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ABSTRACT: Brain signals carry rich information about
voluntary upper-limb movements. Accessing this infor-
mation to control an end-effector (upper-limb, robotic
arm, cursor) has been a central topic in brain-computer
interface (BCI) research. To date, non-invasive BCIs
based on kinematics decoding have focused on extract-
ing partial information (i.e, single or highly correlated
kinematic parameters). In this work, we show that low-
frequency magnetoencephalographic (MEG) signals si-
multaneously carry information about multiple kinematic
parameters. Using linear models, we decoded cursor ve-
locity and speed during executed and observed tracking
movements with moderate (0.2 to 0.4) correlation coeffi-
cients (CCs). Comparing the CCs between executed and
observed tracking movements, revealed that the MEG
signals carried more information (0.1 higher CCs) about
velocity and speed during the executed tracking move-
ments. The higher correlations were mainly explained by
increased predictive activity in primary sensorimotor ar-
eas. We could, therefore, show that non-invasive BCIs
have the potential to extract multiple kinematic signals
from brain activity in sensorimotor areas.

INTRODUCTION

Decoding voluntary movement from electrophysiological
brain signals has been a central topic in brain-computer
interface (BCI) research. In recent years, invasive ap-
proaches have demonstrated that individuals who lost
control of their upper-limb could successfully control a
robotic arm [1] or even regain control of their upper-limb
[2]. These invasive BCI systems typically decode vari-
ous movement parameters from spiking rates of neurons
in primary sensorimotor areas [3, 4]. It has long been
assumed that non-invasive functional neuroimaging tech-
niques such as electroencephalography (EEG) and mag-
netoencephalography (MEG) lack the spatial resolution
to decode the kinematics of voluntary movements. How-
ever, it has been shown otherwise by various studies in the
past decade [5–7]. However, the predicted end-effector
position of non-invasive decoders typically has a lower
signal to noise ratio (SNR) compared to the invasive de-
coders. We think that the combined decoding of multiple
kinematic signals could improve the SNR and, thereby,

