
RESONANCE - A BCI FRAMEWORK FOR WORKING WITH MULTIPLE
DATA SOURCES

Y.O. Nuzhdin

E-mail: nuzhdin.urii@gmail.com

ABSTRACT: Resonance is a framework for creating re-
producible BCI experiments with multiple sources of
data processed together. It is a cross-platform tool cre-
ated with C++. It offers ways to create visual environ-
ments using QML and perform data processing with R
and Python. Resonance has proved its work with multi-
ple brain signal capturing devices including EEG, MEG,
Eye tracking and number of other devices. Resonance
framework does not exclude developer from the process
of experiment creation, but it allows to focus on details
of an experiment by using user-friendly languages and
concepts. The framework is actively developed and was
already used for various experiments in several laborato-
ries. All data-processing code is open sources[6][5].

INTRODUCTION

Many novel non-invasive BCIs are trying to achieve max-
imum signal efficiency and accuracy with the help of mul-
tiple tools. That can be data acquiring devices like elec-
troencephalography (EEG), magnetic resonance imaging
(MRI), magnetic encephalography (MEG), eye trackers
or stimulators like visual and auditory stimulators, tran-
scranial magnetic stimulation (TMS), electro myostim-
ulation (EMS). Using multiple data source helps under-
standing brain signal deeply and making better interfaces,
however it requires a simultaneous work and a very pre-
cise synchronization between different devices.
There is a number of software tools for performing BCI
experiments[2], and that list is growing[12]. These tools
are created with different programming languages, has
different capabilities and features. Previously, we suc-
cessfully used some of them in experiments[11][1]. How-
ever, for new experiments we were looking for a platform
that would be capable of processing data from multiple
devices simultaneously and online.
Resonance was designed as a framework that can tight
up multiple devices and provide an experimenter with an
ability to design, acquire, view and analyze data in a user-
friendly and unified manner.
The development started in 2014 by an independent team
and to date several experiments have been performed with
the Resonance framework [3][4][10][13].

FEATURES

Resonance was never meant as a tool that excludes a de-

veloper from designing an experiment. Instead it pro-
vides a set of tools and general approach that lowers re-
quirements for knowledge and skills. It allows one to
concentrate on details of experiment instead of low-level
machine interaction details.
Within Resonance system we distinguish following as-
pects of an experiment: data collection, aggregation, pro-
cessing and storage, experimenter feedback loop and sub-
ject feedback loop. We use the term ’loop’ because not
only experimentation system affects subject, but a subject
may also affect experimentation system. Experimenter
can monitor diagnostic data and change settings during
an experiment. The subject can affect experiment in two
different ways: by being a data source (if we measure pa-
rameters, which subject can control) and by changing a
procedure and parameters of an experiment (for example
by pressing a button when one is ready).
Our goal is to provide an experimenter with implemen-
tations for some of these aspects without artificial limi-
tations that simplify creation of the framework but limit
abilities to make complicated experiments.
Resonance provides a set of tools to fulfill requirements
of named aspects:

• Data collection - Resonance implements drivers for
devices. Hence an experimenter has access to all
configuration options and working modes provided
by a device. These options and modes could be
changed during experiment’s execution. It is also
possible to monitor device failures.

• Data aggregation and data processing - Resonance
provides libraries on R[6] and Python[5] that allow
to combine and process data from multiple sources.

• Data storage - Resonance provides a facility to store
data. It uses its own open data format because it
stores every single bit of data produced by the sys-
tem, which allows for example to detect problems
with hardware after an unsuccessful experiment.

