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ABSTRACT: In BCI, artifact removal remains an acute 

challenge. Filtering must be efficient in removing 

artifacts while preserving relevant features, e.g. event-

related potentials (ERP) like the mismatch negativity 

(MMN). MMN is a prediction error signal whose 

modulations reflect human perceptual inference and 

learning. Characterizing these subtle processes requires 

fitting non-linear models onto single-trial data. And 

disentangling between alternative models is challenging 

because of a low signal-to-noise ratio. We evaluated four 

methods for online artifact removal. We mimicked online 

data processing using real electroencephalography 

(EEG) data from an auditory oddball paradigm. We 

compared the four approaches with standard offline 

analysis, in their ability to reveal (i) the MMN, (ii) the 

MMN modulations by the manipulation of the 

predictability of a sound sequence and (iii) the most 

likely learning mechanism at play. Artifact Subspace 

Reconstruction (ASR) and Empirical Mode 

Decomposition (EMD) were the most successful. 

Interestingly, they even proved more sensitive than the 

offline analysis, likely because they avoid rejecting trials. 

  

INTRODUCTION 

Brain-computer interfaces (BCI) measure and process 

brain activities for control, monitoring or rehabilitation 

purposes [1]. Whatever the application, an acute 

challenge is to extract reliable features and to translate 

them into meaningful information for the machine, in real 

time. Moreover, the challenge intensifies when brain 

signals are measured by non-invasive methods, typically 

electroencephalography (EEG).  

EEG, compared with other techniques, has a poor spatial 

resolution and is often contaminated with electrical 

activities generated either by endogenous physiological 

sources (such as eye movements) or externally over the 

scalp (line noise) [1]. These artifacts, in addition to 

decreasing the signal quality, directly influence the 

classification performance of EEG-based BCIs [2] and 

may add to other possible reasons why some users are 

unable to control such BCI systems [3]. 

In the last few years, some approaches have been 

investigated to detect and remove artifacts in real-time, 

such as Artifact Subspace Reconstruction (ASR) [4], 

Fully Online and automated artifact Removal for brain-

Computer interfacing (FORCe) [5], online Empirical 

Mode Decomposition (EMD) [6–8], and online 

Independent Component Analysis (ICA) [9–11]. 

However, none of these methods can be acknowledged as 

the “gold standard” yet, and to our knowledge, no 

research has been conducted to compare these methods 

with standard offline preprocessing, nor to enable online 

hypotheses testing for optimized cognitive neurosciences 

experiments [12]. Ideally, these filtering methods should 

provide a clean signal that contains the same relevant 

information as if the data would have been processed 

offline.  

The mismatch negativity (MMN) is an automatic evoked 

EEG component that is typically observed during the 

listening of an oddball tone sequence, when subtracting 

the average response to deviant (rare) sounds from the 

average response to standard (frequent) sounds.  This 

negative deflection occurs usually between 150 and 250 

at frontal and central scalp electrodes, even in the absence 

of attention oriented towards the sounds [13,14]. 

The MMN is viewed as a prediction error signal, that is a 

measure of the discrepancy between the expected 

sensation (a standard) and the observed sensory input (a 

deviant). The computation of prediction errors and their 

resolution obey hierarchical predictive coding, where 

cortical processes (higher levels) send predictions to 

lower hierarchical levels. Whenever the current 

prediction fails, prediction errors are forwarded up to 

higher hierarchical levels, following an ascending 

pathway [15].  

Besides, a few offline auditory-based cognitive 

neuroscience studies demonstrated that MMN 

modulations reflect an implicit learning process, such 

that a predictable sequence of auditory stimuli yields a 
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decreased MMN. In other words, the more predictable 

the occurrence of a deviant stimulus, the more reduced 

the prediction error, hence the lower the MMN amplitude 

[14,16]. However, revealing these learning processes 

requires fitting non-linear mathematical models with 

unknown parameters, at the single trial level and for each 

subject independently. It has been shown that online 

adaptive designs could help to optimize the selection and 

fitting of such learning models, at the individual level 

[12]. In this aim in particular, obtaining clean single trial 

data in real-time is highly crucial.  

