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ABSTRACT: The tactile modality for brain-computer 

interfaces (BCIs) is rarely used because of its limitations 

in speed and accuracy. However, non-visual BCI 

paradigms are of great interest as potentially feasible 

options for patients with limited gaze control. For the 

present study, 5 participants navigated a virtual 

wheelchair through a 3D apartment using a 4-class tactile 

BCI in 5 identical sessions.  

Mean P300 amplitude, mean difference between target 

and non-target (MD), and information transfer rate (ITR) 

were calculated for all sessions. Descriptively, 

amplitudes at Fz increased with training, MD or other 

electrode positions showed no obvious changes. Mean 

ITR during the fifth session was more than twice as high 

(8.7 bits/min) as compared to the first (4.0 bits/min). 

Our preliminary results suggest that a previous study by 

Herweg and colleagues [1] can be replicated with respect 

to a training effect. However, we could not yet achieve 

ITRs as high as in [1]. We are currently increasing our 

sample size to 15 participants. 

 

INTRODUCTION 

 
Brain-Computer Interfaces allow for computer-mediated 

communication and interaction with the environment. 

Often based on electroencephalography (EEG), BCI 

systems record brain activity which is then interpreted by 

machine learning algorithms in order to classify the 

users’ intentions. Notably, BCIs rely on brain activity 

and do not require any voluntary muscular movement. 

This independence from muscular activity is what makes 

BCI a promising tool for patients with severe paralysis, 

for example as a consequence of Amyotrophic Lateral 

Sclerosis (ALS) or after brain injury [2,3]. Recently, 

some patients and their caretakers have been using BCIs 

independently at home for a prolonged time [4,5]. 

Still, many BCI systems use visual feedback and 

stimulation and thus, rely on the patients’ ability to 

control eye movements [6] and may face usability issues 

once gaze control becomes limited [7], as in the case of 

later stages of ALS. Because of this limitation, 

alternatives to vision dependent BCIs have become a 

focus of current research. Specifically, auditory and 

tactile event-related potential (ERP)-based BCIs have 

been developed and shown to be feasible options [1,8–

10]. Among these, an auditory BCI using animal sounds 

was tested with motor-impaired patients [10] and a tactile 

BCI was tested within a healthy, elderly sample [1]. In 

both cases, participants were invited to 5 sessions and 

showed major improvements in BCI performance or its 

physiological correlates. This putative training effect of 

prolonged BCI use is one of the main points of interest of 

the present study also designed to replicate previous 

results [1]. 

Hypotheses: We expected that prolonged training with 

our BCI system would lead to increased ERP amplitude, 

MD and ITR. 

 
MATERIALS AND METHODS 

 
     Participants: N=6 healthy participants (5 female) 

were recruited. Participant 3 was excluded due to 

scheduling issues. All reported normal or corrected to 

normal vision and were BCI-naïve. All participants 

received a monetary reimbursement of € 7.50 per hour 

and gave informed consent to the procedure which was 

approved by the ethical review board of the Institute of 

Psychology at the University of Würzburg, Germany. 

     Stimulation: Tactile stimulation was applied via a 

BCI2000-controlled tactor device (C2 tactors; 

Engineering Acoustic Inc., Casselberry, USA) at right 

and left thigh, belly and neck. Tactors were adjusted until 

they were perceived as equally strong at all positions. 

During the experiment, the tactors were activated 

separately and pseudorandomized with equal 

probabilities (25%), and with a frequency of 250 Hz 

each. Stimulus duration was 220 ms, interstimulus 

interval 400 ms. 

Participants were sitting in a chair in front of a monitor 

showing the virtual environment for wheelchair 

navigation and instructed to keep their eyes open and to 

avoid excessive blinking and keep their facial muscles 

relaxed. 

     EEG recording: EEG was recorded (512 Hz) with 12 

passive Ag/AgCl electrodes and amplified using a 

g.USBamp (g.tec Engineering GmbH, Graz, Austria). 

Electrode positions were Fz, FC1, FC2, C3, Cz, C4, P3, 

Pz, P4, O1, Oz, and O2, with ground and reference 

electrodes at the right and left mastoids, respectively. 