• Experimenter and subject feedback loops - Reso-
nance provides libraries for QML to control all as-
pects of an experiment, including handy widgets like
data visualization. In fact, every single UI piece of
Resonance is implemented with QML modules and
is available open source, so if you find any of ex-
isting tools useful you can copy it to your experi-
ment. QML is a declarative language for designing

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-15



user interface-centric applications. Interface’s be-
havior, designed with QML, can be scripted through
JavaScript. The tool is multi-platform: available
on Linux, Windows, MacOS and Android. It uses
video acceleration to produce fast graphical output.
From our experience it is not only possible but also
very easy to implement tempting features like stim-
uli presentation for a single frame at desired time
without any knowledge of how video system works.

It is important to mention that Resonance can be inte-
grated with a third-party software without any limita-
tions.

SYSTEM USAGE EXAMPLE

We will illustrate abilities of the system at the non-typical
BCI experiment performed in Lomonosov Moscow State
University[13]. In this experiment we recorded EEG and
EMG during TMS stimulation. At each run subject per-
formed two types of mental tasks - one of three mo-
tor imagery tasks (experimental condition) and a visual
attention task (reference condition). In EMG analysis,
the amplitude of TMS-evoked motor potentials (MEP)
was measured peak to peak (between negative and pos-
itive phases of potential). Potentials with any signs of
raised muscular activity during preceding 1000 ms inter-
val were rejected manually. MEP amplitudes in exper-
imental condition (motor imagery) were normalized to
mean amplitude of the reference condition (“visual atten-
tion” or “blank screen”) of the same run. The mean of the
subject’s MEP amplitudes during fingers flexing imagery
task minus 100% was used as a corticospinal excitability
increase measure for further analysis.
During TMS measurement online EMG-feedback was
displayed at the right side of the screen as a vertical bar
with a real-time RMS (root-mean-square) value (300 ms
window, 100 ms step)(figure 2). Participants were asked
to find hand position with minimal ongoing EMG am-
plitude and to keep the corresponding bar level constant
during the whole run.
To control quality of TMS stimulation during the exper-
iment EMG responses to stimulation with amplitude and
latency measurements were shown on the experimenter’s
screen. Both EEG and EMG data were recorded for of-
fline analysis.
At the center of subject’s screen was an image indicating
current task. At the right side of subject’s screen was a
bar showing subject’s muscle activity. Value for this bar
was calculated from EMG measures online to help a sub-
ject to reach a muscle relaxation. On a separate screen
an experimenter saw an interface with all parameters of
the experiment. At the right-side column TMS-invoked
motor potentials (MEP) were displayed. Each row con-
tained EMG data, amplitude and latency values for single
stimulation (figure 1).

SYSTEM ARCHITECTURE

Figure 1: Part of experimenter’s screen with MEP, latency and
amplitudes measurements. Colors are changed for printing.

Figure 2: Subject screen. Pictogram of a hand represents mental
imagery task cue and bar on the right side shows real-time RMS
of subject’s EMG from forearm muscles.

The framework provides a general data-flow-centric ar-
chitecture, which should fit any possible experiment. In
this approach we distinguish Resonance services: nodes
of data processing and control. Each service can publish
data streams, its own parameters and state (e.g. opera-
tion mode of a service). All communications between
services go through TCP/IP network and services can be
started at the same or different machines. Each service
can discover other services in a local network, receive
data streams, update parameters of other services and
send commands to change state (for example start cali-
bration or recording). This approach makes every service
independent from others, which brings modularity to sys-
tem and helps with debugging and analyzing problems.
In the example above were 5 services -

• an EEG driver

• an EMG driver (EEG and EMG were recorded by
two different devices)

• a service for subject’s screen

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-15



• a service for experimenter’s screen

• a service for EMG data processing using R[9] script
engine

Data from EEG and EMG devices was collected by ex-
perimenter’s service and recorded to a file by standard
Resonance facility. Data from EMG device was also ac-
quired by R script engine. This service was executing R
script to calculate RMS of EMG. This service also gath-
ered myographic data after TMS stimulation to display
results on experimenter’s screen. Subject service was
consuming RMS data from R script engine and stimuli
commands from experimenter’s service. Experimenter
service was responsible for experimentation cycle. It con-
tained a finite state machine to control a stimuli sequence
and UI module to display myographic data. Myographic
data was updated after each stimulation by detecting cor-
responding event in a runtime.

