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ABSTRACT: To interact with the brain in closed-loop
applications despite low signal-to-noise ratios, brain-
computer interfaces can make use of data-driven linear
spatial filtering approaches to improve the single-trial
classification performance. While the transfer of spatial
filters between users and within multiple sessions of the
same user under the same experimental paradigm is fea-
sible to some extent, it is unclear, whether changing ex-
perimental conditions affects this transferability.
To investigate this question with regards to spatial filters,
we evoke event-related potentials by an auditory odd-
ball paradigm under various stimulus onset asynchronies
(SOAs). Using four similarity and distance measures, we
analyze the between and within subject transferability of
xDAWN filters.
We found that the used measures reflect the differences
of spatial filters between subjects. Within the same sub-
ject, the measures indicate similarity of the spatial filters
for almost all SOA conditions. We conclude, that our
proposed measures can be used to give indications under
which circumstances spatial filters can be transferred.

INTRODUCTION

Brain-computer interfaces (BCIs) are systems which use
machine learning to interpret the brain signals of its users
in single trial in order to obtain information and possi-
bly act upon this information. Popular applications for
BCI are the control of wheelchairs [1], spelling appli-
cations for patients [2, 3], stroke rehabilitation [4] and
non-clinical applications [5, 6]. One non-invasive way
of obtaining the brain signals is to use electroencephalo-
gram (EEG) recordings which are obtained via electrodes
placed on the scalp of user.
In order for the brain signals to be recorded by the EEG,
they have to travel through the brain, the skull and the
skin of the subject. Having low signal amplitudes, they
are easily masked by non-neural signal sources as the sen-
sitive electrodes collect all sorts of electric activity, such
as power line frequency, muscle activation or currents in-
duced by electrode movements. These interfering elec-
tric activities are called artifacts. As a result, the obtained

neural signals have generally a poor signal quality, i.e., a
bad signal-to-noise ratio. In BCI, one is usually inter-
ested only in a specific type of brain signal while back-
ground EEG activity and artifacts are to be ignored. Fre-
quently used techniques to deal with these problems are
frequency filtering [7], spatial filtering [8, 9] and artifact
removal [10]. Applying these methods is oftentimes nec-
essary to extract useful information from the EEG signal.

The aforementioned spatial filtering methods try to find
weights on electrodes that minimize the influence of
noise while maximizing the brain signal of interest.
General purpose approaches such as Laplacian filter-
ing [11] can usually be applied without special consid-
erations. However, subject-specific data-driven spatial
filtering methods, e.g., common spatial patterns [8] or
SPoC [12] for oscillatory brain signals or xDAWN [9] for
event-related potentials (ERPs), usually outperform these
general approaches. The drawback of subject-specific
methods is that the filters have to be trained on data from
the subject, therefore requiring additional training data.

One experiment to elicit auditory ERPs is the simple
two-class auditory oddball paradigm, where the subject
is asked to attend to rare high-pitched target tones and
to ignore frequent low-pitched non-target tones. While
each tone stimulus elicits an ERP response, they have dif-
ferent spatio-temporal characteristics depending on the
class (i.e., target or non-target) of the played tone. Ad-
ditionally, the waveform of these ERPs can look differ-
ently depending on other stimulation parameters. In this
work, we investigate the influence of stimulation onset
asynchrony (SOA), which denotes the time between the
onset of two successive tone stimuli. The SOAs we ex-
amine are in the range of 60 ms to 600 ms. The so-called
P300 response is a positive potential occurring approxi-
mately 300 ms after a target stimulus over central elec-
trodes. This ERP component can be evoked by oddball
tasks. Its delay relative to the stimulus onset has been
reported to vary with task difficulty [13], among oth-
ers. Thus the P300 rise may occur earlier in simple au-
ditory oddball tasks. Besides the P300, other modality-
dependent and task-dependent ERP components can be
elicited, which have shorter or longer delays compared to
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Figure 1: Averaged ERP waveforms elicited by auditory target
stimuli delivered at time t=0 ms for two SOAs. Top: waveforms
observed at channel Cz (no spatial filter was applied). Bottom:
waveform observed after applying an xDAWN spatial filter.