Impedance was kept below 5 kΩ. Online filtering was 

performed using a band pass filter between 0.1 and 60 Hz 

and a notch filter between 48 and 52 Hz. 

     Procedure: To investigate training effects, 

participants attended five sessions on separate days, with 

no more than one week in between sessions. 
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During three calibration runs at the beginning of each 

session, participants had to concentrate on each of the 

body positions several times, resulting in a total of 240 

target and 720 non-target epochs. These data served to 

train a linear classifier which was then used for two free 

navigation runs. Here, participants had to navigate a 

wheelchair through a virtual 3D apartment along three 

checkpoints by selecting a direction and then focusing on 

the corresponding body position (i.e. left knee to make a 

left turn). After the first run, starting and end points of 

the course were switched, so that participants had to 

navigate back to the original starting point. One 

successful run required at least 14 commands, however, 

erroneous or misleading commands were also executed 

and had then to be corrected. Thus, a maximum number 

of 22 commands, roughly corresponding to the number 

necessary when assuming the minimum accuracy of 70% 

for sufficient control [11], was allowed before the run 

was terminated. 

To preclude possible ceiling effects like in an earlier 

study from Herweg and colleagues [1], which always 

used 8 stimulus repetitions for one selection, the number 

of repetitions was kept at a minimum for each participant 

and for every session. 

We estimated the number necessary to reach 100% 

classification accuracy via visual analysis and 

predictions from the classifier algorithm. This stimulus 

number was determined for every participant and every 

session and then used for the free navigation task. 

After each session, to assess workload, the NASA TLX 

 

Figure 1: Post-stimulus epochs on sessions 1 (light colours) and 5 (bold colours) at positions Fz, Cz, Pz. 

Target stimuli (red) appear to have elicited a positive deflection in the P300 range. Participant 6 appeared to have a delayed ERP deflection after 
about 450ms. Data was averaged by participant and additionally lowpass-filtered (20Hz, for visualization only).  Positivity up. 
 

 
Figure 2: Grand averages of post-stimulus epochs at Fz, Cz and Pz positions. Target stimuli elicited P300 ERPs at all electrode positions. Descriptively, 

the ERP amplitudes have increased in magnitude from session 1 (light colours) to session 5 (bold colours) at position Fz. Overall, both amplitudes and 
MD appear strongest at Fz and Cz, but ERPs are still visible at Pz. Data was averaged over all participants. Positivity up. 
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[12], and after the first and last session the adjusted 

QUEST [13,14], to assess satisfaction with the device, 

were filled out by the participants (Results not shown 

here). 

     EEG processing: EEG data was band pass filtered 

between 0.1 and 30 Hz and divided into segments of 800 

ms post-stimulus, plus another leading 100 ms that was 

used for baseline-correction. Segments containing values 

exceeding ±150 µV were excluded as artifacts. Target 

and non-target epochs were grouped and then averaged 

separately. This process was performed with 

MATLAB© (v2013b) using functions provided by 

BCI2000 [15] and EEGLab [16]. Using a step-wise linear 

discriminant analysis as implemented in the BCI2000 

package, we built new classification models for each 

session.  

     Data analysis: The use of BCI accuracy (i.e. the 

percentage of correct classifications) as the sole 

comparative measure of performance is not sufficient 

when the number of stimuli differs between groups or 

time points. Thus, we also used the ITR as a dependent 

variable. This ITR, given in bits per minute, is used to 

calculate the amount of information transferred during a 

given time. The number of bits (B) can be calculated with 

equation 1 using the accuracy (P) as well as the number 

of all possible selections (N = 4). 

 
The ITR is then calculated by dividing the number of bits 

by the time necessary for the selection. It is thus directly 

dependent on the number of stimuli repetitions, but also 

takes accuracy into account. 

Additionally, we extracted physiological features (mean 

target amplitudes and mean difference between target 

and non-target) from the EEG data from a time window 

ranged 300-500ms post-stimulus.  

Due to the small sample size, results will be reported 

descriptively. 

 

RESULTS 

 

Wheelchair navigation through the virtual apartment was 

achieved with an average online accuracy of 78.5% 

(sd=14.8). 