ONLINE AND OFFLINE DATA PROCESSING

Making data processing algorithms is not easy, especially
when you need to model data processing before or af-
ter the experiment. Typical approach to this task is to
provide system with a set of data transformation blocks,
which you can combine to perform required data process-
ing steps. The positive side is that it is relatively easy to
combine and configure such blocks. First problem with
this approach is that experimenter is limited by the num-
ber of kinds of these blocks. Also creating these blocks
requires a good knowledge of the internals of a BCI sys-
tem and a language with which that system is written
(usually C++). Second problem is that it is hard to use
these blocks for offline data processing, as they are highly
integrated with BCI system, while offline data processing
is usually performed by Python, R or Matlab.
Having separate code for online and offline processing
makes experiment development very hard. Achieving
exactly same computational result in computer systems
requires knowledge of how computation is made step-
by-step. This means that a developer of an experiment
must translate online processing to an offline tool or hope
that they will produce results which differ insignificantly.
Achieving equal results for offline and online is not a re-
quirement for every application, but that limits in ability
to detect irregularities or test additional hypotheses post-
hoc. For example if you discover an unusual behavior in
an online experiment it will be difficult to figure out if it
was due to computational errors or anything else.
In order to overcome this problem Resonance provides
a library that can be used for both online and offline data
processing. The data flow is still constructed from blocks,
but these blocks (as well as all data processing) are writ-
ten in a language which is more familiar for experimenter
(R and python for now) and these blocks are not coupled
with the details of online data processing. That means
that you can get exactly same results using data from on-
line experiment, and even more, you can model online

performance of the system offline, using a language you
are familiar with. In fact data processing library is com-
pletely abstract from any Resonance-specific data pro-
cessing, and with minor adaptations could be used with
any system which supports R or python language in run-
time.
Using Resonance library allows not only to execute on-
line and offline processing, but also helps to visualize it.
For example, figure 3 is the automatically generated vi-
sualization of data processing plan for EMG processing
from the example experiment.

Input 1

pipe.spatial

pipe.applyFilter

pipe.applyFilter

pipe.applyFilter

pipe.applyFilter

pipe.applyFilter pipe.eventOnSquareSignal

pipe.windowizer

calcRMS

createOutput

cross.windowizeByEventscross.windowizeByEvents

pipe.transform.windowsToEventspipe.transform.windowsToEvents

cross.combine.events

pipe.transform.event

createOutput

Figure 3: Data processing plan for EMG processing. Argu-
ments for the processing steps are not visualized on this chart.

DATA AGGREGATION AND SYNCHRONIZATION

Data aggregation:
For processing digital signals you can work in two differ-
ent domains - in sample space and in time space.

• Working in sample space means that you quantify
time in your system by a number of samples of the
signal you are processing.

• Working in time space means that you measure your
time by some timer which is not bound with the sig-
nal and that timer has finer resolution than sampling
rate of your signal.

Working in the sample space seems very natural when
you deal with single signal source. But unfortunately,
most of real-world applications never work with the sin-
gle source of the signal. For example - when you present
any stimulus, you have two sources of data - one for EEG