elevate the performance of non-invasive decoders.
A myriad of non-invasive studies in this field of BCI re-
search has investigated either directional (e.g, velocity,
position) or non-directional (e.g, speed) kinematic sig-
nals in isolation [6, 8–10]. Bradberry et al. were the
first to show that low-frequency EEG signals carried in-
formation about positions and velocities during reaching
movements [11]. Complementary, Waldert et al. showed
that reach direction can be classified from low-frequency
EEG and MEG [12]. Jerbi et al. showed that low-
frequency MEG signals are coupled to hand speed dur-
ing a continuous visuomotor (VM) task [8]. Recent in-
vasive studies using Electrocorticographic (ECoG) sig-
nals demonstrated that velocity and speed can be decoded
simultaneously from low-frequency brain signals in pri-
mary sensorimotor areas [13, 14]. Taken together, we
surmise that velocity and speed can be jointly decoded
from non-invasive M/EEG signals.
We believe that a pursuit tracking task (PTT) is ideally
suited to investigate this question. A PTT is character-
ized by two stimuli - a traget stimulus moving along ran-
dom trajectories and an end-effector (e.g., cursor). The
end-effector is used to track the target stimulus. The
PTT has two favorable properties. First, the kinematics
vary continuously in a frequency range that can be con-
trolled by the experimenter. Second, the target trajecto-
ries can be designed so that specific kinematic signals are
jointly uncorrelated. Using a PTT, we showed that the
low-frequency EEG originating in premotor and primary
sensorimotor areas was preferentially tuned to cursor ve-
locity rather than cursor position [15].
In this study, we investigated the joint decoding of cur-
sor velocity and speed from low-frequency MEG activity
during a two-dimensional PTT. Our paradigm separated
two conditions. In the first condition (execution), partic-
ipants tracked the target with their gaze and a cursor. In
the second condition (observation), participants tracked
the target only with their gaze. This allowed us to ad-
dress two questions. First, can velocity and speed be de-
coded simultaneously from non-invasively acquired brain
activity during voluntary upper-limb movements? Sec-
ond, does the decoding performance change if the upper-
limb is not involved in the tracking task?
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MATERIALS AND METHODS
23 healthy people participated in this study. 5 were fe-
male and 18 male. They were 28.5 ± 2.4 (standard-error
of the mean; sem) years old, had normal or corrected to
normal vision, and self-reported to be right-handed. The
experimental procedure conformed to the declaration of
Helsinki and was approved by the ethics committee of the
Osaka University hospital. We could not complete the ex-
periment for three participants and identified that one par-
ticipant was positioned incorrectly inside the MEG scan-
ner during the offline analysis. These four participants
were excluded from the final offline analysis.
Figure 1a depicts the experimental setup. The partici-
pants were lying in a supine position, with the head rest-
ing on a cushion inside an MEG scanner. A projection
screen fixed in front of their face presented visual stimuli.
We used two visual stimuli, a target and a cursor. The cur-
sor could be controlled by the participants through mov-
ing their right hand’s index finger on a 2D surface. The
tip of the index finger was tracked with a custom optical
motion capture system.
After each participant found a comfortable position for
his/her right arm and hand, the position of the marker was
defined as the resting position. The resting position was
mapped to the center of the screen. Finger movements,
within a 1.5 centimeter radius around the resting position
were mapped to cursor movements within a circle con-
fined by the bounds of a virtual grid. Rightward/forward
finger movements were mapped to rightward/upward cur-
sor movements.
As in our previous study [15], the experimental procedure
consisted of 4 blocks, lasting for about 3 hours in total.
In the first block (10 minutes), the participants could fa-
miliarize themselves with the paradigm. In the second
block, we recorded eye artifacts and resting activity as
described in [16] for about 12 minutes (2 runs; each 6
minutes). During the third block, the main experimental
task was performed. The fourth block at the end of the
experiment was identical to the second one.
Figure 1b outlines the paradigm of the main experimental
task. We investigated a PTT in two conditions. A yellow
target stimulus indicated the beginning of a new trial. Af-
ter 2 s of preparation, the target changed its color to green
(execution condition) or blue (observation condition).
In the execution condition, the participants were asked
to track the target with their gaze and the cursor. In the
first experimental block, each participant trained to mini-
mize the distance to the target and to make smooth cursor
movements.
In the observation condition, the participants would only
track the target with their gaze and keep their finger in the
resting position. In order to achieve similar visual input
and tracking dynamics in both conditions, we replayed
matching cursor trajectories.
The target moved along pseudo-random trajectories,
which were generated from pink noise in the [0.3, 0.6]
Hz band. The horizontal and vertical components of the
target trajectories were independent and identically dis-
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Figure 1: Overview of the experiment. a, Experimental setup.
The participants were lying in a supine position inside an MEG
scanner. They moved their right index finger on a 2D surface
to control a cursor on the screen. b, Experimental paradigm.
Each trial started with a 2 s preparation period. The participants
were asked to keep the cursor in the center (i.e, the right index
finger in the resting position). After a condition cue, the tar-
get stimulus moved along a pseudo-random trajectory for 16 s.
In the execution condition (green), the participants tracked the
target with both their gaze and the cursor. In the observation
condition, they tracked the target only with their gaze. c, Topo-
graphic distribution of the 129 MEG sensors used in this study.

