

verbally or move. In LIS, usually blinking and vertical 

eye movements are retained and occasionally used to 

communicate [1], [2].  

Standardization of PDoC clinical evaluation has been 

established through response scales such as the Coma 

Recovery Scale-revised (CRS-R) or Wessex Head 

Injury Matrix (WHIM). The CRS-R Scale is composed 

of six sub scales testing: audition, vision, motor, 

oromotor/ verbal, yes-no communication and arousal 

[3]. The WHIM is a 62-item hierarchical scale of 

defined behaviours that are considered to be 

sequentially more advanced [4]. These assessments are 

intended to decipher discrimination and localization 

from reflexive behaviours, and degree of patient 

interaction with environment, to establish the state of 

consciousness. However, since the introduction of 

several behavioural scales (including the 

aforementioned) as recommended by the Royal College 

of Physicians National Clinical Guidelines (RCP NCG) 

[5], misdiagnosis rates are still reportedly ~15-40% 

indicating an enduring unmet need for better assessment 

protocols [6], [7].  

Applying sensorimotor rhythm (SMR)-brain-computer 

interfaces (BCI) to PDoC may augment clinical 

evidence supporting diagnoses and/or increase response 

reliability as a movement-independent communication 

channel. The primary sensorimotor cortex consists of 

topographic mapping dedicated to sensory and motor 

processing of anatomical divisions of the body. The 

SMR denotes localized frequencies in the μ (8–13 Hz) 

or β (15–30 Hz) range of electroencephalography (EEG)  

recorded across the sensorimotor cortices [8]. μ-rhythm 

decreases/ desynchronization is observed contralateral 

to left/right hand motor imagery (MI), similar to 

preparation or execution of movement. Classification of 

different motor imageries through SMR-BCI could 

facilitate discriminatory choice-making, independently 

of motor pathways, yet dependent on purposeful 

modulation of the motor cortex. Based on the premise 

that a PDoC patient is able to achieve above chance 

performance accuracy (AC) in SMR-BCI, it may be 

inferred that the individual has intact short-term 

memory in order to recall instructions, an ability to 

remain attentive for periods, and some degree of 

awareness. Cruse et al. [9], [10] showed 19% (three out 

of 16) UWS and 22% (five out of 23) MCS patients 

were able to perform command following via imagining 

squeezing their right hand or moving their toes in a 

single session. Coyle et al. showed that patients with 

PDoC can modulate visual and auditory feedback when 

learning to control an SMR-BCI and pilot data showing 

response to questions [11]–[13]. 

Here, an SMR-BCI protocol is evaluated in PDoC to 

further evidence its potential to assess awareness, and to 

develop an understanding of the influence multisession, 

SMR stereo-auditory feedback training in preparation 
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for patients to engage with a Q&A system, whereby 

imagined movements are used to answer closed 

questions with known answers. The Q&A paradigm is 

derived from three main influences: a BCI-functional 

near-infrared spectroscopy study in amyotrophic lateral 

sclerosis [14]; the Montreal Cognitive Assessment 

(MOCA) [15]; and  annex 1a of the NCG - Operational 

evaluation of parameters for demonstrating consistent 

functional communication using autobiographical and 

situational questions [5].  

 

MATERIALS AND METHODS 

 

The study involved two able-bodied (AB) participants 

(as a benchmark) and 14 patients: eight with 

unresponsive wakefulness syndrome (UWS), three with 

minimally conscious state (MCS), and three with 

locked-in syndrome (LIS). Two participants with UWS 

were included in previous studies: [13], [16], [17]. The 

study was approved by National Rehabilitation Hospital 

of Ireland and carried out in accordance with the 

Declaration of Helsinki. Proxy-consent was given by 

participants’ families. Trials were conducted in patient 

homes, care homes and hospitals in the Rep. of Ireland. 

EEG was recorded from 14 channels, Fp1, Fp2, F3, Fz, 

F4, C3, Cz, C4, P3, Pz, P4, PO7, Oz, PO8 (g.Nautilaus 

amplifier with active electrodes (g.tec Medical 

Engineering, Austria)) at a sampling rate of 250Hz. The 

reference electrode was fixed on the right earlobe and 

the ground electrode was mounted on the forehead. The 

data were resampled at 125Hz. Bad channels were 

identified and removed via spectrum and kurtosis 

thresholding functions from an EEGLAB toolbox [18]. 

The number of channels removed varied from 0-4 

channels. Data recorded were visually inspected for 

significant artefacts (e.g., eye-blinks). Trials with strong 

artefacts in most of the electrodes were removed.  