the P300. For multiple stimuli presented at short SOAs,
it thus is known, that elicited ERP responses do overlap.
The used xDAWN method is specifically suited to reduce
this overlap in the filtered ERP responses.
Figure 1 shows examples, how changing the SOA pa-
rameter can influence the averaged waveform of the ERP
responses recorded at the Cz electrode. However, when
looking at the same signals filtered using an xDAWN fil-
ter, the average ERP responses look more similar. Please
note, that in this example one xDAWN filter was deter-
mined specifically for each SOA condition based on train-
ing data.
Finding solutions to reduce the amount of necessary
training data is beneficial in BCI for many reasons.
Transfer learning of spatial filters and full classifiers be-
tween repeated sessions of one user or even between
users has been investigated in this context [14]. For
changing experimental conditions, however, it is unclear,
if such transfer is feasible. Thus we will focus on the
question, how well spatial filters trained under a specific
SOA condition can be transferred to a different SOA con-
dition, but within the same user.
To investigate this, we will first propose four measures
that quantify transferability. Finally, we will apply these
measures to within subject transfers of xDAWN filters
obtained under different SOA conditions in an auditory
oddball experiment.

MATERIALS AND METHODS

Data-driven spatial filtering algorithms learn a weight
matrix W with Nw×Nc dimensions that is applied to the
Nc×Nt -dimensional EEG signal X with Nc channels and
Nt number of time samples. The filtered signal

S =WX (1)

retains Nw×Nt dimensions, while the number of filters
Nw is usually much smaller than the original number of
channels Nc. In this work we focus on a single individual
spatial filter w only, such that we retain a weight vec-
tor instead of a matrix, i.e., Nw = 1. The physiological
interpretation of spatial filter weights is not straightfor-
ward. As described by Haufe et al. [15], one usually cal-
culates the activation pattern of a filtered signal to sup-
port the interpretation. This activation pattern A can be
calculated using the channel covariance matrices of the
original EEG signal Σx and the filtered EEG signal Σs

A = ΣxWΣ
−1
s . (2)

The covariance matrices are calculated for a time interval
of interest. As we only consider a single spatial filter w,
we also look at only a single spatial pattern a.
We use the xDAWN algorithm to find spatial filters w
that enhance target ERPs elicited in an auditory oddball
paradigm. The xDAWN spatial filter is obtained by solv-
ing a generalized eigenvalue problem. Therefore, the re-
sulting spatial filters do not always have the correct—in
the sense that the P300 ERP is actually positive—sign
and have no longer interpretable amplitudes. We usually
chose the spatial filter on the first rank, unless visual in-
spection suggested that the filters on second or third rank
represented the P300 ERP better.
After receiving an ethics vote from the local ethics com-
mittee in Freiburg, and after obtaining written informed
consent, EEG data from 13 subjects (six female, seven
male, mean age: 24.9 years, standard deviations: 5.1
years) was recorded. Within a single session 20 trials
(split in four blocks with five trials each) of an auditory
oddball paradigm were conducted for three to five dif-
ferent SOA conditions, where one trial consisted of 15
target and 75 non-target stimulus presentations. In total
this yields 20 trials for each SOA condition. The order of
the stimuli was pseudo-randomized such that at least two
non-target stimuli were presented between any two tar-
get stimuli. The recorded EEG data was preprocessed for
offline analysis by zero phase band-pass filtering in a fre-
quency band from 1.5 Hz to 40 Hz. While this frequency
range is atypical for traditional ERP analysis, the usage
of very short SOAs down to 60 ms required this higher-
frequent upper limit of the low-pass. After frequency
filtering, the signal was downsampled from 1000 Hz to
100 Hz. The signal was then epoched from −200 ms to
1000 ms around a stimulus. Each epoch was baseline cor-
rected relative to the interval of −200 ms to 0 ms. We
chose not to perform any artifact removal to keep the
amount of data comparable between all subjects and to
estimate how robust the xDAWN filter is under the in-
fluence of potential artifacts. For each subject and SOA
condition we trained an individual xDAWN filter in the
interval of 0 ms to 600 ms as suggested in [9]. Addition-
ally, we trained an xDAWN filter on a mixture data set
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containing trials from each SOA condition such that its
size was equal to the number of trials for the individual
SOAs. As one xDAWN filter is obtained per SOA and
one for the mixed data set, we finally obtain four to six
spatial filters per subject. This yields a total of 66 differ-
ent xDAWN spatial filters.
On this data we applied several similarity and distance
measures that should allow to determine whether a spatial
filter can be transferred to other conditions or subjects.