Target and non-target epochs from the three calibration 

runs at the beginning of each session are presented in 

 

 
 

Figure 3: Bar plots of dependent variables over the course of the 5 training sessions. Data was averaged over all participants (Error bars represent SE). 
A) Physiological measures, amplitude and MD, split by electrode position. Visual analysis revealed no obvious effects. 

B): BCI performance measures. Online accuracy does not appear to increase with training, while ITR does appear to increase. 

A 

 

 

 

 

 

 

 

 

 

 

 

 

B 
m

e
a
n
 D

if
fe

re
n

c
e
 [

µ
V

] 

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-20



Figure 1. Visual inspection revealed a positive deflection 

in the P300 range at positions Fz, Cz and Pz (most 

pronounced at Fz) in some (1,2,4) subjects. Participant 6 

had a positive deflection at a latency of around 450 ms. 

Grand averages of these epochs are shown in Figure 2. 

Here, visual analysis again reveals a putative P300 

deflection which was most pronounced at Fz and Cz and 

that appeared to increase with training (Session 1 vs. 

Session 5) at Fz. 

MD at Fz increased from 2.14 to 2.37 µV. At Cz, values 

remained more or less stable (2.88 to 2.81 µV), whereas 

at Pz, values decreased (2.38 to 1.76 µV). Mean 

amplitude at Fz increased from 1.70 to 2.59 µV, at Cz 

from 2.54 to 3.17 µV but decreased at Pz (2.12 to 1.74 

µV). 

Accuracies (P=0.79; sd=0.15) from the navigation task 

were used in conjunction with the respective number of 

stimulus repetitions to calculate the individual 

participant’s ITRs. Averaged online accuracies and ITRs 

are shown in Figure 3. There appears to be a strong trend 

of increasing ITRs, but not accuracies, with session 

numbers. Average ITR was 4.0 and 8.7 bits/min on 

sessions 1 and 5, respectively. 

 

DISCUSSION 

 

Five participants navigated a wheelchair through a virtual 

apartment with a reasonable level of BCI control. With a 

mean accuracy of 78.5%, participants mostly exceeded 

70%, a number which is considered the low threshold for 

efficient BCI control [11]. Stimulus repetitions for each 

session were kept deliberately low to preclude any 

ceiling effects as experienced in [1], so we expect 

accuracies to be higher when increasing the number of 

stimuli used for a selection, albeit at the cost of speed. 

Descriptively, mean ITR increased substantially over the 

5 training sessions, with session 5 resulting in more than 

double the ITR as compared to session 1. Overall, this 

shows that participants achieved the same accuracy in 

less time (i.e. with fewer stimulus repetitions). We 

speculate that our hypothesis that ITR would increase 

with training might be confirmed. Since stimulus 

repetitions were individually adjusted, average 

accuracies remained consistent over the sessions. 

However, their comparatively [1] low values indicate 

that we set the number of stimuli too low.  

The two physiological variables, mean amplitude and 

MD, did not reveal an overt training effect on the 

individual level, although a trend may be seen, 

specifically at position Fz. Our hypothesis about 

increasing physiological measures is thus far not 

supported. 

The apparent training effect (as seen in ITR increase) 

seems not to be reflected in the physiological measures. 

This may be because traditional analysis struggles to 

accommodate for deviations in individual participants’ 

ERP pattern, e.g. in cases of unusually high latencies or 

inversed polarities. This illustrates the need of machine 

learning approaches that automatically detect spacial and 

temporal features on an individual level and explains 

why an effect of session number is visible on machine 

learning-dependent variables such as ITR, but not in 

static measures such as amplitudes derived from a fixed 

time and position. 

 

CONCLUSION 

 

We have again shown that wheelchair control with our 

tactile BCI paradigm is feasible and that training effects 

(as measured via ITR over the five sessions) appear to be 

present. We will continue to recruit more subjects for the 

present study to allow for statistical analysis and to 

investigate whether the results from the study of Herweg 

and colleagues [1] are replicable. So far, all our 

dependent variables remained below the values achieved 

in [1]. 
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