Stage I (Session 1) entailed a block design assessment. 

Participants were asked to imagine one movement per 

block, cued with an auditory tone circa every 8s (6 

blocks, 15 trials/block). In Stage II, following 

assessment, real-time stereo-auditory feedback was 

given as broadband (pink) noise or music samples (see 

[17] for details), over 5-10 sessions of 1-4 runs (60 

trials/run, randomized equal number per class) cued 

with voice command e.g., "left", "feet" or "right" to 

matching ear via earphones: cue at 3s, feedback at 4-7s, 

followed by a “relax” cue. Feedback was modulated by 

continually varying the sound's azimuthal position 

between ±90° via imagined movement. Stage III, 

following training with auditory feedback, involved 4-6 

question-answer runs (over 2-5 sessions) of 48 closed 

yes-no questions. Instructions were repeated at the start 

of each run and participants were asked to respond yes 

or no with respective hand/feet imagery. 96 unique 

closed questions were asked in total and were repeated 

across runs. Four question categories were evaluated: 

biographical, situational, basic logic, and numbers and 

letters. The questions and statements posed were 

adapted from the MOCA and NCG for PDOC [5], [15]. 

"Yes" questions had semantically similar "no" questions 

e.g., "You are 33 years old" vs "You are 47 years old". 

Recordings of family members reading questions were 

played back to participants in a timed paradigm. 

Familiar voices were recorded in order to encourage 

participants engagement through self-relevant stimuli 

[19], [20].  A CRS-R and WHIM assessment was 

conducted each day BCI sessions took place with UWS 

and MCS participants. 

     BCI setup: Throughout each stage of the 

experimental paradigm (i.e. assessment, stereo-auditory 

feedback and Q&A) the cue occurred at 3s and the 

window of interest was 3s prior and 5s post cue. During 

Q&A the cue was the end of each question, which lasted 

no longer than 7s. Event related offline peak accuracy 

(AC) was compared to random accuracy (RA) (class 

labels for the trials in the test sets were permuted 

randomly) and offline pre-cue (baseline) accuracy, 

respectively. The AC during the task execution period 

should be significantly higher than RA and the pre-cue 

accuracy (baseline period). Online single-trial 

accuracies were computed too. 

Offline analysis was conducted through a filter bank 

common spatial patterns (FBCSP) framework, detailed 

in [21], to train a classifier to be applied in the auditory 

feedback runs. In this FBCSP framework, the EEG data 

are filtered into 9 frequency bands as shown in Fig. 1, 

and common spatial pattern (CSP) features are extracted 

from each band on a 2s sliding window. The features 

from all the frequency bands are concatenated together, 

and then between 4 and 12 features are selected using 

mutual information. The best individual feature mutual 

information was used as detailed in [21].  

The parameters to be optimized in the FBCSP setup 

used are the number of features selected and CSP filters 

pairs (between 1 to 4 pairs). These parameters are 

optimized in a nested cross-validation (CV): 6-fold-CV 

with an inner 5-folds-CV. A 2s sliding window was 

used (with an 80% overlap) in the task related period of 

the trial. At each window’s position the parameters are 

optimized in the inner 5 folds cross-validation. An 

LDA, trained on the inner folds’ data (i.e., training set 

of the outer fold) with the optimized parameters, is used 

to classify the outer fold test set. For each outer fold, the 

classifier with highest accuracy from different window 

positions is then used to classify the fold’s test set at 

each time point of the trial segment. The resulting 6 

time-courses of accuracy are averaged to get the time-

course of cross-validation accuracy (CVAC). The 

parameters for the FBCSP differ across the 6 folds so 

the fold with highest accuracy is used to determine the 

parameters to be applied online. Using these parameters, 

 
Fig. 1: The FBCSP-based framework. 
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Tab. 1: Patient demographics, overall CRS-R and WHIM average scores, and top run performance accuracy with corresponding 

performance accuracy at 2 seconds during baseline period. UWS-unresponsive wakefulness syndrome, MCS-minimally conscious 

state, LIS-locked-in syndrome, AB-able-bodied, baseline 2s (A), (F), (Q) represent baseline for Assessment, feedback and Q&A runs 

respectively. WHIM score reported is the total number of behaviors observed. 