tributed. This required the participant to control the cur-
sor in 2 dimensions at the same time. The detailed target
trajectory generation and cursor trajectory replay proce-
dures are presented in [15].
The paradigm consisted of 160 trials (80 per condition;
pseudo-randomly distributed). They were presented in
10 runs (6 minutes each). In between runs, participants
could rest for about 2 to 3 minutes. During the experi-
ment, we tested if the finger was in the resting position
during the preparation (both conditions) and tracking pe-
riods (observation condition). If the position exceeded a
threshold, a trial was aborted. On average, 5.2 trials were
aborted, resulting in 154.8 complete trials.
Neuromagnetic activity was recorded with a 160 channel
whole-head MEG system (MEGvision NEO, Yokogawa
Electrip Corp., Kanazawa, Japan) housed in a magneti-
cally shielded room. For this study, we used the signals of
129 sensors (Figure 1c). Electrooculographic (EOG) sig-
nals were recorded with 4 electrodes placed at the outer
canthi (horizontal EOG) and above/below the left eye
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(vertical EOG). The EOG signals were recorded with a
128-channel EEG system (Neurofax EEG 1200, Nihon
Koden Corp., Tokyo, Japan). MEG and EOG signals
were recorded synchronously at rate a of 1 kHz.
We asked participants to keep their head and shoulder po-
sition fixed during the experiment (blocks 2 to 4). We
additionally monitored the head position inside the MEG
system with five marker coils, attached to the face. Their
position was measured at the beginning of each run.
The custom motion capture and visual stimuli signals
were recorded at 60 Hz using the labstreaminglayer
(LSL) protocol1. We implemented the paradigm in
Python 2.7 based on the simulation and neuroscience ap-
plication (SNAP) platform2. Using pilot experiments, we
determined the delay between the finger and the cursor
movement on the screen. The delays introduced by the
hard- and software added up to 190 ms.
We analyzed the recorded data offline with a custom-
made pipeline that we implemented with Matlab (Mat-
lab 2015b, Mathworks Inc., USA) and the open source
toolboxes EEGLAB [17] (version 14.1.1) and Brainstorm
[18] (version 05-Jun-2018). We first synchronized the
stimuli and MEG signals by aligning impulses captured
by a photodiode. After synchronization, all signals were
resampled to 200 Hz. We estimated the cursor veloci-
ties by applying a Savitzky-Golay finite impulse response
(FIR) differentiation filter (polynomial order 3, 21 filter
taps, zero-phase) to the cursor positions.
To compensate small head movements across runs, we
spherically interpolated the MEG sensors of all runs (10
tracking, 4 eye) to their average position in relation to
the participant’s head. If the maximal distance of any
channel to the average position was larger than 25 mm,
the run was discarded. We discarded 2 runs in total.
The grand-average maximal channel distance across ac-
cepted runs was 5±0.1 mm (sem). After merging the sig-
nals of the tracking runs, we applied high-pass (0.25 Hz
cut-off frequency, Butterworth filter, eight order, zero-
phase) and band-stop (59 and 61 Hz cut-off frequencies,
Butterworth filter, fourth order, zero-phase) filters. To
compensate technical and spatially stationary artifacts in-
troduced by equipment, we applied independent compo-
nent analysis (ICA). In detail, we applied the extended
infomax algorithm to decompose the MEG signals (high-
pass filter with 0.4 Hz cut-off frequency) into indepen-
dent components (ICs) that explained 99.9 % of the vari-
ance. We visually inspected and marked 8.6±0.2(sem)
of 63.5±0.1(sem) ICs for rejection. They were then re-
moved from the 0.25 Hz high-pass filtered signals. We
attenuated eye movement and blink artifacts by apply-
ing the artifact subspace subtraction algorithm [15, 16].
To extract the low-frequency MEG signals, we applied a
low-pass filter to the broadband MEG signals (2 Hz cut-
off frequency, Butterworth filter, sixth order, zero-phase)
and resampled all signals at 10 Hz.
We then epoched the continuous data into 14 s trials,