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-15



and another for moments in time when stimulus was pre-
sented. In this situation you usually introduce an addi-
tional channel with event data or some kind of flags. Such
solution works for some applications, but it cannot be
generalized. When you try to work with multiple signals
even if they have same sampling rate you will face the
problem of phase alignment for these signals. Introduc-
ing every new signal source will add at least half of the
period of this signal to time desynchronization (or even
more if the frequencies of signals are not dividable with-
out the remainder). If signals have sampling rates which
are not multiples to each other there is a problem of sub
sampling - when one sample of signal A corresponds to
a variable number of samples of signal B. If you try to
process such signals in parallel you will introduce syn-
chronization deviations, and if you bring the signals to a
common frequency you will introduce phase, amplitude
and spectrum deviations in signal.
Working in time space makes sense if you use timer
with resolution smaller than the minimal period of pro-
cessed signals. In this case applied transformations still
can change timestamps of a samples, but as these times-
tamps are finer than a period of a signal they would not
affect your signal. However, working with timestamps
of the recording device may introduce unnecessary com-
plexity to the calculation process. Recording devices do
not produce data blocks at exact time intervals. For exam-
ple, EEG recording device may show deviations between
timestamps of the blocks which will usually be bigger
than a period of the signal.
Resonance framework provides the following solution to
synchronization problem:

1. an initial timestamp for the signal is averaged from
first few blocks of data

2. timestamps for samples are recalculated from sam-
pling rate

3. during the data processing Resonance also performs
a control, so that there are no delays or deviations in
data retrieval

Synchronization:
Synchronization between signals is very easy when you
work in a time space - you just align closest timings
together and your signals are synchronized, and again,
by this operation you introduce phase deviation which
is smaller than sampling rate, so it is not reflected in
your signal as well. Of course, you need to take into ac-
count that different computers use different timers and
you need to align these timers if you record data with
separate machines. However, if you record data with one
machine you will have access to a very precise timer (tens
of nanoseconds) of the machine, which is enough for any
imaginable signal. You can try to achieve time synchro-
nization among different machines via network, but it is
more precise and reliable to physically connect recording
devices and perform a synchronization based on the same
signal recorded by several devices.

In the example experiment there were 3 time-aligned de-
vices - EEG , EMG and TMS. In order to synchronize
them EEG and EMG were connected to a TMS trigger
channel. TMS sent pulse through this channel each time
a stimulation was performed. By that means we achieved
not only data-synchronization between EEG and EMG,
but also very reliable source of time information when
TMS stimulation was performed. That time information
was used to extract EMG data related to the stimulation,
that was presented on experimenter’s screen.

Performance considerations:
When talking about working in signal or time space we
usually mean working with separate samples. But for
computers calculating separate samples is too inefficient
and introduces a big overhead, so we are forced to col-
lect and process data in blocks. From the other side -
gathering block of samples introduces latency, and you
cannot immediately process collected data. The decision
whether blocks are equal in size or not should be made by
an experimenter, not dictated by a framework. In order
to decide one need to take into account performance re-
quirements of one’s application, the way hardware works
(for example is it capable to return data blocks of vari-
able size) and what data processing algorithms are used
in experiment. Resonance supports blocks of variable
size, and each block has a timestamp of creation and
a timestamp of receiving. That allows monitoring de-
lays in a network or in blocks’ processing. Resonance’s
R and Python open source libraries provide abstraction
over data stream, which is independent of block size and
amount. That allows experimenter to try experiment with
different block size settings in order to achieve required
performance and latency.

PLANS FOR THE FUTURE

For the upcoming year there are few big improvements
planned:

• Demo experiments. Currently Resonance distribu-
tive contains only basic signal processing tools. Our
plan is to share some experiments and tools we made
with Resonance. That will provide a basis for other
experimenters to build and reproduce their experi-
ments. In order to achieve that existing implementa-
tions should be reviewed and documented. These
demo experiments will be freely available at the
Resonance website[7], as well as instructions about
how to install and run them.

• Extend support for devices. Currently there are
several recording devices natively supported by
Resonance (actiChamp, NVX and openBCI eeg
recorders, eyelink and eyetribe eyetrackers, neuro-
mep-4 myostimulator) Many other devices could
be connected using fieldtrip[8] protocol, but field-
trip does not allow to control device parameters and
modes. In upcoming year, we will extend native sup-
port for at least EEG, MEG and eyetracking devices,

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-15



and probably implement other popular protocols like
Lab Streaming Layer.