 

ID Sex Age Type of injury 
Time since 

onset 

(months) 

Av 

CRS-R 

Av 

WHIM 

BCI Top run Performance Accuracy (%) 

Baseline 

2s (A) 
Assess 

Baseline 

2s (F) 
Feedback 

Baseline 

2s (Q) 
Q&A 

1 UWS 

2 UWS 

3 UWS 
4 MCS 

5 MCS 

6 LIS 
7 LIS 

8 LIS 

1AB 

2AB 

M 

M 

M 
M 

F 

F 
M 

F 

M 

M 

34 

34 

29 
49 

56 

34 
28 

27 

20 

23 

Non-traumatic 

Non-traumatic 

Traumatic 
Non-traumatic 

Traumatic 

Non-traumatic 
Traumatic 

Non-traumatic 

- 

- 

192 

103 

74 
23 

35 

11 
25 

36 

- 

- 

5 

3 

5 
11 

18 

- 
- 

- 

- 

- 

4 

3 

4 
16 

17 

- 
- 

- 

- 

- 

55 

61 

58 
53 

67 

52 
71 

70 

61 

65 

63 

61 

69 
66 

80 

60 
73 

78 

69 

78 

62 

57 

47 
52 

57 

50 
58 

40 

45 

52 

72 

76 

73 
73 

80 

88 
75 

68 

98 

88 

- 

- 

54 
- 

52 

52 
58 

56 

42 

50 

- 

- 

69 
- 

77 

81 
67 

88 

79 

79 

Average of BCI Top run Performance Accuracy (%): 61 68 52 79 52 77 

 

the final classifier to be deployed in the online feedback 

setup is trained at a 2s window positioned at the time of 

CVAC peak.  

A permutation test was used to evaluate if the AC 

during the task execution is significantly higher than 

RA with a 95% confidence interval. The RA is 

computed by repeating the 6-fold cross-validation 100 

times, and each time the trials’ labels are randomized. 

This leads to 100 time-courses of random CVAC 

corresponding to 100 permutations. At each time-point 

of non-random CVAC, the probability that the 

classification accuracy is achieved by chance is 

computed using expression (1) as in [22]: 

 
ˆ| { : ( ) ( )} | 1

1

D D ac D ac D
p

n

   



  (1) 

where, D̂ is a set of n-randomized versions D’ of the 

original data D, and ac(D) is the accuracy achieved with 

the non-randomized data D. The computed p is the 

probability that given the permuted data, we can achieve 

accuracy level that is higher or equal to the accuracy 

achieved with non-permuted data. The Null hypothesis 

that classification accuracy was achieved by chance is 

rejected for p < 0.05. The p-value at each time point is 

computed enabling assessment of the time-course of 

CVAC significance. 

     Online feedback setup: For online processing during 

feedback runs, at each sample point, a distance is 

computed from the classifier’s learned weights vector, 

distance referred to as time-varying signed distance 

(TSD) [23] [24]. The TSD value at a given time point t 

during n
th

 trial is given by expression in (2). The 

distance’s sign indicates the classifier’s output label and 

its magnitude measures the classification confidence. 

The magnitude of the TSD indicates how the direction 

and amplitude of the audio feedback (panning to the 

right or left ear). The performance in online auditory 

feedback runs is given by the percentage of the trials 

with TSD’s sign correctly matching the trial’s task 

(class). 

  ( ) ( )

0
n n

t t

Ttsd w a   (2) 

where Tw and 
0

a  are  the slope and bias of the 

discriminant hyperplane, respectively, of our trained 

LDA, 
( )n

t


 is the features vector at the time point t of the 

n
th

 trial. The tsdt is debiased by subtracting the mean of 

tsd for the past 30-35s. 

 

RESULTS 

 

Six patients were withdrawn from the study after stage I 

(assessment stage) as AC was not significantly different 

to baseline (inclusion criteria for stage II). This 

withdrawal was not necessarily based on an inability to 

respond to command: it was difficult to acquire clean 

data from two participants with large frontal and 

bifrontal craniectomies and data contained noise as a 

result of persistent movement artefacts. The remaining 

patients completed study stage II: three UWS, two 

MCS, three LIS (3 Female). Time since condition onset 

varied between 11 months and 16 years (median= 3 

years). For practical reasons, Stage III was only 

completed by one UWS, one MCS and three LIS. 