In this paper, we evaluate and compare the performance 

of ASR, online EMD, online ICA, and FORCe, for online 

artifact correction using real data. In our experiments, we 

mimic real-time data processing. Precisely, we compare 

the performance of those methods with offline data 

processing, evaluating their ability (i) to reveal a 

significant MMN to auditory oddball stimuli; (ii) to 

reveal the more subtle modulation of the MMN by the 

predictability of the sound sequence and (iii) to identify 

the right learning model based on single-trial data fitting. 

 

MATERIALS AND METHODS 

 Experiment: We used the EEG dataset from Lecaignard 

et al. [14]. These data were obtained in 20 healthy adults 

(10 female, mean age: 25 ± 5 years) who passively 

listened to auditory oddball sequences, where the 

occurrence of deviant sounds was either predictable or 

unpredictable. We implemented the same data processing 

performed in this study and considered it as a standard 

offline approach to compare with the online artifact 

correction methods.  

Data processing: Three of the four online artifact 

correction methods need to be calibrated. ASR requires a 

clean EEG calibration signal, while ICA requires a 

calibration signal that contains the artifact to be removed. 

EMD also requires a clean calibration signal with 

approximately the same window size as the subsequent 

epochs to be preprocessed. FORCe does not need to be 

calibrated. The first 30s of each block of stimulations 

(each subject performed 4 blocks, see [14] for more 

details) were used to calibrate the different methods when 

needed. Those initial segments were not used in the 

subsequent MMN analyses. These signal windows were 

band-pass filtered at 2-20 Hz using the inverse Fast 

Fourier Transform (FFT) filtering available in the 

EEGLAB software environment [17]. In addition, the 

ASR calibration signal was processed to eliminate eye 

blinks and samples greater than 50 μV, in other words, 

samples that exceeded this threshold were not used for 

ASR calibration. For EMD, only 1s of the 30s of the 

filtered signal were used.  

To compute ICA we used the infomax algorithm from 

EEGLAB. ICA was applied to all electrodes of 

calibration data, and the independent components were 

rejected by visual inspection. 

After calibration, the signal was processed over epochs 

starting 200ms before stimulus onset and ending 500ms 

after. Each epoch was also band-pass filtered at 2-20 Hz 

prior to processing (inverse FFT). As FORCe requires at 

least 1 second until it is capable of removing artifacts, 

specifically for this method, we used epochs starting 1.2s 

before stimulus onset. 

The performance of ASR depends on the choice of hyper-

parameters [18]. Therefore, after empirical testing, with 

the exception of the window size parameters (window 

length = 0.7s, step size = 0.5s and look-ahead = 0.2s), we 

used the default values. 

After applying the different online artifact correction 

methods, we removed the last 200ms from the analysis, 

ensuring that the signals were not contaminated by edge 

artifacts introduced by the filter. Furthermore, we only 

used as feature of interest a specific time windows  from 

160 to 190 ms after stimulus onset (centered on the MMN 

response) and channels (F1, Fz, F2, FC1, FCz, FC2, C1, 

Cz, C2) as in Lecaignard et al. [14], which were found to 

be the most responsive channels. We calculated the 

averaged signal in that spatio-temporal region of interest, 

for deviant and its preceding standard stimuli in order to 

compute the MMN amplitude. 

Models: In this part of the study, we only compared 

the online artifact correction methods that proved able to 

reveal the MMN as well as its modulation by 

predictability. Therefore, we applied a two-tailed t-test to 

test whether the unpredictable and predictable MMN 

amplitudes come from populations with unequal means, 

with a 5% significance level. This proved to be the case 

for ASR and EMD (see below).  The following cognitive 

models were implemented for comparison:  

- a null model (M0) assuming no difference between 

responses to standard and deviant sounds; 

- static (non-learning) models including binary change 

detection (CD), deviant detection (DD) and linear 

change detection (LD) [19];  

- Bayesian learning models (BL) that depend on a 

forgetting parameter τ, meaning that the larger τ, the 

wider the memory [19]. We considered four different 

models of this type, each corresponding to a different 

value of τ: 2, 6, 10, and 100. 