• Code improvements. Resonance claims to be the
system that exactly reproduces experiments. This
functionality is the core of the system and was ex-
tensively tested in simulations and real applications.
Last year there was a big improvement in number
of automated tests for this functionality. These tests
explicitly proof that everything you can do with Res-
onance have exactly the same behavior online and
offline, every time you run application on any ma-
chine. For the upcoming year we have a goal to
completely cover R and python Resonance libraries
with tests.

List of improvements, updates and plans, and other infor-
mation is available on the website of the framework[7].
All source code for online and offline data processing
is freely available on GitHub repositories for R[6] and
Python[5].

ACKNOWLEDGEMENTS

Authors would like to acknowledge Anatoly Vasilyev and
Sergey Shishkin for providing useful advices and feed-
back and for their help in testing.

References
[1] A.A. Fedorova et al. A fast "single-stimulus" brain
switch. In: Proceedings of the 6th International Brain-
Computer Interface Conference 2014. Sept. 2014.
[2] Brunner Clemens et al. BCI Software Platforms. En-
glish. In: Toward Practical BCIs: Bridging the Gap from
Research to Real-World Applications. Springer, 2013,
303–331.
[3] Nuzhdin Yuri O. et al. Passive Detection of feedback
Expectation: towards Fluent Hybrid eye-brain-Computer
Interfaces. In: From Vision to Reality - Proceedings of the
7th Graz Brain-Computer Interface Conference, GBCIC
2017, Graz, Steiermark, Austria, September 18-22, 2017.
2017.
[4] Nuzhdin Yuri O. et al. The Expectation Based Eye-
Brain-Computer Interface: An Attempt of Online Test.
In: Proceedings of the 2017 ACM Workshop on An
Application-oriented Approach to BCI out of the Labo-
ratory. BCIforReal ’17. Limassol, Cyprus: ACM, 2017,
39–42.
[5] Nuzhdin Yury. Resonance Python package. https:
/ / github . com / tz - lom / Resonance - engine -

python.
[6] Nuzhdin Yury. Resonance R package. https : / /
github.com/tz-lom/Resonance-engine-R.
[7] Nuzhdin Yury. Website of the Resonance project.
http://resonance.bcilab.net.

[8] Oostenveld Robert, Fries Pascal, Maris Eric, Schof-
felen Jan-Mathijs. FieldTrip: Open Source Software for
Advanced Analysis of MEG, EEG, and Invasive Electro-
physiological Data. Computational Intelligence and Neu-
roscience. 2011;2011.
[9] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Com-
puting. Vienna, Austria, 2018.
[10] Shishkin Sergei L. et al. EEG Negativity in Fixa-
tions Used for Gaze-Based Control: Toward Converting
Intentions into Actions with an Eye-Brain-Computer In-
terface. Frontiers in Neuroscience. 2016;10:528.
[11] Shishkin S.L., Nikolaev A.A., Nuzhdin Y.O., Zhi-
galov A.Y., Ganin I.P., Kaplan A.Y. Calibration of the
P300 BCI with the single-stimulus protocol. In: Proceed-
ings of the 5th Graz Brain-Computer Interface Confer-
ence, GBCIC 2011, Graz, Steiermark, Austria, Septem-
ber 22-24, 2011. 2011, 256–259.
[12] Smetanin Nikolai, Volkova Ksenia, Zabodaev
Stanislav, Lebedev Mikhail A., Ossadtchi Alexei. NF-
BLab—A Versatile Software for Neurofeedback and
Brain-Computer Interface Research. Frontiers in Neu-
roinformatics. 2018;12:100.
[13] Vasilyev Anatoly, Liburkina Sofya, Yakovlev Lev,
Perepelkina Olga, Kaplan Alexander. Assessing motor
imagery in brain-computer interface training: Psycholog-
ical and neurophysiological correlates. Neuropsycholo-
gia. 2017;97:56–65.

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-15