1https://github.com/sccn/labstreaminglayer
2https://github.com/sccn/SNAP

starting 1.5 s after the condition cue. Trials were marked
for rejection, if (1) the broadband MEG signal of any
sensor exceeded a threshold (±5 fT), (2) had a abnor-
mal probability, variance or kurtosis (≥ (6/4/6) standard-
deviations (stds) beyond the mean), (3) the correlation be-
tween the EOG and the target position signals were im-
probable (≥ 4 stds beyond the mean), or (4) a tracking
error happened (i.e., jerky or no cursor movement). All
criteria combined resulted in rejecting 26.6±0.4(sem) of
154.8 trials.
Cursor velocity and speed were estimated with a sliding-
window, linear regression approach [11, 15, 19]. At sin-
gle lags, a partial least-squares (PLS) estimator was used
to decode a single kinematic signal (horizontal velocity,
vertical velocity or speed) from the pre-processed MEG
signals. Similar to [15], the PLS estimator considered 10
latent components. The model was evaluated using a 10
times 5 fold cross-validation (CV) scheme with the evalu-
ation metric being Pearson correlation coefficients (CCs)
between the recorded kinematic signals and their neural
estimates. We estimated chance level performance by
shuffling the kinematic signals across trials of the same
condition. We then applied 5 fold CV to the shuffled data
and repeated the shuffling and CV evaluation 1000 times.
The weights of the linear regression model can be readily
transformed to patterns [20]. We computed scaled pat-
terns according to [15].
To ease neurophysiological interpretation, we projected
the scaled patterns to the cortical surface of the ICBM152
template boundary element (BEM) head model [21]. We
co-registered the template with the head of each partici-
pant (and the MEG sensors) by manually fitting the tem-
plate head model to digitized head points (50 to 60 points
per participant) in Brainstorm toolbox. OpenMEEG [22]
was applied to compute the forward model for 5011 vox-
els on the cortical surface. sLORETA [23] was used to
estimate the inverse solution for unconstrained sources
at the 5011 voxels. The noise covariance matrix was
estimated using 5 minutes of resting data (similar pre-
processing as the tracking data), recorded during exper-
imental blocks 2 and 4, and applying shrinkage regular-
ization (10% of its largest eigenvalue).

RESULTS
Grand-average results presented here are summarized by
the mean and its standard-error across the 19 participants.
We assessed the participants tracking behavior by com-
puting CCs between the target and cursor position sig-
nals in the execution condition. The CCs peaked at
0.22±0.01 s for the horizontal component and 0.23±0.01
for the vertical component. That is, the target signal lead
the cursor by approximately 225 ms on average. The CCs
at the peaks were 0.90±0.01 (horz) and 0.92±0.01 (vert).
We also assessed the visual tracking behavior in both con-
ditions by computing CCs between the horizontal/vertical
target position and horizontal/vertical EOG signals. In
the execution condition, the CCs were 0.94±0.01 (horz)
and 0.79±0.06 (vert). In the observation condition, they
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were 0.92±0.01 (horz) 0.70±0.06 (vert).
The auto-/cross-correlation curves in Figures 2a-c
demonstrate that during the PTT the three signals of
interest (horizontal/vertical cursor velocity and cursor
speed) were negligibly correlated. The grand-average
cross-correlations were below or equal to 0.1 in both
conditions. Similar auto-/cross-correlation curves in
both conditions show that the cursor trajectories in
observation condition (dashed lines) were similar to the
executed ones (solid lines).
Figures 2d-f show the grand-average CV test-set CCs be-
tween the decoded and recorded kinematic signals for
single-lag, sliding-window, linear regression models. We
decoded the cursor velocities and speed from the MEG
signals of all 129 sensors at lags ranging from [-0.5, 0.5] s
in steps of 0.1 s. The MEG sensor signals lead the cursor
signals for negative lags.
We used the CCs of the shuffled data to test if the ob-
served results were due to chance. We controlled the
false-discovery rate (FDR) at a significance level α =
0.05 for ncomparisons = nmetrics · nlags = 3 · 11 = 33 com-
parisons per subject [24]. The tables at the bottom of
Figures 2d-f list the results.
The horizontal cursor velocity decoding results are sum-
marized in Figure 2d. The decoding model performed
above chance level for all lags and participants in the
execution condition and almost all participants in the
observation condition. The execution condition CCs
were larger than the observation condition ones for all
lags. The paired difference between conditions (exe-obs)
peaked at lag -0.3 s.
The vertical cursor velocity decoding results are summa-
rized in Figure 2e. The CCs were above chance level
for all lags and participants. Compared to the horizontal
velocity results, we observed higher CCs in the execu-
tion condition and similar CCs in the observation condi-
tion. As a consequence, the paired difference was higher
(peaked at lag -0.1 s).
The cursor speed decoding results are displayed in Fig-
ure 2f. All CCs were above chance level in the execution
condition. In the observation condition, the results varied
across lags and ranged from 14 to 18 participants having
CCs above chance level. Compared to the velocities, the
CCs were lower by approx. 0.1 in both conditions. How-
ever, the effect size of condition was comparable to the
velocities (paired difference peak of 0.15 at lag -0.3 s).
To identify the spatiotemporal encoding of information
about cursor velocities and speed, we transformed the
model weights to patterns at the cortical surface. Fig-
ures 2g-i show the grand-average patterns at selected
lags for execution condition (top), observation condition
(middle) and the paired-difference (bottom). The paired-
differences for all three kinematic signals show that
the predictive pattern activity in contra-lateral primary-
sensorimotor (SM1) areas was larger in execution condi-
tion at negative lags. Thus, contra-lateral SM1 activity
carried information about the upcoming cursor velocities
and speed in the execution condition. The difference was