Comparing spatial filter weights:
In order to quantify commonalities or differences be-
tween two spatial filters, we can employ a similarity mea-
sure. The spatial filters determined by xDAWN are rep-
resented as weight vectors that unfortunately are deter-
mined only up to sign and amplitude. However, this
representation still allows us to use the cosine similar-
ity measure, i.e., the cosine of the angle θ between two
weight vectors w1 and w2:

cossim(w1,w2) = cos(θ) =
w1 ·w2

||w1|| · ||w2||
(3)

Angles between weight vectors has been proposed for
comparing spatial filters before [16, 17]. A cosine sim-
ilarity of 1 indicates collinearity of the vectors, while 0
indicates orthogonality. Negative values indicate that the
vectors point to opposite half spaces. Please note, that
the cosine similarity disregards spatial relations between
electrodes.
Applied to our setup we expect smaller angles between
xDAWN filters within one subject, i.e., cos(θ)→ 1. For
analysis, we calculate pairwise cosine similarities of all
possible pairs within the 66 xDAWN filters obtained over
subjects and SOA conditions.

Comparing elicited patterns:
Aside from similarity of the actual spatial filters, the
similarities of the elicited patterns may be informative.
Patterns tend to be more homogeneous than spatial fil-
ters and the interesting information is the distribution
and location of the pattern on the scalp. Therefore, in-
stead of using the location invariant cosine similarity to
compare patterns, we utilize the optimal transport (OT)
distance [18] (also known as earth mover’s distance or
Wasserstein distance). This OT distance tries to find the
minimal transport plan or flow F that transforms a distri-
bution A into distribution B. In our case A and B are the
elicited spatial patterns.
For our data set we expect smaller OT distances when
comparing two patterns obtained for different SOAs
within one subject than when comparing two patterns for
different subjects.

Comparing ERP waveforms:
We also need to quantify differences between ERP wave-
forms, that result from spatially filtered EEG signals. As
amplitude values generally are not comparable anymore
after the application of xDAWN filters, we first rescale
each filtered waveform to a standard deviation of one.
To lower the influence of noise prior to applying a
waveform-specific distance metric, we reduce the tem-
poral resolution of the waveforms to six predefined time

Figure 2: Matrix of all pairwise cosine similarities between
xDAWN filters trained for each subject and SOA condition. The
thick black lines separate subjects from each other. Note that
the green-bordered blocks on the main diagonal correspond to
within subject filter similarities under different SOA conditions.

intervals by averaging over multiple samples. Further-
more, we average the waveform features over trials of the
same condition and subject. Thus, we obtain six ampli-
tude features per SOA and subject.
Then the difference between the amplitude features of
two filtered ERP waveforms s1 and s2 is quantified by
using the Euclidean distance.

Classification performance:
We have limited our analysis to a single spatial filter per
SOA condition and subject. However, if a spatial filter
w captures the relevant features of the ERP responses
evoked by the experimental paradigm, then applying it
to a data set X should nevertheless lead to a target/non-
target classification performance well above chance level.
We will make use of a linear discriminant analysis clas-
sifier with covariance shrinkage regularization (rLDA) to
estimate the class discriminative information provided by
a filter, given by the area under receiver-operator char-
acteristic curve (AUC). As a single xDAWN component
w may not capture the full ERP information, we gener-
ally must expect a slight performance decrease by apply-
ing a single spatially filter compared to using the high-
dimensional unfiltered signal [9]. To quantify this perfor-
mance drop, we trained an rLDA classifier on each data
set, first without applying any spatial filtering and then
(consecutively) using each of the derived 66 xDAWN
spatial filters. Utilizing a 4-fold chronological cross-
validation scheme we can report the estimated perfor-
mance loss ∆AUC = AUCfilt−AUCnofilt for each spatial
filter when transferred to each data set.
Successful transfer of filters should be expressed by an
only small drop in performance.