Clinical data are provided in Tab. 1. The three-staged 

paradigm was validated on two AB participants, whom 

achieved average AC of 77% and 84% across all session 

types. Every run’s peak AC was significantly greater 

than baseline accuracy and RA (p<0.05), aside from 

three runs whereby peak AC was not significantly 

different from baseline accuracy. AB participants 

showed across session improvement, especially 1AB 

with AC increasing to 98%, but then decreasing to 

~78% for Q&A runs (refer to Fig. 4). 3UWS and 5MCS 

both achieved top ACs of 69% and 77% during Q&A 

runs. Every participant was able to achieve above 70% 

accuracy during at least 1 run (refer to Tab. 1), with the 

top average run AC correlated with severity of 

diagnosis i.e., ascending from VS, MCS, LIS through to 

AB participants (Refer to Fig. 3).  Across patients, AC 

did not progressively increase as a function of number 

of training sessions, and the top AC run did not 

necessarily appear in the latter half of total runs 

completed (Refer to Fig. 4).  In five participants 50-

100% of run ACs were significantly greater than RA 

(p<0.05). 53%, 57%, 56% and 100% of runs were 

significantly different from RA in 3UWS, 5MCS, 6LIS, 
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Fig. 5: Example time courses of top performance 

accuracies (AC) of assessment, feedback and Q&A on 

best participants per diagnostic group (top 4 panels), 

green and shaded area indicates mean and variation in 

accuracy from randomly permutated trials. One 

example corresponding ERDS map per participant 

(bottom 4 panels). MI = Motor imagery, left, right 

refers to hand.  

A
C

 (
%

) 
A

C
 (

%
) 

1AB respectively. For Q&A, five participants presented 

significant peak ACs relative to RA (p<0.05) in 50-

100% of runs apart from 6,7LIS (refer to Fig. 4). 

However, Peak AC was significantly different from 

baseline AC in ≥50% of Q&A runs for four participants 

6,8LIS and AB1,2 (p<0.05).  Across participants, on 

average, baseline AC was significantly different from 

RA in 7% of runs. 

Fig. 5 illustrates the time courses of the top AC runs 

across participants from each group/condition: 3UWS, 

5MCS, 6LIS and 1AB, with select corresponding event-

related desynchronization (ERDS) plots. Across these 

runs, AC is at chance level at the start of the trial (cue at 

3s) and increases (deviating from chance level) as the 

participant executes the task. Peak AC during feedback 

runs are maximal and have a similar time course for 

1AB and 6LIS. The maps show the power change with 

respect to the baseline (pre-cue period of 0.2-3s). For 

the MI tasks, activation is expected in electrodes placed 

around the motor cortex (C3, Cz, and C4). The ERDS 

map for 1AB shows clear contralateral activation 

indicated by mu (8-12Hz) rhythm ERD in the electrodes 

mounted around the motor cortex (C3 for right MI and 

C4 for left MI). Patients present task differences for 

ERD/S plots, however these do not conform entirely to 

typical observations expected for MI.  

Average CRS-R and WHIM for UWS and MCS 

patients are shown in Tab. 1. As expected, there is 

strong positive correlation between CRS-R and WHIM 

scores (r=0.88, p<0.0001). Average BCI AC during 

assessment sessions for UWS + MCS was shown to 

have a positive, yet insignificant, correlation to the 

average sessional CRS-R (r=0.4, p>0.05) and WHIM 

scores (r=0.4, p>0.05) (2 tailed Spearman’s rank 

correlation). A weak relationship was observed in 

comparing all average session ACs for UWS+MCS to 

CRS-R (r=0.18, p>0.05) and WHIM scores (r=0.09, 

p>0.05) (2 tailed Spearman’s rank correlation). A 

Spearman’s rank correlation (2-tailed) with average AC 

for MCS patient, showed a positive correlation to CRS-

R scores, r=0.42, with a tendency towards significance, 

p=0.057; and an insignificant correlation to WHIM total 

behavior scores at the participant level r=0.07, p>0.05. 

 

DISCUSSION 

 

We sought to determine if AC could be used to provide 

indication of awareness in a 1-2 sessions of assessment 

(stage I) and whether this corresponded with 

 
Fig. 3: Whisker-box plot of average top run 

performance accuracy per participant diagnostic 

category. X’s demarcate the mean, central line is the 

median, and inclusive median quartile calculation is 

displayed. Performance is shown to increase across 

levels of awareness.  

 
Fig. 4: Run accuracies of best patients and best able-

bodied participant across sessions. ss=session, 

a=assessment run, t = training run, f= feedback run, pn 

= pink noise, q= q&a run biosit = biographical and 

situational, lognum = logic and numbers/letters. p<0.05 

signified by*, p<0.01 signified by **(Wilcoxon signed 

ranks test). 
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conventional scales (e.g. CRS-R and WHIM). We 

observed that 3/8 UWS, 2/3 MCS and 3/3 LIS 

participants were capable of modulating brain activity 

through SMR strategies during stage I. Both assessment 

and feedback average ACs in MCS participants, were 

found to weakly positively correlate with CRS-R scores, 

and there was no correlation with WHIM scores. UWS 

participants demonstrated significant above chance AC 

during multiple runs, which conflicts with their UWS 

diagnoses. An insignificant correlation between 

UWS+MCS participants and behavioral scores was 

found, indicating SMR-BCI may provide supplementary 

or corroborative diagnostic information in PDoC. These 

results further demonstrate that EEG-based SMR-BCI 

provides evidence of awareness not detected by 

standard behavioral tests in UWS. Some analytical 

hurdles have been reported concerning block-design 

[25], [26],  however this was necessary for the 

assessment stage in order for the cue to be demarcated 

by a tone rather than a word describing the type of MI. 