maximal at lags -0.3 to -0.2 s and varied across the signals
of interest (speed > vertical velocity > horizontal veloc-
ity).
We also observed that superior parietal and parieto-
occipital areas carried predictive information about the
three kinematic signals in both conditions (Figures 2g,h
top and middle row). The paired-differences indicate that
the activity in these areas was similarly predictive for
horizontal cursor velocity in both conditions (Figure 2g),
more predictive for vertical cursor velocity in execution
condition (Figure 2h), and less predictive for cursor speed
in execution condition (Figure 2i).

DISCUSSION
We have demonstrated simultaneous decoding of cur-
sor velocity and speed information by means of low-
frequency MEG signals during a PTT. The PTT allowed
us to study continuous, uncorrelated cursor velocity and
speed signals (Figures 2a-c). During executed index fin-
ger tracking movements, contra-lateral SM1 activity was
simultaneously predictive for cursor velocity and speed,
while superior parietal and parieto-occipital activity was
also predictive in observed tracking movements.
Linear, single-lag decoding model performance in terms
of CCs was above chance level for all participants dur-
ing execution condition, and almost all participants dur-
ing observation condition (Figures 2d-f). The range of
CCs is in agreement with the results of previous linear
M/EEG kinematics decoding studies [11, 15, 25].
Comparing the two conditions, we found that the MEG
signals contained more information about the cursor ve-
locities and speed in the execution condition (Figures 2d-
f). The average effect of condition was stronger for the
vertical cursor velocity than for the horizontal one. This
is in accordance with the findings of our previous EEG
study [15].
The differences in the decoder patterns (Figures 2g-i; bot-
tom row) indicate that the activity in contra-lateral SM1
carried more information about the uncorrelated velocity
and speed signals in the execution condition. The dif-
ferences peaked at lags -0.3 s (horizontal cursor velocity;
Figure 2,g), -0.2 s (vertical cursor velocity; Figure 2,h)
and -0.3 s (cursor speed; Figure 2,i) respectively. Since
the difference in decoder CCs in Figures 2d-f were mod-
ulated by these peaks, the activity in contra-lateral SM1
must have considerably contributed to the larger decoder
CCs in the execution condition.
Considered that the cursor movement was the 190 ms
delayed index finger movement, the observed peaks are
plausible in terms of neurophysiology [26]. Simultaneous
decoding of velocity and speed from contra-lateral SM1
has also been demonstrated by recent invasive studies
based on spiking activity [27] and low-frequency ECoG
signals [14]. Inoue et al. observed that the firing rates of
a large fraction of neurons in SM1 were simultaneously
tuned to speed and velocity [27]. Hammer et al. reported
a stronger encoding of end-effector speed compared to
velocity in low-frequency ECoG signals [14]. This in
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Figure 2: Grand-average results of the experiment. Shaded areas indicate the sem across the 19 participants. a, Auto-/cross-correlation
curves for the three metrics of interest relative to the horizontal cursor velocity. b,c, As in a for the vertical cursor velocity (b) and
cursor speed (c). d, CV Test-set correlations between the recorded horizontal cursor velocity and its decoded estimate for execution
condition (solid line), observation condition (dashed line) and their paired difference (dash-dotted line). MEG sensor signals lead the
horizontal cursor velocity signal for negative lags. The table below lists the number of participants whose single-lag decoder CCs were
above chance level. e,f, As in d for the vertical cursor velocity (e) and cursor speed (f). g, Horizontal cursor velocity decoder patterns
for selected lags. We projected the patterns to voxels of a template BEM head model and averaged their norms across participants. h,i,
As in g for the vertical cursor velocity (h) and cursor speed (i).

agreement with our results. I.e, in execution condition,
the speed decoder patterns in SM1 were larger than the
velocity decoder patterns.
The decoder patterns (Figures 2g-i; top and middle rows)
showed also common activity in execution and observa-
tion condition. In both conditions, superior parietal and
parieto-occipital areas were predictive. Their activation
in both conditions is in agreement with findings of our
previous study [15] and also fMRI studies on executed
and observed reaching movements [28, 29].