RESULTS
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Table 1: List of SOA conditions (in ms) used for each subject.

Subject SOAs in ms
1 60 175 200 460 —
2 60 111 200 218 446
3 60 123 175 380 —
4 60 193 286 506 —
5 60 208 226 508 —
6 60 175 296 474 —
7 60 226 235 518 596
8 60 177 256 446 —
9 60 180 400 447 —
10 60 220 325 402 —
11 60 179 194 513 —
12 60 193 220 600 —
13 60 211 518 — —

First, we utilize the cosine similarity to investigate the
similarity between xDAWN filters. In Figure 2, the co-
sine similarities between all spatial filters calculated for
each subject and SOA condition are visualized. Black
lines indicate the boundary between subjects. Within
one subject, the SOA conditions on which individual fil-
ters were trained are in ascending order from top to bot-
tom / left to right. The concrete SOAs for each subject
are shown in Table 1. The last filter of each subject was
trained on a mixed data set of all SOAs with an equivalent
number of trials.
Intense red entries in the diagonal blocks indicate, that the
similarities between spatial filters obtained from within a
single subject are generally high. Specifically, they are
considerably larger than filter similarities between sub-
jects as indicated by the off-diagonal blocks. Within sub-
jects, the fastest SOA of 60 ms seems to take a special
role: its spatial filters are substantially different from the
ones calculated under slower SOA conditions for most
subjects. Additionally, for subjects 4, 5, and 12, there ex-
ist some SOA conditions which do not produce a spatial
filter comparable to the rest. Interestingly, subject 8 pro-
duces spatial filters that are specific for the two fast SOAs
and different spatial filters specific for the two slower
SOAs. Additionally, the last row/column of each subject
generally shows consistent similarities to other filters for
this subject (data not shown). This observation is in line
with our expectations, as this filter had been trained on
the mixed data set consisting of all SOAs of the subject.
The histograms in Figure 3 provide a closer look at the
within subject vs. between subject cosine similarities of
the xDAWN filters. As expected, we can observe higher
similarities of filters within a subject (blue color, median
similarity 0.695) than across subjects (orange color, me-
dian similarity of 0.218). Introspection into the data re-
vealed that values close to zero cosine similarity were
caused mostly by filters of the very fast 60 ms SOA.
The optimal transport distance between patterns provides
a novel view upon the similarity of xDAWN components.
The histogram in Figure 4 shows, that the differences of
the distance of patterns between and within subjects are
not as emphasized as for cosine similarities which acts on

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Cosine similarity

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

b
ab

ili
ty

Cosine similarity of xDAWN spatial filters

Within subject

Across subject

Figure 3: Distribution of the similarities between spatial filters
within and across subjects. Dashed lines indicate median values
of 0.218 (between subjects) and 0.695 (within subjects).
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Figure 4: Distribution of the optimal transport distances be-
tween spatial patterns within and across subjects. Dashed lines
describe median values of 0.728 (within subjects) and 1.023
(between subjects).