We used the VBA (Variational Bayes Analysis) toolbox 

[20] for our computational model analyses. To reduce the 

number of inversions, the EEG signal was down-sampled 

from 600 Hz to 100 Hz. The VBA toolbox allows to 

reject specific trials in the evolution model. Therefore, 

for the offline method, we consider the same rejected 
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trials as identified in [14], and for ASR and EMD we 

declare the calibration period (the first 30s) of each block 

as rejected trials (as explained before). To find out which 

models outperform the static null model (M0) at a given 

latency, we computed the relative Free-energy (as a 

proxy for relative model evidence) [19]. 

    

RESULTS 

The left upper panel in Fig. 1a displays the grand average 

responses computed offline from the identified 

responsive channels, for the standard, the deviant and the 

MMN. The right upper panel in Fig. 1a shows the MMN 

values computed in the window of interest (160-190 ms) 

for all subjects and all artifact correction methods. Except 

for ICA, all methods revealed a significant auditory 

MMN. 

Fig. 1b summarizes the methods ability to reveal MMN 

modulation by predictability. The left lower panel shows 

the modulation of the MMN obtained offline. The right 

lower panel displays the MMN amplitude for the 

predictable and unpredictable conditions, as obtained 

with each online artifact correction method. The two-

tailed t-test (p < 0.05) showed that, like the offline 

analysis, ASR and EMD proved able to reveal the 

significant modulation of the MMN by predictability. 

Finally, we further investigated whether online artifact 

correction with ASR or EMD would yield the same 

conclusion compared to previous offline analysis, 

regarding Bayesian model selection of perceptual 

learning processes as reflected by single trial 

modulations of auditory evoked responses [21]. Fig. 2 

shows the relative Free-energy (model evidence) of every 

model with respect to the null model (M0). Note that 

models DD and BL10 prevail compared to other models, 

at the latency of the MMN (between 160 and 200ms). 

 

DISCUSSION 

We compared artifact correction methods with offline 

data processing and investigated their abilities to reveal a 

significant MMN, to uncover subtle MMN modulation 

by a contextual manipulation of the sound sequence 

(deviance predictability), and to identify the best 

perceptual model based on single-trial data analysis. 

Artifact correction: We explored four methods for 

online artifact correction on real data, mimicking real-

time data processing.  

In the course of ASR implementation, we noticed that 

noisy channels identified during calibration must be 

excluded. ASR applies Principal Component Analysis 

(PCA) transformation to filter the signal, therefore the 

noise present in the calibration data may be propagated 

to the other channels. Besides, as noise levels (internal 

and external) change throughout the experiment, re-

calibration of the method is advisable. In our study, we 

performed the re-calibration for each new block and new 

EEG file, that is, every 674 stimuli (approximately 10 

minutes of data).  

The FORCe method was designed with the proposal of 

being fully automated, so no calibration period or 

parameter setting is required. However, the function 

requires that at least one second of the signal must be 

filtered. At first, we used the same time window (-200ms 

to 500ms) as for the other methods, but results proved 

worse than when using a 1-second-long window. It is 

worth mentioning that the method preserved the MMN 

waveform, but could not reveal a statistically significant 

modulation by predictability.  

To implement the EMD method, since the channel cluster 

of interest was already well established, we first 

computed the average time series over these channels and 

then applied the correction. We chose this approach to 

avoid processing the intrinsic mode functions (IMFs) for 

all 62 channels, which would require a prohibitive time 

for real-time implementation. Although this could 

decrease the signal quality, since averaging smoothes the 

signal, the results showed that it did not affect the MMN 

response. Hence the numbers of channels must be 

considered when choosing this method. 