This eliminates the likelihood of the response being 

automatic/unconscious [27] and requires short term 

memory of the instruction given at the start of the block. 

In Stage II, during multisession stereo-auditory 

feedback training runs, most participant ACs were 

significantly greater than RA, indicating cohort-wide 

engagement. However, across patients, progressive AC 

increase as a function of number of completed runs was 

not observed. ≥70% accuracies were not consistently 

reported (AC of 70% being viewed as the lower limit 

for ability to communicate effectively with a BCI [28]). 

AC variation across runs and sessions may be 

influenced by many factors such as patient motivation 

Proper patient positioning may encourage arousal/ 

minimize involuntary movements or persistent 

involuntary hypertonicity that may be induced by 

frustration due to miscommunication, particularly in 

LIS. Other studies reported that after post learning 

during early training, patients AC stabilizes within the 

first 10–20 training sessions [29]. This is in line with 

across session performance observations observed here. 

Individuals were trained over the period of a few weeks, 

in some cases months due to various interruptions, 

which may have impacted performance. Our dataset is 

consistent with other studies in terms of patients 

obtaining higher inter-run/session  and inter-individual 

variability relative to AB participants [30], [31]. In 

stage III, ability to encode yes/no responses through 

motor imageries to closed questions was assessed. The 

feedback sessions were implemented to encourage SMR 

learning prior to the more complex Q&A. All diagnostic 

groups were able to respond at above chance levels in at 

least one Q&A run demonstrating feasibility of adoption 

by this patient cohort. High intersession variability is 

also demonstrated in Q&A runs indicating the 

importance of multiple sessions, as recommended with 

behavioural scale assessments by the RCP NCG for 

PDoC [5]. It is yet to be established whether consistent, 

sufficient accuracy can be achieved across the patient 

cohort to enable communication and further sessions 

with these patients will be conducted. Given availability 

of more data, AC as a factor of question category could 

isolate different cognitive deficits in relation to 

knowledge of self and environment, logic and 

numbers/letters. It would be interesting to test further 

iterations of the paradigm e.g. tailoring the response 

time window. Here, this was set to 5s and might not 

have been sufficient for some participants. Response 

time was constrained as AC is hinged on a trade-off 

between duration/complexity of task/keeping patient 

fatigue to a minimum and maximizing the amount of 

trials/answers collected. 

PDoC is a challenging patient group to evaluate due to 

tendencies for; heterogeneity in aetiology and potential 

neural atrophy and cortical remapping; muscle spasms, 

seizures, fluctuating arousal, ease of exhaustion; limited 

memory capacity; medication affecting vigilance e.g. 

muscle relaxants, anti-epileptics and anxiolytics; and 

suboptimal EEG recording due to ocular, respiratory 

and muscular artefacts. EEG quality may have been 

affected by presence of nutritional life supporting 

systems or other equipment where private rooms away 

from other hospital equipment e.g., airbeds was not 

possible. 

In future, it would be ideal to analyse the relationship 

between AC and type of injury, time since altered 

consciousness onset, time of day of session. A further 

investigation might be to add a third “I don’t know” 

class reflected by another MI to maximize separability 

for yes/no classes. The existing paradigm assumes the 

user will polarize their response when the answer is 

unclear. Having three classes would increase the 

cognitive load, nonetheless other groups have also 

experimented with providing options beyond yes/no in 

PDoC, e.g. a 4-choice auditory oddball EEG-BCI 

paradigm based on a P300 response [32]. 

 

CONCLUSION 

 

This study showed demonstrable feasibility of an initial 

assessment of SMR engagement; multisession auditory 

feedback to train SMR-BCI control; and an SMR-BCI 

Q&A system in PDoC and LIS. Adaptation of the 

paradigm in order to maximize the number of runs 

where 70% AC is reached prior to commencing Q&A is 

crucial to effective adoption by patients with a PDoC. 

This is the first targeted group of this patient cohort and 

further training is necessary to progress to open Q&A 

sessions. 
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