CONCLUSION AND FUTURE WORK
In this work we have shown that non-invasive MEG sig-
nals simultaneously carry information about velocity and
speed of executed and observed tracking movements.
Linear, single-lag decoders extracted more information
originating in contra-lateral SM1 during executed track-
ing movements. Whereas superior parietal and parito-
occipital areas were informative in executed and observed
tracking movements.

Despite the encouraging results presented here, further
research is imperative. It needs to be shown that a com-
bined decoding of velocity and speed indeed improves the
SNR of the predicted end-points offline and subsequently
online. Moreover, studies with humans who lost control
of their upper-limb will have to demonstrate whether non-
invasive, decoding of imagined body kinematics has the
potential to improve their quality of life.

ACKNOWLEDGEMENTS

The authors acknowledge Catarina Lopes Dias, Joana
Pereira and Lea Hehenberger for their valuable com-
ments. This work has received funding from the Euro-
pean Research Council (ERC) via the consolidator grant
681231 ‘Feel Your Reach’, from Graz University of
Technology via its short-time research abroad scholar-
ship, from the Japan Society for the Promotion of Sci-
ence (JSPS) program KAKENHI (26282165), from the
National Institute of Information and Communications
Technology (NICT), from the Council for Science, Tech-

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-19



nology and Innovation (Cabinet Office, Government of
Japan) program ImPACT, and from a research grant form
the Ministry of Internal Affairs (Government of Japan).

REFERENCES

[1] Collinger JL, Wodlinger B, Downey JE, et al. High-
performance neuroprosthetic control by an individual
with tetraplegia. The Lancet. 2013;381(9866):557–564.
[2] Ajiboye AB, Willett FR, Young DR, et al. Restora-
tion of reaching and grasping movements through brain-
controlled muscle stimulation in a person with tetraple-
gia: A proof-of-concept demonstration. The Lancet.
2017;389(10081):1821–1830.
[3] Lebedev MA, Nicolelis MAL. Brain-Machine
Interfaces: From Basic Science to Neuroprosthe-
ses and Neurorehabilitation. Physiological Reviews.
2017;97(2):767–837.
[4] Branco MP, Boer LM de, Ramsey NF, et al. Encod-
ing of kinetic and kinematic movement parameters in the
sensorimotor cortex: A brain-computer interface perspec-
tive. European Journal of Neuroscience. 2019.
[5] Jerbi K, Vidal JR, Mattout J, et al. Inferring hand
movement kinematics from MEG, EEG and intracranial
EEG: From brain-machine interfaces to motor rehabilita-
tion. Irbm. 2011;32(1):8–18.
[6] Robinson N, Vinod AP. Noninvasive
Brain–Computer Interface: Decoding Arm Move-
ment Kinematics and Motor Control. IEEE Systems,
Man, & Cybernetics Magazine. 2016;2(October):4–16.
[7] Fukuma R, Yanagisawa T, Saitoh Y, et al. Real-time
control of a neuroprosthetic hand by magnetoencephalo-
graphic signals from paralysed patients. Scientific Re-
ports. 2016;6(1):21781.
[8] Jerbi K, Lachaux JP, N’Diaye K, et al. Coherent neu-
ral representation of hand speed in humans revealed by
MEG imaging. PNAS. 2007;104(18):7676–7681.
[9] Bourguignon M, Jousmäki V, Op de Beeck M,
et al. Neuronal network coherent with hand kinemat-
ics during fast repetitive hand movements. NeuroImage.
2012;59(2):1684–1691.
[10] Marty B, Bourguignon M, Jousmäki V, et al. Corti-
cal kinematic processing of executed and observed goal-
directed hand actions. NeuroImage. 2015;119:221–228.
[11] Bradberry TJ, Gentili RJ, Contreras-Vidal JL. Re-
constructing Three-Dimensional Hand Movements from
Noninvasive Electroencephalographic Signals. Journal of
Neuroscience. 2010;30(9):3432–3437.
[12] Waldert S, Preissl H, Demandt E, et al. Hand move-
ment direction decoded from MEG and EEG. Journal of
Neuroscience. 2008;28(4):1000–1008.
[13] Bundy DT, Pahwa M, Szrama N, et al. Decoding
three-dimensional reaching movements using electrocor-
ticographic signals in humans. Journal of neural engi-
neering. 2016;13(2):026021.
[14] Hammer J, Pistohl T, Fischer J, et al. Predomi-
nance of Movement Speed over Direction in Neuronal
Population Signals of Motor Cortex: Intracranial EEG