ICA showed the worst performance to reveal the MMN. 

Probably because of the simple and rigid manner we 

applied ICA. Indeed, we simply apply the initially 

estimated mixing matrix to all subsequent trials. One 

could imagine updating this matrix or identifying 

whether a given trial needs to be filtered or not, and 

which components should be removed. Furthermore, the 

size of the time window used to decompose the signal can 

be enhanced to better estimate the independent 

components. 

All methods were applied to epoched data. This strategy 

is well suited for ERP analysis and alleviates the 

computational burden.  

The artifact correction methods investigated in this study 

were able to reveal the MMN response. However, ICA 

excessively smoothed the signal waveform, altering the 

main component of the MNN peak between 150 and 

200ms. 

These findings look promising as they open the way to 

reliable online MMN analyses, that could have far-

reaching applications with patients. The MMN has 

indeed long been investigated to assess impaired 

cognitive functions in various clinical populations [22]. 
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Figure 1 - Mismatch Negativity (MMN) (electrodes of interest: F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2). (a) Grand-

average ERPs elicited by standard, deviant and their difference (MMN) obtained offline; boxplot of MMN amplitudes 

(averaged between 160 and 190 ms) obtained with the different online artifact corrections; (b) Effect of predictability on 

the MMN (offline method); MMN amplitudes for each condition (predictable and unpredictable) and each artifact 

correction approach; the asterisks indicate statistical significance of the modulation by predictability (p < 0.05, two-tailed 

t-test). 

 

 

 
Figure 2 - Relative Free-energy maps.  Relative Free-energy or (log) Bayes-factor values obtained offline (left panel), 

with ASR (middle panel) and EMD (right panel), respectively. In each panel, the relative Free-energy is given for each 

alternative model relative to the null model (y-axis) and for each peri-stimulus time sample in ms (x-axis). Values greater 

than 20 indicate significant evidence in favor of the alternative model. 
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Predictability effect: After this first analysis, we 

investigated the impact of artifact correction on MMN 

modulation. As discussed in other studies [14, 23, 24], 

predictability of the occurrence of a deviant sound yields 

a decrease in prediction error, hence a decrease in the 

MMN amplitude. In other words, the greater the sound 

predictability, the smaller the MMN. 

Results depicted in Fig. 1b shows that FORCe and ICA 

hardly revealed the MMN modulation. Although the 

MMN in the predictable condition was smaller when 

using the FORCe approach, it was not significantly 

different from the one in the unpredictable condition. 

Whereas for the ICA approach, the estimated amplitudes 

were the same in the two conditions. 

Models: The last part of our study was implemented to 

analyze if any learning or non-learning models, based on 

sensor-level signals, could explain the trial-by-trial 

variations in the ERP signals. At the latency of the MMN 

(150 to 200ms), the offline method presented favorable 

results for models DD and BL10, but the DD model took 

longer to stand out and its window of significance proved 

shorter. The Free-energy map for ASR and EMD reveal 

similar latencies of significance. However, the ASR 

approach yielded slightly longer time windows and 

presented larger values compared to the other methods. 

This suggests that ASR was not only able to 

appropriately correct for artifacts but in doing so, it also 

avoided rejecting trials and led a more sensitive analysis, 

better suited to reveal the minutiae of auditory processing 

dynamics. 

 

CONCLUSION 

Our results suggest that ASR and EMD can perform 

accurate online artifact detection and correction, as they 

were able to reproduce the results obtained at the group 

level with classical offline analysis. Interestingly, in 

terms of model comparison, we also note that the 

mimicked online approaches based on ASR and EMD 

yielded more sensitive results than the reference offline 

approach. However, ASR is computationally more 

efficient than EMD. Overall, ASR offers great potential 

for real-time applications, in particular those that would 

exploit adaptive designs in order to optimize hypothesis 

testing or clinical diagnosis at the individual level [12]. 
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