the filters. This is due to the fact, that the xDAWN algo-
rithm has almost always found a component representing
the P300 evoked potential for each data set (although we
had to manually select this component in few cases). As
the pattern topology does not differ greatly between sub-
jects and between conditions, we obtain small optimal
transport distances. The peak in the within subject his-
togram values around distances >1.5 are caused by pat-
terns that do not show a typical P300 topology. Overall
we conclude, that looking at the pattern alone is not in-
formative enough to describe (dis)similarities in the ERP
domain.
To determine the general variability of ERP waveforms
and how it affects the Euclidean distance between two
ERPs, we calculated the Euclidean distances for three
different settings: (1) how ERPs differ between subjects
(including different SOA conditions), (2) how ERPs dif-
fer within subject under different SOA conditions and
(3) how changing the spatial filter but not the underlying
data within subjects but across SOA conditions affects the
ERP waveform. Hereinafter, we will call this last setting
within subject filter transfer.
Figure 5 shows the histograms for the three aforemen-
tioned settings. Interestingly, the distances resulting from
within subject filter transfer are the lowest on average.
This indicates that the spatial filters trained on different
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Figure 6: Distribution of ∆AUC for transferring spatial filters
within a subject and across subjects. Dashed lines indicate the
median values at -0.113, -0.037.

SOAs of one subject can be re-used for other SOA con-
ditions of the same subject without affecting the evoked
ERP waveform drastically.
Finally, we quantified how strong the rLDA classifier per-
formance of the xDAWN-filtered data deteriorates when
applying a spatial filter trained on a different data set. As
shown in Figure 6, the performance losses (provided as
∆AUC values) are much larger when spatial filters from
a different subject had been used, than when using spatial
filters from the same subject. This fits with our previous
observations, that spatial filters derived within a subject
but across different SOAs still are very similar.
An example for within subject filter transfer is given in
Figure 7. We can see that most xDAWN filtered ERP
responses look highly similar regardless of which spa-
tial filter we use. Only the filter for SOA 60 seems to
extract a different ERP waveform—it generally prolongs
the latencies of the ERPs. Applying the filter trained on
SOA 60 to the data of SOA 513 even eliminates the P300
ERP completely. This indicates that the filter extracted
for this extremely fast SOA value cannot be transferred
to the other SOA conditions.
As a contrast, in Figure 8 it is shown how the data
recorded for the first four SOA conditions of subject 11
changes when using spatial filters obtained from sub-
ject 13. The ERP curves look very different compared
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Figure 7: ERP waveforms as a result of filter transfer within
subject 11. Each subplot shows a data set on the SOA given in
the title. The different colors indicate which spatial filter was
applied to the data set. If title and line have the same color, this
means that the spatial filter trained specifically on this data set
was used to create the filtered ERP signal.
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Figure 8: Applied filter transfer from subject 13 to subject 11.
Each subplot shows a data set of subject 11 on the SOA given
in the title.

to the within subject filter transfer case. Additionally, the
difference of ERPs for one data set is much more pro-
nounced by changing the spatial filter.

DISCUSSION AND CONCLUSION

Motivated by the widespread use of data-driven spatial
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filter methods in the field of BCI, we have described
methods to quantify similarities and differences of spatial
filters and have applied it to xDAWN filters in the ERP
domain. Making use of these methods, we could make a
novel contribution to the field by showing that the transfer
of spatial filters is feasible for spatial filters trained under
different SOA conditions but within one subject—at least
if the SOAs are not prohibitively fast. In this context we
could report evidence that using solely spatial patterns is
not sufficiently informative to characterize spatial com-
ponents obtained under ERP paradigms.
Our finding may pave the way for a more flexible param-
eterization of ERP paradigms over multiple sessions of a
subject, as it reduces the effort of recording training data
for each SOA condition separately in order to get a spe-
cialized filter for each condition. An empirical question
for future research is, how well this within subject trans-
fer performs if experimental conditions other than SOA
are changed, and if the observed successful transfer of
filters will be possible also for session-to-session transfer
within subjects and between conditions.
In future work, the measures for filter comparison will
be examined whether they are applicable also with other
spatial filter algorithms and under different experimen-
tal paradigms, e.g. CSP, SPoC or ICA in mental imagery
tasks or whether there exist measures that can even bet-
ter reflect transferability properties. Furthermore, an au-
tomatic framework that can decide for few data points
obtained under varying conditions, whether the resulting
spatial filters are transferable or not could help to reduce
unnecessary calibration effort.
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