Data and A Simple Explanatory Model. Cerebral Cortex.
2016;26(6):2863–2881.
[15] Kobler RJ, Sburlea AI, Müller-Putz GR. Tuning
characteristics of low-frequency EEG to positions and ve-
locities in visuomotor and oculomotor tracking tasks. Sci-
entific Reports. 2018;8(1):17713.
[16] Kobler RJ, Sburlea AI, Müller-Putz GR. A compar-
ison of ocular artifact removal methods for block design
based electroencephalography experiments. In: Proc. of
the 7th Graz BCI Conference. 2017, 236–241.
[17] Delorme A, Makeig S. EEGLAB: An open source
toolbox for analysis of single-trial EEG dynamics includ-
ing independent component analysis. Journal of Neuro-
science Methods. 2004;134(1):9–21.
[18] Tadel F, Baillet S, Mosher JC, et al. Brainstorm: A
user-friendly application for MEG/EEG analysis. Com-
putational Intelligence and Neuroscience. 2011;2011:8.
[19] Ofner P, Müller-Putz GR. Using a noninvasive de-
coding method to classify rhythmic movement imagina-
tions of the arm in two planes. IEEE Trans. Bio. Eng..
2015;62(3):972–981.
[20] Haufe S, Meinecke F, Görgen K, et al. On the inter-
pretation of weight vectors of linear models in multivari-
ate neuroimaging. NeuroImage. 2014;87:96–110.
[21] Fonov V, Evans AC, Botteron K, et al. Unbiased av-
erage age-appropriate atlases for pediatric studies. Neu-
roImage. 2011;54(1):313–327.
[22] Gramfort A, Papadopoulo T, Olivi E, et al. Open-
MEEG: Opensource software for quasistatic bioelectro-
magnetics. BioMedical Engineering Online. 2010;9.
[23] Pascual-Marqui RD. Standardized low resolution
brain electromagnetic tomography (sLORETA): techni-
cal details. Methods & Findings in Experimental & Clin-
ical Pharmacology. 2002;24:1–16.
[24] Benjamini Y, Hochberg Y. Controlling the false dis-
covery rate: a practical and powerful approach to multiple
testing. J. Royal Stat. Soc. B. 1995;57(1):289–300.
[25] Bradberry TJ, Rong F, Contreras-Vidal JL. Decod-
ing center-out hand velocity from MEG signals during
visuomotor adaptation. NeuroImage. 2009;47(4):1691–
1700.
[26] Miall RC, Wolpert DM. Forward models for physio-
logical motor control. Neural Networks. 1996;9(8):1265–
1279.
[27] Inoue Y, Mao H, Suway SB, et al. Decoding
arm speed during reaching. Nature Communications.
2018;9(1):5243.
[28] Filimon F, Nelson JD, Huang RS, et al. Multi-
ple Parietal Reach Regions in Humans: Cortical Rep-
resentations for Visual and Proprioceptive Feedback
during On-Line Reaching. Journal of Neuroscience.
2009;29(9):2961–2971.
[29] Magri C, Fabbri S, Caramazza A, et al. Directional
tuning for eye and arm movements in overlapping regions
in human posterior parietal cortex. NeuroImage. 2019;(in
press).

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-19




